/* * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall <c.dall@virtualopensystems.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <linux/errno.h> #include <linux/err.h> #include <linux/kvm_host.h> #include <linux/module.h> #include <linux/vmalloc.h> #include <linux/fs.h> #include <asm/cputype.h> #include <asm/uaccess.h> #include <asm/kvm.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_coproc.h> #define VM_STAT(x) { #x, offsetof(struct kvm, stat.x), KVM_STAT_VM } #define VCPU_STAT(x) { #x, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU } struct kvm_stats_debugfs_item debugfs_entries[] = { { NULL } }; int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { return 0; } static u64 core_reg_offset_from_id(u64 id) { return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE); } static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { u32 __user *uaddr = (u32 __user *)(long)reg->addr; struct kvm_regs *regs = &vcpu->arch.regs; u64 off; if (KVM_REG_SIZE(reg->id) != 4) return -ENOENT; /* Our ID is an index into the kvm_regs struct. */ off = core_reg_offset_from_id(reg->id); if (off >= sizeof(*regs) / KVM_REG_SIZE(reg->id)) return -ENOENT; return put_user(((u32 *)regs)[off], uaddr); } static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { u32 __user *uaddr = (u32 __user *)(long)reg->addr; struct kvm_regs *regs = &vcpu->arch.regs; u64 off, val; if (KVM_REG_SIZE(reg->id) != 4) return -ENOENT; /* Our ID is an index into the kvm_regs struct. */ off = core_reg_offset_from_id(reg->id); if (off >= sizeof(*regs) / KVM_REG_SIZE(reg->id)) return -ENOENT; if (get_user(val, uaddr) != 0) return -EFAULT; if (off == KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr)) { unsigned long mode = val & MODE_MASK; switch (mode) { case USR_MODE: case FIQ_MODE: case IRQ_MODE: case SVC_MODE: case ABT_MODE: case UND_MODE: break; default: return -EINVAL; } } ((u32 *)regs)[off] = val; return 0; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { return -EINVAL; } #ifndef CONFIG_KVM_ARM_TIMER #define NUM_TIMER_REGS 0 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { return 0; } static bool is_timer_reg(u64 index) { return false; } #else #define NUM_TIMER_REGS 3 static bool is_timer_reg(u64 index) { switch (index) { case KVM_REG_ARM_TIMER_CTL: case KVM_REG_ARM_TIMER_CNT: case KVM_REG_ARM_TIMER_CVAL: return true; } return false; } static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { if (put_user(KVM_REG_ARM_TIMER_CTL, uindices)) return -EFAULT; uindices++; if (put_user(KVM_REG_ARM_TIMER_CNT, uindices)) return -EFAULT; uindices++; if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices)) return -EFAULT; return 0; } #endif static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(long)reg->addr; u64 val; int ret; ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)); if (ret != 0) return -EFAULT; return kvm_arm_timer_set_reg(vcpu, reg->id, val); } static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { void __user *uaddr = (void __user *)(long)reg->addr; u64 val; val = kvm_arm_timer_get_reg(vcpu, reg->id); return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)); } static unsigned long num_core_regs(void) { return sizeof(struct kvm_regs) / sizeof(u32); } /** * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG * * This is for all registers. */ unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu) { return num_core_regs() + kvm_arm_num_coproc_regs(vcpu) + NUM_TIMER_REGS; } /** * kvm_arm_copy_reg_indices - get indices of all registers. * * We do core registers right here, then we apppend coproc regs. */ int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) { unsigned int i; const u64 core_reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE; int ret; for (i = 0; i < sizeof(struct kvm_regs)/sizeof(u32); i++) { if (put_user(core_reg | i, uindices)) return -EFAULT; uindices++; } ret = copy_timer_indices(vcpu, uindices); if (ret) return ret; uindices += NUM_TIMER_REGS; return kvm_arm_copy_coproc_indices(vcpu, uindices); } int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { /* We currently use nothing arch-specific in upper 32 bits */ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM >> 32) return -EINVAL; /* Register group 16 means we want a core register. */ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE) return get_core_reg(vcpu, reg); if (is_timer_reg(reg->id)) return get_timer_reg(vcpu, reg); return kvm_arm_coproc_get_reg(vcpu, reg); } int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) { /* We currently use nothing arch-specific in upper 32 bits */ if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM >> 32) return -EINVAL; /* Register group 16 means we set a core register. */ if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_CORE) return set_core_reg(vcpu, reg); if (is_timer_reg(reg->id)) return set_timer_reg(vcpu, reg); return kvm_arm_coproc_set_reg(vcpu, reg); } int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { return -EINVAL; } int __attribute_const__ kvm_target_cpu(void) { switch (read_cpuid_part()) { case ARM_CPU_PART_CORTEX_A7: return KVM_ARM_TARGET_CORTEX_A7; case ARM_CPU_PART_CORTEX_A15: return KVM_ARM_TARGET_CORTEX_A15; default: return -EINVAL; } } int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, const struct kvm_vcpu_init *init) { unsigned int i; /* We can only cope with guest==host and only on A15/A7 (for now). */ if (init->target != kvm_target_cpu()) return -EINVAL; vcpu->arch.target = init->target; bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ for (i = 0; i < sizeof(init->features) * 8; i++) { if (test_bit(i, (void *)init->features)) { if (i >= KVM_VCPU_MAX_FEATURES) return -ENOENT; set_bit(i, vcpu->arch.features); } } /* Now we know what it is, we can reset it. */ return kvm_reset_vcpu(vcpu); } int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init) { int target = kvm_target_cpu(); if (target < 0) return -ENODEV; memset(init, 0, sizeof(*init)); /* * For now, we don't return any features. * In future, we might use features to return target * specific features available for the preferred * target type. */ init->target = (__u32)target; return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { return -EINVAL; } int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { return -EINVAL; }