/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define WLED_MOD_EN_REG(base, n) (base + 0x60 + n*0x10) #define WLED_IDAC_DLY_REG(base, n) (WLED_MOD_EN_REG(base, n) + 0x01) #define WLED_FULL_SCALE_REG(base, n) (WLED_IDAC_DLY_REG(base, n) + 0x01) #define WLED_MOD_SRC_SEL_REG(base, n) (WLED_FULL_SCALE_REG(base, n) + 0x01) /* wled control registers */ #define WLED_BRIGHTNESS_CNTL_LSB(base, n) (base + 0x40 + 2*n) #define WLED_BRIGHTNESS_CNTL_MSB(base, n) (base + 0x41 + 2*n) #define WLED_MOD_CTRL_REG(base) (base + 0x46) #define WLED_SYNC_REG(base) (base + 0x47) #define WLED_FDBCK_CTRL_REG(base) (base + 0x48) #define WLED_SWITCHING_FREQ_REG(base) (base + 0x4C) #define WLED_OVP_CFG_REG(base) (base + 0x4D) #define WLED_BOOST_LIMIT_REG(base) (base + 0x4E) #define WLED_CURR_SINK_REG(base) (base + 0x4F) #define WLED_HIGH_POLE_CAP_REG(base) (base + 0x58) #define WLED_CURR_SINK_MASK 0xE0 #define WLED_CURR_SINK_SHFT 0x05 #define WLED_SWITCH_FREQ_MASK 0x02 #define WLED_OVP_VAL_MASK 0x03 #define WLED_OVP_VAL_BIT_SHFT 0x00 #define WLED_BOOST_LIMIT_MASK 0x07 #define WLED_BOOST_LIMIT_BIT_SHFT 0x00 #define WLED_BOOST_ON 0x80 #define WLED_BOOST_OFF 0x00 #define WLED_EN_MASK 0x80 #define WLED_NO_MASK 0x00 #define WLED_CP_SELECT_MAX 0x03 #define WLED_CP_SELECT_MASK 0x02 #define WLED_USE_EXT_GEN_MOD_SRC 0x01 #define WLED_CTL_DLY_STEP 200 #define WLED_CTL_DLY_MAX 1400 #define WLED_MAX_CURR 25 #define WLED_MSB_MASK 0x0F #define WLED_MAX_CURR_MASK 0x19 #define WLED_OP_FDBCK_MASK 0x07 #define WLED_OP_FDBCK_BIT_SHFT 0x00 #define WLED_OP_FDBCK_DEFAULT 0x00 #define WLED_MAX_LEVEL 4095 #define WLED_8_BIT_MASK 0xFF #define WLED_4_BIT_MASK 0x0F #define WLED_8_BIT_SHFT 0x08 #define WLED_MAX_DUTY_CYCLE 0xFFF #define WLED_SYNC_VAL 0x07 #define WLED_SYNC_RESET_VAL 0x00 #define WLED_DEFAULT_STRINGS 0x01 #define WLED_DEFAULT_OVP_VAL 0x02 #define WLED_BOOST_LIM_DEFAULT 0x03 #define WLED_CP_SEL_DEFAULT 0x00 #define WLED_CTRL_DLY_DEFAULT 0x00 #define WLED_SWITCH_FREQ_DEFAULT 0x02 #define FLASH_SAFETY_TIMER(base) (base + 0x40) #define FLASH_MAX_CURR(base) (base + 0x41) #define FLASH_LED_0_CURR(base) (base + 0x42) #define FLASH_LED_1_CURR(base) (base + 0x43) #define FLASH_CLAMP_CURR(base) (base + 0x44) #define FLASH_LED_TMR_CTRL(base) (base + 0x48) #define FLASH_HEADROOM(base) (base + 0x4A) #define FLASH_STARTUP_DELAY(base) (base + 0x4B) #define FLASH_MASK_ENABLE(base) (base + 0x4C) #define FLASH_VREG_OK_FORCE(base) (base + 0x4F) #define FLASH_ENABLE_CONTROL(base) (base + 0x46) #define FLASH_LED_STROBE_CTRL(base) (base + 0x47) #define FLASH_LED_UNLOCK_SECURE(base) (base + 0xD0) #define FLASH_LED_TORCH(base) (base + 0xE4) #define FLASH_FAULT_DETECT(base) (base + 0x51) #define FLASH_MAX_LEVEL 0x4F #define FLASH_NO_MASK 0x00 #define FLASH_MASK_1 0x20 #define FLASH_MASK_REG_MASK 0xE0 #define FLASH_HEADROOM_MASK 0x03 #define FLASH_SAFETY_TIMER_MASK 0x7F #define FLASH_CURRENT_MASK 0xFF #define FLASH_MAX_CURRENT_MASK 0x7F #define FLASH_TMR_MASK 0x03 #define FLASH_TMR_WATCHDOG 0x03 #define FLASH_TMR_SAFETY 0x00 #define FLASH_FAULT_DETECT_MASK 0X80 #define FLASH_HW_VREG_OK 0x80 #define FLASH_VREG_MASK 0xC0 #define FLASH_STARTUP_DLY_MASK 0x02 #define FLASH_ENABLE_ALL 0xE0 #define FLASH_ENABLE_MODULE 0x80 #define FLASH_ENABLE_MODULE_MASK 0x80 #define FLASH_DISABLE_ALL 0x00 #define FLASH_ENABLE_MASK 0xE0 #define FLASH_ENABLE_LED_0 0x40 #define FLASH_ENABLE_LED_1 0x20 #define FLASH_INIT_MASK 0xE0 #define FLASH_SELFCHECK_ENABLE 0x80 #define FLASH_STROBE_SW 0xC0 #define FLASH_STROBE_HW 0xC4 #define FLASH_STROBE_MASK 0xC7 #define FLASH_LED_0_OUTPUT 0x80 #define FLASH_LED_1_OUTPUT 0x40 #define FLASH_CURRENT_PRGM_MIN 1 #define FLASH_CURRENT_PRGM_SHIFT 1 #define FLASH_CURRENT_MAX 0x4F #define FLASH_CURRENT_TORCH 0x07 #define FLASH_DURATION_200ms 0x13 #define FLASH_CLAMP_200mA 0x0F #define FLASH_TORCH_MASK 0x03 #define FLASH_LED_TORCH_ENABLE 0x00 #define FLASH_LED_TORCH_DISABLE 0x03 #define FLASH_UNLOCK_SECURE 0xA5 #define FLASH_SECURE_MASK 0xFF #define LED_TRIGGER_DEFAULT "none" #define RGB_LED_SRC_SEL(base) (base + 0x45) #define RGB_LED_EN_CTL(base) (base + 0x46) #define RGB_LED_ATC_CTL(base) (base + 0x47) #define RGB_MAX_LEVEL LED_FULL #define RGB_LED_ENABLE_RED 0x80 #define RGB_LED_ENABLE_GREEN 0x40 #define RGB_LED_ENABLE_BLUE 0x20 #define RGB_LED_SOURCE_VPH_PWR 0x01 #define RGB_LED_ENABLE_MASK 0xE0 #define RGB_LED_SRC_MASK 0x03 #define QPNP_LED_PWM_FLAGS (PM_PWM_LUT_LOOP | PM_PWM_LUT_RAMP_UP) #define QPNP_LUT_RAMP_STEP_DEFAULT 255 #define PWM_LUT_MAX_SIZE 63 #define RGB_LED_DISABLE 0x00 #define MPP_MAX_LEVEL LED_FULL #define LED_MPP_MODE_CTRL(base) (base + 0x40) #define LED_MPP_VIN_CTRL(base) (base + 0x41) #define LED_MPP_EN_CTRL(base) (base + 0x46) #define LED_MPP_SINK_CTRL(base) (base + 0x4C) #define LED_MPP_CURRENT_DEFAULT 5 #define LED_MPP_CURRENT_PER_SETTING 5 #define LED_MPP_SOURCE_SEL_DEFAULT LED_MPP_MODE_ENABLE #define LED_MPP_SINK_MASK 0x07 #define LED_MPP_MODE_MASK 0x7F #define LED_MPP_EN_MASK 0x80 #define LED_MPP_SRC_MASK 0x0F #define LED_MPP_MODE_CTRL_MASK 0x70 #define LED_MPP_MODE_SINK (0x06 << 4) #define LED_MPP_MODE_ENABLE 0x01 #define LED_MPP_MODE_OUTPUT 0x10 #define LED_MPP_MODE_DISABLE 0x00 #define LED_MPP_EN_ENABLE 0x80 #define LED_MPP_EN_DISABLE 0x00 #define MPP_SOURCE_DTEST1 0x08 #define KPDBL_MAX_LEVEL LED_FULL #define KPDBL_ROW_SRC_SEL(base) (base + 0x40) #define KPDBL_ENABLE(base) (base + 0x46) #define KPDBL_ROW_SRC(base) (base + 0xE5) #define KPDBL_ROW_SRC_SEL_VAL_MASK 0x0F #define KPDBL_ROW_SCAN_EN_MASK 0x80 #define KPDBL_ROW_SCAN_VAL_MASK 0x0F #define KPDBL_ROW_SCAN_EN_SHIFT 7 #define KPDBL_MODULE_EN 0x80 #define KPDBL_MODULE_DIS 0x00 #define KPDBL_MODULE_EN_MASK 0x80 /** * enum qpnp_leds - QPNP supported led ids * @QPNP_ID_WLED - White led backlight */ enum qpnp_leds { QPNP_ID_WLED = 0, QPNP_ID_FLASH1_LED0, QPNP_ID_FLASH1_LED1, QPNP_ID_RGB_RED, QPNP_ID_RGB_GREEN, QPNP_ID_RGB_BLUE, QPNP_ID_LED_MPP, QPNP_ID_KPDBL, QPNP_ID_MAX, }; /* current boost limit */ enum wled_current_boost_limit { WLED_CURR_LIMIT_105mA, WLED_CURR_LIMIT_385mA, WLED_CURR_LIMIT_525mA, WLED_CURR_LIMIT_805mA, WLED_CURR_LIMIT_980mA, WLED_CURR_LIMIT_1260mA, WLED_CURR_LIMIT_1400mA, WLED_CURR_LIMIT_1680mA, }; /* over voltage protection threshold */ enum wled_ovp_threshold { WLED_OVP_35V, WLED_OVP_32V, WLED_OVP_29V, WLED_OVP_37V, }; /* switch frquency */ enum wled_switch_freq { WLED_800kHz = 0, WLED_960kHz, WLED_1600kHz, WLED_3200kHz, }; enum flash_headroom { HEADROOM_250mV = 0, HEADROOM_300mV, HEADROOM_400mV, HEADROOM_500mV, }; enum flash_startup_dly { DELAY_10us = 0, DELAY_32us, DELAY_64us, DELAY_128us, }; enum led_mode { PWM_MODE = 0, LPG_MODE, MANUAL_MODE, }; static u8 wled_debug_regs[] = { /* common registers */ 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, /* LED1 */ 0x60, 0x61, 0x62, 0x63, 0x66, /* LED2 */ 0x70, 0x71, 0x72, 0x73, 0x76, /* LED3 */ 0x80, 0x81, 0x82, 0x83, 0x86, }; static u8 flash_debug_regs[] = { 0x40, 0x41, 0x42, 0x43, 0x44, 0x48, 0x49, 0x4b, 0x4c, 0x4f, 0x46, 0x47, }; static u8 rgb_pwm_debug_regs[] = { 0x45, 0x46, 0x47, }; static u8 mpp_debug_regs[] = { 0x40, 0x41, 0x42, 0x45, 0x46, 0x4c, }; static u8 kpdbl_debug_regs[] = { 0x40, 0x46, 0xb1, 0xb3, 0xb4, 0xe5, }; /** * pwm_config_data - pwm configuration data * @lut_params - lut parameters to be used by pwm driver * @pwm_device - pwm device * @pwm_channel - pwm channel to be configured for led * @pwm_period_us - period for pwm, in us * @mode - mode the led operates in */ struct pwm_config_data { struct lut_params lut_params; struct pwm_device *pwm_dev; int pwm_channel; u32 pwm_period_us; struct pwm_duty_cycles *duty_cycles; u8 mode; u8 enable; bool use_blink; }; /** * wled_config_data - wled configuration data * @num_strings - number of wled strings supported * @ovp_val - over voltage protection threshold * @boost_curr_lim - boot current limit * @cp_select - high pole capacitance * @ctrl_delay_us - delay in activation of led * @dig_mod_gen_en - digital module generator * @cs_out_en - current sink output enable * @op_fdbck - selection of output as feedback for the boost */ struct wled_config_data { u8 num_strings; u8 ovp_val; u8 boost_curr_lim; u8 cp_select; u8 ctrl_delay_us; u8 switch_freq; u8 op_fdbck; bool dig_mod_gen_en; bool cs_out_en; }; /** * mpp_config_data - mpp configuration data * @pwm_cfg - device pwm configuration * @current_setting - current setting, 5ma-40ma in 5ma increments * @source_sel - source selection * @mode_ctrl - mode control * @pwm_mode - pwm mode in use */ struct mpp_config_data { struct pwm_config_data *pwm_cfg; u8 current_setting; u8 source_sel; u8 mode_ctrl; u8 pwm_mode; }; /** * flash_config_data - flash configuration data * @current_prgm - current to be programmed, scaled by max level * @clamp_curr - clamp current to use * @headroom - headroom value to use * @duration - duration of the flash * @enable_module - enable address for particular flash * @trigger_flash - trigger flash * @startup_dly - startup delay for flash * @strobe_type - select between sw and hw strobe * @current_addr - address to write for current * @second_addr - address of secondary flash to be written * @safety_timer - enable safety timer or watchdog timer * @torch_enable - enable flash LED torch mode * @regulator_get - regulator attached or not * @flash_on - flash status, on or off * @flash_boost_reg - boost regulator for flash */ struct flash_config_data { u8 current_prgm; u8 clamp_curr; u8 headroom; u8 duration; u8 enable_module; u8 trigger_flash; u8 startup_dly; u8 strobe_type; u16 current_addr; u16 second_addr; bool safety_timer; bool torch_enable; bool regulator_get; bool flash_on; struct regulator *flash_boost_reg; }; /** * kpdbl_config_data - kpdbl configuration data * @pwm_cfg - device pwm configuration * @row_src_sel_val - select source, 0 for vph_pwr and 1 for vbst * @row_scan_en - enable row scan * @row_scan_val - map to enable needed rows */ struct kpdbl_config_data { struct pwm_config_data *pwm_cfg; u32 row_src_sel_val; u32 row_scan_en; u32 row_scan_val; }; /** * rgb_config_data - rgb configuration data * @pwm_cfg - device pwm configuration * @enable - bits to enable led */ struct rgb_config_data { struct pwm_config_data *pwm_cfg; u8 enable; }; /** * struct qpnp_led_data - internal led data structure * @led_classdev - led class device * @delayed_work - delayed work for turning off the LED * @id - led index * @base_reg - base register given in device tree * @lock - to protect the transactions * @reg - cached value of led register * @num_leds - number of leds in the module * @max_current - maximum current supported by LED * @default_on - true: default state max, false, default state 0 * @turn_off_delay_ms - number of msec before turning off the LED */ struct qpnp_led_data { struct led_classdev cdev; struct spmi_device *spmi_dev; struct delayed_work dwork; int id; u16 base; u8 reg; u8 num_leds; spinlock_t lock; struct wled_config_data *wled_cfg; struct flash_config_data *flash_cfg; struct kpdbl_config_data *kpdbl_cfg; struct rgb_config_data *rgb_cfg; struct mpp_config_data *mpp_cfg; int max_current; bool default_on; int turn_off_delay_ms; }; static int qpnp_led_masked_write(struct qpnp_led_data *led, u16 addr, u8 mask, u8 val) { int rc; u8 reg; rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid, addr, ®, 1); if (rc) { dev_err(&led->spmi_dev->dev, "Unable to read from addr=%x, rc(%d)\n", addr, rc); } reg &= ~mask; reg |= val; rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid, addr, ®, 1); if (rc) dev_err(&led->spmi_dev->dev, "Unable to write to addr=%x, rc(%d)\n", addr, rc); return rc; } static void qpnp_dump_regs(struct qpnp_led_data *led, u8 regs[], u8 array_size) { int i; u8 val; pr_debug("===== %s LED register dump start =====\n", led->cdev.name); for (i = 0; i < array_size; i++) { spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid, led->base + regs[i], &val, sizeof(val)); pr_debug("%s: 0x%x = 0x%x\n", led->cdev.name, led->base + regs[i], val); } pr_debug("===== %s LED register dump end =====\n", led->cdev.name); } static int qpnp_wled_set(struct qpnp_led_data *led) { int rc, duty, level; u8 val, i, num_wled_strings; level = led->cdev.brightness; if (level > WLED_MAX_LEVEL) level = WLED_MAX_LEVEL; if (level == 0) { val = WLED_BOOST_OFF; rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid, WLED_MOD_CTRL_REG(led->base), &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "WLED write ctrl reg failed(%d)\n", rc); return rc; } } else { val = WLED_BOOST_ON; rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid, WLED_MOD_CTRL_REG(led->base), &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "WLED write ctrl reg failed(%d)\n", rc); return rc; } } duty = (WLED_MAX_DUTY_CYCLE * level) / WLED_MAX_LEVEL; num_wled_strings = led->wled_cfg->num_strings; /* program brightness control registers */ for (i = 0; i < num_wled_strings; i++) { rc = qpnp_led_masked_write(led, WLED_BRIGHTNESS_CNTL_MSB(led->base, i), WLED_MSB_MASK, (duty >> WLED_8_BIT_SHFT) & WLED_4_BIT_MASK); if (rc) { dev_err(&led->spmi_dev->dev, "WLED set brightness MSB failed(%d)\n", rc); return rc; } val = duty & WLED_8_BIT_MASK; rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid, WLED_BRIGHTNESS_CNTL_LSB(led->base, i), &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "WLED set brightness LSB failed(%d)\n", rc); return rc; } } /* sync */ val = WLED_SYNC_VAL; rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid, WLED_SYNC_REG(led->base), &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "WLED set sync reg failed(%d)\n", rc); return rc; } val = WLED_SYNC_RESET_VAL; rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid, WLED_SYNC_REG(led->base), &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "WLED reset sync reg failed(%d)\n", rc); return rc; } return 0; } static int qpnp_mpp_set(struct qpnp_led_data *led) { int rc, val; int duty_us; if (led->cdev.brightness) { if (led->mpp_cfg->pwm_mode == PWM_MODE) { pwm_disable(led->mpp_cfg->pwm_cfg->pwm_dev); duty_us = (led->mpp_cfg->pwm_cfg->pwm_period_us * led->cdev.brightness) / LED_FULL; /*config pwm for brightness scaling*/ rc = pwm_config(led->mpp_cfg->pwm_cfg->pwm_dev, duty_us, led->mpp_cfg->pwm_cfg->pwm_period_us); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Failed to " \ "configure pwm for new values\n"); return rc; } } if (led->mpp_cfg->pwm_mode != MANUAL_MODE) pwm_enable(led->mpp_cfg->pwm_cfg->pwm_dev); val = (led->mpp_cfg->source_sel & LED_MPP_SRC_MASK) | (led->mpp_cfg->mode_ctrl & LED_MPP_MODE_CTRL_MASK); rc = qpnp_led_masked_write(led, LED_MPP_MODE_CTRL(led->base), LED_MPP_MODE_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to write led mode reg\n"); return rc; } rc = qpnp_led_masked_write(led, LED_MPP_EN_CTRL(led->base), LED_MPP_EN_MASK, LED_MPP_EN_ENABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to write led enable " \ "reg\n"); return rc; } } else { if (led->mpp_cfg->pwm_mode != MANUAL_MODE) pwm_disable(led->mpp_cfg->pwm_cfg->pwm_dev); rc = qpnp_led_masked_write(led, LED_MPP_MODE_CTRL(led->base), LED_MPP_MODE_MASK, LED_MPP_MODE_DISABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to write led mode reg\n"); return rc; } rc = qpnp_led_masked_write(led, LED_MPP_EN_CTRL(led->base), LED_MPP_EN_MASK, LED_MPP_EN_DISABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to write led enable reg\n"); return rc; } } qpnp_dump_regs(led, mpp_debug_regs, ARRAY_SIZE(mpp_debug_regs)); return 0; } static int qpnp_flash_set(struct qpnp_led_data *led) { int rc; int val = led->cdev.brightness; led->flash_cfg->current_prgm = (val * FLASH_MAX_LEVEL / led->max_current); led->flash_cfg->current_prgm = led->flash_cfg->current_prgm >> FLASH_CURRENT_PRGM_SHIFT; if (!led->flash_cfg->current_prgm) led->flash_cfg->current_prgm = FLASH_CURRENT_PRGM_MIN; /* Set led current */ if (val > 0) { if (led->flash_cfg->torch_enable) { rc = qpnp_led_masked_write(led, FLASH_LED_UNLOCK_SECURE(led->base), FLASH_SECURE_MASK, FLASH_UNLOCK_SECURE); if (rc) { dev_err(&led->spmi_dev->dev, "Secure reg write failed(%d)\n", rc); return rc; } rc = qpnp_led_masked_write(led, FLASH_LED_TORCH(led->base), FLASH_TORCH_MASK, FLASH_LED_TORCH_ENABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Torch reg write failed(%d)\n", rc); return rc; } rc = qpnp_led_masked_write(led, led->flash_cfg->current_addr, FLASH_CURRENT_MASK, led->flash_cfg->current_prgm); if (rc) { dev_err(&led->spmi_dev->dev, "Current reg write failed(%d)\n", rc); return rc; } rc = qpnp_led_masked_write(led, led->flash_cfg->second_addr, FLASH_CURRENT_MASK, led->flash_cfg->current_prgm); if (rc) { dev_err(&led->spmi_dev->dev, "2nd Current reg write failed(%d)\n", rc); return rc; } qpnp_led_masked_write(led, FLASH_MAX_CURR(led->base), FLASH_CURRENT_MASK, led->max_current); if (rc) { dev_err(&led->spmi_dev->dev, "Max current reg write failed(%d)\n", rc); return rc; } rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base), FLASH_ENABLE_MODULE_MASK, FLASH_ENABLE_MODULE); if (rc) { dev_err(&led->spmi_dev->dev, "Enable reg write failed(%d)\n", rc); return rc; } } else { /* Set flash safety timer */ rc = qpnp_led_masked_write(led, FLASH_SAFETY_TIMER(led->base), FLASH_SAFETY_TIMER_MASK, led->flash_cfg->duration); if (rc) { dev_err(&led->spmi_dev->dev, "Safety timer reg write failed(%d)\n", rc); return rc; } /* Set max current */ rc = qpnp_led_masked_write(led, FLASH_MAX_CURR(led->base), FLASH_CURRENT_MASK, FLASH_MAX_LEVEL); if (rc) { dev_err(&led->spmi_dev->dev, "Max current reg write failed(%d)\n", rc); return rc; } /* Set clamp current */ rc = qpnp_led_masked_write(led, FLASH_CLAMP_CURR(led->base), FLASH_CURRENT_MASK, led->flash_cfg->clamp_curr); if (rc) { dev_err(&led->spmi_dev->dev, "Clamp current reg write failed(%d)\n", rc); return rc; } /* Write 0x80 to MODULE_ENABLE before writing 0xE0 * in order to avoid reg value goes from 0x00 to * 0xE0. This causes a hardware bug. */ rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base), FLASH_ENABLE_MODULE_MASK, FLASH_ENABLE_MODULE); if (rc) { dev_err(&led->spmi_dev->dev, "Enable reg write failed(%d)\n", rc); return rc; } rc = qpnp_led_masked_write(led, led->flash_cfg->current_addr, FLASH_CURRENT_MASK, led->flash_cfg->current_prgm); if (rc) { dev_err(&led->spmi_dev->dev, "Current reg write failed(%d)\n", rc); return rc; } rc = qpnp_led_masked_write(led, led->flash_cfg->second_addr, FLASH_CURRENT_MASK, led->flash_cfg->current_prgm); if (rc) { dev_err(&led->spmi_dev->dev, "2nd Current reg write failed(%d)\n", rc); return rc; } rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base), FLASH_ENABLE_MASK, FLASH_ENABLE_ALL); if (rc) { dev_err(&led->spmi_dev->dev, "Enable reg write failed(%d)\n", rc); return rc; } } if (!led->flash_cfg->strobe_type) { rc = qpnp_led_masked_write(led, FLASH_LED_STROBE_CTRL(led->base), FLASH_STROBE_MASK, FLASH_STROBE_SW); if (rc) { dev_err(&led->spmi_dev->dev, "LED %d strobe reg write failed(%d)\n", led->id, rc); return rc; } } else { rc = qpnp_led_masked_write(led, FLASH_LED_STROBE_CTRL(led->base), FLASH_STROBE_MASK, FLASH_STROBE_HW); if (rc) { dev_err(&led->spmi_dev->dev, "LED %d strobe reg write failed(%d)\n", led->id, rc); return rc; } } } else { if (led->flash_cfg->torch_enable) { rc = qpnp_led_masked_write(led, FLASH_LED_UNLOCK_SECURE(led->base), FLASH_SECURE_MASK, FLASH_UNLOCK_SECURE); if (rc) { dev_err(&led->spmi_dev->dev, "Secure reg write failed(%d)\n", rc); return rc; } rc = qpnp_led_masked_write(led, FLASH_LED_TORCH(led->base), FLASH_TORCH_MASK, FLASH_LED_TORCH_DISABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Torch reg write failed(%d)\n", rc); return rc; } } rc = qpnp_led_masked_write(led, FLASH_LED_STROBE_CTRL(led->base), FLASH_STROBE_MASK, FLASH_DISABLE_ALL); if (rc) { dev_err(&led->spmi_dev->dev, "LED %d flash write failed(%d)\n", led->id, rc); return rc; } rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base), FLASH_ENABLE_MASK, FLASH_DISABLE_ALL); if (rc) { dev_err(&led->spmi_dev->dev, "Enable reg write failed(%d)\n", rc); return rc; } } qpnp_dump_regs(led, flash_debug_regs, ARRAY_SIZE(flash_debug_regs)); return 0; } static int qpnp_kpdbl_set(struct qpnp_led_data *led) { int duty_us; int rc; if (led->cdev.brightness) { rc = qpnp_led_masked_write(led, KPDBL_ENABLE(led->base), KPDBL_MODULE_EN_MASK, KPDBL_MODULE_EN); duty_us = (led->kpdbl_cfg->pwm_cfg->pwm_period_us * led->cdev.brightness) / KPDBL_MAX_LEVEL; rc = pwm_config(led->kpdbl_cfg->pwm_cfg->pwm_dev, duty_us, led->kpdbl_cfg->pwm_cfg->pwm_period_us); if (rc < 0) { dev_err(&led->spmi_dev->dev, "pwm config failed\n"); return rc; } rc = pwm_enable(led->kpdbl_cfg->pwm_cfg->pwm_dev); if (rc < 0) { dev_err(&led->spmi_dev->dev, "pwm enable failed\n"); return rc; } } else { pwm_disable(led->kpdbl_cfg->pwm_cfg->pwm_dev); rc = qpnp_led_masked_write(led, KPDBL_ENABLE(led->base), KPDBL_MODULE_EN_MASK, KPDBL_MODULE_DIS); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to write led enable reg\n"); return rc; } } qpnp_dump_regs(led, kpdbl_debug_regs, ARRAY_SIZE(kpdbl_debug_regs)); return 0; } static int qpnp_rgb_set(struct qpnp_led_data *led) { int duty_us; int rc; if (led->cdev.brightness) { if (led->rgb_cfg->pwm_cfg->mode == PWM_MODE) { duty_us = (led->rgb_cfg->pwm_cfg->pwm_period_us * led->cdev.brightness) / LED_FULL; rc = pwm_config(led->rgb_cfg->pwm_cfg->pwm_dev, duty_us, led->rgb_cfg->pwm_cfg->pwm_period_us); if (rc < 0) { dev_err(&led->spmi_dev->dev, "pwm config failed\n"); return rc; } } rc = qpnp_led_masked_write(led, RGB_LED_EN_CTL(led->base), led->rgb_cfg->enable, led->rgb_cfg->enable); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to write led enable reg\n"); return rc; } rc = pwm_enable(led->rgb_cfg->pwm_cfg->pwm_dev); if (rc < 0) { dev_err(&led->spmi_dev->dev, "pwm enable failed\n"); return rc; } } else { pwm_disable(led->rgb_cfg->pwm_cfg->pwm_dev); rc = qpnp_led_masked_write(led, RGB_LED_EN_CTL(led->base), led->rgb_cfg->enable, RGB_LED_DISABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to write led enable reg\n"); return rc; } } qpnp_dump_regs(led, rgb_pwm_debug_regs, ARRAY_SIZE(rgb_pwm_debug_regs)); return 0; } static void qpnp_led_set(struct led_classdev *led_cdev, enum led_brightness value) { int rc, i; struct qpnp_led_data *led; struct qpnp_led_data *led_array; led = container_of(led_cdev, struct qpnp_led_data, cdev); if (value < LED_OFF || value > led->cdev.max_brightness) { dev_err(&led->spmi_dev->dev, "Invalid brightness value\n"); return; } if (led->id == QPNP_ID_FLASH1_LED0 || led->id == QPNP_ID_FLASH1_LED1) { if (!led->flash_cfg->flash_on && value > 0) { led_array = dev_get_drvdata(&led->spmi_dev->dev); if (!led_array) { dev_err(&led->spmi_dev->dev, "Unable to unable to get array\n"); return; } for (i = 0; i < led->num_leds; i++) { if (led_array[i].flash_cfg->regulator_get) { rc = regulator_enable(led_array[i].\ flash_cfg->\ flash_boost_reg); if (rc) { dev_err(&led->spmi_dev->dev, "Regulator enable" \ "failed(%d)\n", rc); return; } } } led->flash_cfg->flash_on = true; } } spin_lock(&led->lock); led->cdev.brightness = value; switch (led->id) { case QPNP_ID_WLED: rc = qpnp_wled_set(led); if (rc < 0) dev_err(&led->spmi_dev->dev, "WLED set brightness failed (%d)\n", rc); break; case QPNP_ID_FLASH1_LED0: case QPNP_ID_FLASH1_LED1: rc = qpnp_flash_set(led); if (rc < 0) dev_err(&led->spmi_dev->dev, "FLASH set brightness failed (%d)\n", rc); break; case QPNP_ID_RGB_RED: case QPNP_ID_RGB_GREEN: case QPNP_ID_RGB_BLUE: rc = qpnp_rgb_set(led); if (rc < 0) dev_err(&led->spmi_dev->dev, "RGB set brightness failed (%d)\n", rc); break; case QPNP_ID_LED_MPP: rc = qpnp_mpp_set(led); if (rc < 0) dev_err(&led->spmi_dev->dev, "MPP set brightness failed (%d)\n", rc); break; case QPNP_ID_KPDBL: rc = qpnp_kpdbl_set(led); if (rc < 0) dev_err(&led->spmi_dev->dev, "KPDBL set brightness failed (%d)\n", rc); break; default: dev_err(&led->spmi_dev->dev, "Invalid LED(%d)\n", led->id); break; } spin_unlock(&led->lock); if (led->id == QPNP_ID_FLASH1_LED0 || led->id == QPNP_ID_FLASH1_LED1) { if (led->flash_cfg->flash_on && !value) { led_array = dev_get_drvdata(&led->spmi_dev->dev); if (!led_array) { dev_err(&led->spmi_dev->dev, "Unable to get LED array\n"); return; } for (i = 0; i < led->num_leds; i++) { if (led_array[i].flash_cfg->regulator_get) { rc = regulator_disable(led_array[i]\ .flash_cfg->flash_boost_reg); if (rc) { dev_err(&led->spmi_dev->dev, "Unable to disable" \ " regulator(%d)\n", rc); return; } } } led->flash_cfg->flash_on = false; } } } static int __devinit qpnp_led_set_max_brightness(struct qpnp_led_data *led) { switch (led->id) { case QPNP_ID_WLED: led->cdev.max_brightness = WLED_MAX_LEVEL; break; case QPNP_ID_FLASH1_LED0: case QPNP_ID_FLASH1_LED1: led->cdev.max_brightness = led->max_current; break; case QPNP_ID_RGB_RED: case QPNP_ID_RGB_GREEN: case QPNP_ID_RGB_BLUE: led->cdev.max_brightness = RGB_MAX_LEVEL; break; case QPNP_ID_LED_MPP: led->cdev.max_brightness = MPP_MAX_LEVEL; break; case QPNP_ID_KPDBL: led->cdev.max_brightness = KPDBL_MAX_LEVEL; break; default: dev_err(&led->spmi_dev->dev, "Invalid LED(%d)\n", led->id); return -EINVAL; } return 0; } static enum led_brightness qpnp_led_get(struct led_classdev *led_cdev) { struct qpnp_led_data *led; led = container_of(led_cdev, struct qpnp_led_data, cdev); return led->cdev.brightness; } static void qpnp_led_turn_off_delayed(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct qpnp_led_data *led = container_of(dwork, struct qpnp_led_data, dwork); led->cdev.brightness = LED_OFF; qpnp_led_set(&led->cdev, led->cdev.brightness); } static void qpnp_led_turn_off(struct qpnp_led_data *led) { INIT_DELAYED_WORK(&led->dwork, qpnp_led_turn_off_delayed); schedule_delayed_work(&led->dwork, msecs_to_jiffies(led->turn_off_delay_ms)); } static int __devinit qpnp_wled_init(struct qpnp_led_data *led) { int rc, i; u8 num_wled_strings; num_wled_strings = led->wled_cfg->num_strings; /* verify ranges */ if (led->wled_cfg->ovp_val > WLED_OVP_37V) { dev_err(&led->spmi_dev->dev, "Invalid ovp value\n"); return -EINVAL; } if (led->wled_cfg->boost_curr_lim > WLED_CURR_LIMIT_1680mA) { dev_err(&led->spmi_dev->dev, "Invalid boost current limit\n"); return -EINVAL; } if (led->wled_cfg->cp_select > WLED_CP_SELECT_MAX) { dev_err(&led->spmi_dev->dev, "Invalid pole capacitance\n"); return -EINVAL; } if ((led->max_current > WLED_MAX_CURR)) { dev_err(&led->spmi_dev->dev, "Invalid max current\n"); return -EINVAL; } if ((led->wled_cfg->ctrl_delay_us % WLED_CTL_DLY_STEP) || (led->wled_cfg->ctrl_delay_us > WLED_CTL_DLY_MAX)) { dev_err(&led->spmi_dev->dev, "Invalid control delay\n"); return -EINVAL; } /* program over voltage protection threshold */ rc = qpnp_led_masked_write(led, WLED_OVP_CFG_REG(led->base), WLED_OVP_VAL_MASK, (led->wled_cfg->ovp_val << WLED_OVP_VAL_BIT_SHFT)); if (rc) { dev_err(&led->spmi_dev->dev, "WLED OVP reg write failed(%d)\n", rc); return rc; } /* program current boost limit */ rc = qpnp_led_masked_write(led, WLED_BOOST_LIMIT_REG(led->base), WLED_BOOST_LIMIT_MASK, led->wled_cfg->boost_curr_lim); if (rc) { dev_err(&led->spmi_dev->dev, "WLED boost limit reg write failed(%d)\n", rc); return rc; } /* program output feedback */ rc = qpnp_led_masked_write(led, WLED_FDBCK_CTRL_REG(led->base), WLED_OP_FDBCK_MASK, (led->wled_cfg->op_fdbck << WLED_OP_FDBCK_BIT_SHFT)); if (rc) { dev_err(&led->spmi_dev->dev, "WLED fdbck ctrl reg write failed(%d)\n", rc); return rc; } /* program switch frequency */ rc = qpnp_led_masked_write(led, WLED_SWITCHING_FREQ_REG(led->base), WLED_SWITCH_FREQ_MASK, led->wled_cfg->switch_freq); if (rc) { dev_err(&led->spmi_dev->dev, "WLED switch freq reg write failed(%d)\n", rc); return rc; } /* program current sink */ if (led->wled_cfg->cs_out_en) { rc = qpnp_led_masked_write(led, WLED_CURR_SINK_REG(led->base), WLED_CURR_SINK_MASK, (((1 << led->wled_cfg->num_strings) - 1) << WLED_CURR_SINK_SHFT)); if (rc) { dev_err(&led->spmi_dev->dev, "WLED curr sink reg write failed(%d)\n", rc); return rc; } } /* program high pole capacitance */ rc = qpnp_led_masked_write(led, WLED_HIGH_POLE_CAP_REG(led->base), WLED_CP_SELECT_MASK, led->wled_cfg->cp_select); if (rc) { dev_err(&led->spmi_dev->dev, "WLED pole cap reg write failed(%d)\n", rc); return rc; } /* program modulator, current mod src and cabc */ for (i = 0; i < num_wled_strings; i++) { rc = qpnp_led_masked_write(led, WLED_MOD_EN_REG(led->base, i), WLED_NO_MASK, WLED_EN_MASK); if (rc) { dev_err(&led->spmi_dev->dev, "WLED mod enable reg write failed(%d)\n", rc); return rc; } if (led->wled_cfg->dig_mod_gen_en) { rc = qpnp_led_masked_write(led, WLED_MOD_SRC_SEL_REG(led->base, i), WLED_NO_MASK, WLED_USE_EXT_GEN_MOD_SRC); if (rc) { dev_err(&led->spmi_dev->dev, "WLED dig mod en reg write failed(%d)\n", rc); } } rc = qpnp_led_masked_write(led, WLED_FULL_SCALE_REG(led->base, i), WLED_MAX_CURR_MASK, led->max_current); if (rc) { dev_err(&led->spmi_dev->dev, "WLED max current reg write failed(%d)\n", rc); return rc; } } /* dump wled registers */ qpnp_dump_regs(led, wled_debug_regs, ARRAY_SIZE(wled_debug_regs)); return 0; } static ssize_t led_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct qpnp_led_data *led; unsigned long state; struct led_classdev *led_cdev = dev_get_drvdata(dev); ssize_t ret = -EINVAL; ret = kstrtoul(buf, 10, &state); if (ret) return ret; led = container_of(led_cdev, struct qpnp_led_data, cdev); /* '1' to enable torch mode; '0' to switch to flash mode */ if (state == 1) led->flash_cfg->torch_enable = true; else led->flash_cfg->torch_enable = false; return count; } static ssize_t led_strobe_type_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct qpnp_led_data *led; unsigned long state; struct led_classdev *led_cdev = dev_get_drvdata(dev); ssize_t ret = -EINVAL; ret = kstrtoul(buf, 10, &state); if (ret) return ret; led = container_of(led_cdev, struct qpnp_led_data, cdev); /* '0' for sw strobe; '1' for hw strobe */ if (state == 1) led->flash_cfg->strobe_type = 1; else led->flash_cfg->strobe_type = 0; return count; } static int qpnp_pwm_init(struct pwm_config_data *pwm_cfg, struct spmi_device *spmi_dev, const char *name) { int rc, start_idx, idx_len; if (pwm_cfg->pwm_channel != -1) { pwm_cfg->pwm_dev = pwm_request(pwm_cfg->pwm_channel, name); if (IS_ERR_OR_NULL(pwm_cfg->pwm_dev)) { dev_err(&spmi_dev->dev, "could not acquire PWM Channel %d, " \ "error %ld\n", pwm_cfg->pwm_channel, PTR_ERR(pwm_cfg->pwm_dev)); pwm_cfg->pwm_dev = NULL; return -ENODEV; } if (pwm_cfg->mode == LPG_MODE) { start_idx = pwm_cfg->duty_cycles->start_idx; idx_len = pwm_cfg->duty_cycles->num_duty_pcts; if (idx_len >= PWM_LUT_MAX_SIZE && start_idx) { dev_err(&spmi_dev->dev, "Wrong LUT size or index\n"); return -EINVAL; } if ((start_idx + idx_len) > PWM_LUT_MAX_SIZE) { dev_err(&spmi_dev->dev, "Exceed LUT limit\n"); return -EINVAL; } rc = pwm_lut_config(pwm_cfg->pwm_dev, PM_PWM_PERIOD_MIN, /* ignored by hardware */ pwm_cfg->duty_cycles->duty_pcts, pwm_cfg->lut_params); if (rc < 0) { dev_err(&spmi_dev->dev, "Failed to " \ "configure pwm LUT\n"); return rc; } } } else { dev_err(&spmi_dev->dev, "Invalid PWM channel\n"); return -EINVAL; } return 0; } static void led_blink(struct qpnp_led_data *led, struct pwm_config_data *pwm_cfg) { u8 previous_mode; previous_mode = pwm_cfg->mode; if (pwm_cfg->use_blink) { if (led->cdev.brightness) { if (led->id == QPNP_ID_LED_MPP) led->mpp_cfg->pwm_mode = LPG_MODE; pwm_cfg->mode = LPG_MODE; pwm_free(pwm_cfg->pwm_dev); qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name); qpnp_led_set(&led->cdev, led->cdev.brightness); if (led->id == QPNP_ID_LED_MPP) led->mpp_cfg->pwm_mode = previous_mode; pwm_cfg->mode = previous_mode; } else { pwm_free(pwm_cfg->pwm_dev); qpnp_pwm_init(pwm_cfg, led->spmi_dev, led->cdev.name); qpnp_led_set(&led->cdev, led->cdev.brightness); } } } static ssize_t blink_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct qpnp_led_data *led; unsigned long blinking; struct led_classdev *led_cdev = dev_get_drvdata(dev); ssize_t ret = -EINVAL; ret = kstrtoul(buf, 10, &blinking); if (ret) return ret; led = container_of(led_cdev, struct qpnp_led_data, cdev); led->cdev.brightness = blinking ? led->cdev.max_brightness : 0; switch (led->id) { case QPNP_ID_LED_MPP: led_blink(led, led->mpp_cfg->pwm_cfg); break; case QPNP_ID_RGB_RED: case QPNP_ID_RGB_GREEN: case QPNP_ID_RGB_BLUE: led_blink(led, led->rgb_cfg->pwm_cfg); break; default: dev_err(&led->spmi_dev->dev, "Invalid LED id type for blink\n"); return -EINVAL; } return count; } static DEVICE_ATTR(led_mode, 0664, NULL, led_mode_store); static DEVICE_ATTR(strobe, 0664, NULL, led_strobe_type_store); static DEVICE_ATTR(blink, 0664, NULL, blink_store); static struct attribute *led_attrs[] = { &dev_attr_led_mode.attr, &dev_attr_strobe.attr, NULL }; static const struct attribute_group led_attr_group = { .attrs = led_attrs, }; static struct attribute *blink_attrs[] = { &dev_attr_blink.attr, NULL }; static const struct attribute_group blink_attr_group = { .attrs = blink_attrs, }; static int __devinit qpnp_flash_init(struct qpnp_led_data *led) { int rc; led->flash_cfg->flash_on = false; rc = qpnp_led_masked_write(led, FLASH_LED_STROBE_CTRL(led->base), FLASH_STROBE_MASK, FLASH_DISABLE_ALL); if (rc) { dev_err(&led->spmi_dev->dev, "LED %d flash write failed(%d)\n", led->id, rc); return rc; } /* Set headroom */ rc = qpnp_led_masked_write(led, FLASH_HEADROOM(led->base), FLASH_HEADROOM_MASK, led->flash_cfg->headroom); if (rc) { dev_err(&led->spmi_dev->dev, "Headroom reg write failed(%d)\n", rc); return rc; } /* Set startup delay */ rc = qpnp_led_masked_write(led, FLASH_STARTUP_DELAY(led->base), FLASH_STARTUP_DLY_MASK, led->flash_cfg->startup_dly); if (rc) { dev_err(&led->spmi_dev->dev, "Startup delay reg write failed(%d)\n", rc); return rc; } /* Set timer control - safety or watchdog */ if (led->flash_cfg->safety_timer) { rc = qpnp_led_masked_write(led, FLASH_LED_TMR_CTRL(led->base), FLASH_TMR_MASK, FLASH_TMR_SAFETY); if (rc) { dev_err(&led->spmi_dev->dev, "LED timer ctrl reg write failed(%d)\n", rc); return rc; } } /* Set Vreg force */ rc = qpnp_led_masked_write(led, FLASH_VREG_OK_FORCE(led->base), FLASH_VREG_MASK, FLASH_HW_VREG_OK); if (rc) { dev_err(&led->spmi_dev->dev, "Vreg OK reg write failed(%d)\n", rc); return rc; } /* Set self fault check */ rc = qpnp_led_masked_write(led, FLASH_FAULT_DETECT(led->base), FLASH_FAULT_DETECT_MASK, FLASH_SELFCHECK_ENABLE); if (rc) { dev_err(&led->spmi_dev->dev, "Fault detect reg write failed(%d)\n", rc); return rc; } /* Set mask enable */ rc = qpnp_led_masked_write(led, FLASH_MASK_ENABLE(led->base), FLASH_MASK_REG_MASK, FLASH_MASK_1); if (rc) { dev_err(&led->spmi_dev->dev, "Mask enable reg write failed(%d)\n", rc); return rc; } /* Disable flash LED module */ rc = qpnp_led_masked_write(led, FLASH_ENABLE_CONTROL(led->base), FLASH_ENABLE_MODULE_MASK, FLASH_DISABLE_ALL); if (rc) { dev_err(&led->spmi_dev->dev, "Enable reg write failed(%d)\n", rc); return rc; } led->flash_cfg->strobe_type = 0; /* dump flash registers */ qpnp_dump_regs(led, flash_debug_regs, ARRAY_SIZE(flash_debug_regs)); return 0; } static int __devinit qpnp_kpdbl_init(struct qpnp_led_data *led) { int rc; u8 val; /* enable row source selct */ rc = qpnp_led_masked_write(led, KPDBL_ROW_SRC_SEL(led->base), KPDBL_ROW_SRC_SEL_VAL_MASK, led->kpdbl_cfg->row_src_sel_val); if (rc) { dev_err(&led->spmi_dev->dev, "Enable row src sel write failed(%d)\n", rc); return rc; } /* row source */ rc = spmi_ext_register_readl(led->spmi_dev->ctrl, led->spmi_dev->sid, KPDBL_ROW_SRC(led->base), &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "Unable to read from addr=%x, rc(%d)\n", KPDBL_ROW_SRC(led->base), rc); return rc; } val &= ~KPDBL_ROW_SCAN_VAL_MASK; val |= led->kpdbl_cfg->row_scan_val; led->kpdbl_cfg->row_scan_en <<= KPDBL_ROW_SCAN_EN_SHIFT; val &= ~KPDBL_ROW_SCAN_EN_MASK; val |= led->kpdbl_cfg->row_scan_en; rc = spmi_ext_register_writel(led->spmi_dev->ctrl, led->spmi_dev->sid, KPDBL_ROW_SRC(led->base), &val, 1); if (rc) { dev_err(&led->spmi_dev->dev, "Unable to write to addr=%x, rc(%d)\n", KPDBL_ROW_SRC(led->base), rc); return rc; } /* enable module */ rc = qpnp_led_masked_write(led, KPDBL_ENABLE(led->base), KPDBL_MODULE_EN_MASK, KPDBL_MODULE_EN); if (rc) { dev_err(&led->spmi_dev->dev, "Enable module write failed(%d)\n", rc); return rc; } rc = qpnp_pwm_init(led->kpdbl_cfg->pwm_cfg, led->spmi_dev, led->cdev.name); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to initialize pwm\n"); return rc; } /* dump kpdbl registers */ qpnp_dump_regs(led, kpdbl_debug_regs, ARRAY_SIZE(kpdbl_debug_regs)); return 0; } static int __devinit qpnp_rgb_init(struct qpnp_led_data *led) { int rc; rc = qpnp_led_masked_write(led, RGB_LED_SRC_SEL(led->base), RGB_LED_SRC_MASK, RGB_LED_SOURCE_VPH_PWR); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to write led source select register\n"); return rc; } rc = qpnp_pwm_init(led->rgb_cfg->pwm_cfg, led->spmi_dev, led->cdev.name); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to initialize pwm\n"); return rc; } /* Initialize led for use in auto trickle charging mode */ rc = qpnp_led_masked_write(led, RGB_LED_ATC_CTL(led->base), led->rgb_cfg->enable, led->rgb_cfg->enable); return 0; } static int __devinit qpnp_mpp_init(struct qpnp_led_data *led) { int rc, val; val = (led->mpp_cfg->current_setting / LED_MPP_CURRENT_PER_SETTING) - 1; if (val < 0) val = 0; rc = qpnp_led_masked_write(led, LED_MPP_SINK_CTRL(led->base), LED_MPP_SINK_MASK, val); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to write led enable reg\n"); return rc; } if (led->mpp_cfg->pwm_mode != MANUAL_MODE) { rc = qpnp_pwm_init(led->mpp_cfg->pwm_cfg, led->spmi_dev, led->cdev.name); if (rc) { dev_err(&led->spmi_dev->dev, "Failed to initialize pwm\n"); return rc; } } return 0; } static int __devinit qpnp_led_initialize(struct qpnp_led_data *led) { int rc = 0; switch (led->id) { case QPNP_ID_WLED: rc = qpnp_wled_init(led); if (rc) dev_err(&led->spmi_dev->dev, "WLED initialize failed(%d)\n", rc); break; case QPNP_ID_FLASH1_LED0: case QPNP_ID_FLASH1_LED1: rc = qpnp_flash_init(led); if (rc) dev_err(&led->spmi_dev->dev, "FLASH initialize failed(%d)\n", rc); break; case QPNP_ID_RGB_RED: case QPNP_ID_RGB_GREEN: case QPNP_ID_RGB_BLUE: rc = qpnp_rgb_init(led); if (rc) dev_err(&led->spmi_dev->dev, "RGB initialize failed(%d)\n", rc); break; case QPNP_ID_LED_MPP: rc = qpnp_mpp_init(led); if (rc) dev_err(&led->spmi_dev->dev, "MPP initialize failed(%d)\n", rc); break; case QPNP_ID_KPDBL: rc = qpnp_kpdbl_init(led); if (rc) dev_err(&led->spmi_dev->dev, "KPDBL initialize failed(%d)\n", rc); break; default: dev_err(&led->spmi_dev->dev, "Invalid LED(%d)\n", led->id); return -EINVAL; } return rc; } static int __devinit qpnp_get_common_configs(struct qpnp_led_data *led, struct device_node *node) { int rc; u32 val; const char *temp_string; led->cdev.default_trigger = LED_TRIGGER_DEFAULT; rc = of_property_read_string(node, "linux,default-trigger", &temp_string); if (!rc) led->cdev.default_trigger = temp_string; else if (rc != -EINVAL) return rc; led->default_on = false; rc = of_property_read_string(node, "qcom,default-state", &temp_string); if (!rc) { if (strncmp(temp_string, "on", sizeof("on")) == 0) led->default_on = true; } else if (rc != -EINVAL) return rc; led->turn_off_delay_ms = 0; rc = of_property_read_u32(node, "qcom,turn-off-delay-ms", &val); if (!rc) led->turn_off_delay_ms = val; else if (rc != -EINVAL) return rc; return 0; } /* * Handlers for alternative sources of platform_data */ static int __devinit qpnp_get_config_wled(struct qpnp_led_data *led, struct device_node *node) { u32 val; int rc; led->wled_cfg = devm_kzalloc(&led->spmi_dev->dev, sizeof(struct wled_config_data), GFP_KERNEL); if (!led->wled_cfg) { dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n"); return -ENOMEM; } led->wled_cfg->num_strings = WLED_DEFAULT_STRINGS; rc = of_property_read_u32(node, "qcom,num-strings", &val); if (!rc) led->wled_cfg->num_strings = (u8) val; else if (rc != -EINVAL) return rc; led->wled_cfg->ovp_val = WLED_DEFAULT_OVP_VAL; rc = of_property_read_u32(node, "qcom,ovp-val", &val); if (!rc) led->wled_cfg->ovp_val = (u8) val; else if (rc != -EINVAL) return rc; led->wled_cfg->boost_curr_lim = WLED_BOOST_LIM_DEFAULT; rc = of_property_read_u32(node, "qcom,boost-curr-lim", &val); if (!rc) led->wled_cfg->boost_curr_lim = (u8) val; else if (rc != -EINVAL) return rc; led->wled_cfg->cp_select = WLED_CP_SEL_DEFAULT; rc = of_property_read_u32(node, "qcom,cp-sel", &val); if (!rc) led->wled_cfg->cp_select = (u8) val; else if (rc != -EINVAL) return rc; led->wled_cfg->ctrl_delay_us = WLED_CTRL_DLY_DEFAULT; rc = of_property_read_u32(node, "qcom,ctrl-delay-us", &val); if (!rc) led->wled_cfg->ctrl_delay_us = (u8) val; else if (rc != -EINVAL) return rc; led->wled_cfg->op_fdbck = WLED_OP_FDBCK_DEFAULT; rc = of_property_read_u32(node, "qcom,op-fdbck", &val); if (!rc) led->wled_cfg->op_fdbck = (u8) val; else if (rc != -EINVAL) return rc; led->wled_cfg->switch_freq = WLED_SWITCH_FREQ_DEFAULT; rc = of_property_read_u32(node, "qcom,switch-freq", &val); if (!rc) led->wled_cfg->switch_freq = (u8) val; else if (rc != -EINVAL) return rc; led->wled_cfg->dig_mod_gen_en = of_property_read_bool(node, "qcom,dig-mod-gen-en"); led->wled_cfg->cs_out_en = of_property_read_bool(node, "qcom,cs-out-en"); return 0; } static int __devinit qpnp_get_config_flash(struct qpnp_led_data *led, struct device_node *node, bool *reg_set) { int rc; u32 val; led->flash_cfg = devm_kzalloc(&led->spmi_dev->dev, sizeof(struct flash_config_data), GFP_KERNEL); if (!led->flash_cfg) { dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n"); return -ENOMEM; } if (led->id == QPNP_ID_FLASH1_LED0) { led->flash_cfg->enable_module = FLASH_ENABLE_ALL; led->flash_cfg->current_addr = FLASH_LED_0_CURR(led->base); led->flash_cfg->second_addr = FLASH_LED_1_CURR(led->base); led->flash_cfg->trigger_flash = FLASH_LED_0_OUTPUT; if (!*reg_set) { led->flash_cfg->flash_boost_reg = regulator_get(&led->spmi_dev->dev, "flash_boost"); if (IS_ERR(led->flash_cfg->flash_boost_reg)) { rc = PTR_ERR(led->flash_cfg->flash_boost_reg); dev_err(&led->spmi_dev->dev, "Regulator get failed(%d)\n", rc); return rc; } led->flash_cfg->regulator_get = true; *reg_set = true; } else led->flash_cfg->regulator_get = false; } else if (led->id == QPNP_ID_FLASH1_LED1) { led->flash_cfg->enable_module = FLASH_ENABLE_ALL; led->flash_cfg->current_addr = FLASH_LED_1_CURR(led->base); led->flash_cfg->second_addr = FLASH_LED_0_CURR(led->base); led->flash_cfg->trigger_flash = FLASH_LED_1_OUTPUT; if (!*reg_set) { led->flash_cfg->flash_boost_reg = regulator_get(&led->spmi_dev->dev, "flash_boost"); if (IS_ERR(led->flash_cfg->flash_boost_reg)) { rc = PTR_ERR(led->flash_cfg->flash_boost_reg); dev_err(&led->spmi_dev->dev, "Regulator get failed(%d)\n", rc); return rc; } led->flash_cfg->regulator_get = true; *reg_set = true; } else led->flash_cfg->regulator_get = false; } else { dev_err(&led->spmi_dev->dev, "Unknown flash LED name given\n"); return -EINVAL; } rc = of_property_read_u32(node, "qcom,current", &val); if (!rc) led->flash_cfg->current_prgm = (val * FLASH_MAX_LEVEL / led->max_current); else return -EINVAL; rc = of_property_read_u32(node, "qcom,headroom", &val); if (!rc) led->flash_cfg->headroom = (u8) val; else if (rc == -EINVAL) led->flash_cfg->headroom = HEADROOM_500mV; else return rc; rc = of_property_read_u32(node, "qcom,duration", &val); if (!rc) led->flash_cfg->duration = (((u8) val) - 10) / 10; else if (rc == -EINVAL) led->flash_cfg->duration = FLASH_DURATION_200ms; else return rc; rc = of_property_read_u32(node, "qcom,clamp-curr", &val); if (!rc) led->flash_cfg->clamp_curr = (val * FLASH_MAX_LEVEL / led->max_current); else if (rc == -EINVAL) led->flash_cfg->clamp_curr = FLASH_CLAMP_200mA; else return rc; rc = of_property_read_u32(node, "qcom,startup-dly", &val); if (!rc) led->flash_cfg->startup_dly = (u8) val; else if (rc == -EINVAL) led->flash_cfg->startup_dly = DELAY_128us; else return rc; led->flash_cfg->safety_timer = of_property_read_bool(node, "qcom,safety-timer"); led->flash_cfg->torch_enable = of_property_read_bool(node, "qcom,torch-enable"); return 0; } static int __devinit qpnp_get_config_pwm(struct pwm_config_data *pwm_cfg, struct spmi_device *spmi_dev, struct device_node *node) { struct property *prop; int rc, i; u32 val; u8 *temp_cfg; rc = of_property_read_u32(node, "qcom,pwm-channel", &val); if (!rc) pwm_cfg->pwm_channel = val; else return rc; if (pwm_cfg->mode == PWM_MODE) { rc = of_property_read_u32(node, "qcom,pwm-us", &val); if (!rc) pwm_cfg->pwm_period_us = val; else return rc; } pwm_cfg->use_blink = of_property_read_bool(node, "qcom,use-blink"); if (pwm_cfg->mode == LPG_MODE || pwm_cfg->use_blink) { pwm_cfg->duty_cycles = devm_kzalloc(&spmi_dev->dev, sizeof(struct pwm_duty_cycles), GFP_KERNEL); if (!pwm_cfg->duty_cycles) { dev_err(&spmi_dev->dev, "Unable to allocate memory\n"); rc = -ENOMEM; goto bad_lpg_params; } prop = of_find_property(node, "qcom,duty-pcts", &pwm_cfg->duty_cycles->num_duty_pcts); if (!prop) { dev_err(&spmi_dev->dev, "Looking up property " \ "node qcom,duty-pcts failed\n"); rc = -ENODEV; goto bad_lpg_params; } else if (!pwm_cfg->duty_cycles->num_duty_pcts) { dev_err(&spmi_dev->dev, "Invalid length of " \ "duty pcts\n"); rc = -EINVAL; goto bad_lpg_params; } pwm_cfg->duty_cycles->duty_pcts = devm_kzalloc(&spmi_dev->dev, sizeof(int) * pwm_cfg->duty_cycles->num_duty_pcts, GFP_KERNEL); if (!pwm_cfg->duty_cycles->duty_pcts) { dev_err(&spmi_dev->dev, "Unable to allocate memory\n"); rc = -ENOMEM; goto bad_lpg_params; } temp_cfg = devm_kzalloc(&spmi_dev->dev, pwm_cfg->duty_cycles->num_duty_pcts * sizeof(u8), GFP_KERNEL); if (!temp_cfg) { dev_err(&spmi_dev->dev, "Failed to allocate " \ "memory for duty pcts\n"); rc = -ENOMEM; goto bad_lpg_params; } memcpy(temp_cfg, prop->value, pwm_cfg->duty_cycles->num_duty_pcts); for (i = 0; i < pwm_cfg->duty_cycles->num_duty_pcts; i++) pwm_cfg->duty_cycles->duty_pcts[i] = (int) temp_cfg[i]; rc = of_property_read_u32(node, "qcom,start-idx", &val); if (!rc) { pwm_cfg->lut_params.start_idx = val; pwm_cfg->duty_cycles->start_idx = val; } else goto bad_lpg_params; pwm_cfg->lut_params.lut_pause_hi = 0; rc = of_property_read_u32(node, "qcom,pause-hi", &val); if (!rc) pwm_cfg->lut_params.lut_pause_hi = val; else if (rc != -EINVAL) goto bad_lpg_params; pwm_cfg->lut_params.lut_pause_lo = 0; rc = of_property_read_u32(node, "qcom,pause-lo", &val); if (!rc) pwm_cfg->lut_params.lut_pause_lo = val; else if (rc != -EINVAL) goto bad_lpg_params; pwm_cfg->lut_params.ramp_step_ms = QPNP_LUT_RAMP_STEP_DEFAULT; rc = of_property_read_u32(node, "qcom,ramp-step-ms", &val); if (!rc) pwm_cfg->lut_params.ramp_step_ms = val; else if (rc != -EINVAL) goto bad_lpg_params; pwm_cfg->lut_params.flags = QPNP_LED_PWM_FLAGS; rc = of_property_read_u32(node, "qcom,lut-flags", &val); if (!rc) pwm_cfg->lut_params.flags = (u8) val; else if (rc != -EINVAL) goto bad_lpg_params; pwm_cfg->lut_params.idx_len = pwm_cfg->duty_cycles->num_duty_pcts; } return 0; bad_lpg_params: pwm_cfg->use_blink = false; if (pwm_cfg->mode == PWM_MODE) { dev_err(&spmi_dev->dev, "LPG parameters not set for" \ " blink mode, defaulting to PWM mode\n"); return 0; } return rc; }; static int qpnp_led_get_mode(const char *mode) { if (strncmp(mode, "manual", strlen(mode)) == 0) return MANUAL_MODE; else if (strncmp(mode, "pwm", strlen(mode)) == 0) return PWM_MODE; else if (strncmp(mode, "lpg", strlen(mode)) == 0) return LPG_MODE; else return -EINVAL; }; static int __devinit qpnp_get_config_kpdbl(struct qpnp_led_data *led, struct device_node *node) { int rc; u32 val; u8 led_mode; const char *mode; led->kpdbl_cfg = devm_kzalloc(&led->spmi_dev->dev, sizeof(struct kpdbl_config_data), GFP_KERNEL); if (!led->kpdbl_cfg) { dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n"); return -ENOMEM; } rc = of_property_read_string(node, "qcom,mode", &mode); if (!rc) { led_mode = qpnp_led_get_mode(mode); if ((led_mode == MANUAL_MODE) || (led_mode == -EINVAL)) { dev_err(&led->spmi_dev->dev, "Selected mode not " \ "supported for kpdbl.\n"); return -EINVAL; } led->kpdbl_cfg->pwm_cfg = devm_kzalloc(&led->spmi_dev->dev, sizeof(struct pwm_config_data), GFP_KERNEL); if (!led->kpdbl_cfg->pwm_cfg) { dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n"); return -ENOMEM; } led->kpdbl_cfg->pwm_cfg->mode = led_mode; } else return rc; rc = qpnp_get_config_pwm(led->kpdbl_cfg->pwm_cfg, led->spmi_dev, node); if (rc < 0) return rc; rc = of_property_read_u32(node, "qcom,row-src-sel-val", &val); if (!rc) led->kpdbl_cfg->row_src_sel_val = val; else return rc; rc = of_property_read_u32(node, "qcom,row-scan-val", &val); if (!rc) led->kpdbl_cfg->row_scan_val = val; else return rc; rc = of_property_read_u32(node, "qcom,row-scan-en", &val); if (!rc) led->kpdbl_cfg->row_scan_en = val; else return rc; return 0; } static int __devinit qpnp_get_config_rgb(struct qpnp_led_data *led, struct device_node *node) { int rc; u8 led_mode; const char *mode; led->rgb_cfg = devm_kzalloc(&led->spmi_dev->dev, sizeof(struct rgb_config_data), GFP_KERNEL); if (!led->rgb_cfg) { dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n"); return -ENOMEM; } if (led->id == QPNP_ID_RGB_RED) led->rgb_cfg->enable = RGB_LED_ENABLE_RED; else if (led->id == QPNP_ID_RGB_GREEN) led->rgb_cfg->enable = RGB_LED_ENABLE_GREEN; else if (led->id == QPNP_ID_RGB_BLUE) led->rgb_cfg->enable = RGB_LED_ENABLE_BLUE; else return -EINVAL; rc = of_property_read_string(node, "qcom,mode", &mode); if (!rc) { led_mode = qpnp_led_get_mode(mode); if ((led_mode == MANUAL_MODE) || (led_mode == -EINVAL)) { dev_err(&led->spmi_dev->dev, "Selected mode not " \ "supported for rgb.\n"); return -EINVAL; } led->rgb_cfg->pwm_cfg = devm_kzalloc(&led->spmi_dev->dev, sizeof(struct pwm_config_data), GFP_KERNEL); if (!led->rgb_cfg->pwm_cfg) { dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n"); return -ENOMEM; } led->rgb_cfg->pwm_cfg->mode = led_mode; } else return rc; rc = qpnp_get_config_pwm(led->rgb_cfg->pwm_cfg, led->spmi_dev, node); if (rc < 0) return rc; return 0; } static int __devinit qpnp_get_config_mpp(struct qpnp_led_data *led, struct device_node *node) { int rc; u32 val; u8 led_mode; const char *mode; led->mpp_cfg = devm_kzalloc(&led->spmi_dev->dev, sizeof(struct mpp_config_data), GFP_KERNEL); if (!led->mpp_cfg) { dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n"); return -ENOMEM; } led->mpp_cfg->current_setting = LED_MPP_CURRENT_DEFAULT; rc = of_property_read_u32(node, "qcom,current-setting", &val); if (!rc) led->mpp_cfg->current_setting = (u8) val; else if (rc != -EINVAL) return rc; led->mpp_cfg->source_sel = LED_MPP_SOURCE_SEL_DEFAULT; rc = of_property_read_u32(node, "qcom,source-sel", &val); if (!rc) led->mpp_cfg->source_sel = (u8) val; else if (rc != -EINVAL) return rc; led->mpp_cfg->mode_ctrl = LED_MPP_MODE_SINK; rc = of_property_read_u32(node, "qcom,mode-ctrl", &val); if (!rc) led->mpp_cfg->mode_ctrl = (u8) val; else if (rc != -EINVAL) return rc; rc = of_property_read_string(node, "qcom,mode", &mode); if (!rc) { led_mode = qpnp_led_get_mode(mode); led->mpp_cfg->pwm_mode = led_mode; if (led_mode == MANUAL_MODE) return MANUAL_MODE; else if (led_mode == -EINVAL) { dev_err(&led->spmi_dev->dev, "Selected mode not " \ "supported for mpp.\n"); return -EINVAL; } led->mpp_cfg->pwm_cfg = devm_kzalloc(&led->spmi_dev->dev, sizeof(struct pwm_config_data), GFP_KERNEL); if (!led->mpp_cfg->pwm_cfg) { dev_err(&led->spmi_dev->dev, "Unable to allocate memory\n"); return -ENOMEM; } led->mpp_cfg->pwm_cfg->mode = led_mode; } else return rc; rc = qpnp_get_config_pwm(led->mpp_cfg->pwm_cfg, led->spmi_dev, node); if (rc < 0) return rc; return 0; } static int __devinit qpnp_leds_probe(struct spmi_device *spmi) { struct qpnp_led_data *led, *led_array; struct resource *led_resource; struct device_node *node, *temp; int rc, i, num_leds = 0, parsed_leds = 0; const char *led_label; bool regulator_probe = false; node = spmi->dev.of_node; if (node == NULL) return -ENODEV; temp = NULL; while ((temp = of_get_next_child(node, temp))) num_leds++; if (!num_leds) return -ECHILD; led_array = devm_kzalloc(&spmi->dev, (sizeof(struct qpnp_led_data) * num_leds), GFP_KERNEL); if (!led_array) { dev_err(&spmi->dev, "Unable to allocate memory\n"); return -ENOMEM; } for_each_child_of_node(node, temp) { led = &led_array[parsed_leds]; led->num_leds = num_leds; led->spmi_dev = spmi; led_resource = spmi_get_resource(spmi, NULL, IORESOURCE_MEM, 0); if (!led_resource) { dev_err(&spmi->dev, "Unable to get LED base address\n"); rc = -ENXIO; goto fail_id_check; } led->base = led_resource->start; rc = of_property_read_string(temp, "label", &led_label); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Failure reading label, rc = %d\n", rc); goto fail_id_check; } rc = of_property_read_string(temp, "linux,name", &led->cdev.name); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Failure reading led name, rc = %d\n", rc); goto fail_id_check; } rc = of_property_read_u32(temp, "qcom,max-current", &led->max_current); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Failure reading max_current, rc = %d\n", rc); goto fail_id_check; } rc = of_property_read_u32(temp, "qcom,id", &led->id); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Failure reading led id, rc = %d\n", rc); goto fail_id_check; } rc = qpnp_get_common_configs(led, temp); if (rc) { dev_err(&led->spmi_dev->dev, "Failure reading common led configuration," \ " rc = %d\n", rc); goto fail_id_check; } led->cdev.brightness_set = qpnp_led_set; led->cdev.brightness_get = qpnp_led_get; if (strncmp(led_label, "wled", sizeof("wled")) == 0) { rc = qpnp_get_config_wled(led, temp); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Unable to read wled config data\n"); goto fail_id_check; } } else if (strncmp(led_label, "flash", sizeof("flash")) == 0) { if (!of_find_property(node, "flash_boost-supply", NULL)) regulator_probe = true; rc = qpnp_get_config_flash(led, temp, ®ulator_probe); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Unable to read flash config data\n"); goto fail_id_check; } } else if (strncmp(led_label, "rgb", sizeof("rgb")) == 0) { rc = qpnp_get_config_rgb(led, temp); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Unable to read rgb config data\n"); goto fail_id_check; } } else if (strncmp(led_label, "mpp", sizeof("mpp")) == 0) { rc = qpnp_get_config_mpp(led, temp); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Unable to read mpp config data\n"); goto fail_id_check; } } else if (strncmp(led_label, "kpdbl", sizeof("kpdbl")) == 0) { rc = qpnp_get_config_kpdbl(led, temp); if (rc < 0) { dev_err(&led->spmi_dev->dev, "Unable to read kpdbl config data\n"); goto fail_id_check; } } else { dev_err(&led->spmi_dev->dev, "No LED matching label\n"); rc = -EINVAL; goto fail_id_check; } spin_lock_init(&led->lock); rc = qpnp_led_initialize(led); if (rc < 0) goto fail_id_check; rc = qpnp_led_set_max_brightness(led); if (rc < 0) goto fail_id_check; rc = led_classdev_register(&spmi->dev, &led->cdev); if (rc) { dev_err(&spmi->dev, "unable to register led %d,rc=%d\n", led->id, rc); goto fail_id_check; } if (led->id == QPNP_ID_FLASH1_LED0 || led->id == QPNP_ID_FLASH1_LED1) { rc = sysfs_create_group(&led->cdev.dev->kobj, &led_attr_group); if (rc) goto fail_id_check; } if (led->id == QPNP_ID_LED_MPP) { if (!led->mpp_cfg->pwm_cfg) break; if (led->mpp_cfg->pwm_cfg->use_blink) { rc = sysfs_create_group(&led->cdev.dev->kobj, &blink_attr_group); if (rc) goto fail_id_check; } } else if ((led->id == QPNP_ID_RGB_RED) || (led->id == QPNP_ID_RGB_GREEN) || (led->id == QPNP_ID_RGB_BLUE)) { if (led->rgb_cfg->pwm_cfg->use_blink) { rc = sysfs_create_group(&led->cdev.dev->kobj, &blink_attr_group); if (rc) goto fail_id_check; } } /* configure default state */ if (led->default_on) { led->cdev.brightness = led->cdev.max_brightness; qpnp_led_set(&led->cdev, led->cdev.brightness); if (led->turn_off_delay_ms > 0) qpnp_led_turn_off(led); } else led->cdev.brightness = LED_OFF; parsed_leds++; } dev_set_drvdata(&spmi->dev, led_array); return 0; fail_id_check: for (i = 0; i < parsed_leds; i++) led_classdev_unregister(&led_array[i].cdev); return rc; } static int __devexit qpnp_leds_remove(struct spmi_device *spmi) { struct qpnp_led_data *led_array = dev_get_drvdata(&spmi->dev); int i, parsed_leds = led_array->num_leds; for (i = 0; i < parsed_leds; i++) { led_classdev_unregister(&led_array[i].cdev); switch (led_array[i].id) { case QPNP_ID_WLED: break; case QPNP_ID_FLASH1_LED0: case QPNP_ID_FLASH1_LED1: if (led_array[i].flash_cfg->regulator_get) regulator_put(led_array[i].flash_cfg-> \ flash_boost_reg); sysfs_remove_group(&led_array[i].cdev.dev->kobj, &led_attr_group); break; case QPNP_ID_RGB_RED: case QPNP_ID_RGB_GREEN: case QPNP_ID_RGB_BLUE: default: dev_err(&led_array[i].spmi_dev->dev, "Invalid LED(%d)\n", led_array[i].id); return -EINVAL; } } return 0; } static struct of_device_id spmi_match_table[] = { { .compatible = "qcom,leds-qpnp", } }; static struct spmi_driver qpnp_leds_driver = { .driver = { .name = "qcom,leds-qpnp", .of_match_table = spmi_match_table, }, .probe = qpnp_leds_probe, .remove = __devexit_p(qpnp_leds_remove), }; static int __init qpnp_led_init(void) { return spmi_driver_register(&qpnp_leds_driver); } module_init(qpnp_led_init); static void __exit qpnp_led_exit(void) { spmi_driver_unregister(&qpnp_leds_driver); } module_exit(qpnp_led_exit); MODULE_DESCRIPTION("QPNP LEDs driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("leds:leds-qpnp");