/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #define MAX_LOOPS 500 void hsusb_clock_init(void) { int ret; struct clk *iclk, *cclk; ret = clk_get_set_enable("usb_iface_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("usb_core_clk", 80000000, 1); if(ret) { dprintf(CRITICAL, "failed to set usb_core_clk ret = %d\n", ret); ASSERT(0); } mdelay(20); iclk = clk_get("usb_iface_clk"); cclk = clk_get("usb_core_clk"); clk_disable(iclk); clk_disable(cclk); mdelay(20); /* Start the block reset for usb */ writel(1, USB_HS_BCR); mdelay(20); /* Take usb block out of reset */ writel(0, USB_HS_BCR); mdelay(20); ret = clk_enable(iclk); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret); ASSERT(0); } ret = clk_enable(cclk); if(ret) { dprintf(CRITICAL, "failed to set usb_iface_clk after async ret = %d\n", ret); ASSERT(0); } } void clock_init_mmc(uint32_t interface) { char clk_name[64]; int ret; snprintf(clk_name, sizeof(clk_name), "sdc%u_iface_clk", interface); /* enable interface clock */ ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set sdc1_iface_clk ret = %d\n", ret); ASSERT(0); } } /* Configure MMC clock */ void clock_config_mmc(uint32_t interface, uint32_t freq) { int ret = 1; char clk_name[64]; snprintf(clk_name, sizeof(clk_name), "sdc%u_core_clk", interface); if(freq == MMC_CLK_400KHZ) { ret = clk_get_set_enable(clk_name, 400000, 1); } else if(freq == MMC_CLK_50MHZ) { ret = clk_get_set_enable(clk_name, 50000000, 1); } else if(freq == MMC_CLK_200MHZ) { ret = clk_get_set_enable(clk_name, 200000000, 1); } else if(freq == MMC_CLK_177MHZ) { ret = clk_get_set_enable(clk_name, 177770000, 1); } else { dprintf(CRITICAL, "sdc frequency (%u) is not supported\n", freq); ASSERT(0); } if(ret) { dprintf(CRITICAL, "failed to set %s ret = %d\n", clk_name, ret); ASSERT(0); } } /* Configure UART clock based on the UART block id*/ void clock_config_uart_dm(uint8_t id) { int ret; char iclk[64]; char cclk[64]; snprintf(iclk, sizeof(iclk), "uart%u_iface_clk", id); snprintf(cclk, sizeof(cclk), "uart%u_core_clk", id); ret = clk_get_set_enable(iclk, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set %s ret = %d\n", iclk, ret); ASSERT(0); } ret = clk_get_set_enable(cclk, 7372800, 1); if(ret) { dprintf(CRITICAL, "failed to set %s ret = %d\n", cclk, ret); ASSERT(0); } } /* Control the MDSS GDSC */ void mdp_gdsc_ctrl(uint8_t enable) { uint32_t reg = 0; reg = readl(MDP_GDSCR); if (enable) { if (!(reg & GDSC_POWER_ON_BIT)) { reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK); reg |= GDSC_EN_FEW_WAIT_256_MASK; writel(reg, MDP_GDSCR); while(!(readl(MDP_GDSCR) & (GDSC_POWER_ON_BIT))); } else { dprintf(SPEW, "MDP GDSC already enabled\n"); } } else { reg |= BIT(0); writel(reg, MDP_GDSCR); while(readl(MDP_GDSCR) & (GDSC_POWER_ON_BIT)); } } /* Enable all the MDP branch clocks */ void mdp_clock_enable(void) { int ret; ret = clk_get_set_enable("mdp_ahb_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_ahb_clk ret = %d\n", ret); ASSERT(0); } if (platform_is_msm8939() || platform_is_msm8929()) ret = clk_get_set_enable("mdss_mdp_clk_src", 307200000, 1); else /* Set MDP clock to 320MHz */ ret = clk_get_set_enable("mdss_mdp_clk_src", 320000000, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_clk_src ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_vsync_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdss vsync clk ret = %d\n", ret); ASSERT(0); } ret = clk_get_set_enable("mdss_mdp_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdp_clk ret = %d\n", ret); ASSERT(0); } } /* Disable all the MDP branch clocks */ void mdp_clock_disable(void) { clk_disable(clk_get("mdss_vsync_clk")); clk_disable(clk_get("mdss_mdp_clk")); clk_disable(clk_get("mdss_mdp_clk_src")); clk_disable(clk_get("mdp_ahb_clk")); } /* Disable all the bus clocks needed by MDSS */ void mdss_bus_clocks_disable(void) { /* Disable MDSS AXI clock */ clk_disable(clk_get("mdss_axi_clk")); } /* Enable all the bus clocks needed by MDSS */ void mdss_bus_clocks_enable(void) { int ret; /* Configure AXI clock */ ret = clk_get_set_enable("mdss_axi_clk", 0, 1); if(ret) { dprintf(CRITICAL, "failed to set mdss_axi_clk ret = %d\n", ret); ASSERT(0); } } static void rcg_update_config(uint32_t reg) { int i; for (i = 0; i < MAX_LOOPS; i++) { if (!(readl(reg) & BIT(0))) return; udelay(1); } dprintf(CRITICAL, "failed to update rcg config for reg = 0x%x\n", reg); ASSERT(0); } static void branch_clk_halt_check(uint32_t reg) { int i; for (i = 0; i < MAX_LOOPS; i++) { if (!(readl(reg) & BIT(31))) return; udelay(1); } dprintf(CRITICAL, "failed to enable branch for reg = 0x%x\n", reg); ASSERT(0); } /* Disable all the branch clocks needed by the DSI controller */ void gcc_dsi_clocks_disable(uint8_t dual_dsi) { clk_disable(clk_get("mdss_esc0_clk")); writel(0x0, DSI_PIXEL0_CBCR); writel(0x0, DSI_BYTE0_CBCR); if (dual_dsi) { clk_disable(clk_get("mdss_esc1_clk")); writel(0x0, DSI_PIXEL1_CBCR); writel(0x0, DSI_BYTE1_CBCR); } } /* Configure all the branch clocks needed by the DSI controller */ void gcc_dsi_clocks_enable(uint8_t dual_dsi, uint8_t pclk0_m, uint8_t pclk0_n, uint8_t pclk0_d) { int ret; /* * Configure Byte clock -autopll- This will not change becasue * byte clock does not need any divider */ /* Set the source for DSI0 byte RCG */ writel(0x100, DSI_BYTE0_CFG_RCGR); /* Set the update RCG bit */ writel(0x1, DSI_BYTE0_CMD_RCGR); rcg_update_config(DSI_BYTE0_CMD_RCGR); /* Enable the branch clock */ writel(0x1, DSI_BYTE0_CBCR); branch_clk_halt_check(DSI_BYTE0_CBCR); /* Configure Pixel clock */ /* Set the source for DSI0 pixel RCG */ writel(0x100, DSI_PIXEL0_CFG_RCGR); /* Set the MND for DSI0 pixel clock */ writel(pclk0_m, DSI_PIXEL0_M); writel(pclk0_n, DSI_PIXEL0_N); writel(pclk0_d, DSI_PIXEL0_D); /* Set the update RCG bit */ writel(0x1, DSI_PIXEL0_CMD_RCGR); rcg_update_config(DSI_PIXEL0_CMD_RCGR); /* Enable the branch clock */ writel(0x1, DSI_PIXEL0_CBCR); branch_clk_halt_check(DSI_PIXEL0_CBCR); /* Configure ESC clock */ ret = clk_get_set_enable("mdss_esc0_clk", 0, 1); if (ret) { dprintf(CRITICAL, "failed to set esc0_clk ret = %d\n", ret); ASSERT(0); } if (dual_dsi) { /* Set the source for DSI1 byte RCG */ writel(0x100, DSI_BYTE1_CFG_RCGR); /* Set the update RCG bit */ writel(0x1, DSI_BYTE1_CMD_RCGR); rcg_update_config(DSI_BYTE1_CMD_RCGR); /* Enable the branch clock */ writel(0x1, DSI_BYTE1_CBCR); branch_clk_halt_check(DSI_BYTE1_CBCR); /* Set the source for DSI1 pixel RCG */ writel(0x100, DSI_PIXEL1_CFG_RCGR); /* Set the MND for DSI1 pixel clock */ writel(pclk0_m, DSI_PIXEL1_M); writel(pclk0_n, DSI_PIXEL1_N); writel(pclk0_d, DSI_PIXEL1_D); /* Set the update RCG bit */ writel(0x1, DSI_PIXEL1_CMD_RCGR); rcg_update_config(DSI_PIXEL1_CMD_RCGR); /* Enable the branch clock */ writel(0x1, DSI_PIXEL1_CBCR); branch_clk_halt_check(DSI_PIXEL1_CBCR); /* Configure ESC clock */ ret = clk_get_set_enable("mdss_esc1_clk", 0, 1); if (ret) { dprintf(CRITICAL, "failed to set esc1_clk ret = %d\n", ret); ASSERT(0); } } } /* Function to asynchronously reset CE. * Function assumes that all the CE clocks are off. */ static void ce_async_reset(uint8_t instance) { /* Start the block reset for CE */ writel(1, GCC_CRYPTO_BCR); udelay(2); /* Take CE block out of reset */ writel(0, GCC_CRYPTO_BCR); udelay(2); } void clock_ce_enable(uint8_t instance) { int ret; char clk_name[64]; snprintf(clk_name, sizeof(clk_name), "ce%u_src_clk", instance); ret = clk_get_set_enable(clk_name, 160000000, 1); if(ret) { dprintf(CRITICAL, "failed to set ce%u_src_clk ret = %d\n", instance, ret); ASSERT(0); } snprintf(clk_name, sizeof(clk_name), "ce%u_core_clk", instance); ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set ce%u_core_clk ret = %d\n", instance, ret); ASSERT(0); } snprintf(clk_name, sizeof(clk_name), "ce%u_ahb_clk", instance); ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set ce%u_ahb_clk ret = %d\n", instance, ret); ASSERT(0); } snprintf(clk_name, sizeof(clk_name), "ce%u_axi_clk", instance); ret = clk_get_set_enable(clk_name, 0, 1); if(ret) { dprintf(CRITICAL, "failed to set ce%u_axi_clk ret = %d\n", instance, ret); ASSERT(0); } /* Wait for 48 * #pipes cycles. * This is necessary as immediately after an access control reset (boot up) * or a debug re-enable, the Crypto core sequentially clears its internal * pipe key storage memory. If pipe key initialization writes are attempted * during this time, they may be overwritten by the internal clearing logic. */ udelay(1); } void clock_ce_disable(uint8_t instance) { struct clk *ahb_clk; struct clk *cclk; struct clk *axi_clk; struct clk *src_clk; char clk_name[64]; snprintf(clk_name, sizeof(clk_name), "ce%u_src_clk", instance); src_clk = clk_get(clk_name); snprintf(clk_name, sizeof(clk_name), "ce%u_ahb_clk", instance); ahb_clk = clk_get(clk_name); snprintf(clk_name, sizeof(clk_name), "ce%u_axi_clk", instance); axi_clk = clk_get(clk_name); snprintf(clk_name, sizeof(clk_name), "ce%u_core_clk", instance); cclk = clk_get(clk_name); clk_disable(ahb_clk); clk_disable(axi_clk); clk_disable(cclk); clk_disable(src_clk); /* Some delay for the clocks to stabalize. */ udelay(1); } void clock_config_ce(uint8_t instance) { /* Need to enable the clock before disabling since the clk_disable() * has a check to default to nop when the clk_enable() is not called * on that particular clock. */ clock_ce_enable(instance); clock_ce_disable(instance); ce_async_reset(instance); clock_ce_enable(instance); } void clock_config_blsp_i2c(uint8_t blsp_id, uint8_t qup_id) { uint8_t ret = 0; char clk_name[64]; struct clk *qup_clk; if((blsp_id != BLSP_ID_1) || ((qup_id != QUP_ID_1) && (qup_id != QUP_ID_3))) { dprintf(CRITICAL, "Incorrect BLSP-%d or QUP-%d configuration\n", blsp_id, qup_id); ASSERT(0); } if (qup_id == QUP_ID_1) { snprintf(clk_name, sizeof(clk_name), "blsp1_qup2_ahb_iface_clk"); } else if (qup_id == QUP_ID_3) { snprintf(clk_name, sizeof(clk_name), "blsp1_qup4_ahb_iface_clk"); } ret = clk_get_set_enable(clk_name, 0 , 1); if (ret) { dprintf(CRITICAL, "Failed to enable %s clock\n", clk_name); return; } if (qup_id == QUP_ID_1) { snprintf(clk_name, sizeof(clk_name), "gcc_blsp1_qup2_i2c_apps_clk"); } else if (qup_id == QUP_ID_3) { snprintf(clk_name, sizeof(clk_name), "gcc_blsp1_qup4_i2c_apps_clk"); } qup_clk = clk_get(clk_name); if (!qup_clk) { dprintf(CRITICAL, "Failed to get %s\n", clk_name); return; } ret = clk_enable(qup_clk); if (ret) { dprintf(CRITICAL, "Failed to enable %s\n", clk_name); return; } }