/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #define RPM_CE_CLK_TYPE 0x6563 #define CE1_CLK_ID 0x0 #define RPM_SMD_KEY_RATE 0x007A484B uint32_t CE1_CLK[][8]= { { RPM_CE_CLK_TYPE, CE1_CLK_ID, KEY_SOFTWARE_ENABLE, 4, GENERIC_DISABLE, RPM_SMD_KEY_RATE, 4, 0, }, { RPM_CE_CLK_TYPE, CE1_CLK_ID, KEY_SOFTWARE_ENABLE, 4, GENERIC_ENABLE, RPM_SMD_KEY_RATE, 4, 176128, /* clk rate in KHZ */ }, }; void clock_init_mmc(uint32_t interface) { char clk_name[64]; int ret; snprintf(clk_name, sizeof(clk_name), "sdc%u_iface_clk", interface); /* enable interface clock */ ret = clk_get_set_enable(clk_name, 0, true); if(ret) { dprintf(CRITICAL, "failed to set sdc%u_iface_clk ret = %d\n", interface, ret); ASSERT(0); } } /* Configure MMC clock */ void clock_config_mmc(uint32_t interface, uint32_t freq) { int ret = 0; char clk_name[64]; snprintf(clk_name, sizeof(clk_name), "sdc%u_core_clk", interface); if(freq == MMC_CLK_400KHZ) { ret = clk_get_set_enable(clk_name, 400000, true); } else if(freq == MMC_CLK_50MHZ) { ret = clk_get_set_enable(clk_name, 50000000, true); } else if(freq == MMC_CLK_96MHZ) { ret = clk_get_set_enable(clk_name, 96000000, true); } else if(freq == MMC_CLK_192MHZ) { ret = clk_get_set_enable(clk_name, 192000000, true); } else if(freq == MMC_CLK_400MHZ) { ret = clk_get_set_enable(clk_name, 384000000, 1); } else { dprintf(CRITICAL, "sdc frequency (%u) is not supported\n", freq); ASSERT(0); } if(ret) { dprintf(CRITICAL, "failed to set sdc%u_core_clk ret = %d\n", interface, ret); ASSERT(0); } } /* Configure UART clock based on the UART block id*/ void clock_config_uart_dm(uint8_t id) { int ret; char iclk[64]; char cclk[64]; snprintf(iclk, sizeof(iclk), "uart%u_iface_clk", id); snprintf(cclk, sizeof(cclk), "uart%u_core_clk", id); ret = clk_get_set_enable(iclk, 0, true); if(ret) { dprintf(CRITICAL, "failed to set uart%u_iface_clk ret = %d\n", id, ret); ASSERT(0); } ret = clk_get_set_enable(cclk, 7372800, true); if(ret) { dprintf(CRITICAL, "failed to set uart%u_core_clk ret = %d\n", id, ret); ASSERT(0); } } /* Function to asynchronously reset CE (Crypto Engine). * Function assumes that all the CE clocks are off. */ static void ce_async_reset(uint8_t instance) { if (instance == 1) { /* Start the block reset for CE */ writel(1, GCC_CE1_BCR); udelay(2); /* Take CE block out of reset */ writel(0, GCC_CE1_BCR); udelay(2); } else { dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance); ASSERT(0); } } void clock_ce_enable(uint8_t instance) { if (instance == 1) rpm_send_data(&CE1_CLK[GENERIC_ENABLE][0], 24, RPM_REQUEST_TYPE); else { dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance); ASSERT(0); } } void clock_ce_disable(uint8_t instance) { if (instance == 1) rpm_send_data(&CE1_CLK[GENERIC_DISABLE][0], 24, RPM_REQUEST_TYPE); else { dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance); ASSERT(0); } } void clock_config_ce(uint8_t instance) { /* Need to enable the clock before disabling since the clk_disable() * has a check to default to nop when the clk_enable() is not called * on that particular clock. */ clock_ce_enable(instance); clock_ce_disable(instance); ce_async_reset(instance); clock_ce_enable(instance); } void clock_usb30_gdsc_enable(void) { uint32_t reg = readl(GCC_USB30_GDSCR); reg &= ~(0x1); writel(reg, GCC_USB30_GDSCR); } /* enables usb30 clocks */ void clock_usb30_init(void) { int ret; ret = clk_get_set_enable("usb30_iface_clk", 0, true); if(ret) { dprintf(CRITICAL, "failed to set usb30_iface_clk. ret = %d\n", ret); ASSERT(0); } clock_usb30_gdsc_enable(); ret = clk_get_set_enable("usb30_master_clk", 150000000, true); if(ret) { dprintf(CRITICAL, "failed to set usb30_master_clk. ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("gcc_aggre2_usb3_axi_clk", 150000000, true); if (ret) { dprintf(CRITICAL, "failed to set aggre2_usb3_axi_clk, ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb30_phy_aux_clk", 1200000, true); if(ret) { dprintf(CRITICAL, "failed to set usb30_phy_aux_clk. ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb30_mock_utmi_clk", 60000000, true); if(ret) { dprintf(CRITICAL, "failed to set usb30_mock_utmi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb30_sleep_clk", 0, true); if(ret) { dprintf(CRITICAL, "failed to set usb30_sleep_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb_phy_cfg_ahb2phy_clk", 0, true); if(ret) { dprintf(CRITICAL, "failed to enable usb_phy_cfg_ahb2phy_clk = %d\n", ret); ASSERT(0); } } void clock_bumpup_pipe3_clk() { int ret = 0; ret = clk_get_set_enable("usb30_pipe_clk", 0, true); if(ret) { dprintf(CRITICAL, "failed to set usb30_pipe_clk. ret = %d\n", ret); ASSERT(0); } return; } void clock_reset_usb_phy() { int ret; struct clk *phy_reset_clk = NULL; struct clk *pipe_reset_clk = NULL; struct clk *master_clk = NULL; master_clk = clk_get("usb30_master_clk"); ASSERT(master_clk); /* Look if phy com clock is present */ phy_reset_clk = clk_get("usb30_phy_reset"); ASSERT(phy_reset_clk); pipe_reset_clk = clk_get("usb30_pipe_clk"); ASSERT(pipe_reset_clk); /* ASSERT */ ret = clk_reset(master_clk, CLK_RESET_ASSERT); if (ret) { dprintf(CRITICAL, "Failed to assert usb30_master_reset clk\n"); return; } ret = clk_reset(phy_reset_clk, CLK_RESET_ASSERT); if (ret) { dprintf(CRITICAL, "Failed to assert usb30_phy_reset clk\n"); goto deassert_master_clk; } ret = clk_reset(pipe_reset_clk, CLK_RESET_ASSERT); if (ret) { dprintf(CRITICAL, "Failed to assert usb30_pipe_clk\n"); goto deassert_phy_clk; } udelay(100); /* DEASSERT */ ret = clk_reset(pipe_reset_clk, CLK_RESET_DEASSERT); if (ret) { dprintf(CRITICAL, "Failed to deassert usb_pipe_clk\n"); return; } deassert_phy_clk: ret = clk_reset(phy_reset_clk, CLK_RESET_DEASSERT); if (ret) { dprintf(CRITICAL, "Failed to deassert usb30_phy_com_reset clk\n"); return; } deassert_master_clk: ret = clk_reset(master_clk, CLK_RESET_DEASSERT); if (ret) { dprintf(CRITICAL, "Failed to deassert usb30_master clk\n"); return; } } void mmss_gdsc_enable() { uint32_t reg = 0; reg = readl(MMAGIC_BIMC_GDSCR); if (!(reg & GDSC_POWER_ON_BIT)) { reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK); reg |= GDSC_EN_FEW_WAIT_256_MASK; writel(reg, MMAGIC_BIMC_GDSCR); while(!(readl(MMAGIC_BIMC_GDSCR) & (GDSC_POWER_ON_BIT))); } else { dprintf(SPEW, "MMAGIC BIMC GDSC already enabled\n"); } reg = readl(MMAGIC_MDSS_GDSCR); if (!(reg & GDSC_POWER_ON_BIT)) { reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK); reg |= GDSC_EN_FEW_WAIT_256_MASK; writel(reg, MMAGIC_MDSS_GDSCR); while(!(readl(MMAGIC_MDSS_GDSCR) & (GDSC_POWER_ON_BIT))); } else { dprintf(SPEW, "MMAGIC MDSS GDSC already enabled\n"); } reg = readl(MDSS_GDSCR); if (!(reg & GDSC_POWER_ON_BIT)) { reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK); reg |= GDSC_EN_FEW_WAIT_256_MASK; writel(reg, MDSS_GDSCR); while(!(readl(MDSS_GDSCR) & (GDSC_POWER_ON_BIT))); } else { dprintf(SPEW, "MDSS GDSC already enabled\n"); } } void mmss_gdsc_disable() { uint32_t reg = 0; reg = readl(MDSS_GDSCR); reg |= BIT(0); writel(reg, MDSS_GDSCR); while(readl(MDSS_GDSCR) & (GDSC_POWER_ON_BIT)); reg = readl(MMAGIC_MDSS_GDSCR); reg |= BIT(0); writel(reg, MMAGIC_MDSS_GDSCR); while(readl(MMAGIC_MDSS_GDSCR) & (GDSC_POWER_ON_BIT)); reg = readl(MMAGIC_BIMC_GDSCR); reg |= BIT(0); writel(reg, MMAGIC_BIMC_GDSCR); while(readl(MMAGIC_BIMC_GDSCR) & (GDSC_POWER_ON_BIT)); } void video_gdsc_enable() { uint32_t reg = 0; reg = readl(MMAGIC_VIDEO_GDSCR); if (!(reg & GDSC_POWER_ON_BIT)) { reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK); reg |= GDSC_EN_FEW_WAIT_256_MASK; writel(reg, MMAGIC_VIDEO_GDSCR); while(!(readl(MMAGIC_VIDEO_GDSCR) & (GDSC_POWER_ON_BIT))); } else { dprintf(SPEW, "VIDEO BIMC GDSC already enabled\n"); } reg = readl(VIDEO_GDSCR); if (!(reg & GDSC_POWER_ON_BIT)) { reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK); reg |= GDSC_EN_FEW_WAIT_256_MASK; writel(reg, VIDEO_GDSCR); while(!(readl(VIDEO_GDSCR) & (GDSC_POWER_ON_BIT))); } else { dprintf(SPEW, "VIDEO GDSC already enabled\n"); } } void video_gdsc_disable() { uint32_t reg = 0; reg = readl(VIDEO_GDSCR); reg |= BIT(0); writel(reg, VIDEO_GDSCR); while(readl(VIDEO_GDSCR) & (GDSC_POWER_ON_BIT)); reg = readl(MMAGIC_VIDEO_GDSCR); reg |= BIT(0); writel(reg, MMAGIC_VIDEO_GDSCR); while(readl(MMAGIC_VIDEO_GDSCR) & (GDSC_POWER_ON_BIT)); } /* Configure MDP clock */ void mdp_clock_enable(void) { int ret; ret = clk_get_set_enable("mmss_mmagic_ahb_clk", 19200000, 1); if(ret) { dprintf(CRITICAL, "failed to set mmagic_ahb_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("smmu_mdp_ahb_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set smmu_mdp_ahb_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdp_ahb_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_ahb_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_mdp_clk", 320000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_clk_src ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_vsync_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdss vsync clk ret = %d\n", ret); ASSERT(0); } } void mdp_clock_disable() { clk_disable(clk_get("mdss_vsync_clk")); clk_disable(clk_get("mdss_mdp_clk")); clk_disable(clk_get("mdp_ahb_clk")); clk_disable(clk_get("smmu_mdp_ahb_clk")); clk_disable(clk_get("mmss_mmagic_ahb_clk")); } void mmss_bus_clock_enable(void) { int ret; ret = clk_get_set_enable("mmss_mmagic_axi_clk", 320000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mmss_mmagic_axi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mmagic_bimc_axi_clk", 320000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mmss_s0_axi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mmss_s0_axi_clk", 320000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mmss_s0_axi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mmagic_mdss_axi_clk", 320000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mmss_mmagic_axi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("smmu_mdp_axi_clk", 320000000, 1); if(ret) { dprintf(CRITICAL, "failed to set smmu_mdp_axi_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_axi_clk", 320000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mdss_axi_clk ret = %d\n", ret); ASSERT(0); } } void mmss_bus_clock_disable(void) { clk_disable(clk_get("mdss_axi_clk")); clk_disable(clk_get("smmu_mdp_axi_clk")); clk_disable(clk_get("mmagic_mdss_axi_clk")); clk_disable(clk_get("mmss_s0_axi_clk")); clk_disable(clk_get("mmagic_bimc_axi_clk")); clk_disable(clk_get("mmss_mmagic_axi_clk")); } void mmss_dsi_clock_enable(uint32_t cfg_rcgr, uint32_t flags) { int ret; if (flags & MMSS_DSI_CLKS_FLAG_DSI0) { /* Enable DSI0 branch clocks */ writel(cfg_rcgr, DSI_BYTE0_CFG_RCGR); writel(0x1, DSI_BYTE0_CMD_RCGR); writel(0x1, DSI_BYTE0_CBCR); writel(cfg_rcgr, DSI_PIXEL0_CFG_RCGR); writel(0x1, DSI_PIXEL0_CMD_RCGR); writel(0x1, DSI_PIXEL0_CBCR); ret = clk_get_set_enable("mdss_esc0_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set esc0_clk ret = %d\n", ret); ASSERT(0); } } if (flags & MMSS_DSI_CLKS_FLAG_DSI1) { /* Enable DSI1 branch clocks */ writel(cfg_rcgr, DSI_BYTE1_CFG_RCGR); writel(0x1, DSI_BYTE1_CMD_RCGR); writel(0x1, DSI_BYTE1_CBCR); writel(cfg_rcgr, DSI_PIXEL1_CFG_RCGR); writel(0x1, DSI_PIXEL1_CMD_RCGR); writel(0x1, DSI_PIXEL1_CBCR); ret = clk_get_set_enable("mdss_esc1_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set esc1_clk ret = %d\n", ret); ASSERT(0); } } } void mmss_dsi_clock_disable(uint32_t flags) { if (flags & MMSS_DSI_CLKS_FLAG_DSI0) { clk_disable(clk_get("mdss_esc0_clk")); writel(0x0, DSI_BYTE0_CBCR); writel(0x0, DSI_PIXEL0_CBCR); } if (flags & MMSS_DSI_CLKS_FLAG_DSI1) { clk_disable(clk_get("mdss_esc1_clk")); writel(0x0, DSI_BYTE1_CBCR); writel(0x0, DSI_PIXEL1_CBCR); } }