/* Copyright (c) 2009-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ /* * QUP driver for Qualcomm MSM platforms * */ /* #define DEBUG */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_LICENSE("GPL v2"); MODULE_VERSION("0.2"); MODULE_ALIAS("platform:i2c_qup"); /* QUP Registers */ enum { QUP_CONFIG = 0x0, QUP_STATE = 0x4, QUP_IO_MODE = 0x8, QUP_SW_RESET = 0xC, QUP_OPERATIONAL = 0x18, QUP_ERROR_FLAGS = 0x1C, QUP_ERROR_FLAGS_EN = 0x20, QUP_MX_READ_CNT = 0x208, QUP_MX_INPUT_CNT = 0x200, QUP_MX_WR_CNT = 0x100, QUP_OUT_DEBUG = 0x108, QUP_OUT_FIFO_CNT = 0x10C, QUP_OUT_FIFO_BASE = 0x110, QUP_IN_READ_CUR = 0x20C, QUP_IN_DEBUG = 0x210, QUP_IN_FIFO_CNT = 0x214, QUP_IN_FIFO_BASE = 0x218, QUP_I2C_CLK_CTL = 0x400, QUP_I2C_STATUS = 0x404, }; /* QUP States and reset values */ enum { QUP_RESET_STATE = 0, QUP_RUN_STATE = 1U, QUP_STATE_MASK = 3U, QUP_PAUSE_STATE = 3U, QUP_STATE_VALID = 1U << 2, QUP_I2C_MAST_GEN = 1U << 4, QUP_OPERATIONAL_RESET = 0xFF0, QUP_I2C_STATUS_RESET = 0xFFFFFC, }; /* QUP OPERATIONAL FLAGS */ enum { QUP_OUT_SVC_FLAG = 1U << 8, QUP_IN_SVC_FLAG = 1U << 9, QUP_MX_INPUT_DONE = 1U << 11, }; /* I2C mini core related values */ enum { I2C_MINI_CORE = 2U << 8, I2C_N_VAL = 0xF, }; /* Packing Unpacking words in FIFOs , and IO modes*/ enum { QUP_WR_BLK_MODE = 1U << 10, QUP_RD_BLK_MODE = 1U << 12, QUP_UNPACK_EN = 1U << 14, QUP_PACK_EN = 1U << 15, }; /* QUP tags */ enum { QUP_OUT_NOP = 0, QUP_OUT_START = 1U << 8, QUP_OUT_DATA = 2U << 8, QUP_OUT_STOP = 3U << 8, QUP_OUT_REC = 4U << 8, QUP_IN_DATA = 5U << 8, QUP_IN_STOP = 6U << 8, QUP_IN_NACK = 7U << 8, }; /* Status, Error flags */ enum { I2C_STATUS_WR_BUFFER_FULL = 1U << 0, I2C_STATUS_BUS_ACTIVE = 1U << 8, I2C_STATUS_BUS_MASTER = 1U << 9, I2C_STATUS_ERROR_MASK = 0x38000FC, QUP_I2C_NACK_FLAG = 1U << 3, QUP_IN_NOT_EMPTY = 1U << 5, QUP_STATUS_ERROR_FLAGS = 0x7C, }; /* Master status clock states */ enum { I2C_CLK_RESET_BUSIDLE_STATE = 0, I2C_CLK_FORCED_LOW_STATE = 5, }; #define QUP_MAX_CLK_STATE_RETRIES 300 #define DEFAULT_CLK_RATE (19200000) #define I2C_STATUS_CLK_STATE 13 #define QUP_OUT_FIFO_NOT_EMPTY 0x10 #define I2C_GPIOS_DT_CNT (2) /* sda and scl */ static char const * const i2c_rsrcs[] = {"i2c_clk", "i2c_sda"}; static struct gpiomux_setting recovery_config = { .func = GPIOMUX_FUNC_GPIO, .drv = GPIOMUX_DRV_8MA, .pull = GPIOMUX_PULL_NONE, }; /** * qup_i2c_clk_path_vote: data to use bus scaling driver for clock path vote * * @client_hdl when zero, client is not registered with the bus scaling driver, * and bus scaling functionality should not be used. When non zero, it * is a bus scaling client id and may be used to vote for clock path. * @reg_err when true, registration error was detected and an error message was * logged. i2c will attempt to re-register but will log error only once. * once registration succeed, the flag is set to false. */ struct qup_i2c_clk_path_vote { u32 client_hdl; struct msm_bus_scale_pdata *pdata; bool reg_err; }; struct qup_i2c_dev { struct device *dev; void __iomem *base; /* virtual */ void __iomem *gsbi; /* virtual */ int in_irq; int out_irq; int err_irq; int num_irqs; struct clk *clk; struct clk *pclk; struct i2c_adapter adapter; struct i2c_msg *msg; int pos; int cnt; int err; int mode; int clk_ctl; int one_bit_t; int out_fifo_sz; int in_fifo_sz; int out_blk_sz; int in_blk_sz; int wr_sz; struct msm_i2c_platform_data *pdata; int suspended; int pwr_state; struct mutex mlock; void *complete; int i2c_gpios[ARRAY_SIZE(i2c_rsrcs)]; struct qup_i2c_clk_path_vote clk_path_vote; }; #ifdef DEBUG static void qup_print_status(struct qup_i2c_dev *dev) { uint32_t val; val = readl_relaxed(dev->base+QUP_CONFIG); dev_dbg(dev->dev, "Qup config is :0x%x\n", val); val = readl_relaxed(dev->base+QUP_STATE); dev_dbg(dev->dev, "Qup state is :0x%x\n", val); val = readl_relaxed(dev->base+QUP_IO_MODE); dev_dbg(dev->dev, "Qup mode is :0x%x\n", val); } #else static inline void qup_print_status(struct qup_i2c_dev *dev) { } #endif static irqreturn_t qup_i2c_interrupt(int irq, void *devid) { struct qup_i2c_dev *dev = devid; uint32_t status = 0; uint32_t status1 = 0; uint32_t op_flgs = 0; int err = 0; if (pm_runtime_suspended(dev->dev)) return IRQ_NONE; status = readl_relaxed(dev->base + QUP_I2C_STATUS); status1 = readl_relaxed(dev->base + QUP_ERROR_FLAGS); op_flgs = readl_relaxed(dev->base + QUP_OPERATIONAL); if (!dev->msg || !dev->complete) { /* Clear Error interrupt if it's a level triggered interrupt*/ if (dev->num_irqs == 1) { writel_relaxed(QUP_RESET_STATE, dev->base+QUP_STATE); /* Ensure that state is written before ISR exits */ mb(); } return IRQ_HANDLED; } if (status & I2C_STATUS_ERROR_MASK) { dev_err(dev->dev, "QUP: I2C status flags :0x%x, irq:%d\n", status, irq); err = status; /* Clear Error interrupt if it's a level triggered interrupt*/ if (dev->num_irqs == 1) { writel_relaxed(QUP_RESET_STATE, dev->base+QUP_STATE); /* Ensure that state is written before ISR exits */ mb(); } goto intr_done; } if (status1 & 0x7F) { dev_err(dev->dev, "QUP: QUP status flags :0x%x\n", status1); err = -status1; /* Clear Error interrupt if it's a level triggered interrupt*/ if (dev->num_irqs == 1) { writel_relaxed((status1 & QUP_STATUS_ERROR_FLAGS), dev->base + QUP_ERROR_FLAGS); /* Ensure that error flags are cleared before ISR * exits */ mb(); } goto intr_done; } if ((dev->num_irqs == 3) && (dev->msg->flags == I2C_M_RD) && (irq == dev->out_irq)) return IRQ_HANDLED; if (op_flgs & QUP_OUT_SVC_FLAG) { writel_relaxed(QUP_OUT_SVC_FLAG, dev->base + QUP_OPERATIONAL); /* Ensure that service flag is acknowledged before ISR exits */ mb(); } if (dev->msg->flags == I2C_M_RD) { if ((op_flgs & QUP_MX_INPUT_DONE) || (op_flgs & QUP_IN_SVC_FLAG)) { writel_relaxed(QUP_IN_SVC_FLAG, dev->base + QUP_OPERATIONAL); /* Ensure that service flag is acknowledged before ISR * exits */ mb(); } else return IRQ_HANDLED; } intr_done: dev_dbg(dev->dev, "QUP intr= %d, i2c status=0x%x, qup status = 0x%x\n", irq, status, status1); qup_print_status(dev); dev->err = err; complete(dev->complete); return IRQ_HANDLED; } static int qup_i2c_poll_state(struct qup_i2c_dev *dev, uint32_t req_state, bool only_valid) { uint32_t retries = 0; dev_dbg(dev->dev, "Polling for state:0x%x, or valid-only:%d\n", req_state, only_valid); while (retries != 2000) { uint32_t status = readl_relaxed(dev->base + QUP_STATE); /* * If only valid bit needs to be checked, requested state is * 'don't care' */ if (status & QUP_STATE_VALID) { if (only_valid) return 0; else if ((req_state & QUP_I2C_MAST_GEN) && (status & QUP_I2C_MAST_GEN)) return 0; else if ((status & QUP_STATE_MASK) == req_state) return 0; } if (retries++ == 1000) udelay(100); } return -ETIMEDOUT; } static int qup_update_state(struct qup_i2c_dev *dev, uint32_t state) { if (qup_i2c_poll_state(dev, 0, true) != 0) return -EIO; writel_relaxed(state, dev->base + QUP_STATE); if (qup_i2c_poll_state(dev, state, false) != 0) return -EIO; return 0; } /* * Before calling qup_config_core_on_en(), please make * sure that QuPE core is in RESET state. */ static void qup_config_core_on_en(struct qup_i2c_dev *dev) { uint32_t status; status = readl_relaxed(dev->base + QUP_CONFIG); status |= BIT(13); writel_relaxed(status, dev->base + QUP_CONFIG); /* making sure that write has really gone through */ mb(); } #define MSM_I2C_CLK_PATH_SUSPEND (0) #define MSM_I2C_CLK_PATH_RESUME (1) #define MSM_I2C_CLK_PATH_MAX_BW(dev) ((dev->pdata->src_clk_rate * 8) / 1000) static int i2c_qup_clk_path_init(struct platform_device *pdev, struct qup_i2c_dev *dev) { struct msm_bus_vectors *paths = NULL; struct msm_bus_paths *usecases = NULL; if (!dev->pdata->master_id) return 0; dev_dbg(&pdev->dev, "initialises bus-scaling clock voting"); paths = devm_kzalloc(&pdev->dev, sizeof(*paths) * 2, GFP_KERNEL); if (!paths) { dev_err(&pdev->dev, "msm_bus_paths.paths memory allocation failed"); return -ENOMEM; } usecases = devm_kzalloc(&pdev->dev, sizeof(*usecases) * 2, GFP_KERNEL); if (!usecases) { dev_err(&pdev->dev, "msm_bus_scale_pdata.usecases memory allocation failed"); goto path_init_err; } dev->clk_path_vote.pdata = devm_kzalloc(&pdev->dev, sizeof(*dev->clk_path_vote.pdata), GFP_KERNEL); if (!dev->clk_path_vote.pdata) { dev_err(&pdev->dev, "msm_bus_scale_pdata memory allocation failed"); goto path_init_err; } paths[MSM_I2C_CLK_PATH_SUSPEND] = (struct msm_bus_vectors) { dev->pdata->master_id, MSM_BUS_SLAVE_EBI_CH0, 0, 0 }; paths[MSM_I2C_CLK_PATH_RESUME] = (struct msm_bus_vectors) { dev->pdata->master_id, MSM_BUS_SLAVE_EBI_CH0, 0, MSM_I2C_CLK_PATH_MAX_BW(dev) }; usecases[MSM_I2C_CLK_PATH_SUSPEND] = (struct msm_bus_paths) { .num_paths = 1, .vectors = &paths[MSM_I2C_CLK_PATH_SUSPEND], }; usecases[MSM_I2C_CLK_PATH_RESUME] = (struct msm_bus_paths) { .num_paths = 1, .vectors = &paths[MSM_I2C_CLK_PATH_RESUME], }; *dev->clk_path_vote.pdata = (struct msm_bus_scale_pdata) { .active_only = dev->pdata->active_only, .name = pdev->name, .num_usecases = 2, .usecase = usecases, }; return 0; path_init_err: devm_kfree(&pdev->dev, paths); devm_kfree(&pdev->dev, usecases); devm_kfree(&pdev->dev, dev->clk_path_vote.pdata); dev->clk_path_vote.pdata = NULL; return -ENOMEM; } static void i2c_qup_clk_path_teardown(struct qup_i2c_dev *dev) { if (dev->clk_path_vote.client_hdl) { msm_bus_scale_unregister_client(dev->clk_path_vote.client_hdl); dev->clk_path_vote.client_hdl = 0; } } static void i2c_qup_clk_path_vote(struct qup_i2c_dev *dev) { if (dev->clk_path_vote.client_hdl) msm_bus_scale_client_update_request( dev->clk_path_vote.client_hdl, MSM_I2C_CLK_PATH_RESUME); } static void i2c_qup_clk_path_unvote(struct qup_i2c_dev *dev) { if (dev->clk_path_vote.client_hdl) msm_bus_scale_client_update_request( dev->clk_path_vote.client_hdl, MSM_I2C_CLK_PATH_SUSPEND); } /** * i2c_qup_clk_path_postponed_register: reg with bus-scaling after it is probed * * Workaround: i2c driver may be probed before the bus scaling driver. Thus, * this function should be called not from probe but from a later context. * This function may be called more then once before register succeed. At * this case only one error message will be logged. At boot time all clocks * are on, so earlier i2c transactions should succeed. */ static void i2c_qup_clk_path_postponed_register(struct qup_i2c_dev *dev) { /* * bail out if path voting is diabled (master_id == 0) or if it is * already registered (client_hdl != 0) */ if (!dev->pdata->master_id || dev->clk_path_vote.client_hdl) return; dev->clk_path_vote.client_hdl = msm_bus_scale_register_client( dev->clk_path_vote.pdata); if (dev->clk_path_vote.client_hdl) { if (dev->clk_path_vote.reg_err) { /* log a success message if an error msg was logged */ dev->clk_path_vote.reg_err = false; dev_info(dev->dev, "msm_bus_scale_register_client(mstr-id:%d " "actv-only:%d):0x%x", dev->pdata->master_id, dev->pdata->active_only, dev->clk_path_vote.client_hdl); } if (dev->pdata->active_only) i2c_qup_clk_path_vote(dev); } else { /* guard to log only one error on multiple failure */ if (!dev->clk_path_vote.reg_err) { dev->clk_path_vote.reg_err = true; dev_info(dev->dev, "msm_bus_scale_register_client(mstr-id:%d " "actv-only:%d):0", dev->pdata->master_id, dev->pdata->active_only); } } } static void qup_i2c_pwr_mgmt(struct qup_i2c_dev *dev, unsigned int state) { dev->pwr_state = state; if (state != 0) { i2c_qup_clk_path_postponed_register(dev); if (!dev->pdata->active_only) i2c_qup_clk_path_vote(dev); clk_prepare_enable(dev->clk); if (!dev->pdata->keep_ahb_clk_on) clk_prepare_enable(dev->pclk); } else { qup_update_state(dev, QUP_RESET_STATE); clk_disable_unprepare(dev->clk); qup_config_core_on_en(dev); if (!dev->pdata->keep_ahb_clk_on) clk_disable_unprepare(dev->pclk); if (!dev->pdata->active_only) i2c_qup_clk_path_unvote(dev); } } static int qup_i2c_poll_writeready(struct qup_i2c_dev *dev, int rem) { uint32_t retries = 0; while (retries != 2000) { uint32_t status = readl_relaxed(dev->base + QUP_I2C_STATUS); if (!(status & I2C_STATUS_WR_BUFFER_FULL)) { if (((dev->msg->flags & I2C_M_RD) || (rem == 0)) && !(status & I2C_STATUS_BUS_ACTIVE)) return 0; else if ((dev->msg->flags == 0) && (rem > 0)) return 0; else /* 1-bit delay before we check for bus busy */ udelay(dev->one_bit_t); } if (retries++ == 1000) { /* * Wait for FIFO number of bytes to be absolutely sure * that I2C write state machine is not idle. Each byte * takes 9 clock cycles. (8 bits + 1 ack) */ usleep_range((dev->one_bit_t * (dev->out_fifo_sz * 9)), (dev->one_bit_t * (dev->out_fifo_sz * 9))); } } qup_print_status(dev); return -ETIMEDOUT; } static int qup_i2c_poll_clock_ready(struct qup_i2c_dev *dev) { uint32_t retries = 0; uint32_t op_flgs = -1, clk_state = -1; /* * Wait for the clock state to transition to either IDLE or FORCED * LOW. This will usually happen within one cycle of the i2c clock. */ while (retries++ < QUP_MAX_CLK_STATE_RETRIES) { uint32_t status = readl_relaxed(dev->base + QUP_I2C_STATUS); clk_state = (status >> I2C_STATUS_CLK_STATE) & 0x7; /* Read the operational register */ op_flgs = readl_relaxed(dev->base + QUP_OPERATIONAL) & QUP_OUT_FIFO_NOT_EMPTY; /* * In very corner case when slave do clock stretching and * output fifo will have 1 block of data space empty at * the same time. So i2c qup will get output service * interrupt and as it doesn't have more data to be written. * This can lead to issue where output fifo is not empty. */ if (op_flgs == 0 && (clk_state == I2C_CLK_RESET_BUSIDLE_STATE || clk_state == I2C_CLK_FORCED_LOW_STATE)){ dev_dbg(dev->dev, "clk_state 0x%x op_flgs [%x]\n", clk_state, op_flgs); return 0; } /* 1-bit delay before we check again */ udelay(dev->one_bit_t); } dev_err(dev->dev, "Error waiting for clk ready clk_state: 0x%x op_flgs: 0x%x\n", clk_state, op_flgs); return -ETIMEDOUT; } static inline int qup_i2c_request_gpios(struct qup_i2c_dev *dev) { int i; int result = 0; for (i = 0; i < ARRAY_SIZE(i2c_rsrcs); ++i) { if (dev->i2c_gpios[i] >= 0) { result = gpio_request(dev->i2c_gpios[i], i2c_rsrcs[i]); if (result) { dev_err(dev->dev, "gpio_request for pin %d failed\ with error %d\n", dev->i2c_gpios[i], result); goto error; } } } return 0; error: for (; --i >= 0;) { if (dev->i2c_gpios[i] >= 0) gpio_free(dev->i2c_gpios[i]); } return result; } static inline void qup_i2c_free_gpios(struct qup_i2c_dev *dev) { int i; for (i = 0; i < ARRAY_SIZE(i2c_rsrcs); ++i) { if (dev->i2c_gpios[i] >= 0) gpio_free(dev->i2c_gpios[i]); } } #ifdef DEBUG static void qup_verify_fifo(struct qup_i2c_dev *dev, uint32_t val, uint32_t addr, int rdwr) { if (rdwr) dev_dbg(dev->dev, "RD:Wrote 0x%x to out_ff:0x%x\n", val, addr); else dev_dbg(dev->dev, "WR:Wrote 0x%x to out_ff:0x%x\n", val, addr); } #else static inline void qup_verify_fifo(struct qup_i2c_dev *dev, uint32_t val, uint32_t addr, int rdwr) { } #endif static void qup_issue_read(struct qup_i2c_dev *dev, struct i2c_msg *msg, int *idx, uint32_t carry_over) { uint16_t addr = (msg->addr << 1) | 1; /* QUP limit 256 bytes per read. By HW design, 0 in the 8-bit field * is treated as 256 byte read. */ uint16_t rd_len = ((dev->cnt == 256) ? 0 : dev->cnt); if (*idx % 4) { writel_relaxed(carry_over | ((QUP_OUT_START | addr) << 16), dev->base + QUP_OUT_FIFO_BASE);/* + (*idx-2)); */ qup_verify_fifo(dev, carry_over | ((QUP_OUT_START | addr) << 16), (uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx - 2), 1); writel_relaxed((QUP_OUT_REC | rd_len), dev->base + QUP_OUT_FIFO_BASE);/* + (*idx+2)); */ qup_verify_fifo(dev, (QUP_OUT_REC | rd_len), (uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx + 2), 1); } else { writel_relaxed(((QUP_OUT_REC | rd_len) << 16) | QUP_OUT_START | addr, dev->base + QUP_OUT_FIFO_BASE);/* + (*idx)); */ qup_verify_fifo(dev, QUP_OUT_REC << 16 | rd_len << 16 | QUP_OUT_START | addr, (uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx), 1); } *idx += 4; } static void qup_issue_write(struct qup_i2c_dev *dev, struct i2c_msg *msg, int rem, int *idx, uint32_t *carry_over) { int entries = dev->cnt; int empty_sl = dev->wr_sz - ((*idx) >> 1); int i = 0; uint32_t val = 0; uint32_t last_entry = 0; uint16_t addr = msg->addr << 1; if (dev->pos == 0) { if (*idx % 4) { writel_relaxed(*carry_over | ((QUP_OUT_START | addr) << 16), dev->base + QUP_OUT_FIFO_BASE); qup_verify_fifo(dev, *carry_over | QUP_OUT_START << 16 | addr << 16, (uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx) - 2, 0); } else val = QUP_OUT_START | addr; *idx += 2; i++; entries++; } else { /* Avoid setp time issue by adding 1 NOP when number of bytes * are more than FIFO/BLOCK size. setup time issue can't appear * otherwise since next byte to be written will always be ready */ val = (QUP_OUT_NOP | 1); *idx += 2; i++; entries++; } if (entries > empty_sl) entries = empty_sl; for (; i < (entries - 1); i++) { if (*idx % 4) { writel_relaxed(val | ((QUP_OUT_DATA | msg->buf[dev->pos]) << 16), dev->base + QUP_OUT_FIFO_BASE); qup_verify_fifo(dev, val | QUP_OUT_DATA << 16 | msg->buf[dev->pos] << 16, (uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx) - 2, 0); } else val = QUP_OUT_DATA | msg->buf[dev->pos]; (*idx) += 2; dev->pos++; } if (dev->pos < (msg->len - 1)) last_entry = QUP_OUT_DATA; else if (rem > 1) /* not last array entry */ last_entry = QUP_OUT_DATA; else last_entry = QUP_OUT_STOP; if ((*idx % 4) == 0) { /* * If read-start and read-command end up in different fifos, it * may result in extra-byte being read due to extra-read cycle. * Avoid that by inserting NOP as the last entry of fifo only * if write command(s) leave 1 space in fifo. */ if (rem > 1) { struct i2c_msg *next = msg + 1; if (next->addr == msg->addr && (next->flags & I2C_M_RD) && *idx == ((dev->wr_sz*2) - 4)) { writel_relaxed(((last_entry | msg->buf[dev->pos]) | ((1 | QUP_OUT_NOP) << 16)), dev->base + QUP_OUT_FIFO_BASE);/* + (*idx) - 2); */ qup_verify_fifo(dev, ((last_entry | msg->buf[dev->pos]) | ((1 | QUP_OUT_NOP) << 16)), (uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx), 0); *idx += 2; } else if (next->flags == 0 && dev->pos == msg->len - 1 && *idx < (dev->wr_sz*2) && (next->addr != msg->addr)) { /* Last byte of an intermittent write */ writel_relaxed((QUP_OUT_STOP | msg->buf[dev->pos]), dev->base + QUP_OUT_FIFO_BASE); qup_verify_fifo(dev, QUP_OUT_STOP | msg->buf[dev->pos], (uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx), 0); *idx += 2; } else *carry_over = (last_entry | msg->buf[dev->pos]); } else { writel_relaxed((last_entry | msg->buf[dev->pos]), dev->base + QUP_OUT_FIFO_BASE);/* + (*idx) - 2); */ qup_verify_fifo(dev, last_entry | msg->buf[dev->pos], (uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx), 0); } } else { writel_relaxed(val | ((last_entry | msg->buf[dev->pos]) << 16), dev->base + QUP_OUT_FIFO_BASE);/* + (*idx) - 2); */ qup_verify_fifo(dev, val | (last_entry << 16) | (msg->buf[dev->pos] << 16), (uint32_t)dev->base + QUP_OUT_FIFO_BASE + (*idx) - 2, 0); } *idx += 2; dev->pos++; dev->cnt = msg->len - dev->pos; } static void qup_set_read_mode(struct qup_i2c_dev *dev, int rd_len) { uint32_t wr_mode = (dev->wr_sz < dev->out_fifo_sz) ? QUP_WR_BLK_MODE : 0; if (rd_len > 256) { dev_dbg(dev->dev, "HW limit: Breaking reads in chunk of 256\n"); rd_len = 256; } if (rd_len <= dev->in_fifo_sz) { writel_relaxed(wr_mode | QUP_PACK_EN | QUP_UNPACK_EN, dev->base + QUP_IO_MODE); writel_relaxed(rd_len, dev->base + QUP_MX_READ_CNT); } else { writel_relaxed(wr_mode | QUP_RD_BLK_MODE | QUP_PACK_EN | QUP_UNPACK_EN, dev->base + QUP_IO_MODE); writel_relaxed(rd_len, dev->base + QUP_MX_INPUT_CNT); } } static int qup_set_wr_mode(struct qup_i2c_dev *dev, int rem) { int total_len = 0; int ret = 0; int len = dev->msg->len; struct i2c_msg *next = NULL; if (rem > 1) next = dev->msg + 1; while (rem > 1 && next->flags == 0 && (next->addr == dev->msg->addr)) { len += next->len + 1; next = next + 1; rem--; } if (len >= (dev->out_fifo_sz - 1)) { total_len = len + 1 + (len/(dev->out_blk_sz-1)); writel_relaxed(QUP_WR_BLK_MODE | QUP_PACK_EN | QUP_UNPACK_EN, dev->base + QUP_IO_MODE); dev->wr_sz = dev->out_blk_sz; } else writel_relaxed(QUP_PACK_EN | QUP_UNPACK_EN, dev->base + QUP_IO_MODE); if (rem > 1) { if (next->addr == dev->msg->addr && next->flags == I2C_M_RD) { qup_set_read_mode(dev, next->len); /* make sure read start & read command are in 1 blk */ if ((total_len % dev->out_blk_sz) == (dev->out_blk_sz - 1)) total_len += 3; else total_len += 2; } } /* WRITE COUNT register valid/used only in block mode */ if (dev->wr_sz == dev->out_blk_sz) writel_relaxed(total_len, dev->base + QUP_MX_WR_CNT); return ret; } static void qup_i2c_recover_bus_busy(struct qup_i2c_dev *dev) { int i; int gpio_clk; int gpio_dat; bool gpio_clk_status = false; uint32_t status = readl_relaxed(dev->base + QUP_I2C_STATUS); struct gpiomux_setting old_gpio_setting[ARRAY_SIZE(i2c_rsrcs)]; if (dev->pdata->msm_i2c_config_gpio) return; if (!(status & (I2C_STATUS_BUS_ACTIVE)) || (status & (I2C_STATUS_BUS_MASTER))) return; gpio_clk = dev->i2c_gpios[0]; gpio_dat = dev->i2c_gpios[1]; if ((gpio_clk == -1) && (gpio_dat == -1)) { dev_err(dev->dev, "Recovery failed due to undefined GPIO's\n"); return; } disable_irq(dev->err_irq); for (i = 0; i < ARRAY_SIZE(i2c_rsrcs); ++i) { if (msm_gpiomux_write(dev->i2c_gpios[i], GPIOMUX_ACTIVE, &recovery_config, &old_gpio_setting[i])) { dev_err(dev->dev, "GPIO pins have no active setting\n"); goto recovery_end; } } dev_warn(dev->dev, "i2c_scl: %d, i2c_sda: %d\n", gpio_get_value(gpio_clk), gpio_get_value(gpio_dat)); for (i = 0; i < 9; i++) { if (gpio_get_value(gpio_dat) && gpio_clk_status) break; gpio_direction_output(gpio_clk, 0); udelay(5); gpio_direction_output(gpio_dat, 0); udelay(5); gpio_direction_input(gpio_clk); udelay(5); if (!gpio_get_value(gpio_clk)) udelay(20); if (!gpio_get_value(gpio_clk)) usleep_range(10000, 10000); gpio_clk_status = gpio_get_value(gpio_clk); gpio_direction_input(gpio_dat); udelay(5); } /* Configure ALT funciton to QUP I2C*/ for (i = 0; i < ARRAY_SIZE(i2c_rsrcs); ++i) { msm_gpiomux_write(dev->i2c_gpios[i], GPIOMUX_ACTIVE, &old_gpio_setting[i], NULL); } udelay(10); status = readl_relaxed(dev->base + QUP_I2C_STATUS); if (!(status & I2C_STATUS_BUS_ACTIVE)) { dev_info(dev->dev, "Bus busy cleared after %d clock cycles, " "status %x\n", i, status); goto recovery_end; } dev_warn(dev->dev, "Bus still busy, status %x\n", status); recovery_end: enable_irq(dev->err_irq); } static int qup_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num) { DECLARE_COMPLETION_ONSTACK(complete); struct qup_i2c_dev *dev = i2c_get_adapdata(adap); int ret; int rem = num; long timeout; int err; pm_runtime_get_sync(dev->dev); mutex_lock(&dev->mlock); if (dev->suspended) { mutex_unlock(&dev->mlock); return -EIO; } /* Initialize QUP registers during first transfer */ if (dev->clk_ctl == 0) { int fs_div; int hs_div; uint32_t fifo_reg; if (dev->gsbi) { writel_relaxed(0x2 << 4, dev->gsbi); /* GSBI memory is not in the same 1K region as other * QUP registers. mb() here ensures that the GSBI * register is updated in correct order and that the * write has gone through before programming QUP core * registers */ mb(); } fs_div = ((dev->pdata->src_clk_rate / dev->pdata->clk_freq) / 2) - 3; hs_div = 3; dev->clk_ctl = ((hs_div & 0x7) << 8) | (fs_div & 0xff); fifo_reg = readl_relaxed(dev->base + QUP_IO_MODE); if (fifo_reg & 0x3) dev->out_blk_sz = (fifo_reg & 0x3) * 16; else dev->out_blk_sz = 16; if (fifo_reg & 0x60) dev->in_blk_sz = ((fifo_reg & 0x60) >> 5) * 16; else dev->in_blk_sz = 16; /* * The block/fifo size w.r.t. 'actual data' is 1/2 due to 'tag' * associated with each byte written/received */ dev->out_blk_sz /= 2; dev->in_blk_sz /= 2; dev->out_fifo_sz = dev->out_blk_sz * (2 << ((fifo_reg & 0x1C) >> 2)); dev->in_fifo_sz = dev->in_blk_sz * (2 << ((fifo_reg & 0x380) >> 7)); dev_dbg(dev->dev, "QUP IN:bl:%d, ff:%d, OUT:bl:%d, ff:%d\n", dev->in_blk_sz, dev->in_fifo_sz, dev->out_blk_sz, dev->out_fifo_sz); } writel_relaxed(1, dev->base + QUP_SW_RESET); ret = qup_i2c_poll_state(dev, QUP_RESET_STATE, false); if (ret) { dev_err(dev->dev, "QUP Busy:Trying to recover\n"); goto out_err; } if (dev->num_irqs == 3) { enable_irq(dev->in_irq); enable_irq(dev->out_irq); } enable_irq(dev->err_irq); /* Initialize QUP registers */ writel_relaxed(0, dev->base + QUP_CONFIG); writel_relaxed(QUP_OPERATIONAL_RESET, dev->base + QUP_OPERATIONAL); writel_relaxed(QUP_STATUS_ERROR_FLAGS, dev->base + QUP_ERROR_FLAGS_EN); writel_relaxed(I2C_MINI_CORE | I2C_N_VAL, dev->base + QUP_CONFIG); /* Initialize I2C mini core registers */ writel_relaxed(0, dev->base + QUP_I2C_CLK_CTL); writel_relaxed(QUP_I2C_STATUS_RESET, dev->base + QUP_I2C_STATUS); while (rem) { bool filled = false; dev->cnt = msgs->len - dev->pos; dev->msg = msgs; dev->wr_sz = dev->out_fifo_sz; dev->err = 0; dev->complete = &complete; if (qup_i2c_poll_state(dev, QUP_I2C_MAST_GEN, false) != 0) { ret = -EIO; goto out_err; } qup_print_status(dev); /* HW limits Read upto 256 bytes in 1 read without stop */ if (dev->msg->flags & I2C_M_RD) { qup_set_read_mode(dev, dev->cnt); if (dev->cnt > 256) dev->cnt = 256; } else { ret = qup_set_wr_mode(dev, rem); if (ret != 0) goto out_err; /* Don't fill block till we get interrupt */ if (dev->wr_sz == dev->out_blk_sz) filled = true; } err = qup_update_state(dev, QUP_RUN_STATE); if (err < 0) { ret = err; goto out_err; } qup_print_status(dev); writel_relaxed(dev->clk_ctl, dev->base + QUP_I2C_CLK_CTL); /* CLK_CTL register is not in the same 1K region as other QUP * registers. Ensure that clock control is written before * programming other QUP registers */ mb(); do { int idx = 0; uint32_t carry_over = 0; /* Transition to PAUSE state only possible from RUN */ err = qup_update_state(dev, QUP_PAUSE_STATE); if (err < 0) { ret = err; goto out_err; } qup_print_status(dev); /* This operation is Write, check the next operation * and decide mode */ while (filled == false) { if ((msgs->flags & I2C_M_RD)) qup_issue_read(dev, msgs, &idx, carry_over); else if (!(msgs->flags & I2C_M_RD)) qup_issue_write(dev, msgs, rem, &idx, &carry_over); if (idx >= (dev->wr_sz << 1)) filled = true; /* Start new message */ if (filled == false) { if (msgs->flags & I2C_M_RD) filled = true; else if (rem > 1) { /* Only combine operations with * same address */ struct i2c_msg *next = msgs + 1; if (next->addr != msgs->addr) filled = true; else { rem--; msgs++; dev->msg = msgs; dev->pos = 0; dev->cnt = msgs->len; if (msgs->len > 256) dev->cnt = 256; } } else filled = true; } } err = qup_update_state(dev, QUP_RUN_STATE); if (err < 0) { ret = err; goto out_err; } dev_dbg(dev->dev, "idx:%d, rem:%d, num:%d, mode:%d\n", idx, rem, num, dev->mode); qup_print_status(dev); timeout = wait_for_completion_timeout(&complete, msecs_to_jiffies(dev->out_fifo_sz)); if (!timeout) { uint32_t istatus = readl_relaxed(dev->base + QUP_I2C_STATUS); uint32_t qstatus = readl_relaxed(dev->base + QUP_ERROR_FLAGS); uint32_t op_flgs = readl_relaxed(dev->base + QUP_OPERATIONAL); /* * Dont wait for 1 sec if i2c sees the bus * active and controller is not master. * A slave has pulled line low. Try to recover */ if (!(istatus & I2C_STATUS_BUS_ACTIVE) || (istatus & I2C_STATUS_BUS_MASTER)) { timeout = wait_for_completion_timeout(&complete, HZ); if (timeout) goto timeout_err; } qup_i2c_recover_bus_busy(dev); dev_err(dev->dev, "Transaction timed out, SL-AD = 0x%x\n", dev->msg->addr); dev_err(dev->dev, "I2C Status: %x\n", istatus); dev_err(dev->dev, "QUP Status: %x\n", qstatus); dev_err(dev->dev, "OP Flags: %x\n", op_flgs); writel_relaxed(1, dev->base + QUP_SW_RESET); /* Make sure that the write has gone through * before returning from the function */ mb(); ret = -ETIMEDOUT; goto out_err; } timeout_err: if (dev->err) { if (dev->err > 0 && dev->err & QUP_I2C_NACK_FLAG) { dev_err(dev->dev, "I2C slave addr:0x%x not connected\n", dev->msg->addr); dev->err = ENOTCONN; } else if (dev->err < 0) { dev_err(dev->dev, "QUP data xfer error %d\n", dev->err); ret = dev->err; goto out_err; } else if (dev->err > 0) { /* * ISR returns +ve error if error code * is I2C related, e.g. unexpected start * So you may call recover-bus-busy when * this error happens */ qup_i2c_recover_bus_busy(dev); } ret = -dev->err; goto out_err; } if (dev->msg->flags & I2C_M_RD) { int i; uint32_t dval = 0; for (i = 0; dev->pos < dev->msg->len; i++, dev->pos++) { uint32_t rd_status = readl_relaxed(dev->base + QUP_OPERATIONAL); if (i % 2 == 0) { if ((rd_status & QUP_IN_NOT_EMPTY) == 0) break; dval = readl_relaxed(dev->base + QUP_IN_FIFO_BASE); dev->msg->buf[dev->pos] = dval & 0xFF; } else dev->msg->buf[dev->pos] = ((dval & 0xFF0000) >> 16); } dev->cnt -= i; } else filled = false; /* refill output FIFO */ dev_dbg(dev->dev, "pos:%d, len:%d, cnt:%d\n", dev->pos, msgs->len, dev->cnt); } while (dev->cnt > 0); if (dev->cnt == 0) { if (msgs->len == dev->pos) { rem--; msgs++; dev->pos = 0; } if (rem) { err = qup_i2c_poll_clock_ready(dev); if (err < 0) { ret = err; goto out_err; } err = qup_update_state(dev, QUP_RESET_STATE); if (err < 0) { ret = err; goto out_err; } } } /* Wait for I2C bus to be idle */ ret = qup_i2c_poll_writeready(dev, rem); if (ret) { dev_err(dev->dev, "Error waiting for write ready\n"); goto out_err; } } ret = num; out_err: disable_irq(dev->err_irq); if (dev->num_irqs == 3) { disable_irq(dev->in_irq); disable_irq(dev->out_irq); } dev->complete = NULL; dev->msg = NULL; dev->pos = 0; dev->err = 0; dev->cnt = 0; mutex_unlock(&dev->mlock); pm_runtime_mark_last_busy(dev->dev); pm_runtime_put_autosuspend(dev->dev); return ret; } enum msm_i2c_dt_entry_status { DT_REQUIRED, DT_SUGGESTED, DT_OPTIONAL, }; enum msm_i2c_dt_entry_type { DT_U32, DT_GPIO, DT_BOOL, }; struct msm_i2c_dt_to_pdata_map { const char *dt_name; void *ptr_data; enum msm_i2c_dt_entry_status status; enum msm_i2c_dt_entry_type type; int default_val; }; int __devinit msm_i2c_rsrcs_dt_to_pdata_map(struct platform_device *pdev, struct msm_i2c_platform_data *pdata, int *gpios) { int ret, err = 0; struct device_node *node = pdev->dev.of_node; struct msm_i2c_dt_to_pdata_map *itr; struct msm_i2c_dt_to_pdata_map map[] = { {"qcom,i2c-bus-freq", &pdata->clk_freq , DT_REQUIRED , DT_U32 , 0}, {"cell-index" , &pdev->id , DT_REQUIRED , DT_U32 , -1}, {"qcom,i2c-src-freq", &pdata->src_clk_rate, DT_SUGGESTED, DT_U32, 0}, {"qcom,master-id" , &pdata->master_id , DT_SUGGESTED, DT_U32, 0}, {"qcom,scl-gpio" , gpios , DT_OPTIONAL , DT_GPIO, -1}, {"qcom,sda-gpio" , gpios + 1 , DT_OPTIONAL , DT_GPIO, -1}, {"qcom,active-only" , &pdata->active_only , DT_OPTIONAL , DT_BOOL, 0}, {NULL , NULL , 0 , 0 , 0}, }; for (itr = map; itr->dt_name ; ++itr) { switch (itr->type) { case DT_GPIO: ret = of_get_named_gpio(node, itr->dt_name, 0); if (ret >= 0) { *((int *) itr->ptr_data) = ret; ret = 0; } break; case DT_U32: ret = of_property_read_u32(node, itr->dt_name, (u32 *) itr->ptr_data); break; case DT_BOOL: *((bool *) itr->ptr_data) = of_property_read_bool(node, itr->dt_name); ret = 0; break; default: dev_err(&pdev->dev, "%d is an unknown DT entry type\n", itr->type); ret = -EBADE; } dev_dbg(&pdev->dev, "DT entry ret:%d name:%s val:%d\n", ret, itr->dt_name, *((int *)itr->ptr_data)); if (ret) { *((int *)itr->ptr_data) = itr->default_val; if (itr->status < DT_OPTIONAL) { dev_err(&pdev->dev, "Missing '%s' DT entry\n", itr->dt_name); /* cont on err to dump all missing entries */ if (itr->status == DT_REQUIRED && !err) err = ret; } } } return err; } static u32 qup_i2c_func(struct i2c_adapter *adap) { return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK); } static const struct i2c_algorithm qup_i2c_algo = { .master_xfer = qup_i2c_xfer, .functionality = qup_i2c_func, }; static int __devinit qup_i2c_probe(struct platform_device *pdev) { struct qup_i2c_dev *dev; struct resource *qup_mem, *gsbi_mem, *qup_io, *gsbi_io, *res; struct resource *in_irq, *out_irq, *err_irq; struct clk *clk, *pclk; int ret = 0; int i; int dt_gpios[I2C_GPIOS_DT_CNT]; bool use_device_tree = pdev->dev.of_node; struct msm_i2c_platform_data *pdata; gsbi_mem = NULL; dev_dbg(&pdev->dev, "qup_i2c_probe\n"); if (use_device_tree) { pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; ret = msm_i2c_rsrcs_dt_to_pdata_map(pdev, pdata, dt_gpios); if (ret) goto get_res_failed; } else pdata = pdev->dev.platform_data; if (!pdata) { dev_err(&pdev->dev, "platform data not initialized\n"); return -ENOSYS; } qup_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qup_phys_addr"); if (!qup_mem) { dev_err(&pdev->dev, "no qup mem resource?\n"); ret = -ENODEV; goto get_res_failed; } /* * We only have 1 interrupt for new hardware targets and in_irq, * out_irq will be NULL for those platforms */ in_irq = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "qup_in_intr"); out_irq = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "qup_out_intr"); err_irq = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "qup_err_intr"); if (!err_irq) { dev_err(&pdev->dev, "no error irq resource?\n"); ret = -ENODEV; goto get_res_failed; } qup_io = request_mem_region(qup_mem->start, resource_size(qup_mem), pdev->name); if (!qup_io) { dev_err(&pdev->dev, "QUP region already claimed\n"); ret = -EBUSY; goto get_res_failed; } if (!pdata->use_gsbi_shared_mode) { gsbi_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsbi_qup_i2c_addr"); if (!gsbi_mem) { dev_dbg(&pdev->dev, "Assume BLSP\n"); /* * BLSP core does not need protocol programming so this * resource is not expected */ goto blsp_core_init; } gsbi_io = request_mem_region(gsbi_mem->start, resource_size(gsbi_mem), pdev->name); if (!gsbi_io) { dev_err(&pdev->dev, "GSBI region already claimed\n"); ret = -EBUSY; goto err_res_failed; } } blsp_core_init: clk = clk_get(&pdev->dev, "core_clk"); if (IS_ERR(clk)) { dev_err(&pdev->dev, "Could not get core_clk\n"); ret = PTR_ERR(clk); goto err_clk_get_failed; } pclk = clk_get(&pdev->dev, "iface_clk"); if (IS_ERR(pclk)) { dev_err(&pdev->dev, "Could not get iface_clk\n"); ret = PTR_ERR(pclk); clk_put(clk); goto err_clk_get_failed; } /* We support frequencies upto FAST Mode(400KHz) */ if (pdata->clk_freq <= 0 || pdata->clk_freq > 400000) { dev_err(&pdev->dev, "clock frequency not supported\n"); ret = -EIO; goto err_config_failed; } dev = kzalloc(sizeof(struct qup_i2c_dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err_alloc_dev_failed; } dev->dev = &pdev->dev; if (in_irq) dev->in_irq = in_irq->start; if (out_irq) dev->out_irq = out_irq->start; dev->err_irq = err_irq->start; if (in_irq && out_irq) dev->num_irqs = 3; else dev->num_irqs = 1; dev->clk = clk; dev->pclk = pclk; dev->base = ioremap(qup_mem->start, resource_size(qup_mem)); if (!dev->base) { ret = -ENOMEM; goto err_ioremap_failed; } /* Configure GSBI block to use I2C functionality */ if (gsbi_mem) { dev->gsbi = ioremap(gsbi_mem->start, resource_size(gsbi_mem)); if (!dev->gsbi) { ret = -ENOMEM; goto err_gsbi_failed; } } for (i = 0; i < ARRAY_SIZE(i2c_rsrcs); ++i) { if (use_device_tree && i < I2C_GPIOS_DT_CNT) { dev->i2c_gpios[i] = dt_gpios[i]; } else { res = platform_get_resource_byname(pdev, IORESOURCE_IO, i2c_rsrcs[i]); dev->i2c_gpios[i] = res ? res->start : -1; } } platform_set_drvdata(pdev, dev); dev->one_bit_t = (USEC_PER_SEC/pdata->clk_freq) + 1; dev->pdata = pdata; dev->clk_ctl = 0; dev->pos = 0; ret = i2c_qup_clk_path_init(pdev, dev); if (ret) { dev_err(&pdev->dev, "Failed to init clock path-voting data structs. err:%d", ret); /* disable i2c_qup_clk_path_xxx() functionality */ dev->pdata->master_id = 0; } if (dev->pdata->src_clk_rate <= 0) { dev_info(&pdev->dev, "No src_clk_rate specified in platfrom data\n"); dev_info(&pdev->dev, "Using default clock rate %dHz\n", DEFAULT_CLK_RATE); dev->pdata->src_clk_rate = DEFAULT_CLK_RATE; } ret = clk_set_rate(dev->clk, dev->pdata->src_clk_rate); if (ret) dev_info(&pdev->dev, "clk_set_rate(core_clk, %dHz):%d\n", dev->pdata->src_clk_rate, ret); clk_prepare_enable(dev->clk); clk_prepare_enable(dev->pclk); /* * If bootloaders leave a pending interrupt on certain GSBI's, * then we reset the core before registering for interrupts. */ writel_relaxed(1, dev->base + QUP_SW_RESET); if (qup_i2c_poll_state(dev, 0, true) != 0) goto err_reset_failed; clk_disable_unprepare(dev->clk); clk_disable_unprepare(dev->pclk); /* * We use num_irqs to also indicate if we got 3 interrupts or just 1. * If we have just 1, we use err_irq as the general purpose irq * and handle the changes in ISR accordingly * Per Hardware guidelines, if we have 3 interrupts, they are always * edge triggering, and if we have 1, it's always level-triggering */ if (dev->num_irqs == 3) { ret = request_irq(dev->in_irq, qup_i2c_interrupt, IRQF_TRIGGER_RISING, "qup_in_intr", dev); if (ret) { dev_err(&pdev->dev, "request_in_irq failed\n"); goto err_request_irq_failed; } /* * We assume out_irq exists if in_irq does since platform * configuration either has 3 interrupts assigned to QUP or 1 */ ret = request_irq(dev->out_irq, qup_i2c_interrupt, IRQF_TRIGGER_RISING, "qup_out_intr", dev); if (ret) { dev_err(&pdev->dev, "request_out_irq failed\n"); free_irq(dev->in_irq, dev); goto err_request_irq_failed; } ret = request_irq(dev->err_irq, qup_i2c_interrupt, IRQF_TRIGGER_RISING, "qup_err_intr", dev); if (ret) { dev_err(&pdev->dev, "request_err_irq failed\n"); free_irq(dev->out_irq, dev); free_irq(dev->in_irq, dev); goto err_request_irq_failed; } } else { ret = request_irq(dev->err_irq, qup_i2c_interrupt, IRQF_TRIGGER_HIGH, "qup_err_intr", dev); if (ret) { dev_err(&pdev->dev, "request_err_irq failed\n"); goto err_request_irq_failed; } } disable_irq(dev->err_irq); if (dev->num_irqs == 3) { disable_irq(dev->in_irq); disable_irq(dev->out_irq); } i2c_set_adapdata(&dev->adapter, dev); dev->adapter.algo = &qup_i2c_algo; strlcpy(dev->adapter.name, "QUP I2C adapter", sizeof(dev->adapter.name)); dev->adapter.nr = pdev->id; dev->adapter.dev.parent = &pdev->dev; if (pdata->msm_i2c_config_gpio) pdata->msm_i2c_config_gpio(dev->adapter.nr, 1); mutex_init(&dev->mlock); dev->pwr_state = 0; /* If the same AHB clock is used on Modem side * switch it on here itself and don't switch it * on and off during suspend and resume. */ if (dev->pdata->keep_ahb_clk_on) clk_prepare_enable(dev->pclk); ret = i2c_add_numbered_adapter(&dev->adapter); if (ret) { dev_err(&pdev->dev, "i2c_add_adapter failed\n"); if (dev->num_irqs == 3) { free_irq(dev->out_irq, dev); free_irq(dev->in_irq, dev); } free_irq(dev->err_irq, dev); } else { if (dev->dev->of_node) { dev->adapter.dev.of_node = pdev->dev.of_node; of_i2c_register_devices(&dev->adapter); } pm_runtime_set_autosuspend_delay(&pdev->dev, MSEC_PER_SEC); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_enable(&pdev->dev); return 0; } err_request_irq_failed: if (dev->gsbi) iounmap(dev->gsbi); err_reset_failed: clk_disable_unprepare(dev->clk); clk_disable_unprepare(dev->pclk); i2c_qup_clk_path_teardown(dev); err_gsbi_failed: iounmap(dev->base); err_ioremap_failed: kfree(dev); err_alloc_dev_failed: err_config_failed: clk_put(clk); clk_put(pclk); err_clk_get_failed: if (gsbi_mem) release_mem_region(gsbi_mem->start, resource_size(gsbi_mem)); err_res_failed: release_mem_region(qup_mem->start, resource_size(qup_mem)); get_res_failed: if (pdev->dev.of_node) kfree(pdata); return ret; } static int __devexit qup_i2c_remove(struct platform_device *pdev) { struct qup_i2c_dev *dev = platform_get_drvdata(pdev); struct resource *qup_mem, *gsbi_mem; /* Grab mutex to ensure ongoing transaction is over */ mutex_lock(&dev->mlock); dev->suspended = 1; mutex_unlock(&dev->mlock); mutex_destroy(&dev->mlock); if (dev->pwr_state != 0) { qup_i2c_pwr_mgmt(dev, 0); qup_i2c_free_gpios(dev); } platform_set_drvdata(pdev, NULL); if (dev->num_irqs == 3) { free_irq(dev->out_irq, dev); free_irq(dev->in_irq, dev); } free_irq(dev->err_irq, dev); i2c_del_adapter(&dev->adapter); if (!dev->pdata->keep_ahb_clk_on) { clk_put(dev->pclk); } clk_put(dev->clk); if (dev->pdata->active_only) i2c_qup_clk_path_unvote(dev); i2c_qup_clk_path_teardown(dev); if (dev->gsbi) iounmap(dev->gsbi); iounmap(dev->base); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); if (!(dev->pdata->use_gsbi_shared_mode)) { gsbi_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsbi_qup_i2c_addr"); release_mem_region(gsbi_mem->start, resource_size(gsbi_mem)); } qup_mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qup_phys_addr"); release_mem_region(qup_mem->start, resource_size(qup_mem)); if (dev->dev->of_node) kfree(dev->pdata); kfree(dev); return 0; } #ifdef CONFIG_PM static int i2c_qup_pm_suspend_runtime(struct device *device) { struct platform_device *pdev = to_platform_device(device); struct qup_i2c_dev *dev = platform_get_drvdata(pdev); dev_dbg(device, "pm_runtime: suspending...\n"); /* Grab mutex to ensure ongoing transaction is over */ mutex_lock(&dev->mlock); dev->suspended = 1; mutex_unlock(&dev->mlock); if (dev->pwr_state != 0) { qup_i2c_pwr_mgmt(dev, 0); qup_i2c_free_gpios(dev); } return 0; } static int i2c_qup_pm_resume_runtime(struct device *device) { struct platform_device *pdev = to_platform_device(device); struct qup_i2c_dev *dev = platform_get_drvdata(pdev); int ret = 0; dev_dbg(device, "pm_runtime: resuming...\n"); if (dev->pwr_state == 0) { ret = qup_i2c_request_gpios(dev); if (ret != 0) return ret; qup_i2c_pwr_mgmt(dev, 1); } dev->suspended = 0; return 0; } static int qup_i2c_suspend(struct device *device) { if (!pm_runtime_enabled(device) || !pm_runtime_suspended(device)) { dev_dbg(device, "system suspend"); i2c_qup_pm_suspend_runtime(device); } return 0; } static int qup_i2c_resume(struct device *device) { int ret = 0; if (!pm_runtime_enabled(device) || !pm_runtime_suspended(device)) { dev_dbg(device, "system resume"); ret = i2c_qup_pm_resume_runtime(device); if (!ret) { pm_runtime_mark_last_busy(device); pm_request_autosuspend(device); } return ret; } return 0; } #endif /* CONFIG_PM */ static const struct dev_pm_ops i2c_qup_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS( qup_i2c_suspend, qup_i2c_resume ) SET_RUNTIME_PM_OPS( i2c_qup_pm_suspend_runtime, i2c_qup_pm_resume_runtime, NULL ) }; static struct of_device_id i2c_qup_dt_match[] = { { .compatible = "qcom,i2c-qup", }, {} }; static struct platform_driver qup_i2c_driver = { .probe = qup_i2c_probe, .remove = __devexit_p(qup_i2c_remove), .driver = { .name = "qup_i2c", .owner = THIS_MODULE, .pm = &i2c_qup_dev_pm_ops, .of_match_table = i2c_qup_dt_match, }, }; /* QUP may be needed to bring up other drivers */ static int __init qup_i2c_init_driver(void) { return platform_driver_register(&qup_i2c_driver); } arch_initcall(qup_i2c_init_driver); static void __exit qup_i2c_exit_driver(void) { platform_driver_unregister(&qup_i2c_driver); } module_exit(qup_i2c_exit_driver);