/* * Copyright (c) 2011-2012, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #define QPNP_TM_DRIVER_NAME "qcom,qpnp-temp-alarm" enum qpnp_tm_registers { QPNP_TM_REG_TYPE = 0x04, QPNP_TM_REG_SUBTYPE = 0x05, QPNP_TM_REG_STATUS = 0x08, QPNP_TM_REG_SHUTDOWN_CTRL1 = 0x40, QPNP_TM_REG_SHUTDOWN_CTRL2 = 0x42, QPNP_TM_REG_ALARM_CTRL = 0x46, }; #define QPNP_TM_TYPE 0x09 #define QPNP_TM_SUBTYPE 0x08 #define STATUS_STAGE_MASK 0x03 #define SHUTDOWN_CTRL1_OVERRIDE_STAGE3 0x80 #define SHUTDOWN_CTRL1_OVERRIDE_STAGE2 0x40 #define SHUTDOWN_CTRL1_THRESHOLD_MASK 0x03 #define SHUTDOWN_CTRL2_CLEAR_STAGE3 0x80 #define SHUTDOWN_CTRL2_CLEAR_STAGE2 0x40 #define ALARM_CTRL_FORCE_ENABLE 0x80 #define ALARM_CTRL_FOLLOW_HW_ENABLE 0x01 #define TEMP_STAGE_STEP 20000 /* Stage step: 20.000 C */ #define TEMP_STAGE_HYSTERESIS 2000 #define TEMP_THRESH_MIN 105000 /* Threshold Min: 105 C */ #define TEMP_THRESH_STEP 5000 /* Threshold step: 5 C */ #define THRESH_MIN 0 #define THRESH_MAX 3 /* Trip points from most critical to least critical */ #define TRIP_STAGE3 0 #define TRIP_STAGE2 1 #define TRIP_STAGE1 2 #define TRIP_NUM 3 enum qpnp_tm_adc_type { QPNP_TM_ADC_NONE, /* Estimates temp based on overload level. */ QPNP_TM_ADC_QPNP_ADC, }; /* * Temperature in millicelcius reported during stage 0 if no ADC is present and * no value has been specified via device tree. */ #define DEFAULT_NO_ADC_TEMP 37000 struct qpnp_tm_chip { struct delayed_work irq_work; struct spmi_device *spmi_dev; struct thermal_zone_device *tz_dev; const char *tm_name; enum qpnp_tm_adc_type adc_type; unsigned long temperature; enum thermal_device_mode mode; unsigned int thresh; unsigned int stage; unsigned int prev_stage; int irq; enum qpnp_vadc_channels adc_channel; u16 base_addr; bool allow_software_override; }; /* Delay between TEMP_STAT IRQ going high and status value changing in ms. */ #define STATUS_REGISTER_DELAY_MS 40 enum pmic_thermal_override_mode { SOFTWARE_OVERRIDE_DISABLED = 0, SOFTWARE_OVERRIDE_ENABLED, }; static inline int qpnp_tm_read(struct qpnp_tm_chip *chip, u16 addr, u8 *buf, int len) { int rc; rc = spmi_ext_register_readl(chip->spmi_dev->ctrl, chip->spmi_dev->sid, chip->base_addr + addr, buf, len); if (rc) dev_err(&chip->spmi_dev->dev, "%s: spmi_ext_register_readl() failed. sid=%d, addr=%04X, len=%d, rc=%d\n", __func__, chip->spmi_dev->sid, chip->base_addr + addr, len, rc); return rc; } static inline int qpnp_tm_write(struct qpnp_tm_chip *chip, u16 addr, u8 *buf, int len) { int rc; rc = spmi_ext_register_writel(chip->spmi_dev->ctrl, chip->spmi_dev->sid, chip->base_addr + addr, buf, len); if (rc) dev_err(&chip->spmi_dev->dev, "%s: spmi_ext_register_writel() failed. sid=%d, addr=%04X, len=%d, rc=%d\n", __func__, chip->spmi_dev->sid, chip->base_addr + addr, len, rc); return rc; } static inline int qpnp_tm_shutdown_override(struct qpnp_tm_chip *chip, enum pmic_thermal_override_mode mode) { int rc = 0; u8 reg; if (chip->allow_software_override) { reg = chip->thresh & SHUTDOWN_CTRL1_THRESHOLD_MASK; if (mode == SOFTWARE_OVERRIDE_ENABLED) reg |= SHUTDOWN_CTRL1_OVERRIDE_STAGE2 | SHUTDOWN_CTRL1_OVERRIDE_STAGE3; rc = qpnp_tm_write(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, ®, 1); } return rc; } static int qpnp_tm_update_temp(struct qpnp_tm_chip *chip) { struct qpnp_vadc_result adc_result; int rc; rc = qpnp_vadc_read(chip->adc_channel, &adc_result); if (!rc) chip->temperature = adc_result.physical; else dev_err(&chip->spmi_dev->dev, "%s: qpnp_vadc_read(%d) failed, rc=%d\n", __func__, chip->adc_channel, rc); return rc; } /* * This function initializes the internal temperature value based on only the * current thermal stage and threshold. */ static int qpnp_tm_init_temp_no_adc(struct qpnp_tm_chip *chip) { int rc; u8 reg; rc = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, ®, 1); if (rc < 0) return rc; chip->stage = reg & STATUS_STAGE_MASK; if (chip->stage) chip->temperature = chip->thresh * TEMP_THRESH_STEP + (chip->stage - 1) * TEMP_STAGE_STEP + TEMP_THRESH_MIN; return 0; } /* * This function updates the internal temperature value based on the * current thermal stage and threshold as well as the previous stage */ static int qpnp_tm_update_temp_no_adc(struct qpnp_tm_chip *chip) { unsigned int stage; int rc; u8 reg; rc = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, ®, 1); if (rc < 0) return rc; stage = reg & STATUS_STAGE_MASK; if (stage > chip->stage) { /* increasing stage, use lower bound */ chip->temperature = (stage - 1) * TEMP_STAGE_STEP + chip->thresh * TEMP_THRESH_STEP + TEMP_STAGE_HYSTERESIS + TEMP_THRESH_MIN; } else if (stage < chip->stage) { /* decreasing stage, use upper bound */ chip->temperature = stage * TEMP_STAGE_STEP + chip->thresh * TEMP_THRESH_STEP - TEMP_STAGE_HYSTERESIS + TEMP_THRESH_MIN; } chip->stage = stage; return 0; } static int qpnp_tz_get_temp_no_adc(struct thermal_zone_device *thermal, unsigned long *temperature) { struct qpnp_tm_chip *chip = thermal->devdata; int rc; if (!temperature) return -EINVAL; rc = qpnp_tm_update_temp_no_adc(chip); if (rc < 0) return rc; *temperature = chip->temperature; return 0; } static int qpnp_tz_get_temp_qpnp_adc(struct thermal_zone_device *thermal, unsigned long *temperature) { struct qpnp_tm_chip *chip = thermal->devdata; int rc; if (!temperature) return -EINVAL; rc = qpnp_tm_update_temp(chip); if (rc < 0) { dev_err(&chip->spmi_dev->dev, "%s: %s: adc read failed, rc = %d\n", __func__, chip->tm_name, rc); return rc; } *temperature = chip->temperature; return 0; } static int qpnp_tz_get_mode(struct thermal_zone_device *thermal, enum thermal_device_mode *mode) { struct qpnp_tm_chip *chip = thermal->devdata; if (!mode) return -EINVAL; *mode = chip->mode; return 0; } static int qpnp_tz_set_mode(struct thermal_zone_device *thermal, enum thermal_device_mode mode) { struct qpnp_tm_chip *chip = thermal->devdata; int rc = 0; if (mode != chip->mode) { if (mode == THERMAL_DEVICE_ENABLED) rc = qpnp_tm_shutdown_override(chip, SOFTWARE_OVERRIDE_ENABLED); else rc = qpnp_tm_shutdown_override(chip, SOFTWARE_OVERRIDE_DISABLED); chip->mode = mode; } return rc; } static int qpnp_tz_get_trip_type(struct thermal_zone_device *thermal, int trip, enum thermal_trip_type *type) { if (trip < 0 || !type) return -EINVAL; switch (trip) { case TRIP_STAGE3: *type = THERMAL_TRIP_CRITICAL; break; case TRIP_STAGE2: *type = THERMAL_TRIP_HOT; break; case TRIP_STAGE1: *type = THERMAL_TRIP_HOT; break; default: return -EINVAL; } return 0; } static int qpnp_tz_get_trip_temp(struct thermal_zone_device *thermal, int trip, unsigned long *temperature) { struct qpnp_tm_chip *chip = thermal->devdata; int thresh_temperature; if (trip < 0 || !temperature) return -EINVAL; thresh_temperature = chip->thresh * TEMP_THRESH_STEP + TEMP_THRESH_MIN; switch (trip) { case TRIP_STAGE3: thresh_temperature += 2 * TEMP_STAGE_STEP; break; case TRIP_STAGE2: thresh_temperature += TEMP_STAGE_STEP; break; case TRIP_STAGE1: break; default: return -EINVAL; } *temperature = thresh_temperature; return 0; } static int qpnp_tz_get_crit_temp(struct thermal_zone_device *thermal, unsigned long *temperature) { struct qpnp_tm_chip *chip = thermal->devdata; if (!temperature) return -EINVAL; *temperature = chip->thresh * TEMP_THRESH_STEP + TEMP_THRESH_MIN + 2 * TEMP_STAGE_STEP; return 0; } static struct thermal_zone_device_ops qpnp_thermal_zone_ops_no_adc = { .get_temp = qpnp_tz_get_temp_no_adc, .get_mode = qpnp_tz_get_mode, .set_mode = qpnp_tz_set_mode, .get_trip_type = qpnp_tz_get_trip_type, .get_trip_temp = qpnp_tz_get_trip_temp, .get_crit_temp = qpnp_tz_get_crit_temp, }; static struct thermal_zone_device_ops qpnp_thermal_zone_ops_qpnp_adc = { .get_temp = qpnp_tz_get_temp_qpnp_adc, .get_mode = qpnp_tz_get_mode, .set_mode = qpnp_tz_set_mode, .get_trip_type = qpnp_tz_get_trip_type, .get_trip_temp = qpnp_tz_get_trip_temp, .get_crit_temp = qpnp_tz_get_crit_temp, }; static void qpnp_tm_work(struct work_struct *work) { struct delayed_work *dwork = container_of(work, struct delayed_work, work); struct qpnp_tm_chip *chip = container_of(dwork, struct qpnp_tm_chip, irq_work); int rc; u8 reg; if (chip->adc_type == QPNP_TM_ADC_NONE) { rc = qpnp_tm_update_temp_no_adc(chip); if (rc < 0) goto bail; } else { rc = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, ®, 1); if (rc < 0) goto bail; chip->stage = reg & STATUS_STAGE_MASK; rc = qpnp_tm_update_temp(chip); if (rc < 0) goto bail; } if (chip->stage != chip->prev_stage) { chip->prev_stage = chip->stage; pr_crit("%s: PMIC Temp Alarm - stage=%u, threshold=%u, temperature=%lu mC\n", chip->tm_name, chip->stage, chip->thresh, chip->temperature); thermal_zone_device_update(chip->tz_dev); /* Notify user space */ sysfs_notify(&chip->tz_dev->device.kobj, NULL, "type"); } bail: return; } static irqreturn_t qpnp_tm_isr(int irq, void *data) { struct qpnp_tm_chip *chip = data; schedule_delayed_work(&chip->irq_work, msecs_to_jiffies(STATUS_REGISTER_DELAY_MS) + 1); return IRQ_HANDLED; } static int qpnp_tm_init_reg(struct qpnp_tm_chip *chip) { int rc = 0; u8 reg; if (chip->thresh < THRESH_MIN || chip->thresh > THRESH_MAX) { /* Read hardware threshold value if configuration is invalid. */ rc = qpnp_tm_read(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, ®, 1); if (rc < 0) return rc; chip->thresh = reg & SHUTDOWN_CTRL1_THRESHOLD_MASK; } /* * Set threshold and disable software override of stage 2 and 3 * shutdowns. */ reg = chip->thresh & SHUTDOWN_CTRL1_THRESHOLD_MASK; rc = qpnp_tm_write(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, ®, 1); if (rc < 0) return rc; /* Enable the thermal alarm PMIC module in always-on mode. */ reg = ALARM_CTRL_FORCE_ENABLE; rc = qpnp_tm_write(chip, QPNP_TM_REG_ALARM_CTRL, ®, 1); return rc; } static int __devinit qpnp_tm_probe(struct spmi_device *spmi) { struct device_node *node; struct resource *res; struct qpnp_tm_chip *chip; struct thermal_zone_device_ops *tz_ops; char *tm_name; u32 default_temperature; int rc = 0; u8 raw_type[2], type, subtype; if (!spmi || !(&spmi->dev) || !spmi->dev.of_node) { dev_err(&spmi->dev, "%s: device tree node not found\n", __func__); return -EINVAL; } node = spmi->dev.of_node; chip = kzalloc(sizeof(struct qpnp_tm_chip), GFP_KERNEL); if (!chip) { dev_err(&spmi->dev, "%s: Can't allocate qpnp_tm_chip\n", __func__); return -ENOMEM; } dev_set_drvdata(&spmi->dev, chip); res = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0); if (!res) { dev_err(&spmi->dev, "%s: node is missing base address\n", __func__); rc = -EINVAL; goto free_chip; } chip->base_addr = res->start; chip->spmi_dev = spmi; chip->irq = spmi_get_irq(spmi, NULL, 0); if (chip->irq < 0) { rc = chip->irq; dev_err(&spmi->dev, "%s: node is missing irq, rc=%d\n", __func__, rc); goto free_chip; } chip->tm_name = of_get_property(node, "label", NULL); if (chip->tm_name == NULL) { dev_err(&spmi->dev, "%s: node is missing label\n", __func__); rc = -EINVAL; goto free_chip; } tm_name = kstrdup(chip->tm_name, GFP_KERNEL); if (tm_name == NULL) { dev_err(&spmi->dev, "%s: could not allocate memory for label\n", __func__); rc = -ENOMEM; goto free_chip; } chip->tm_name = tm_name; INIT_DELAYED_WORK(&chip->irq_work, qpnp_tm_work); /* These bindings are optional, so it is okay if they are not found. */ chip->thresh = THRESH_MAX + 1; rc = of_property_read_u32(node, "qcom,threshold-set", &chip->thresh); if (!rc && (chip->thresh < THRESH_MIN || chip->thresh > THRESH_MAX)) dev_err(&spmi->dev, "%s: invalid qcom,threshold-set=%u specified\n", __func__, chip->thresh); chip->adc_type = QPNP_TM_ADC_NONE; rc = of_property_read_u32(node, "qcom,channel-num", &chip->adc_channel); if (!rc) { if (chip->adc_channel < 0 || chip->adc_channel >= ADC_MAX_NUM) { dev_err(&spmi->dev, "%s: invalid qcom,channel-num=%d specified\n", __func__, chip->adc_channel); } else { chip->adc_type = QPNP_TM_ADC_QPNP_ADC; rc = qpnp_vadc_is_ready(); if (rc) { /* Probe retry, do not print an error message */ goto err_cancel_work; } } } if (chip->adc_type == QPNP_TM_ADC_QPNP_ADC) tz_ops = &qpnp_thermal_zone_ops_qpnp_adc; else tz_ops = &qpnp_thermal_zone_ops_no_adc; chip->allow_software_override = of_property_read_bool(node, "qcom,allow-override"); default_temperature = DEFAULT_NO_ADC_TEMP; rc = of_property_read_u32(node, "qcom,default-temp", &default_temperature); chip->temperature = default_temperature; rc = qpnp_tm_read(chip, QPNP_TM_REG_TYPE, raw_type, 2); if (rc) { dev_err(&spmi->dev, "%s: could not read type register, rc=%d\n", __func__, rc); goto err_cancel_work; } type = raw_type[0]; subtype = raw_type[1]; if (type != QPNP_TM_TYPE || subtype != QPNP_TM_SUBTYPE) { dev_err(&spmi->dev, "%s: invalid type=%02X or subtype=%02X register value\n", __func__, type, subtype); rc = -ENODEV; goto err_cancel_work; } rc = qpnp_tm_init_reg(chip); if (rc) { dev_err(&spmi->dev, "%s: qpnp_tm_init_reg() failed, rc=%d\n", __func__, rc); goto err_cancel_work; } if (chip->adc_type == QPNP_TM_ADC_NONE) { rc = qpnp_tm_init_temp_no_adc(chip); if (rc) { dev_err(&spmi->dev, "%s: qpnp_tm_init_temp_no_adc() failed, rc=%d\n", __func__, rc); goto err_cancel_work; } } /* Start in HW control; switch to SW control when user changes mode. */ chip->mode = THERMAL_DEVICE_DISABLED; rc = qpnp_tm_shutdown_override(chip, SOFTWARE_OVERRIDE_DISABLED); if (rc) { dev_err(&spmi->dev, "%s: qpnp_tm_shutdown_override() failed, rc=%d\n", __func__, rc); goto err_cancel_work; } chip->tz_dev = thermal_zone_device_register(tm_name, TRIP_NUM, chip, tz_ops, 0, 0, 0, 0); if (chip->tz_dev == NULL) { dev_err(&spmi->dev, "%s: thermal_zone_device_register() failed.\n", __func__); rc = -ENODEV; goto err_cancel_work; } rc = request_irq(chip->irq, qpnp_tm_isr, IRQF_TRIGGER_RISING, tm_name, chip); if (rc < 0) { dev_err(&spmi->dev, "%s: request_irq(%d) failed: %d\n", __func__, chip->irq, rc); goto err_free_tz; } return 0; err_free_tz: thermal_zone_device_unregister(chip->tz_dev); err_cancel_work: cancel_delayed_work_sync(&chip->irq_work); kfree(chip->tm_name); free_chip: dev_set_drvdata(&spmi->dev, NULL); kfree(chip); return rc; } static int __devexit qpnp_tm_remove(struct spmi_device *spmi) { struct qpnp_tm_chip *chip = dev_get_drvdata(&spmi->dev); dev_set_drvdata(&spmi->dev, NULL); thermal_zone_device_unregister(chip->tz_dev); kfree(chip->tm_name); qpnp_tm_shutdown_override(chip, SOFTWARE_OVERRIDE_DISABLED); free_irq(chip->irq, chip); cancel_delayed_work_sync(&chip->irq_work); kfree(chip); return 0; } #ifdef CONFIG_PM static int qpnp_tm_suspend(struct device *dev) { struct qpnp_tm_chip *chip = dev_get_drvdata(dev); /* Clear override bits in suspend to allow hardware control */ qpnp_tm_shutdown_override(chip, SOFTWARE_OVERRIDE_DISABLED); return 0; } static int qpnp_tm_resume(struct device *dev) { struct qpnp_tm_chip *chip = dev_get_drvdata(dev); /* Override hardware actions so software can control */ if (chip->mode == THERMAL_DEVICE_ENABLED) qpnp_tm_shutdown_override(chip, SOFTWARE_OVERRIDE_ENABLED); return 0; } static const struct dev_pm_ops qpnp_tm_pm_ops = { .suspend = qpnp_tm_suspend, .resume = qpnp_tm_resume, }; #define QPNP_TM_PM_OPS (&qpnp_tm_pm_ops) #else #define QPNP_TM_PM_OPS NULL #endif static struct of_device_id qpnp_tm_match_table[] = { { .compatible = QPNP_TM_DRIVER_NAME, }, {} }; static const struct spmi_device_id qpnp_tm_id[] = { { QPNP_TM_DRIVER_NAME, 0 }, {} }; static struct spmi_driver qpnp_tm_driver = { .driver = { .name = QPNP_TM_DRIVER_NAME, .of_match_table = qpnp_tm_match_table, .owner = THIS_MODULE, .pm = QPNP_TM_PM_OPS, }, .probe = qpnp_tm_probe, .remove = __devexit_p(qpnp_tm_remove), .id_table = qpnp_tm_id, }; int __init qpnp_tm_init(void) { return spmi_driver_register(&qpnp_tm_driver); } static void __exit qpnp_tm_exit(void) { spmi_driver_unregister(&qpnp_tm_driver); } module_init(qpnp_tm_init); module_exit(qpnp_tm_exit); MODULE_DESCRIPTION("QPNP PMIC Temperature Alarm driver"); MODULE_LICENSE("GPL v2");