/* Copyright (c) 2002,2007-2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include "kgsl.h" #include "kgsl_pwrscale.h" #include "kgsl_cffdump.h" #include "kgsl_sharedmem.h" #include "kgsl_iommu.h" #include "kgsl_trace.h" #include "adreno.h" #include "adreno_compat.h" #include "adreno_pm4types.h" #include "adreno_trace.h" #include "a3xx_reg.h" #include "adreno_snapshot.h" /* Include the master list of GPU cores that are supported */ #include "adreno-gpulist.h" #undef MODULE_PARAM_PREFIX #define MODULE_PARAM_PREFIX "adreno." static bool nopreempt; module_param(nopreempt, bool, 0444); MODULE_PARM_DESC(nopreempt, "Disable GPU preemption"); #define DRIVER_VERSION_MAJOR 3 #define DRIVER_VERSION_MINOR 1 /* Number of times to try hard reset */ #define NUM_TIMES_RESET_RETRY 5 #define KGSL_LOG_LEVEL_DEFAULT 3 static void adreno_input_work(struct work_struct *work); static unsigned int counter_delta(struct adreno_device *adreno_dev, unsigned int reg, unsigned int *counter); static struct devfreq_msm_adreno_tz_data adreno_tz_data = { .bus = { .max = 350, }, .device_id = KGSL_DEVICE_3D0, }; static const struct kgsl_functable adreno_functable; static struct kgsl_iommu device_3d0_iommu; static struct adreno_device device_3d0 = { .dev = { KGSL_DEVICE_COMMON_INIT(device_3d0.dev), .pwrscale = KGSL_PWRSCALE_INIT(&adreno_tz_data), .name = DEVICE_3D0_NAME, .id = KGSL_DEVICE_3D0, .pwrctrl = { .irq_name = "kgsl_3d0_irq", }, .iomemname = "kgsl_3d0_reg_memory", .shadermemname = "kgsl_3d0_shader_memory", .ftbl = &adreno_functable, .cmd_log = KGSL_LOG_LEVEL_DEFAULT, .ctxt_log = KGSL_LOG_LEVEL_DEFAULT, .drv_log = KGSL_LOG_LEVEL_DEFAULT, .mem_log = KGSL_LOG_LEVEL_DEFAULT, .pwr_log = KGSL_LOG_LEVEL_DEFAULT, }, .gmem_size = SZ_256K, .pfp_fw = NULL, .pm4_fw = NULL, .ft_policy = KGSL_FT_DEFAULT_POLICY, .ft_pf_policy = KGSL_FT_PAGEFAULT_DEFAULT_POLICY, .fast_hang_detect = 1, .long_ib_detect = 1, .input_work = __WORK_INITIALIZER(device_3d0.input_work, adreno_input_work), .pwrctrl_flag = BIT(ADRENO_SPTP_PC_CTRL) | BIT(ADRENO_PPD_CTRL) | BIT(ADRENO_LM_CTRL), .profile.enabled = false, }; /* Ptr to array for the current set of fault detect registers */ unsigned int *adreno_ft_regs; /* Total number of fault detect registers */ unsigned int adreno_ft_regs_num; /* Ptr to array for the current fault detect registers values */ unsigned int *adreno_ft_regs_val; /* Array of default fault detect registers */ static unsigned int adreno_ft_regs_default[] = { ADRENO_REG_RBBM_STATUS, ADRENO_REG_CP_RB_RPTR, ADRENO_REG_CP_IB1_BASE, ADRENO_REG_CP_IB1_BUFSZ, ADRENO_REG_CP_IB2_BASE, ADRENO_REG_CP_IB2_BUFSZ }; /* Nice level for the higher priority GPU start thread */ int adreno_wake_nice = -7; /* Number of milliseconds to stay active active after a wake on touch */ unsigned int adreno_wake_timeout = 100; /** * adreno_readreg64() - Read a 64bit register by getting its offset from the * offset array defined in gpudev node * @adreno_dev: Pointer to the the adreno device * @lo: lower 32bit register enum that is to be read * @hi: higher 32bit register enum that is to be read * @val: 64 bit Register value read is placed here */ void adreno_readreg64(struct adreno_device *adreno_dev, enum adreno_regs lo, enum adreno_regs hi, uint64_t *val) { struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); unsigned int val_lo = 0, val_hi = 0; struct kgsl_device *device = &adreno_dev->dev; if (adreno_checkreg_off(adreno_dev, lo)) kgsl_regread(device, gpudev->reg_offsets->offsets[lo], &val_lo); if (adreno_checkreg_off(adreno_dev, hi)) kgsl_regread(device, gpudev->reg_offsets->offsets[hi], &val_hi); *val = (val_lo | ((uint64_t)val_hi << 32)); } /** * adreno_writereg64() - Write a 64bit register by getting its offset from the * offset array defined in gpudev node * @adreno_dev: Pointer to the the adreno device * @lo: lower 32bit register enum that is to be written * @hi: higher 32bit register enum that is to be written * @val: 64 bit value to write */ void adreno_writereg64(struct adreno_device *adreno_dev, enum adreno_regs lo, enum adreno_regs hi, uint64_t val) { struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); struct kgsl_device *device = &adreno_dev->dev; if (adreno_checkreg_off(adreno_dev, lo)) kgsl_regwrite(device, gpudev->reg_offsets->offsets[lo], lower_32_bits(val)); if (adreno_checkreg_off(adreno_dev, hi)) kgsl_regwrite(device, gpudev->reg_offsets->offsets[hi], upper_32_bits(val)); } /** * adreno_of_read_property() - Adreno read property * @node: Device node * * Read a u32 property. */ static inline int adreno_of_read_property(struct device_node *node, const char *prop, unsigned int *ptr) { int ret = of_property_read_u32(node, prop, ptr); if (ret) KGSL_CORE_ERR("Unable to read '%s'\n", prop); return ret; } static void __iomem *efuse_base; static size_t efuse_len; int adreno_efuse_map(struct adreno_device *adreno_dev) { struct kgsl_device *device = &adreno_dev->dev; struct resource *res; if (efuse_base != NULL) return 0; res = platform_get_resource_byname(device->pdev, IORESOURCE_MEM, "qfprom_memory"); if (res == NULL) return -ENODEV; efuse_base = ioremap(res->start, resource_size(res)); if (efuse_base == NULL) return -ENODEV; efuse_len = resource_size(res); return 0; } void adreno_efuse_unmap(struct adreno_device *adreno_dev) { if (efuse_base != NULL) { iounmap(efuse_base); efuse_base = NULL; efuse_len = 0; } } int adreno_efuse_read_u32(struct adreno_device *adreno_dev, unsigned int offset, unsigned int *val) { if (efuse_base == NULL) return -ENODEV; if (offset >= efuse_len) return -ERANGE; if (val != NULL) { *val = readl_relaxed(efuse_base + offset); /* Make sure memory is updated before returning */ rmb(); } return 0; } /* * adreno_iommu_cb_probe() - Adreno iommu context bank probe * * Iommu context bank probe function. */ static int adreno_iommu_cb_probe(struct platform_device *pdev) { struct kgsl_iommu_context *ctx = NULL; struct device_node *node = pdev->dev.of_node; struct kgsl_iommu *iommu = &device_3d0_iommu; int ret = 0; /* Map context names from dt to id's */ if (!strcmp("gfx3d_user", node->name)) { ctx = &iommu->ctx[KGSL_IOMMU_CONTEXT_USER]; ctx->id = KGSL_IOMMU_CONTEXT_USER; ctx->cb_num = -1; } else if (!strcmp("gfx3d_secure", node->name)) { ctx = &iommu->ctx[KGSL_IOMMU_CONTEXT_SECURE]; ctx->id = KGSL_IOMMU_CONTEXT_SECURE; ctx->cb_num = -1; device_3d0.dev.mmu.secured = true; } else { KGSL_CORE_ERR("dt: Unknown context label %s\n", node->name); return -EINVAL; } if (ctx->name != NULL) { KGSL_CORE_ERR("dt: %s appears multiple times\n", node->name); return -EINVAL; } ctx->name = node->name; /* this property won't be found for all context banks */ if (of_property_read_u32(node, "qcom,gpu-offset", &ctx->gpu_offset)) ctx->gpu_offset = UINT_MAX; ctx->kgsldev = &device_3d0.dev; /* arm-smmu driver we'll have the right device pointer here. */ if (of_find_property(node, "iommus", NULL)) { ctx->dev = &pdev->dev; } else { /* * old iommu driver requires that we query the context bank * device rather than getting it from dt. */ ctx->dev = kgsl_mmu_get_ctx(ctx->name); if (IS_ERR_OR_NULL(ctx->dev)) { ret = (ctx->dev == NULL) ? -ENODEV : PTR_ERR(ctx->dev); KGSL_CORE_ERR("ctx %s: kgsl_mmu_get_ctx err: %d\n", ctx->name, ret); return ret; } } kgsl_mmu_set_mmutype(KGSL_MMU_TYPE_IOMMU); return ret; } static struct of_device_id iommu_match_table[] = { { .compatible = "qcom,kgsl-smmu-v1", }, { .compatible = "qcom,kgsl-smmu-v2", }, { .compatible = "qcom,smmu-kgsl-cb", }, {} }; /** * adreno_iommu_pdev_probe() - Adreno iommu context bank probe * @pdev: Platform device * * Iommu probe function. */ static int adreno_iommu_pdev_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const char *cname; struct property *prop; u32 reg_val[2]; int i = 0; struct kgsl_iommu *iommu = &device_3d0_iommu; if (of_device_is_compatible(dev->of_node, "qcom,smmu-kgsl-cb")) return adreno_iommu_cb_probe(pdev); else if (of_device_is_compatible(dev->of_node, "qcom,kgsl-smmu-v1")) iommu->version = 1; else iommu->version = 2; if (of_property_read_u32_array(pdev->dev.of_node, "reg", reg_val, 2)) { KGSL_CORE_ERR("dt: Unable to read KGSL IOMMU register range\n"); return -EINVAL; } iommu->regstart = reg_val[0]; iommu->regsize = reg_val[1]; /* Protecting the SMMU registers is mandatory */ if (of_property_read_u32_array(pdev->dev.of_node, "qcom,protect", reg_val, 2)) { KGSL_CORE_ERR("dt: no iommu protection range specified\n"); return -EINVAL; } iommu->protect.base = reg_val[0] / sizeof(u32); iommu->protect.range = ilog2(reg_val[1] / sizeof(u32)); of_property_for_each_string(dev->of_node, "clock-names", prop, cname) { struct clk *c = devm_clk_get(dev, cname); if (IS_ERR(c)) { KGSL_CORE_ERR("dt: Couldn't get clock: %s\n", cname); return -ENODEV; } if (i >= KGSL_IOMMU_MAX_CLKS) { KGSL_CORE_ERR("dt: too many clocks defined.\n"); return -EINVAL; } iommu->clks[i] = c; ++i; } if (of_property_read_bool(pdev->dev.of_node, "qcom,retention")) device_3d0.dev.mmu.features |= KGSL_MMU_RETENTION; if (of_property_read_bool(pdev->dev.of_node, "qcom,global_pt")) device_3d0.dev.mmu.features |= KGSL_MMU_GLOBAL_PAGETABLE; if (of_property_read_bool(pdev->dev.of_node, "qcom,hyp_secure_alloc")) device_3d0.dev.mmu.features |= KGSL_MMU_HYP_SECURE_ALLOC; if (of_property_read_bool(pdev->dev.of_node, "qcom,force-32bit")) device_3d0.dev.mmu.features |= KGSL_MMU_FORCE_32BIT; if (of_property_read_u32(pdev->dev.of_node, "qcom,micro-mmu-control", &iommu->micro_mmu_ctrl)) iommu->micro_mmu_ctrl = UINT_MAX; if (of_property_read_bool(pdev->dev.of_node, "qcom,coherent-htw")) device_3d0.dev.mmu.features |= KGSL_MMU_COHERENT_HTW; if (of_property_read_u32(pdev->dev.of_node, "qcom,secure_align_mask", &device_3d0.dev.mmu.secure_align_mask)) device_3d0.dev.mmu.secure_align_mask = 0xfff; return of_platform_populate(pdev->dev.of_node, iommu_match_table, NULL, &pdev->dev); } static struct platform_driver kgsl_iommu_platform_driver = { .probe = adreno_iommu_pdev_probe, .driver = { .owner = THIS_MODULE, .name = "kgsl-iommu", .of_match_table = iommu_match_table, } }; static int __init kgsl_iommu_pdev_init(void) { return platform_driver_register(&kgsl_iommu_platform_driver); } static void __exit kgsl_iommu_pdev_exit(void) { platform_driver_unregister(&kgsl_iommu_platform_driver); } module_init(kgsl_iommu_pdev_init); module_exit(kgsl_iommu_pdev_exit); static int _get_counter(struct adreno_device *adreno_dev, int group, int countable, unsigned int *lo, unsigned int *hi) { int ret = 0; if (*lo == 0) { ret = adreno_perfcounter_get(adreno_dev, group, countable, lo, hi, PERFCOUNTER_FLAG_KERNEL); if (ret) { struct kgsl_device *device = &adreno_dev->dev; KGSL_DRV_ERR(device, "Unable to allocate fault detect performance counter %d/%d\n", group, countable); KGSL_DRV_ERR(device, "GPU fault detect will be less reliable\n"); } } return ret; } static inline void _put_counter(struct adreno_device *adreno_dev, int group, int countable, unsigned int *lo, unsigned int *hi) { if (*lo != 0) adreno_perfcounter_put(adreno_dev, group, countable, PERFCOUNTER_FLAG_KERNEL); *lo = 0; *hi = 0; } /** * adreno_fault_detect_start() - Allocate performance counters * used for fast fault detection * @adreno_dev: Pointer to an adreno_device structure * * Allocate the series of performance counters that should be periodically * checked to verify that the GPU is still moving */ void adreno_fault_detect_start(struct adreno_device *adreno_dev) { struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); unsigned int i, j = ARRAY_SIZE(adreno_ft_regs_default); if (!test_bit(ADRENO_DEVICE_SOFT_FAULT_DETECT, &adreno_dev->priv)) return; if (adreno_dev->fast_hang_detect == 1) return; for (i = 0; i < gpudev->ft_perf_counters_count; i++) { _get_counter(adreno_dev, gpudev->ft_perf_counters[i].counter, gpudev->ft_perf_counters[i].countable, &adreno_ft_regs[j + (i * 2)], &adreno_ft_regs[j + ((i * 2) + 1)]); } adreno_dev->fast_hang_detect = 1; } /** * adreno_fault_detect_stop() - Release performance counters * used for fast fault detection * @adreno_dev: Pointer to an adreno_device structure * * Release the counters allocated in adreno_fault_detect_start */ void adreno_fault_detect_stop(struct adreno_device *adreno_dev) { struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); unsigned int i, j = ARRAY_SIZE(adreno_ft_regs_default); if (!test_bit(ADRENO_DEVICE_SOFT_FAULT_DETECT, &adreno_dev->priv)) return; if (!adreno_dev->fast_hang_detect) return; for (i = 0; i < gpudev->ft_perf_counters_count; i++) { _put_counter(adreno_dev, gpudev->ft_perf_counters[i].counter, gpudev->ft_perf_counters[i].countable, &adreno_ft_regs[j + (i * 2)], &adreno_ft_regs[j + ((i * 2) + 1)]); } adreno_dev->fast_hang_detect = 0; } /* * A workqueue callback responsible for actually turning on the GPU after a * touch event. kgsl_pwrctrl_change_state(ACTIVE) is used without any * active_count protection to avoid the need to maintain state. Either * somebody will start using the GPU or the idle timer will fire and put the * GPU back into slumber. */ static void adreno_input_work(struct work_struct *work) { struct adreno_device *adreno_dev = container_of(work, struct adreno_device, input_work); struct kgsl_device *device = &adreno_dev->dev; mutex_lock(&device->mutex); device->flags |= KGSL_FLAG_WAKE_ON_TOUCH; /* * Don't schedule adreno_start in a high priority workqueue, we are * already in a workqueue which should be sufficient */ kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE); /* * When waking up from a touch event we want to stay active long enough * for the user to send a draw command. The default idle timer timeout * is shorter than we want so go ahead and push the idle timer out * further for this special case */ mod_timer(&device->idle_timer, jiffies + msecs_to_jiffies(adreno_wake_timeout)); mutex_unlock(&device->mutex); } /* * Process input events and schedule work if needed. At this point we are only * interested in groking EV_ABS touchscreen events */ static void adreno_input_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { struct kgsl_device *device = handle->handler->private; struct adreno_device *adreno_dev = ADRENO_DEVICE(device); /* Only consider EV_ABS (touch) events */ if (type != EV_ABS) return; /* * Don't do anything if anything hasn't been rendered since we've been * here before */ if (device->flags & KGSL_FLAG_WAKE_ON_TOUCH) return; /* * If the device is in nap, kick the idle timer to make sure that we * don't go into slumber before the first render. If the device is * already in slumber schedule the wake. */ if (device->state == KGSL_STATE_NAP) { /* * Set the wake on touch bit to keep from coming back here and * keeping the device in nap without rendering */ device->flags |= KGSL_FLAG_WAKE_ON_TOUCH; mod_timer(&device->idle_timer, jiffies + device->pwrctrl.interval_timeout); } else if (device->state == KGSL_STATE_SLUMBER) { schedule_work(&adreno_dev->input_work); } } #ifdef CONFIG_INPUT static int adreno_input_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_handle *handle; int ret; handle = kzalloc(sizeof(*handle), GFP_KERNEL); if (handle == NULL) return -ENOMEM; handle->dev = dev; handle->handler = handler; handle->name = handler->name; ret = input_register_handle(handle); if (ret) { kfree(handle); return ret; } ret = input_open_device(handle); if (ret) { input_unregister_handle(handle); kfree(handle); } return ret; } static void adreno_input_disconnect(struct input_handle *handle) { input_close_device(handle); input_unregister_handle(handle); kfree(handle); } #else static int adreno_input_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { return 0; } static void adreno_input_disconnect(struct input_handle *handle) {} #endif /* * We are only interested in EV_ABS events so only register handlers for those * input devices that have EV_ABS events */ static const struct input_device_id adreno_input_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT, .evbit = { BIT_MASK(EV_ABS) }, /* assumption: MT_.._X & MT_.._Y are in the same long */ .absbit = { [BIT_WORD(ABS_MT_POSITION_X)] = BIT_MASK(ABS_MT_POSITION_X) | BIT_MASK(ABS_MT_POSITION_Y) }, }, { }, }; static struct input_handler adreno_input_handler = { .event = adreno_input_event, .connect = adreno_input_connect, .disconnect = adreno_input_disconnect, .name = "kgsl", .id_table = adreno_input_ids, }; static int adreno_soft_reset(struct kgsl_device *device); /* * _soft_reset() - Soft reset GPU * @adreno_dev: Pointer to adreno device * * Soft reset the GPU by doing a AHB write of value 1 to RBBM_SW_RESET * register. This is used when we want to reset the GPU without * turning off GFX power rail. The reset when asserted resets * all the HW logic, restores GPU registers to default state and * flushes out pending VBIF transactions. */ static void _soft_reset(struct adreno_device *adreno_dev) { struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); unsigned int reg; /* * On a530 v1 RBBM cannot be reset in soft reset. * Reset all blocks except RBBM for a530v1. */ if (adreno_is_a530v1(adreno_dev)) { adreno_writereg(adreno_dev, ADRENO_REG_RBBM_BLOCK_SW_RESET_CMD, 0xFFDFFC0); adreno_writereg(adreno_dev, ADRENO_REG_RBBM_BLOCK_SW_RESET_CMD2, 0x1FFFFFFF); } else { adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, 1); /* * Do a dummy read to get a brief read cycle delay for the * reset to take effect */ adreno_readreg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, ®); adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SW_RESET_CMD, 0); } /* The SP/TP regulator gets turned off after a soft reset */ if (gpudev->regulator_enable) gpudev->regulator_enable(adreno_dev); } void adreno_irqctrl(struct adreno_device *adreno_dev, int state) { struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); unsigned int mask = state ? gpudev->irq->mask : 0; adreno_writereg(adreno_dev, ADRENO_REG_RBBM_INT_0_MASK, mask); } /* * adreno_hang_int_callback() - Isr for fatal interrupts that hang GPU * @adreno_dev: Pointer to device * @bit: Interrupt bit */ void adreno_hang_int_callback(struct adreno_device *adreno_dev, int bit) { struct kgsl_device *device = &adreno_dev->dev; KGSL_DRV_CRIT(device, "MISC: GPU hang detected\n"); adreno_irqctrl(adreno_dev, 0); /* Trigger a fault in the dispatcher - this will effect a restart */ adreno_set_gpu_fault(ADRENO_DEVICE(device), ADRENO_HARD_FAULT); adreno_dispatcher_schedule(device); } /* * adreno_cp_callback() - CP interrupt handler * @adreno_dev: Adreno device pointer * @irq: irq number * * Handle the cp interrupt generated by GPU. */ void adreno_cp_callback(struct adreno_device *adreno_dev, int bit) { struct kgsl_device *device = &adreno_dev->dev; kgsl_schedule_work(&device->event_work); adreno_dispatcher_schedule(device); } static irqreturn_t adreno_irq_handler(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); struct adreno_irq *irq_params = gpudev->irq; irqreturn_t ret = IRQ_NONE; unsigned int status = 0, tmp; int i; adreno_readreg(adreno_dev, ADRENO_REG_RBBM_INT_0_STATUS, &status); /* Loop through all set interrupts and call respective handlers */ for (tmp = status; tmp != 0;) { i = fls(tmp) - 1; if (irq_params->funcs[i].func != NULL) { irq_params->funcs[i].func(adreno_dev, i); ret = IRQ_HANDLED; } else KGSL_DRV_CRIT(device, "Unhandled interrupt bit %x\n", i); tmp &= ~BIT(i); } gpudev->irq_trace(adreno_dev, status); if (status) adreno_writereg(adreno_dev, ADRENO_REG_RBBM_INT_CLEAR_CMD, status); return ret; } static inline bool _rev_match(unsigned int id, unsigned int entry) { return (entry == ANY_ID || entry == id); } static inline const struct adreno_gpu_core *_get_gpu_core(unsigned int chipid) { unsigned int core = ADRENO_CHIPID_CORE(chipid); unsigned int major = ADRENO_CHIPID_MAJOR(chipid); unsigned int minor = ADRENO_CHIPID_MINOR(chipid); unsigned int patchid = ADRENO_CHIPID_PATCH(chipid); int i; for (i = 0; i < ARRAY_SIZE(adreno_gpulist); i++) { if (core == adreno_gpulist[i].core && _rev_match(major, adreno_gpulist[i].major) && _rev_match(minor, adreno_gpulist[i].minor) && _rev_match(patchid, adreno_gpulist[i].patchid)) return &adreno_gpulist[i]; } return NULL; } static void adreno_identify_gpu(struct adreno_device *adreno_dev) { const struct adreno_reg_offsets *reg_offsets; struct adreno_gpudev *gpudev; int i; if (kgsl_property_read_u32(&adreno_dev->dev, "qcom,chipid", &adreno_dev->chipid)) KGSL_DRV_FATAL(&adreno_dev->dev, "No GPU chip ID was specified\n"); adreno_dev->gpucore = _get_gpu_core(adreno_dev->chipid); if (adreno_dev->gpucore == NULL) KGSL_DRV_FATAL(&adreno_dev->dev, "Unknown GPU chip ID %8.8X\n", adreno_dev->chipid); /* * The gmem size might be dynamic when ocmem is involved so copy it out * of the gpu device */ adreno_dev->gmem_size = adreno_dev->gpucore->gmem_size; /* * Initialize uninitialzed gpu registers, only needs to be done once * Make all offsets that are not initialized to ADRENO_REG_UNUSED */ gpudev = ADRENO_GPU_DEVICE(adreno_dev); reg_offsets = gpudev->reg_offsets; for (i = 0; i < ADRENO_REG_REGISTER_MAX; i++) { if (reg_offsets->offset_0 != i && !reg_offsets->offsets[i]) reg_offsets->offsets[i] = ADRENO_REG_UNUSED; } /* Do target specific identification */ if (gpudev->platform_setup != NULL) gpudev->platform_setup(adreno_dev); } static const struct platform_device_id adreno_id_table[] = { { DEVICE_3D0_NAME, (unsigned long) &device_3d0, }, {}, }; MODULE_DEVICE_TABLE(platform, adreno_id_table); static const struct of_device_id adreno_match_table[] = { { .compatible = "qcom,kgsl-3d0", .data = &device_3d0 }, {} }; static int adreno_of_parse_pwrlevels(struct adreno_device *adreno_dev, struct device_node *node) { struct kgsl_device *device = &adreno_dev->dev; struct kgsl_pwrctrl *pwr = &device->pwrctrl; struct device_node *child; pwr->num_pwrlevels = 0; for_each_child_of_node(node, child) { unsigned int index; struct kgsl_pwrlevel *level; if (adreno_of_read_property(child, "reg", &index)) return -EINVAL; if (index >= KGSL_MAX_PWRLEVELS) { KGSL_CORE_ERR("Pwrlevel index %d is out of range\n", index); continue; } if (index >= pwr->num_pwrlevels) pwr->num_pwrlevels = index + 1; level = &pwr->pwrlevels[index]; if (adreno_of_read_property(child, "qcom,gpu-freq", &level->gpu_freq)) return -EINVAL; if (adreno_of_read_property(child, "qcom,bus-freq", &level->bus_freq)) return -EINVAL; if (of_property_read_u32(child, "qcom,bus-min", &level->bus_min)) level->bus_min = level->bus_freq; if (of_property_read_u32(child, "qcom,bus-max", &level->bus_max)) level->bus_max = level->bus_freq; } return 0; } static int adreno_of_get_legacy_pwrlevels(struct adreno_device *adreno_dev, struct device_node *parent) { struct device_node *node; node = of_find_node_by_name(parent, "qcom,gpu-pwrlevels"); if (node == NULL) { KGSL_CORE_ERR("Unable to find 'qcom,gpu-pwrlevels'\n"); return -EINVAL; } return adreno_of_parse_pwrlevels(adreno_dev, node); } static int adreno_of_get_pwrlevels(struct adreno_device *adreno_dev, struct device_node *parent) { struct device_node *node, *child; node = of_find_node_by_name(parent, "qcom,gpu-pwrlevel-bins"); if (node == NULL) return adreno_of_get_legacy_pwrlevels(adreno_dev, parent); for_each_child_of_node(node, child) { unsigned int bin; if (of_property_read_u32(child, "qcom,speed-bin", &bin)) continue; if (bin == adreno_dev->speed_bin) return adreno_of_parse_pwrlevels(adreno_dev, child); } return -ENODEV; } static inline struct adreno_device *adreno_get_dev(struct platform_device *pdev) { const struct of_device_id *of_id = of_match_device(adreno_match_table, &pdev->dev); return of_id ? (struct adreno_device *) of_id->data : NULL; } static struct { unsigned int quirk; const char *prop; } adreno_quirks[] = { { ADRENO_QUIRK_TWO_PASS_USE_WFI, "qcom,gpu-quirk-two-pass-use-wfi" }, { ADRENO_QUIRK_IOMMU_SYNC, "qcom,gpu-quirk-iommu-sync" }, }; static int adreno_of_get_power(struct adreno_device *adreno_dev, struct platform_device *pdev) { struct kgsl_device *device = &adreno_dev->dev; struct kgsl_pwrctrl *pwr = &device->pwrctrl; struct device_node *node = pdev->dev.of_node; int i, init_level; unsigned int timeout; if (of_property_read_string(node, "label", &pdev->name)) { KGSL_CORE_ERR("Unable to read 'label'\n"); return -EINVAL; } if (adreno_of_read_property(node, "qcom,id", &pdev->id)) return -EINVAL; /* Set up quirks and other boolean options */ for (i = 0; i < ARRAY_SIZE(adreno_quirks); i++) { if (of_property_read_bool(node, adreno_quirks[i].prop)) adreno_dev->quirks |= adreno_quirks[i].quirk; } if (adreno_of_get_pwrlevels(adreno_dev, node)) return -EINVAL; if (of_property_read_u32(node, "qcom,initial-pwrlevel", &init_level)) init_level = 1; if (init_level < 0 || init_level > pwr->num_pwrlevels) init_level = 1; pwr->active_pwrlevel = init_level; pwr->default_pwrlevel = init_level; /* get pm-qos-active-latency, set it to default if not found */ if (of_property_read_u32(node, "qcom,pm-qos-active-latency", &device->pwrctrl.pm_qos_active_latency)) device->pwrctrl.pm_qos_active_latency = 501; /* get pm-qos-wakeup-latency, set it to default if not found */ if (of_property_read_u32(node, "qcom,pm-qos-wakeup-latency", &device->pwrctrl.pm_qos_wakeup_latency)) device->pwrctrl.pm_qos_wakeup_latency = 101; if (of_property_read_u32(node, "qcom,idle-timeout", &timeout)) timeout = 80; device->pwrctrl.interval_timeout = msecs_to_jiffies(timeout); device->pwrctrl.strtstp_sleepwake = of_property_read_bool(node, "qcom,strtstp-sleepwake"); device->pwrctrl.bus_control = of_property_read_bool(node, "qcom,bus-control"); return 0; } #ifdef CONFIG_MSM_OCMEM static int adreno_ocmem_malloc(struct adreno_device *adreno_dev) { if (!ADRENO_FEATURE(adreno_dev, ADRENO_USES_OCMEM)) return 0; if (adreno_dev->ocmem_hdl == NULL) { adreno_dev->ocmem_hdl = ocmem_allocate(OCMEM_GRAPHICS, adreno_dev->gmem_size); if (IS_ERR_OR_NULL(adreno_dev->ocmem_hdl)) { adreno_dev->ocmem_hdl = NULL; return -ENOMEM; } adreno_dev->gmem_size = adreno_dev->ocmem_hdl->len; adreno_dev->gmem_base = adreno_dev->ocmem_hdl->addr; } return 0; } static void adreno_ocmem_free(struct adreno_device *adreno_dev) { if (adreno_dev->ocmem_hdl != NULL) { ocmem_free(OCMEM_GRAPHICS, adreno_dev->ocmem_hdl); adreno_dev->ocmem_hdl = NULL; } } #else static int adreno_ocmem_malloc(struct adreno_device *adreno_dev) { return 0; } static void adreno_ocmem_free(struct adreno_device *adreno_dev) { } #endif static int adreno_probe(struct platform_device *pdev) { struct kgsl_device *device; struct adreno_device *adreno_dev; int status; /* Defer adreno probe if IOMMU is not already probed */ if (device_3d0_iommu.regstart == 0) return -EPROBE_DEFER; adreno_dev = adreno_get_dev(pdev); if (adreno_dev == NULL) { pr_err("adreno: qcom,kgsl-3d0 does not exist in the device tree"); return -ENODEV; } device = &adreno_dev->dev; device->pdev = pdev; device->mmu.priv = &device_3d0_iommu; /* Get the chip ID from the DT and set up target specific parameters */ adreno_identify_gpu(adreno_dev); status = adreno_of_get_power(adreno_dev, pdev); if (status) { device->pdev = NULL; return status; } /* * The SMMU APIs use unsigned long for virtual addresses which means * that we cannot use 64 bit virtual addresses on a 32 bit kernel even * though the hardware and the rest of the KGSL driver supports it. */ if (adreno_support_64bit(adreno_dev)) device->mmu.features |= KGSL_MMU_64BIT; status = kgsl_device_platform_probe(device); if (status) { device->pdev = NULL; return status; } /* * qcom,iommu-secure-id is used to identify MMUs that can handle secure * content but that is only part of the story - the GPU also has to be * able to handle secure content. Unfortunately in a classic catch-22 * we cannot identify the GPU until after the DT is parsed. tl;dr - * check the GPU capabilities here and modify mmu->secured accordingly */ if (!ADRENO_FEATURE(adreno_dev, ADRENO_CONTENT_PROTECTION)) device->mmu.secured = false; status = adreno_ringbuffer_init(adreno_dev, nopreempt); if (status) goto out; status = adreno_dispatcher_init(adreno_dev); if (status) goto out; adreno_debugfs_init(adreno_dev); adreno_profile_init(adreno_dev); adreno_sysfs_init(device); kgsl_pwrscale_init(&pdev->dev, CONFIG_MSM_ADRENO_DEFAULT_GOVERNOR); /* Initialize coresight for the target */ adreno_coresight_init(adreno_dev); adreno_input_handler.private = device; #ifdef CONFIG_INPUT /* * It isn't fatal if we cannot register the input handler. Sad, * perhaps, but not fatal */ if (input_register_handler(&adreno_input_handler)) KGSL_DRV_ERR(device, "Unable to register the input handler\n"); #endif out: if (status) { adreno_ringbuffer_close(adreno_dev); kgsl_device_platform_remove(device); device->pdev = NULL; } return status; } static void _adreno_free_memories(struct adreno_device *adreno_dev) { struct kgsl_device *device = &adreno_dev->dev; if (test_bit(ADRENO_DEVICE_CMDBATCH_PROFILE, &adreno_dev->priv)) kgsl_free_global(device, &adreno_dev->cmdbatch_profile_buffer); /* Free local copies of firmware and other command streams */ kfree(adreno_dev->pfp_fw); adreno_dev->pfp_fw = NULL; kfree(adreno_dev->pm4_fw); adreno_dev->pm4_fw = NULL; kfree(adreno_dev->gpmu_cmds); adreno_dev->gpmu_cmds = NULL; kgsl_free_global(device, &adreno_dev->pm4); kgsl_free_global(device, &adreno_dev->pfp); } static int adreno_remove(struct platform_device *pdev) { struct adreno_device *adreno_dev = adreno_get_dev(pdev); struct kgsl_device *device; if (adreno_dev == NULL) return 0; device = &adreno_dev->dev; /* The memory is fading */ _adreno_free_memories(adreno_dev); #ifdef CONFIG_INPUT input_unregister_handler(&adreno_input_handler); #endif adreno_sysfs_close(device); adreno_coresight_remove(adreno_dev); adreno_profile_close(adreno_dev); kgsl_pwrscale_close(device); adreno_dispatcher_close(adreno_dev); adreno_ringbuffer_close(adreno_dev); adreno_fault_detect_stop(adreno_dev); kfree(adreno_ft_regs); adreno_ft_regs = NULL; kfree(adreno_ft_regs_val); adreno_ft_regs_val = NULL; if (efuse_base != NULL) iounmap(efuse_base); adreno_perfcounter_close(adreno_dev); kgsl_device_platform_remove(device); if (test_bit(ADRENO_DEVICE_PWRON_FIXUP, &adreno_dev->priv)) { kgsl_free_global(device, &adreno_dev->pwron_fixup); clear_bit(ADRENO_DEVICE_PWRON_FIXUP, &adreno_dev->priv); } clear_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv); return 0; } static void adreno_fault_detect_init(struct adreno_device *adreno_dev) { struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); int i, val = adreno_dev->fast_hang_detect; /* Disable the fast hang detect bit until we know its a go */ adreno_dev->fast_hang_detect = 0; adreno_ft_regs_num = (ARRAY_SIZE(adreno_ft_regs_default) + gpudev->ft_perf_counters_count*2); adreno_ft_regs = kzalloc(adreno_ft_regs_num * sizeof(unsigned int), GFP_KERNEL); adreno_ft_regs_val = kzalloc(adreno_ft_regs_num * sizeof(unsigned int), GFP_KERNEL); if (adreno_ft_regs == NULL || adreno_ft_regs_val == NULL) { kfree(adreno_ft_regs); kfree(adreno_ft_regs_val); adreno_ft_regs = NULL; adreno_ft_regs_val = NULL; return; } for (i = 0; i < ARRAY_SIZE(adreno_ft_regs_default); i++) adreno_ft_regs[i] = adreno_getreg(adreno_dev, adreno_ft_regs_default[i]); set_bit(ADRENO_DEVICE_SOFT_FAULT_DETECT, &adreno_dev->priv); if (val) adreno_fault_detect_start(adreno_dev); } static int adreno_init(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); int ret; kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT); /* * initialization only needs to be done once initially until * device is shutdown */ if (test_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv)) return 0; /* * Either the microcode read failed because the usermodehelper isn't * available or the microcode was corrupted. Fail the init and force * the user to try the open() again */ ret = gpudev->microcode_read(adreno_dev); if (ret) return ret; /* Put the GPU in a responsive state */ ret = kgsl_pwrctrl_change_state(device, KGSL_STATE_AWARE); if (ret) return ret; ret = adreno_iommu_init(adreno_dev); if (ret) return ret; adreno_perfcounter_init(adreno_dev); adreno_fault_detect_init(adreno_dev); /* Power down the device */ kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT); /* * Enable the power on shader corruption fix * This is only applicable for 28nm targets */ if (adreno_is_a3xx(adreno_dev)) adreno_a3xx_pwron_fixup_init(adreno_dev); else if ((adreno_is_a405(adreno_dev)) || (adreno_is_a420(adreno_dev))) adreno_a4xx_pwron_fixup_init(adreno_dev); if (gpudev->init != NULL) gpudev->init(adreno_dev); set_bit(ADRENO_DEVICE_INITIALIZED, &adreno_dev->priv); /* Use shader offset and length defined in gpudev */ if (adreno_dev->gpucore->shader_offset && adreno_dev->gpucore->shader_size) { if (device->shader_mem_phys || device->shader_mem_virt) KGSL_DRV_ERR(device, "Shader memory already specified in device tree\n"); else { device->shader_mem_phys = device->reg_phys + adreno_dev->gpucore->shader_offset; device->shader_mem_virt = device->reg_virt + adreno_dev->gpucore->shader_offset; device->shader_mem_len = adreno_dev->gpucore->shader_size; } } /* Adjust snapshot section sizes according to core */ if ((adreno_is_a330(adreno_dev) || adreno_is_a305b(adreno_dev))) { gpudev->snapshot_data->sect_sizes->cp_pfp = A320_SNAPSHOT_CP_STATE_SECTION_SIZE; gpudev->snapshot_data->sect_sizes->roq = A320_SNAPSHOT_ROQ_SECTION_SIZE; gpudev->snapshot_data->sect_sizes->cp_merciu = A320_SNAPSHOT_CP_MERCIU_SECTION_SIZE; } /* * Allocate a small chunk of memory for precise cmdbatch profiling for * those targets that have the always on timer */ if (!adreno_is_a3xx(adreno_dev)) { int r = kgsl_allocate_global(&adreno_dev->dev, &adreno_dev->cmdbatch_profile_buffer, PAGE_SIZE, 0, 0); adreno_dev->cmdbatch_profile_index = 0; if (r == 0) { set_bit(ADRENO_DEVICE_CMDBATCH_PROFILE, &adreno_dev->priv); kgsl_sharedmem_set(&adreno_dev->dev, &adreno_dev->cmdbatch_profile_buffer, 0, 0, PAGE_SIZE); } } if (nopreempt == false && ADRENO_FEATURE(adreno_dev, ADRENO_PREEMPTION)) { int r = 0; if (gpudev->preemption_init) r = gpudev->preemption_init(adreno_dev); if (r == 0) set_bit(ADRENO_DEVICE_PREEMPTION, &adreno_dev->priv); else WARN(1, "adreno: GPU preemption is disabled\n"); } return 0; } static bool regulators_left_on(struct kgsl_device *device) { int i; for (i = 0; i < KGSL_MAX_REGULATORS; i++) { struct kgsl_regulator *regulator = &device->pwrctrl.regulators[i]; if (IS_ERR_OR_NULL(regulator->reg)) break; if (regulator_is_enabled(regulator->reg)) return true; } return false; } static void _setup_throttling_counters(struct adreno_device *adreno_dev) { int i, ret; if (!adreno_is_a540(adreno_dev)) return; if (!ADRENO_FEATURE(adreno_dev, ADRENO_LM)) return; for (i = 0; i < ADRENO_GPMU_THROTTLE_COUNTERS; i++) { /* reset throttled cycles ivalue */ adreno_dev->busy_data.throttle_cycles[i] = 0; if (adreno_dev->gpmu_throttle_counters[i] != 0) continue; ret = adreno_perfcounter_get(adreno_dev, KGSL_PERFCOUNTER_GROUP_GPMU_PWR, ADRENO_GPMU_THROTTLE_COUNTERS_BASE_REG + i, &adreno_dev->gpmu_throttle_counters[i], NULL, PERFCOUNTER_FLAG_KERNEL); WARN_ONCE(ret, "Unable to get clock throttling counter %x\n", ADRENO_GPMU_THROTTLE_COUNTERS_BASE_REG + i); } } /* FW driven idle 10% throttle */ #define IDLE_10PCT 0 /* number of cycles when clock is throttled by 50% (CRC) */ #define CRC_50PCT 1 /* number of cycles when clock is throttled by more than 50% (CRC) */ #define CRC_MORE50PCT 2 /* number of cycles when clock is throttle by less than 50% (CRC) */ #define CRC_LESS50PCT 3 static uint64_t _read_throttling_counters(struct adreno_device *adreno_dev) { int i; uint32_t th[ADRENO_GPMU_THROTTLE_COUNTERS]; struct adreno_busy_data *busy = &adreno_dev->busy_data; if (!adreno_is_a540(adreno_dev)) return 0; if (!ADRENO_FEATURE(adreno_dev, ADRENO_LM)) return 0; for (i = 0; i < ADRENO_GPMU_THROTTLE_COUNTERS; i++) { if (!adreno_dev->gpmu_throttle_counters[i]) return 0; th[i] = counter_delta(adreno_dev, adreno_dev->gpmu_throttle_counters[i], &busy->throttle_cycles[i]); } return th[CRC_50PCT] + th[CRC_LESS50PCT] / 3 + (th[CRC_MORE50PCT] - th[IDLE_10PCT]) * 3; } static void _update_threshold_count(struct adreno_device *adreno_dev, uint64_t adj) { if (adreno_is_a530(adreno_dev)) kgsl_regread(&adreno_dev->dev, adreno_dev->lm_threshold_count, &adreno_dev->lm_threshold_cross); else if (adreno_is_a540(adreno_dev)) adreno_dev->lm_threshold_cross = adj; } /** * _adreno_start - Power up the GPU and prepare to accept commands * @adreno_dev: Pointer to an adreno_device structure * * The core function that powers up and initalizes the GPU. This function is * called at init and after coming out of SLUMBER */ static int _adreno_start(struct adreno_device *adreno_dev) { struct kgsl_device *device = &adreno_dev->dev; struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); int status = -EINVAL, ret; unsigned int state = device->state; bool regulator_left_on; unsigned int pmqos_wakeup_vote = device->pwrctrl.pm_qos_wakeup_latency; unsigned int pmqos_active_vote = device->pwrctrl.pm_qos_active_latency; /* make sure ADRENO_DEVICE_STARTED is not set here */ BUG_ON(test_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv)); pm_qos_update_request(&device->pwrctrl.pm_qos_req_dma, pmqos_wakeup_vote); kgsl_cffdump_open(device); regulator_left_on = regulators_left_on(device); /* Clear any GPU faults that might have been left over */ adreno_clear_gpu_fault(adreno_dev); /* Put the GPU in a responsive state */ status = kgsl_pwrctrl_change_state(device, KGSL_STATE_AWARE); if (status) goto error_pwr_off; /* Set the bit to indicate that we've just powered on */ set_bit(ADRENO_DEVICE_PWRON, &adreno_dev->priv); /* Soft reset the GPU if a regulator is stuck on*/ if (regulator_left_on) _soft_reset(adreno_dev); status = kgsl_mmu_start(device); if (status) goto error_pwr_off; /* Program GPU contect protection init values */ if (device->mmu.secured) { if (adreno_is_a4xx(adreno_dev)) adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SECVID_TRUST_CONFIG, 0x2); adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SECVID_TSB_CONTROL, 0x0); adreno_writereg64(adreno_dev, ADRENO_REG_RBBM_SECVID_TSB_TRUSTED_BASE, ADRENO_REG_RBBM_SECVID_TSB_TRUSTED_BASE_HI, KGSL_IOMMU_SECURE_BASE); adreno_writereg(adreno_dev, ADRENO_REG_RBBM_SECVID_TSB_TRUSTED_SIZE, KGSL_IOMMU_SECURE_SIZE); } status = adreno_ocmem_malloc(adreno_dev); if (status) { KGSL_DRV_ERR(device, "OCMEM malloc failed\n"); goto error_mmu_off; } /* Enable 64 bit gpu addr if feature is set */ if (gpudev->enable_64bit && adreno_support_64bit(adreno_dev)) gpudev->enable_64bit(adreno_dev); if (adreno_dev->perfctr_pwr_lo == 0) { ret = adreno_perfcounter_get(adreno_dev, KGSL_PERFCOUNTER_GROUP_PWR, 1, &adreno_dev->perfctr_pwr_lo, NULL, PERFCOUNTER_FLAG_KERNEL); if (ret) { KGSL_DRV_ERR(device, "Unable to get the perf counters for DCVS\n"); adreno_dev->perfctr_pwr_lo = 0; } } if (device->pwrctrl.bus_control) { /* VBIF waiting for RAM */ if (adreno_dev->starved_ram_lo == 0) { ret = adreno_perfcounter_get(adreno_dev, KGSL_PERFCOUNTER_GROUP_VBIF_PWR, 0, &adreno_dev->starved_ram_lo, NULL, PERFCOUNTER_FLAG_KERNEL); if (ret) { KGSL_DRV_ERR(device, "Unable to get perf counters for bus DCVS\n"); adreno_dev->starved_ram_lo = 0; } } /* VBIF DDR cycles */ if (adreno_dev->ram_cycles_lo == 0) { ret = adreno_perfcounter_get(adreno_dev, KGSL_PERFCOUNTER_GROUP_VBIF, VBIF_AXI_TOTAL_BEATS, &adreno_dev->ram_cycles_lo, NULL, PERFCOUNTER_FLAG_KERNEL); if (ret) { KGSL_DRV_ERR(device, "Unable to get perf counters for bus DCVS\n"); adreno_dev->ram_cycles_lo = 0; } } } /* Clear the busy_data stats - we're starting over from scratch */ adreno_dev->busy_data.gpu_busy = 0; adreno_dev->busy_data.vbif_ram_cycles = 0; adreno_dev->busy_data.vbif_starved_ram = 0; if (adreno_is_a530(adreno_dev) && ADRENO_FEATURE(adreno_dev, ADRENO_LM) && adreno_dev->lm_threshold_count == 0) { ret = adreno_perfcounter_get(adreno_dev, KGSL_PERFCOUNTER_GROUP_GPMU_PWR, 27, &adreno_dev->lm_threshold_count, NULL, PERFCOUNTER_FLAG_KERNEL); /* Ignore noncritical ret - used for debugfs */ if (ret) adreno_dev->lm_threshold_count = 0; } _setup_throttling_counters(adreno_dev); /* Restore performance counter registers with saved values */ adreno_perfcounter_restore(adreno_dev); /* Start the GPU */ gpudev->start(adreno_dev); /* Re-initialize the coresight registers if applicable */ adreno_coresight_start(adreno_dev); adreno_irqctrl(adreno_dev, 1); adreno_perfcounter_start(adreno_dev); /* Clear FSR here in case it is set from a previous pagefault */ kgsl_mmu_clear_fsr(&device->mmu); status = adreno_ringbuffer_start(adreno_dev, ADRENO_START_COLD); if (status) goto error_mmu_off; if (gpudev->hw_init) { status = gpudev->hw_init(adreno_dev); if (status) goto error_mmu_off; } /* Start the dispatcher */ adreno_dispatcher_start(device); device->reset_counter++; set_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv); if (pmqos_active_vote != pmqos_wakeup_vote) pm_qos_update_request(&device->pwrctrl.pm_qos_req_dma, pmqos_active_vote); return 0; error_mmu_off: kgsl_mmu_stop(&device->mmu); error_pwr_off: /* set the state back to original state */ kgsl_pwrctrl_change_state(device, state); if (pmqos_active_vote != pmqos_wakeup_vote) pm_qos_update_request(&device->pwrctrl.pm_qos_req_dma, pmqos_active_vote); return status; } /** * adreno_start() - Power up and initialize the GPU * @device: Pointer to the KGSL device to power up * @priority: Boolean flag to specify of the start should be scheduled in a low * latency work queue * * Power up the GPU and initialize it. If priority is specified then elevate * the thread priority for the duration of the start operation */ static int adreno_start(struct kgsl_device *device, int priority) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); int nice = task_nice(current); int ret; if (priority && (adreno_wake_nice < nice)) set_user_nice(current, adreno_wake_nice); ret = _adreno_start(adreno_dev); if (priority) set_user_nice(current, nice); return ret; } /** * adreno_vbif_clear_pending_transactions() - Clear transactions in VBIF pipe * @device: Pointer to the device whose VBIF pipe is to be cleared */ static int adreno_vbif_clear_pending_transactions(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); unsigned int mask = gpudev->vbif_xin_halt_ctrl0_mask; unsigned int val; unsigned long wait_for_vbif; int ret = 0; adreno_writereg(adreno_dev, ADRENO_REG_VBIF_XIN_HALT_CTRL0, mask); /* wait for the transactions to clear */ wait_for_vbif = jiffies + msecs_to_jiffies(100); while (1) { adreno_readreg(adreno_dev, ADRENO_REG_VBIF_XIN_HALT_CTRL1, &val); if ((val & mask) == mask) break; if (time_after(jiffies, wait_for_vbif)) { KGSL_DRV_ERR(device, "Wait limit reached for VBIF XIN Halt\n"); ret = -ETIMEDOUT; break; } } adreno_writereg(adreno_dev, ADRENO_REG_VBIF_XIN_HALT_CTRL0, 0); return ret; } static int adreno_stop(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); if (!test_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv)) return 0; adreno_set_active_ctxs_null(adreno_dev); adreno_dispatcher_stop(adreno_dev); adreno_ringbuffer_stop(adreno_dev); adreno_irqctrl(adreno_dev, 0); adreno_ocmem_free(adreno_dev); /* Save active coresight registers if applicable */ adreno_coresight_stop(adreno_dev); /* Save physical performance counter values before GPU power down*/ adreno_perfcounter_save(adreno_dev); adreno_vbif_clear_pending_transactions(device); kgsl_mmu_stop(&device->mmu); kgsl_cffdump_close(device); clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv); return 0; } static inline bool adreno_try_soft_reset(struct kgsl_device *device, int fault) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); /* * Do not do soft reset for a IOMMU fault (because the IOMMU hardware * needs a reset too) or for the A304 because it can't do SMMU * programming of any kind after a soft reset */ if ((fault & ADRENO_IOMMU_PAGE_FAULT) || adreno_is_a304(adreno_dev)) return false; return true; } /** * adreno_reset() - Helper function to reset the GPU * @device: Pointer to the KGSL device structure for the GPU * @fault: Type of fault. Needed to skip soft reset for MMU fault * * Try to reset the GPU to recover from a fault. First, try to do a low latency * soft reset. If the soft reset fails for some reason, then bring out the big * guns and toggle the footswitch. */ int adreno_reset(struct kgsl_device *device, int fault) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); int ret = -EINVAL; int i = 0; /* broadcast to HW - reset is coming */ if (gpudev->pre_reset) gpudev->pre_reset(adreno_dev); /* Try soft reset first */ if (adreno_try_soft_reset(device, fault)) { /* Make sure VBIF is cleared before resetting */ ret = adreno_vbif_clear_pending_transactions(device); if (ret == 0) { ret = adreno_soft_reset(device); if (ret) KGSL_DEV_ERR_ONCE(device, "Device soft reset failed\n"); } } if (ret) { /* If soft reset failed/skipped, then pull the power */ kgsl_pwrctrl_change_state(device, KGSL_STATE_INIT); /* since device is officially off now clear start bit */ clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv); /* Keep trying to start the device until it works */ for (i = 0; i < NUM_TIMES_RESET_RETRY; i++) { ret = adreno_start(device, 0); if (!ret) break; msleep(20); } } if (ret) return ret; if (0 != i) KGSL_DRV_WARN(device, "Device hard reset tried %d tries\n", i); /* * If active_cnt is non-zero then the system was active before * going into a reset - put it back in that state */ if (atomic_read(&device->active_cnt)) kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE); else kgsl_pwrctrl_change_state(device, KGSL_STATE_NAP); /* Set the page table back to the default page table */ kgsl_mmu_set_pt(&device->mmu, device->mmu.defaultpagetable); kgsl_sharedmem_writel(device, &adreno_dev->ringbuffers[0].pagetable_desc, offsetof(struct adreno_ringbuffer_pagetable_info, current_global_ptname), 0); return ret; } static int adreno_getproperty(struct kgsl_device *device, unsigned int type, void __user *value, size_t sizebytes) { int status = -EINVAL; struct adreno_device *adreno_dev = ADRENO_DEVICE(device); switch (type) { case KGSL_PROP_DEVICE_INFO: { struct kgsl_devinfo devinfo; if (sizebytes != sizeof(devinfo)) { status = -EINVAL; break; } memset(&devinfo, 0, sizeof(devinfo)); devinfo.device_id = device->id+1; devinfo.chip_id = adreno_dev->chipid; devinfo.mmu_enabled = kgsl_mmu_enabled(); devinfo.gmem_gpubaseaddr = adreno_dev->gmem_base; devinfo.gmem_sizebytes = adreno_dev->gmem_size; if (copy_to_user(value, &devinfo, sizeof(devinfo)) != 0) { status = -EFAULT; break; } status = 0; } break; case KGSL_PROP_DEVICE_SHADOW: { struct kgsl_shadowprop shadowprop; if (sizebytes != sizeof(shadowprop)) { status = -EINVAL; break; } memset(&shadowprop, 0, sizeof(shadowprop)); if (device->memstore.hostptr) { /*NOTE: with mmu enabled, gpuaddr doesn't mean * anything to mmap(). */ shadowprop.gpuaddr = (unsigned int) device->memstore.gpuaddr; shadowprop.size = device->memstore.size; /* GSL needs this to be set, even if it appears to be meaningless */ shadowprop.flags = KGSL_FLAGS_INITIALIZED | KGSL_FLAGS_PER_CONTEXT_TIMESTAMPS; } if (copy_to_user(value, &shadowprop, sizeof(shadowprop))) { status = -EFAULT; break; } status = 0; } break; case KGSL_PROP_MMU_ENABLE: { int mmu_prop = kgsl_mmu_enabled(); if (sizebytes != sizeof(int)) { status = -EINVAL; break; } if (copy_to_user(value, &mmu_prop, sizeof(mmu_prop))) { status = -EFAULT; break; } status = 0; } break; case KGSL_PROP_INTERRUPT_WAITS: { int int_waits = 1; if (sizebytes != sizeof(int)) { status = -EINVAL; break; } if (copy_to_user(value, &int_waits, sizeof(int))) { status = -EFAULT; break; } status = 0; } break; case KGSL_PROP_UCHE_GMEM_VADDR: { uint64_t gmem_vaddr = 0; if (adreno_is_a5xx(adreno_dev)) gmem_vaddr = ADRENO_UCHE_GMEM_BASE; if (sizebytes != sizeof(uint64_t)) { status = -EINVAL; break; } if (copy_to_user(value, &gmem_vaddr, sizeof(uint64_t))) { status = -EFAULT; break; } status = 0; } break; case KGSL_PROP_SP_GENERIC_MEM: { struct kgsl_sp_generic_mem sp_mem; if (sizebytes != sizeof(sp_mem)) { status = -EINVAL; break; } memset(&sp_mem, 0, sizeof(sp_mem)); sp_mem.local = adreno_dev->sp_local_gpuaddr; sp_mem.pvt = adreno_dev->sp_pvt_gpuaddr; if (copy_to_user(value, &sp_mem, sizeof(sp_mem))) { status = -EFAULT; break; } status = 0; } break; case KGSL_PROP_UCODE_VERSION: { struct kgsl_ucode_version ucode; if (sizebytes != sizeof(ucode)) { status = -EINVAL; break; } memset(&ucode, 0, sizeof(ucode)); ucode.pfp = adreno_dev->pfp_fw_version; ucode.pm4 = adreno_dev->pm4_fw_version; if (copy_to_user(value, &ucode, sizeof(ucode))) { status = -EFAULT; break; } status = 0; } break; case KGSL_PROP_GPMU_VERSION: { struct kgsl_gpmu_version gpmu; if (adreno_dev->gpucore == NULL) { status = -EINVAL; break; } if (!ADRENO_FEATURE(adreno_dev, ADRENO_GPMU)) { status = -EOPNOTSUPP; break; } if (sizebytes != sizeof(gpmu)) { status = -EINVAL; break; } memset(&gpmu, 0, sizeof(gpmu)); gpmu.major = adreno_dev->gpucore->gpmu_major; gpmu.minor = adreno_dev->gpucore->gpmu_minor; gpmu.features = adreno_dev->gpucore->gpmu_features; if (copy_to_user(value, &gpmu, sizeof(gpmu))) { status = -EFAULT; break; } status = 0; } break; default: status = -EINVAL; } return status; } int adreno_set_constraint(struct kgsl_device *device, struct kgsl_context *context, struct kgsl_device_constraint *constraint) { int status = 0; switch (constraint->type) { case KGSL_CONSTRAINT_PWRLEVEL: { struct kgsl_device_constraint_pwrlevel pwr; if (constraint->size != sizeof(pwr)) { status = -EINVAL; break; } if (copy_from_user(&pwr, (void __user *)constraint->data, sizeof(pwr))) { status = -EFAULT; break; } if (pwr.level >= KGSL_CONSTRAINT_PWR_MAXLEVELS) { status = -EINVAL; break; } context->pwr_constraint.type = KGSL_CONSTRAINT_PWRLEVEL; context->pwr_constraint.sub_type = pwr.level; trace_kgsl_user_pwrlevel_constraint(device, context->id, context->pwr_constraint.type, context->pwr_constraint.sub_type); } break; case KGSL_CONSTRAINT_NONE: if (context->pwr_constraint.type == KGSL_CONSTRAINT_PWRLEVEL) trace_kgsl_user_pwrlevel_constraint(device, context->id, KGSL_CONSTRAINT_NONE, context->pwr_constraint.sub_type); context->pwr_constraint.type = KGSL_CONSTRAINT_NONE; break; default: status = -EINVAL; break; } /* If a new constraint has been set for a context, cancel the old one */ if ((status == 0) && (context->id == device->pwrctrl.constraint.owner_id)) { trace_kgsl_constraint(device, device->pwrctrl.constraint.type, device->pwrctrl.active_pwrlevel, 0); device->pwrctrl.constraint.type = KGSL_CONSTRAINT_NONE; } return status; } static int adreno_setproperty(struct kgsl_device_private *dev_priv, unsigned int type, void __user *value, unsigned int sizebytes) { int status = -EINVAL; struct kgsl_device *device = dev_priv->device; struct adreno_device *adreno_dev = ADRENO_DEVICE(device); switch (type) { case KGSL_PROP_PWRCTRL: { unsigned int enable; if (sizebytes != sizeof(enable)) break; if (copy_from_user(&enable, value, sizeof(enable))) { status = -EFAULT; break; } mutex_lock(&device->mutex); if (enable) { device->pwrctrl.ctrl_flags = 0; if (!kgsl_active_count_get(&adreno_dev->dev)) { adreno_fault_detect_start(adreno_dev); kgsl_active_count_put(&adreno_dev->dev); } kgsl_pwrscale_enable(device); } else { kgsl_pwrctrl_change_state(device, KGSL_STATE_ACTIVE); device->pwrctrl.ctrl_flags = KGSL_PWR_ON; adreno_fault_detect_stop(adreno_dev); kgsl_pwrscale_disable(device); } mutex_unlock(&device->mutex); status = 0; } break; case KGSL_PROP_PWR_CONSTRAINT: { struct kgsl_device_constraint constraint; struct kgsl_context *context; if (sizebytes != sizeof(constraint)) break; if (copy_from_user(&constraint, value, sizeof(constraint))) { status = -EFAULT; break; } context = kgsl_context_get_owner(dev_priv, constraint.context_id); if (context == NULL) break; status = adreno_set_constraint(device, context, &constraint); kgsl_context_put(context); } break; default: break; } return status; } /* * adreno_irq_pending() - Checks if interrupt is generated by h/w * @adreno_dev: Pointer to device whose interrupts are checked * * Returns true if interrupts are pending from device else 0. */ inline unsigned int adreno_irq_pending(struct adreno_device *adreno_dev) { struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); unsigned int status; adreno_readreg(adreno_dev, ADRENO_REG_RBBM_INT_0_STATUS, &status); return (status & gpudev->irq->mask) ? 1 : 0; } /** * adreno_hw_isidle() - Check if the GPU core is idle * @adreno_dev: Pointer to the Adreno device structure for the GPU * * Return true if the RBBM status register for the GPU type indicates that the * hardware is idle */ bool adreno_hw_isidle(struct adreno_device *adreno_dev) { const struct adreno_gpu_core *gpucore = adreno_dev->gpucore; unsigned int reg_rbbm_status; adreno_readreg(adreno_dev, ADRENO_REG_RBBM_STATUS, ®_rbbm_status); if (reg_rbbm_status & gpucore->busy_mask) return false; /* Don't consider ourselves idle if there is an IRQ pending */ if (adreno_irq_pending(adreno_dev)) return false; return true; } /** * adreno_soft_reset() - Do a soft reset of the GPU hardware * @device: KGSL device to soft reset * * "soft reset" the GPU hardware - this is a fast path GPU reset * The GPU hardware is reset but we never pull power so we can skip * a lot of the standard adreno_stop/adreno_start sequence */ static int adreno_soft_reset(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); int ret; kgsl_pwrctrl_change_state(device, KGSL_STATE_AWARE); adreno_set_active_ctxs_null(adreno_dev); adreno_irqctrl(adreno_dev, 0); adreno_clear_gpu_fault(adreno_dev); /* since device is oficially off now clear start bit */ clear_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv); /* save physical performance counter values before GPU soft reset */ adreno_perfcounter_save(adreno_dev); kgsl_cffdump_close(device); /* Reset the GPU */ _soft_reset(adreno_dev); /* start of new CFF after reset */ kgsl_cffdump_open(device); /* Enable 64 bit gpu addr if feature is set */ if (gpudev->enable_64bit && adreno_support_64bit(adreno_dev)) gpudev->enable_64bit(adreno_dev); /* Restore physical performance counter values after soft reset */ adreno_perfcounter_restore(adreno_dev); /* Reinitialize the GPU */ gpudev->start(adreno_dev); /* Re-initialize the coresight registers if applicable */ adreno_coresight_start(adreno_dev); /* Enable IRQ */ adreno_irqctrl(adreno_dev, 1); /* stop all ringbuffers to cancel RB events */ adreno_ringbuffer_stop(adreno_dev); /* * If we have offsets for the jump tables we can try to do a warm start, * otherwise do a full ringbuffer restart */ if (ADRENO_FEATURE(adreno_dev, ADRENO_WARM_START)) ret = adreno_ringbuffer_start(adreno_dev, ADRENO_START_WARM); else ret = adreno_ringbuffer_start(adreno_dev, ADRENO_START_COLD); if (ret) goto done; if (gpudev->hw_init) ret = gpudev->hw_init(adreno_dev); if (ret) goto done; device->reset_counter++; /* device is back online */ set_bit(ADRENO_DEVICE_STARTED, &adreno_dev->priv); done: return ret; } /* * adreno_isidle() - return true if the GPU hardware is idle * @device: Pointer to the KGSL device structure for the GPU * * Return true if the GPU hardware is idle and there are no commands pending in * the ringbuffer */ bool adreno_isidle(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_ringbuffer *rb; int i; if (!kgsl_state_is_awake(device)) return true; adreno_get_rptr(ADRENO_CURRENT_RINGBUFFER(adreno_dev)); /* * wptr is updated when we add commands to ringbuffer, add a barrier * to make sure updated wptr is compared to rptr */ smp_mb(); /* * ringbuffer is truly idle when all ringbuffers read and write * pointers are equal */ FOR_EACH_RINGBUFFER(adreno_dev, rb, i) { if (rb->rptr != rb->wptr) break; } if (i == adreno_dev->num_ringbuffers) return adreno_hw_isidle(adreno_dev); return false; } /** * adreno_spin_idle() - Spin wait for the GPU to idle * @device: Pointer to the KGSL device * @timeout: milliseconds to wait before returning error * * Spin the CPU waiting for the RBBM status to return idle */ int adreno_spin_idle(struct kgsl_device *device, unsigned int timeout) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); unsigned long wait = jiffies + msecs_to_jiffies(timeout); kgsl_cffdump_regpoll(device, adreno_getreg(adreno_dev, ADRENO_REG_RBBM_STATUS) << 2, 0x00000000, 0x80000000); while (time_before(jiffies, wait)) { /* * If we fault, stop waiting and return an error. The dispatcher * will clean up the fault from the work queue, but we need to * make sure we don't block it by waiting for an idle that * will never come. */ if (adreno_gpu_fault(adreno_dev) != 0) return -EDEADLK; if (adreno_isidle(device)) return 0; } return -ETIMEDOUT; } /** * adreno_idle() - wait for the GPU hardware to go idle * @device: Pointer to the KGSL device structure for the GPU * * Wait up to ADRENO_IDLE_TIMEOUT milliseconds for the GPU hardware to go quiet. */ int adreno_idle(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); int ret; /* * Make sure the device mutex is held so the dispatcher can't send any * more commands to the hardware */ BUG_ON(!mutex_is_locked(&device->mutex)); /* Check if we are already idle before idling dispatcher */ if (adreno_isidle(device)) return 0; /* * Wait for dispatcher to finish completing commands * already submitted */ ret = adreno_dispatcher_idle(adreno_dev); if (ret) return ret; return adreno_spin_idle(device, ADRENO_IDLE_TIMEOUT); } /** * adreno_drain() - Drain the dispatch queue * @device: Pointer to the KGSL device structure for the GPU * * Drain the dispatcher of existing command batches. This halts * additional commands from being issued until the gate is completed. */ static int adreno_drain(struct kgsl_device *device) { reinit_completion(&device->cmdbatch_gate); return 0; } /* Caller must hold the device mutex. */ static int adreno_suspend_context(struct kgsl_device *device) { int status = 0; struct adreno_device *adreno_dev = ADRENO_DEVICE(device); /* process any profiling results that are available */ adreno_profile_process_results(adreno_dev); status = adreno_idle(device); if (status) return status; /* set the device to default pagetable */ kgsl_mmu_set_pt(&device->mmu, device->mmu.defaultpagetable); kgsl_sharedmem_writel(device, &adreno_dev->ringbuffers[0].pagetable_desc, offsetof(struct adreno_ringbuffer_pagetable_info, current_global_ptname), 0); /* set ringbuffers to NULL ctxt */ adreno_set_active_ctxs_null(adreno_dev); return status; } /** * adreno_read - General read function to read adreno device memory * @device - Pointer to the GPU device struct (for adreno device) * @base - Base address (kernel virtual) where the device memory is mapped * @offsetwords - Offset in words from the base address, of the memory that * is to be read * @value - Value read from the device memory * @mem_len - Length of the device memory mapped to the kernel */ static void adreno_read(struct kgsl_device *device, void __iomem *base, unsigned int offsetwords, unsigned int *value, unsigned int mem_len) { unsigned int __iomem *reg; BUG_ON(offsetwords*sizeof(uint32_t) >= mem_len); reg = (unsigned int __iomem *)(base + (offsetwords << 2)); if (!in_interrupt()) kgsl_pre_hwaccess(device); /*ensure this read finishes before the next one. * i.e. act like normal readl() */ *value = __raw_readl(reg); rmb(); } /** * adreno_regread - Used to read adreno device registers * @offsetwords - Word (4 Bytes) offset to the register to be read * @value - Value read from device register */ static void adreno_regread(struct kgsl_device *device, unsigned int offsetwords, unsigned int *value) { adreno_read(device, device->reg_virt, offsetwords, value, device->reg_len); } /** * adreno_shadermem_regread - Used to read GPU (adreno) shader memory * @device - GPU device whose shader memory is to be read * @offsetwords - Offset in words, of the shader memory address to be read * @value - Pointer to where the read shader mem value is to be stored */ void adreno_shadermem_regread(struct kgsl_device *device, unsigned int offsetwords, unsigned int *value) { adreno_read(device, device->shader_mem_virt, offsetwords, value, device->shader_mem_len); } static void adreno_regwrite(struct kgsl_device *device, unsigned int offsetwords, unsigned int value) { unsigned int __iomem *reg; BUG_ON(offsetwords*sizeof(uint32_t) >= device->reg_len); if (!in_interrupt()) kgsl_pre_hwaccess(device); trace_kgsl_regwrite(device, offsetwords, value); kgsl_cffdump_regwrite(device, offsetwords << 2, value); reg = (unsigned int __iomem *)(device->reg_virt + (offsetwords << 2)); /*ensure previous writes post before this one, * i.e. act like normal writel() */ wmb(); __raw_writel(value, reg); } /** * adreno_waittimestamp - sleep while waiting for the specified timestamp * @device - pointer to a KGSL device structure * @context - pointer to the active kgsl context * @timestamp - GPU timestamp to wait for * @msecs - amount of time to wait (in milliseconds) * * Wait up to 'msecs' milliseconds for the specified timestamp to expire. */ static int adreno_waittimestamp(struct kgsl_device *device, struct kgsl_context *context, unsigned int timestamp, unsigned int msecs) { int ret; if (context == NULL) { /* If they are doing then complain once */ dev_WARN_ONCE(device->dev, 1, "IOCTL_KGSL_DEVICE_WAITTIMESTAMP is deprecated\n"); return -ENOTTY; } /* Return -ENOENT if the context has been detached */ if (kgsl_context_detached(context)) return -ENOENT; ret = adreno_drawctxt_wait(ADRENO_DEVICE(device), context, timestamp, msecs); /* If the context got invalidated then return a specific error */ if (kgsl_context_invalid(context)) ret = -EDEADLK; /* * Return -EPROTO if the device has faulted since the last time we * checked. Userspace uses this as a marker for performing post * fault activities */ if (!ret && test_and_clear_bit(ADRENO_CONTEXT_FAULT, &context->priv)) ret = -EPROTO; return ret; } /** * __adreno_readtimestamp() - Reads the timestamp from memstore memory * @device: Pointer to device whose memstore is read * @index: Index into the memstore memory * @type: Type of timestamp to read * @timestamp: The out parameter where the timestamp is read */ static int __adreno_readtimestamp(struct kgsl_device *device, int index, int type, unsigned int *timestamp) { int status = 0; switch (type) { case KGSL_TIMESTAMP_CONSUMED: kgsl_sharedmem_readl(&device->memstore, timestamp, KGSL_MEMSTORE_OFFSET(index, soptimestamp)); break; case KGSL_TIMESTAMP_RETIRED: kgsl_sharedmem_readl(&device->memstore, timestamp, KGSL_MEMSTORE_OFFSET(index, eoptimestamp)); break; default: status = -EINVAL; *timestamp = 0; break; } return status; } /** * adreno_rb_readtimestamp(): Return the value of given type of timestamp * for a RB * @device: GPU device whose timestamp values are being queried * @priv: The object being queried for a timestamp (expected to be a rb pointer) * @type: The type of timestamp (one of 3) to be read * @timestamp: Pointer to where the read timestamp is to be written to * * CONSUMED and RETIRED type timestamps are sorted by id and are constantly * updated by the GPU through shared memstore memory. QUEUED type timestamps * are read directly from context struct. * The function returns 0 on success and timestamp value at the *timestamp * address and returns -EINVAL on any read error/invalid type and timestamp = 0. */ int adreno_rb_readtimestamp(struct kgsl_device *device, void *priv, enum kgsl_timestamp_type type, unsigned int *timestamp) { int status = 0; struct adreno_ringbuffer *rb = priv; /* * If user passed in a NULL pointer for timestamp, return without * doing anything. */ if (!timestamp) return status; if (KGSL_TIMESTAMP_QUEUED == type) *timestamp = rb->timestamp; else status = __adreno_readtimestamp(device, rb->id + KGSL_MEMSTORE_MAX, type, timestamp); return status; } /** * adreno_readtimestamp(): Return the value of given type of timestamp * @device: GPU device whose timestamp values are being queried * @priv: The object being queried for a timestamp (expected to be a context) * @type: The type of timestamp (one of 3) to be read * @timestamp: Pointer to where the read timestamp is to be written to * * CONSUMED and RETIRED type timestamps are sorted by id and are constantly * updated by the GPU through shared memstore memory. QUEUED type timestamps * are read directly from context struct. * The function returns 0 on success and timestamp value at the *timestamp * address and returns -EINVAL on any read error/invalid type and timestamp = 0. */ static int adreno_readtimestamp(struct kgsl_device *device, void *priv, enum kgsl_timestamp_type type, unsigned int *timestamp) { int status = 0; struct kgsl_context *context = priv; unsigned int id = KGSL_CONTEXT_ID(context); BUG_ON(NULL == context || id >= KGSL_MEMSTORE_MAX); /* * If user passed in a NULL pointer for timestamp, return without * doing anything. */ if (!timestamp) return status; if (KGSL_TIMESTAMP_QUEUED == type) *timestamp = adreno_context_timestamp(context); else status = __adreno_readtimestamp(device, context->id, type, timestamp); return status; } static inline s64 adreno_ticks_to_us(u32 ticks, u32 freq) { freq /= 1000000; return ticks / freq; } static unsigned int counter_delta(struct adreno_device *adreno_dev, unsigned int reg, unsigned int *counter) { struct kgsl_device *device = &adreno_dev->dev; unsigned int val; unsigned int ret = 0; /* Read the value */ kgsl_regread(device, reg, &val); /* Return 0 for the first read */ if (*counter != 0) { if (val < *counter) ret = (0xFFFFFFFF - *counter) + val; else ret = val - *counter; } *counter = val; return ret; } /** * adreno_power_stats() - Reads the counters needed for freq decisions * @device: Pointer to device whose counters are read * @stats: Pointer to stats set that needs updating * Power: The caller is expected to be in a clock enabled state as this * function does reg reads */ static void adreno_power_stats(struct kgsl_device *device, struct kgsl_power_stats *stats) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct kgsl_pwrctrl *pwr = &device->pwrctrl; struct adreno_busy_data *busy = &adreno_dev->busy_data; uint64_t adj; memset(stats, 0, sizeof(*stats)); /* Get the busy cycles counted since the counter was last reset */ if (adreno_dev->perfctr_pwr_lo != 0) { uint64_t gpu_busy; gpu_busy = counter_delta(adreno_dev, adreno_dev->perfctr_pwr_lo, &busy->gpu_busy); adj = _read_throttling_counters(adreno_dev); gpu_busy += adj; stats->busy_time = adreno_ticks_to_us(gpu_busy, kgsl_pwrctrl_active_freq(pwr)); } if (device->pwrctrl.bus_control) { uint64_t ram_cycles = 0, starved_ram = 0; if (adreno_dev->ram_cycles_lo != 0) ram_cycles = counter_delta(adreno_dev, adreno_dev->ram_cycles_lo, &busy->vbif_ram_cycles); if (adreno_dev->starved_ram_lo != 0) starved_ram = counter_delta(adreno_dev, adreno_dev->starved_ram_lo, &busy->vbif_starved_ram); stats->ram_time = ram_cycles; stats->ram_wait = starved_ram; } if (adreno_dev->lm_threshold_count) _update_threshold_count(adreno_dev, adj); } static unsigned int adreno_gpuid(struct kgsl_device *device, unsigned int *chipid) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); /* Some applications need to know the chip ID too, so pass * that as a parameter */ if (chipid != NULL) *chipid = adreno_dev->chipid; /* Standard KGSL gpuid format: * top word is 0x0002 for 2D or 0x0003 for 3D * Bottom word is core specific identifer */ return (0x0003 << 16) | ADRENO_GPUREV(adreno_dev); } static int adreno_regulator_enable(struct kgsl_device *device) { int ret = 0; struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); if (gpudev->regulator_enable && !test_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED, &adreno_dev->priv)) { ret = gpudev->regulator_enable(adreno_dev); if (!ret) set_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED, &adreno_dev->priv); } return ret; } static bool adreno_is_hw_collapsible(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); /* * Skip power collapse for A304, if power ctrl flag is set to * non zero. As A304 soft_reset will not work, power collapse * needs to disable to avoid soft_reset. */ if (adreno_is_a304(adreno_dev) && device->pwrctrl.ctrl_flags) return false; return adreno_isidle(device) && (gpudev->is_sptp_idle ? gpudev->is_sptp_idle(adreno_dev) : true); } static void adreno_regulator_disable(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); if (gpudev->regulator_disable && test_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED, &adreno_dev->priv)) { gpudev->regulator_disable(adreno_dev); clear_bit(ADRENO_DEVICE_GPU_REGULATOR_ENABLED, &adreno_dev->priv); } } static void adreno_pwrlevel_change_settings(struct kgsl_device *device, unsigned int prelevel, unsigned int postlevel, bool post) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct adreno_gpudev *gpudev = ADRENO_GPU_DEVICE(adreno_dev); if (gpudev->pwrlevel_change_settings) gpudev->pwrlevel_change_settings(adreno_dev, prelevel, postlevel, post); } static void adreno_iommu_sync(struct kgsl_device *device, bool sync) { struct scm_desc desc = {0}; int ret; if (sync == true) { mutex_lock(&kgsl_mmu_sync); desc.args[0] = true; desc.arginfo = SCM_ARGS(1); ret = scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_PWR, 0x8), &desc); if (ret) KGSL_DRV_ERR(device, "MMU sync with Hypervisor off %x\n", ret); } else { desc.args[0] = false; desc.arginfo = SCM_ARGS(1); scm_call2_atomic(SCM_SIP_FNID(SCM_SVC_PWR, 0x8), &desc); mutex_unlock(&kgsl_mmu_sync); } } static void _regulator_disable(struct kgsl_regulator *regulator, bool poll) { unsigned long wait_time = jiffies + msecs_to_jiffies(200); if (IS_ERR_OR_NULL(regulator->reg)) return; regulator_disable(regulator->reg); if (poll == false) return; while (!time_after(jiffies, wait_time)) { if (!regulator_is_enabled(regulator->reg)) return; cpu_relax(); } KGSL_CORE_ERR("regulator '%s' still on after 200ms\n", regulator->name); } static void adreno_regulator_disable_poll(struct kgsl_device *device) { struct adreno_device *adreno_dev = ADRENO_DEVICE(device); struct kgsl_pwrctrl *pwr = &device->pwrctrl; int i; /* Fast path - hopefully we don't need this quirk */ if (!ADRENO_QUIRK(adreno_dev, ADRENO_QUIRK_IOMMU_SYNC)) { for (i = KGSL_MAX_REGULATORS - 1; i >= 0; i--) _regulator_disable(&pwr->regulators[i], false); return; } adreno_iommu_sync(device, true); for (i = 0; i < KGSL_MAX_REGULATORS; i++) _regulator_disable(&pwr->regulators[i], true); adreno_iommu_sync(device, false); } static const struct kgsl_functable adreno_functable = { /* Mandatory functions */ .regread = adreno_regread, .regwrite = adreno_regwrite, .idle = adreno_idle, .isidle = adreno_isidle, .suspend_context = adreno_suspend_context, .init = adreno_init, .start = adreno_start, .stop = adreno_stop, .getproperty = adreno_getproperty, .getproperty_compat = adreno_getproperty_compat, .waittimestamp = adreno_waittimestamp, .readtimestamp = adreno_readtimestamp, .issueibcmds = adreno_ringbuffer_issueibcmds, .ioctl = adreno_ioctl, .compat_ioctl = adreno_compat_ioctl, .power_stats = adreno_power_stats, .gpuid = adreno_gpuid, .snapshot = adreno_snapshot, .irq_handler = adreno_irq_handler, .drain = adreno_drain, /* Optional functions */ .drawctxt_create = adreno_drawctxt_create, .drawctxt_detach = adreno_drawctxt_detach, .drawctxt_destroy = adreno_drawctxt_destroy, .drawctxt_dump = adreno_drawctxt_dump, .setproperty = adreno_setproperty, .setproperty_compat = adreno_setproperty_compat, .drawctxt_sched = adreno_drawctxt_sched, .resume = adreno_dispatcher_start, .regulator_enable = adreno_regulator_enable, .is_hw_collapsible = adreno_is_hw_collapsible, .regulator_disable = adreno_regulator_disable, .pwrlevel_change_settings = adreno_pwrlevel_change_settings, .regulator_disable_poll = adreno_regulator_disable_poll, }; static struct platform_driver adreno_platform_driver = { .probe = adreno_probe, .remove = adreno_remove, .suspend = kgsl_suspend_driver, .resume = kgsl_resume_driver, .id_table = adreno_id_table, .driver = { .owner = THIS_MODULE, .name = DEVICE_3D_NAME, .pm = &kgsl_pm_ops, .of_match_table = adreno_match_table, } }; static int __init kgsl_3d_init(void) { return platform_driver_register(&adreno_platform_driver); } static void __exit kgsl_3d_exit(void) { platform_driver_unregister(&adreno_platform_driver); } module_init(kgsl_3d_init); module_exit(kgsl_3d_exit); static struct of_device_id busmon_match_table[] = { { .compatible = "qcom,kgsl-busmon", .data = &device_3d0 }, {} }; static int adreno_busmon_probe(struct platform_device *pdev) { struct kgsl_device *device; const struct of_device_id *pdid = of_match_device(busmon_match_table, &pdev->dev); if (pdid == NULL) return -ENXIO; device = (struct kgsl_device *)pdid->data; device->busmondev = &pdev->dev; dev_set_drvdata(device->busmondev, device); return 0; } static struct platform_driver kgsl_bus_platform_driver = { .probe = adreno_busmon_probe, .driver = { .owner = THIS_MODULE, .name = "kgsl-busmon", .of_match_table = busmon_match_table, } }; static int __init kgsl_busmon_init(void) { return platform_driver_register(&kgsl_bus_platform_driver); } static void __exit kgsl_busmon_exit(void) { platform_driver_unregister(&kgsl_bus_platform_driver); } module_init(kgsl_busmon_init); module_exit(kgsl_busmon_exit); MODULE_DESCRIPTION("3D Graphics driver"); MODULE_VERSION("1.2"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:kgsl_3d");