/***********************license start*************** * Author: Cavium Networks * * Contact: support@caviumnetworks.com * This file is part of the OCTEON SDK * * Copyright (c) 2003-2008 Cavium Networks * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this file; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * or visit http://www.gnu.org/licenses/. * * This file may also be available under a different license from Cavium. * Contact Cavium Networks for more information ***********************license end**************************************/ #ifndef __CVMX_H__ #define __CVMX_H__ #include #include enum cvmx_mips_space { CVMX_MIPS_SPACE_XKSEG = 3LL, CVMX_MIPS_SPACE_XKPHYS = 2LL, CVMX_MIPS_SPACE_XSSEG = 1LL, CVMX_MIPS_SPACE_XUSEG = 0LL }; /* These macros for use when using 32 bit pointers. */ #define CVMX_MIPS32_SPACE_KSEG0 1l #define CVMX_ADD_SEG32(segment, add) \ (((int32_t)segment << 31) | (int32_t)(add)) #define CVMX_IO_SEG CVMX_MIPS_SPACE_XKPHYS /* These macros simplify the process of creating common IO addresses */ #define CVMX_ADD_SEG(segment, add) \ ((((uint64_t)segment) << 62) | (add)) #ifndef CVMX_ADD_IO_SEG #define CVMX_ADD_IO_SEG(add) CVMX_ADD_SEG(CVMX_IO_SEG, (add)) #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef CVMX_ENABLE_DEBUG_PRINTS #define CVMX_ENABLE_DEBUG_PRINTS 1 #endif #if CVMX_ENABLE_DEBUG_PRINTS #define cvmx_dprintf printk #else #define cvmx_dprintf(...) {} #endif #define CVMX_MAX_CORES (16) #define CVMX_CACHE_LINE_SIZE (128) /* In bytes */ #define CVMX_CACHE_LINE_MASK (CVMX_CACHE_LINE_SIZE - 1) /* In bytes */ #define CVMX_CACHE_LINE_ALIGNED __attribute__ ((aligned(CVMX_CACHE_LINE_SIZE))) #define CAST64(v) ((long long)(long)(v)) #define CASTPTR(type, v) ((type *)(long)(v)) /* * Returns processor ID, different Linux and simple exec versions * provided in the cvmx-app-init*.c files. */ static inline uint32_t cvmx_get_proc_id(void) __attribute__ ((pure)); static inline uint32_t cvmx_get_proc_id(void) { uint32_t id; asm("mfc0 %0, $15,0" : "=r"(id)); return id; } /* turn the variable name into a string */ #define CVMX_TMP_STR(x) CVMX_TMP_STR2(x) #define CVMX_TMP_STR2(x) #x /** * Builds a bit mask given the required size in bits. * * @bits: Number of bits in the mask * Returns The mask */ static inline uint64_t cvmx_build_mask(uint64_t bits) { return ~((~0x0ull) << bits); } /** * Builds a memory address for I/O based on the Major and Sub DID. * * @major_did: 5 bit major did * @sub_did: 3 bit sub did * Returns I/O base address */ static inline uint64_t cvmx_build_io_address(uint64_t major_did, uint64_t sub_did) { return (0x1ull << 48) | (major_did << 43) | (sub_did << 40); } /** * Perform mask and shift to place the supplied value into * the supplied bit rage. * * Example: cvmx_build_bits(39,24,value) *
 * 6	   5	   4	   3	   3	   2	   1
 * 3	   5	   7	   9	   1	   3	   5	   7	  0
 * +-------+-------+-------+-------+-------+-------+-------+------+
 * 000000000000000000000000___________value000000000000000000000000
 * 
* * @high_bit: Highest bit value can occupy (inclusive) 0-63 * @low_bit: Lowest bit value can occupy inclusive 0-high_bit * @value: Value to use * Returns Value masked and shifted */ static inline uint64_t cvmx_build_bits(uint64_t high_bit, uint64_t low_bit, uint64_t value) { return (value & cvmx_build_mask(high_bit - low_bit + 1)) << low_bit; } /** * Convert a memory pointer (void*) into a hardware compatible * memory address (uint64_t). Octeon hardware widgets don't * understand logical addresses. * * @ptr: C style memory pointer * Returns Hardware physical address */ static inline uint64_t cvmx_ptr_to_phys(void *ptr) { if (sizeof(void *) == 8) { /* * We're running in 64 bit mode. Normally this means * that we can use 40 bits of address space (the * hardware limit). Unfortunately there is one case * were we need to limit this to 30 bits, sign * extended 32 bit. Although these are 64 bits wide, * only 30 bits can be used. */ if ((CAST64(ptr) >> 62) == 3) return CAST64(ptr) & cvmx_build_mask(30); else return CAST64(ptr) & cvmx_build_mask(40); } else { return (long)(ptr) & 0x1fffffff; } } /** * Convert a hardware physical address (uint64_t) into a * memory pointer (void *). * * @physical_address: * Hardware physical address to memory * Returns Pointer to memory */ static inline void *cvmx_phys_to_ptr(uint64_t physical_address) { if (sizeof(void *) == 8) { /* Just set the top bit, avoiding any TLB uglyness */ return CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, physical_address)); } else { return CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0, physical_address)); } } /* The following #if controls the definition of the macro CVMX_BUILD_WRITE64. This macro is used to build a store operation to a full 64bit address. With a 64bit ABI, this can be done with a simple pointer access. 32bit ABIs require more complicated assembly */ /* We have a full 64bit ABI. Writing to a 64bit address can be done with a simple volatile pointer */ #define CVMX_BUILD_WRITE64(TYPE, ST) \ static inline void cvmx_write64_##TYPE(uint64_t addr, TYPE##_t val) \ { \ *CASTPTR(volatile TYPE##_t, addr) = val; \ } /* The following #if controls the definition of the macro CVMX_BUILD_READ64. This macro is used to build a load operation from a full 64bit address. With a 64bit ABI, this can be done with a simple pointer access. 32bit ABIs require more complicated assembly */ /* We have a full 64bit ABI. Writing to a 64bit address can be done with a simple volatile pointer */ #define CVMX_BUILD_READ64(TYPE, LT) \ static inline TYPE##_t cvmx_read64_##TYPE(uint64_t addr) \ { \ return *CASTPTR(volatile TYPE##_t, addr); \ } /* The following defines 8 functions for writing to a 64bit address. Each takes two arguments, the address and the value to write. cvmx_write64_int64 cvmx_write64_uint64 cvmx_write64_int32 cvmx_write64_uint32 cvmx_write64_int16 cvmx_write64_uint16 cvmx_write64_int8 cvmx_write64_uint8 */ CVMX_BUILD_WRITE64(int64, "sd"); CVMX_BUILD_WRITE64(int32, "sw"); CVMX_BUILD_WRITE64(int16, "sh"); CVMX_BUILD_WRITE64(int8, "sb"); CVMX_BUILD_WRITE64(uint64, "sd"); CVMX_BUILD_WRITE64(uint32, "sw"); CVMX_BUILD_WRITE64(uint16, "sh"); CVMX_BUILD_WRITE64(uint8, "sb"); #define cvmx_write64 cvmx_write64_uint64 /* The following defines 8 functions for reading from a 64bit address. Each takes the address as the only argument cvmx_read64_int64 cvmx_read64_uint64 cvmx_read64_int32 cvmx_read64_uint32 cvmx_read64_int16 cvmx_read64_uint16 cvmx_read64_int8 cvmx_read64_uint8 */ CVMX_BUILD_READ64(int64, "ld"); CVMX_BUILD_READ64(int32, "lw"); CVMX_BUILD_READ64(int16, "lh"); CVMX_BUILD_READ64(int8, "lb"); CVMX_BUILD_READ64(uint64, "ld"); CVMX_BUILD_READ64(uint32, "lw"); CVMX_BUILD_READ64(uint16, "lhu"); CVMX_BUILD_READ64(uint8, "lbu"); #define cvmx_read64 cvmx_read64_uint64 static inline void cvmx_write_csr(uint64_t csr_addr, uint64_t val) { cvmx_write64(csr_addr, val); /* * Perform an immediate read after every write to an RSL * register to force the write to complete. It doesn't matter * what RSL read we do, so we choose CVMX_MIO_BOOT_BIST_STAT * because it is fast and harmless. */ if (((csr_addr >> 40) & 0x7ffff) == (0x118)) cvmx_read64(CVMX_MIO_BOOT_BIST_STAT); } static inline void cvmx_write_io(uint64_t io_addr, uint64_t val) { cvmx_write64(io_addr, val); } static inline uint64_t cvmx_read_csr(uint64_t csr_addr) { uint64_t val = cvmx_read64(csr_addr); return val; } static inline void cvmx_send_single(uint64_t data) { const uint64_t CVMX_IOBDMA_SENDSINGLE = 0xffffffffffffa200ull; cvmx_write64(CVMX_IOBDMA_SENDSINGLE, data); } static inline void cvmx_read_csr_async(uint64_t scraddr, uint64_t csr_addr) { union { uint64_t u64; struct { uint64_t scraddr:8; uint64_t len:8; uint64_t addr:48; } s; } addr; addr.u64 = csr_addr; addr.s.scraddr = scraddr >> 3; addr.s.len = 1; cvmx_send_single(addr.u64); } /* Return true if Octeon is CN38XX pass 1 */ static inline int cvmx_octeon_is_pass1(void) { #if OCTEON_IS_COMMON_BINARY() return 0; /* Pass 1 isn't supported for common binaries */ #else /* Now that we know we're built for a specific model, only check CN38XX */ #if OCTEON_IS_MODEL(OCTEON_CN38XX) return cvmx_get_proc_id() == OCTEON_CN38XX_PASS1; #else return 0; /* Built for non CN38XX chip, we're not CN38XX pass1 */ #endif #endif } static inline unsigned int cvmx_get_core_num(void) { unsigned int core_num; CVMX_RDHWRNV(core_num, 0); return core_num; } /** * Returns the number of bits set in the provided value. * Simple wrapper for POP instruction. * * @val: 32 bit value to count set bits in * * Returns Number of bits set */ static inline uint32_t cvmx_pop(uint32_t val) { uint32_t pop; CVMX_POP(pop, val); return pop; } /** * Returns the number of bits set in the provided value. * Simple wrapper for DPOP instruction. * * @val: 64 bit value to count set bits in * * Returns Number of bits set */ static inline int cvmx_dpop(uint64_t val) { int pop; CVMX_DPOP(pop, val); return pop; } /** * Provide current cycle counter as a return value * * Returns current cycle counter */ static inline uint64_t cvmx_get_cycle(void) { uint64_t cycle; CVMX_RDHWR(cycle, 31); return cycle; } /** * Wait for the specified number of cycle * */ static inline void cvmx_wait(uint64_t cycles) { uint64_t done = cvmx_get_cycle() + cycles; while (cvmx_get_cycle() < done) ; /* Spin */ } /** * Reads a chip global cycle counter. This counts CPU cycles since * chip reset. The counter is 64 bit. * This register does not exist on CN38XX pass 1 silicion * * Returns Global chip cycle count since chip reset. */ static inline uint64_t cvmx_get_cycle_global(void) { if (cvmx_octeon_is_pass1()) return 0; else return cvmx_read64(CVMX_IPD_CLK_COUNT); } /** * This macro spins on a field waiting for it to reach a value. It * is common in code to need to wait for a specific field in a CSR * to match a specific value. Conceptually this macro expands to: * * 1) read csr at "address" with a csr typedef of "type" * 2) Check if ("type".s."field" "op" "value") * 3) If #2 isn't true loop to #1 unless too much time has passed. */ #define CVMX_WAIT_FOR_FIELD64(address, type, field, op, value, timeout_usec)\ ( \ { \ int result; \ do { \ uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \ cvmx_sysinfo_get()->cpu_clock_hz / 1000000; \ type c; \ while (1) { \ c.u64 = cvmx_read_csr(address); \ if ((c.s.field) op(value)) { \ result = 0; \ break; \ } else if (cvmx_get_cycle() > done) { \ result = -1; \ break; \ } else \ cvmx_wait(100); \ } \ } while (0); \ result; \ }) /***************************************************************************/ static inline void cvmx_reset_octeon(void) { union cvmx_ciu_soft_rst ciu_soft_rst; ciu_soft_rst.u64 = 0; ciu_soft_rst.s.soft_rst = 1; cvmx_write_csr(CVMX_CIU_SOFT_RST, ciu_soft_rst.u64); } /* Return the number of cores available in the chip */ static inline uint32_t cvmx_octeon_num_cores(void) { uint32_t ciu_fuse = (uint32_t) cvmx_read_csr(CVMX_CIU_FUSE) & 0xffff; return cvmx_pop(ciu_fuse); } /** * Read a byte of fuse data * @byte_addr: address to read * * Returns fuse value: 0 or 1 */ static uint8_t cvmx_fuse_read_byte(int byte_addr) { union cvmx_mio_fus_rcmd read_cmd; read_cmd.u64 = 0; read_cmd.s.addr = byte_addr; read_cmd.s.pend = 1; cvmx_write_csr(CVMX_MIO_FUS_RCMD, read_cmd.u64); while ((read_cmd.u64 = cvmx_read_csr(CVMX_MIO_FUS_RCMD)) && read_cmd.s.pend) ; return read_cmd.s.dat; } /** * Read a single fuse bit * * @fuse: Fuse number (0-1024) * * Returns fuse value: 0 or 1 */ static inline int cvmx_fuse_read(int fuse) { return (cvmx_fuse_read_byte(fuse >> 3) >> (fuse & 0x7)) & 1; } static inline int cvmx_octeon_model_CN36XX(void) { return OCTEON_IS_MODEL(OCTEON_CN38XX) && !cvmx_octeon_is_pass1() && cvmx_fuse_read(264); } static inline int cvmx_octeon_zip_present(void) { return octeon_has_feature(OCTEON_FEATURE_ZIP); } static inline int cvmx_octeon_dfa_present(void) { if (!OCTEON_IS_MODEL(OCTEON_CN38XX) && !OCTEON_IS_MODEL(OCTEON_CN31XX) && !OCTEON_IS_MODEL(OCTEON_CN58XX)) return 0; else if (OCTEON_IS_MODEL(OCTEON_CN3020)) return 0; else if (cvmx_octeon_is_pass1()) return 1; else return !cvmx_fuse_read(120); } static inline int cvmx_octeon_crypto_present(void) { return octeon_has_feature(OCTEON_FEATURE_CRYPTO); } #endif /* __CVMX_H__ */