/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define EPM_ADC_DRIVER_NAME "epm_adc" #define EPM_ADC_MAX_FNAME 20 #define EPM_ADC_CONVERSION_DELAY 100 /* milliseconds */ /* Command Bits */ #define EPM_ADC_ADS_SPI_BITS_PER_WORD 8 #define EPM_ADC_ADS_DATA_READ_CMD (0x1 << 5) #define EPM_ADC_ADS_REG_READ_CMD (0x2 << 5) #define EPM_ADC_ADS_REG_WRITE_CMD (0x3 << 5) #define EPM_ADC_ADS_PULSE_CONVERT_CMD (0x4 << 5) #define EPM_ADC_ADS_MULTIPLE_REG_ACCESS (0x1 << 4) /* Register map */ #define EPM_ADC_ADS_CONFIG0_REG_ADDR 0x0 #define EPM_ADC_ADS_CONFIG1_REG_ADDR 0x1 #define EPM_ADC_ADS_MUXSG0_REG_ADDR 0x4 #define EPM_ADC_ADS_MUXSG1_REG_ADDR 0x5 /* Register map default data */ #define EPM_ADC_ADS_REG0_DEFAULT 0x2 #define EPM_ADC_ADS_REG1_DEFAULT 0x52 #define EPM_ADC_ADS_CHANNEL_DATA_CHID 0x1f /* Channel ID */ #define EPM_ADC_ADS_CHANNEL_OFFSET 0x18 #define EPM_ADC_ADS_CHANNEL_VCC 0x1a #define EPM_ADC_ADS_CHANNEL_TEMP 0x1b #define EPM_ADC_ADS_CHANNEL_GAIN 0x1c #define EPM_ADC_ADS_CHANNEL_REF 0x1d /* Scaling data co-efficients */ #define EPM_ADC_SCALE_MILLI 1000 #define EPM_ADC_SCALE_CODE_VOLTS 3072 #define EPM_ADC_SCALE_CODE_GAIN 30720 #define EPM_ADC_TEMP_SENSOR_COEFF 394 #define EPM_ADC_TEMP_TO_DEGC_COEFF 168000 #define EPM_ADC_CHANNEL_AIN_OFFSET 8 #define EPM_ADC_MAX_NEGATIVE_SCALE_CODE 0x8000 #define EPM_ADC_NEG_LSB_CODE 0xffff #define EPM_ADC_VREF_CODE 0x7800 #define EPM_ADC_MILLI_VOLTS_SOURCE 4750 #define EPM_ADC_SCALE_FACTOR 64 #define GPIO_EPM_GLOBAL_ENABLE 86 #define EPM_ADC_CONVERSION_TIME_MIN 50000 #define EPM_ADC_CONVERSION_TIME_MAX 51000 /* PSoc Commands */ #define EPM_PSOC_INIT_CMD 0x1 #define EPM_PSOC_INIT_RESPONSE_CMD 0x2 #define EPM_PSOC_CHANNEL_ENABLE_DISABLE_CMD 0x5 #define EPM_PSOC_CHANNEL_ENABLE_DISABLE_RESPONSE_CMD 0x6 #define EPM_PSOC_SET_AVERAGING_CMD 0x7 #define EPM_PSOC_SET_AVERAGING_RESPONSE_CMD 0x8 #define EPM_PSOC_GET_LAST_MEASUREMENT_CMD 0x9 #define EPM_PSOC_GET_LAST_MEASUREMENT_RESPONSE_CMD 0xa #define EPM_PSOC_GET_BUFFERED_DATA_CMD 0xb #define EPM_PSOC_GET_BUFFERED_RESPONSE_CMD 0xc #define EPM_PSOC_GET_SYSTEM_TIMESTAMP_CMD 0x11 #define EPM_PSOC_GET_SYSTEM_TIMESTAMP_RESPONSE_CMD 0x12 #define EPM_PSOC_SET_SYSTEM_TIMESTAMP_CMD 0x13 #define EPM_PSOC_SET_SYSTEM_TIMESTAMP_RESPONSE_CMD 0x14 #define EPM_PSOC_SET_CHANNEL_TYPE_CMD 0x15 #define EPM_PSOC_SET_CHANNEL_TYPE_RESPONSE_CMD 0x16 #define EPM_PSOC_GET_AVERAGED_DATA_CMD 0x19 #define EPM_PSOC_GET_AVERAGED_DATA_RESPONSE_CMD 0x1a #define EPM_PSOC_SET_CHANNEL_SWITCH_DELAY_CMD 0x1b #define EPM_PSOC_SET_CHANNEL_SWITCH_DELAY_RESPONSE_CMD 0x1c #define EPM_PSOC_CLEAR_BUFFER_CMD 0x1d #define EPM_PSOC_CLEAR_BUFFER_RESPONSE_CMD 0x1e #define EPM_PSOC_SET_VADC_REFERENCE_CMD 0x1f #define EPM_PSOC_SET_VADC_REFERENCE_RESPONSE_CMD 0x20 #define EPM_PSOC_GLOBAL_ENABLE 81 #define EPM_PSOC_VREF_VOLTAGE 2048 #define EPM_PSOC_MAX_ADC_CODE_15_BIT 32767 #define EPM_PSOC_MAX_ADC_CODE_12_BIT 4096 #define EPM_GLOBAL_ENABLE_MIN_DELAY 5000 #define EPM_GLOBAL_ENABLE_MAX_DELAY 5100 #define EPM_AVG_BUF_MASK1 0xfff00000 #define EPM_AVG_BUF_MASK2 0xfff00 #define EPM_AVG_BUF_MASK3 0xff #define EPM_AVG_BUF_MASK4 0xf0000000 #define EPM_AVG_BUF_MASK5 0xfff0000 #define EPM_AVG_BUF_MASK6 0xfff0 #define EPM_AVG_BUF_MASK7 0xf #define EPM_AVG_BUF_MASK8 0xff000000 #define EPM_AVG_BUF_MASK9 0xfff000 #define EPM_AVG_BUF_MASK10 0xfff #define EPM_PSOC_BUFFERED_DATA_LENGTH 48 #define EPM_PSOC_BUFFERED_DATA_LENGTH2 54 struct epm_adc_drv { struct platform_device *pdev; struct device *hwmon; struct spi_device *epm_spi_client; struct mutex conv_lock; uint32_t bus_id; struct miscdevice misc; uint32_t channel_mask; struct epm_chan_properties epm_psoc_ch_prop[0]; }; static struct epm_adc_drv *epm_adc_drv; static struct i2c_board_info *epm_i2c_info; static bool epm_adc_first_request; static int epm_gpio_expander_base_addr; static bool epm_adc_expander_register; #define GPIO_EPM_EXPANDER_IO0 epm_gpio_expander_base_addr #define GPIO_PWR_MON_ENABLE (GPIO_EPM_EXPANDER_IO0 + 1) #define GPIO_ADC1_PWDN_N (GPIO_PWR_MON_ENABLE + 1) #define GPIO_PWR_MON_RESET_N (GPIO_ADC1_PWDN_N + 1) #define GPIO_EPM_SPI_ADC1_CS_N (GPIO_PWR_MON_RESET_N + 1) #define GPIO_PWR_MON_START (GPIO_EPM_SPI_ADC1_CS_N + 1) #define GPIO_ADC1_DRDY_N (GPIO_PWR_MON_START + 1) #define GPIO_ADC2_PWDN_N (GPIO_ADC1_DRDY_N + 1) #define GPIO_EPM_SPI_ADC2_CS_N (GPIO_ADC2_PWDN_N + 1) #define GPIO_ADC2_DRDY_N (GPIO_EPM_SPI_ADC2_CS_N + 1) static int epm_adc_i2c_expander_register(void) { int rc = 0; static struct i2c_adapter *i2c_adap; static struct i2c_client *epm_i2c_client; rc = gpio_request(GPIO_EPM_GLOBAL_ENABLE, "EPM_GLOBAL_EN"); if (!rc) { gpio_direction_output(GPIO_EPM_GLOBAL_ENABLE, 1); } else { pr_err("%s: Configure EPM_GLOBAL_EN Failed\n", __func__); return rc; } usleep_range(EPM_ADC_CONVERSION_TIME_MIN, EPM_ADC_CONVERSION_TIME_MAX); i2c_adap = i2c_get_adapter(epm_adc_drv->bus_id); if (i2c_adap == NULL) { pr_err("%s: i2c_get_adapter() failed\n", __func__); return -EINVAL; } usleep_range(EPM_ADC_CONVERSION_TIME_MIN, EPM_ADC_CONVERSION_TIME_MAX); epm_i2c_client = i2c_new_device(i2c_adap, epm_i2c_info); if (IS_ERR(epm_i2c_client)) { pr_err("Error with i2c epm device register\n"); return -ENODEV; } epm_adc_first_request = false; return 0; } static int epm_adc_gpio_configure_expander_enable(void) { int rc = 0; if (epm_adc_first_request) { rc = gpio_request(GPIO_EPM_GLOBAL_ENABLE, "EPM_GLOBAL_EN"); if (!rc) { gpio_direction_output(GPIO_EPM_GLOBAL_ENABLE, 1); } else { pr_err("%s: Configure EPM_GLOBAL_EN Failed\n", __func__); return rc; } } else { epm_adc_first_request = true; } usleep_range(EPM_ADC_CONVERSION_TIME_MIN, EPM_ADC_CONVERSION_TIME_MAX); rc = gpio_request(GPIO_PWR_MON_ENABLE, "GPIO_PWR_MON_ENABLE"); if (!rc) { rc = gpio_direction_output(GPIO_PWR_MON_ENABLE, 1); if (rc) { pr_err("%s: Set GPIO_PWR_MON_ENABLE failed\n", __func__); return rc; } } else { pr_err("%s: gpio_request GPIO_PWR_MON_ENABLE failed\n", __func__); return rc; } rc = gpio_request(GPIO_ADC1_PWDN_N, "GPIO_ADC1_PWDN_N"); if (!rc) { rc = gpio_direction_output(GPIO_ADC1_PWDN_N, 1); if (rc) { pr_err("%s: Set GPIO_ADC1_PWDN_N failed\n", __func__); return rc; } } else { pr_err("%s: gpio_request GPIO_ADC1_PWDN_N failed\n", __func__); return rc; } rc = gpio_request(GPIO_ADC2_PWDN_N, "GPIO_ADC2_PWDN_N"); if (!rc) { rc = gpio_direction_output(GPIO_ADC2_PWDN_N, 1); if (rc) { pr_err("%s: Set GPIO_ADC2_PWDN_N failed\n", __func__); return rc; } } else { pr_err("%s: gpio_request GPIO_ADC2_PWDN_N failed\n", __func__); return rc; } rc = gpio_request(GPIO_EPM_SPI_ADC1_CS_N, "GPIO_EPM_SPI_ADC1_CS_N"); if (!rc) { rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 1); if (rc) { pr_err("%s:Set GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__); return rc; } } else { pr_err("%s: gpio_request GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__); return rc; } rc = gpio_request(GPIO_EPM_SPI_ADC2_CS_N, "GPIO_EPM_SPI_ADC2_CS_N"); if (!rc) { rc = gpio_direction_output(GPIO_EPM_SPI_ADC2_CS_N, 1); if (rc) { pr_err("Set GPIO_EPM_SPI_ADC2_CS_N failed\n"); return rc; } } else { pr_err("gpio_request GPIO_EPM_SPI_ADC2_CS_N failed\n"); return rc; } rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 0); if (rc) { pr_err("%s:Reset GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__); return rc; } rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 1); if (rc) { pr_err("%s: Set GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__); return rc; } rc = gpio_request(GPIO_PWR_MON_START, "GPIO_PWR_MON_START"); if (!rc) { rc = gpio_direction_output(GPIO_PWR_MON_START, 0); if (rc) { pr_err("%s: Reset GPIO_PWR_MON_START failed\n", __func__); return rc; } } else { pr_err("%s: gpio_request GPIO_PWR_MON_START failed\n", __func__); return rc; } rc = gpio_request(GPIO_PWR_MON_RESET_N, "GPIO_PWR_MON_RESET_N"); if (!rc) { rc = gpio_direction_output(GPIO_PWR_MON_RESET_N, 0); if (rc) { pr_err("%s: Reset GPIO_PWR_MON_RESET_N failed\n", __func__); return rc; } } else { pr_err("%s: gpio_request GPIO_PWR_MON_RESET_N failed\n", __func__); return rc; } rc = gpio_direction_output(GPIO_PWR_MON_RESET_N, 1); if (rc) { pr_err("%s: Set GPIO_PWR_MON_RESET_N failed\n", __func__); return rc; } rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 0); if (rc) { pr_err("%s:Reset GPIO_EPM_SPI_ADC1_CS_N failed\n", __func__); return rc; } return rc; } static int epm_adc_gpio_configure_expander_disable(void) { int rc = 0; gpio_free(GPIO_PWR_MON_ENABLE); gpio_free(GPIO_ADC1_PWDN_N); gpio_free(GPIO_ADC2_PWDN_N); gpio_free(GPIO_EPM_SPI_ADC1_CS_N); gpio_free(GPIO_EPM_SPI_ADC2_CS_N); gpio_free(GPIO_PWR_MON_START); gpio_free(GPIO_PWR_MON_RESET_N); rc = gpio_direction_output(GPIO_EPM_GLOBAL_ENABLE, 0); if (rc) pr_debug("%s: Disable EPM_GLOBAL_EN Failed\n", __func__); gpio_free(GPIO_EPM_GLOBAL_ENABLE); return rc; } static int epm_adc_spi_chip_select(int32_t id) { int rc = 0; if (id == 0) { rc = gpio_direction_output(GPIO_EPM_SPI_ADC2_CS_N, 1); if (rc) { pr_err("%s:Disable SPI_ADC2_CS failed", __func__); return rc; } rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 0); if (rc) { pr_err("%s:Enable SPI_ADC1_CS failed", __func__); return rc; } } else if (id == 1) { rc = gpio_direction_output(GPIO_EPM_SPI_ADC1_CS_N, 1); if (rc) { pr_err("%s:Disable SPI_ADC1_CS failed", __func__); return rc; } rc = gpio_direction_output(GPIO_EPM_SPI_ADC2_CS_N, 0); if (rc) { pr_err("%s:Enable SPI_ADC2_CS failed", __func__); return rc; } } else { rc = -EFAULT; } return rc; } static int epm_adc_ads_spi_write(struct epm_adc_drv *epm_adc, uint8_t addr, uint8_t val) { struct spi_message m; struct spi_transfer t; char tx_buf[2]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = EPM_ADC_ADS_REG_WRITE_CMD | addr; tx_buf[1] = val; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); return rc; } static int epm_adc_init_ads(struct epm_adc_drv *epm_adc) { int rc = 0; rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_CONFIG0_REG_ADDR, EPM_ADC_ADS_REG0_DEFAULT); if (rc) return rc; rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_CONFIG1_REG_ADDR, EPM_ADC_ADS_REG1_DEFAULT); if (rc) return rc; return rc; } static int epm_adc_ads_pulse_convert(struct epm_adc_drv *epm_adc) { struct spi_message m; struct spi_transfer t; char tx_buf[1]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = EPM_ADC_ADS_PULSE_CONVERT_CMD; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); return rc; } static int epm_adc_ads_read_data(struct epm_adc_drv *epm_adc, char *adc_data) { struct spi_message m; struct spi_transfer t; char tx_buf[4], rx_buf[4]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = EPM_ADC_ADS_DATA_READ_CMD | EPM_ADC_ADS_MULTIPLE_REG_ACCESS; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; adc_data[0] = rx_buf[1]; adc_data[1] = rx_buf[2]; adc_data[2] = rx_buf[3]; return rc; } static int epm_adc_hw_init(struct epm_adc_drv *epm_adc) { int rc = 0; mutex_lock(&epm_adc->conv_lock); rc = epm_adc_gpio_configure_expander_enable(); if (rc != 0) { pr_err("epm gpio configure expander failed, rc = %d\n", rc); goto epm_adc_hw_init_err; } rc = epm_adc_init_ads(epm_adc); if (rc) { pr_err("epm_adc_init_ads failed, rc=%d\n", rc); goto epm_adc_hw_init_err; } epm_adc_hw_init_err: mutex_unlock(&epm_adc->conv_lock); return rc; } static int epm_adc_hw_deinit(struct epm_adc_drv *epm_adc) { int rc = 0; mutex_lock(&epm_adc->conv_lock); rc = epm_adc_gpio_configure_expander_disable(); if (rc != 0) { pr_err("gpio expander disable failed with %d\n", rc); goto epm_adc_hw_deinit_err; } epm_adc_hw_deinit_err: mutex_unlock(&epm_adc->conv_lock); return rc; } static int epm_adc_ads_scale_result(struct epm_adc_drv *epm_adc, uint8_t *adc_raw_data, struct epm_chan_request *conv) { uint32_t channel_num; int16_t sign_bit; struct epm_adc_platform_data *pdata = epm_adc->pdev->dev.platform_data; uint32_t chan_idx = (conv->device_idx * pdata->chan_per_adc) + conv->channel_idx; int64_t adc_scaled_data = 0; /* Get the channel number */ channel_num = (adc_raw_data[0] & EPM_ADC_ADS_CHANNEL_DATA_CHID); sign_bit = 1; /* This is the 16-bit raw data */ adc_scaled_data = ((adc_raw_data[1] << 8) | adc_raw_data[2]); /* Obtain the internal system reading */ if (channel_num == EPM_ADC_ADS_CHANNEL_VCC) { adc_scaled_data *= EPM_ADC_SCALE_MILLI; do_div(adc_scaled_data, EPM_ADC_SCALE_CODE_VOLTS); } else if (channel_num == EPM_ADC_ADS_CHANNEL_GAIN) { do_div(adc_scaled_data, EPM_ADC_SCALE_CODE_GAIN); } else if (channel_num == EPM_ADC_ADS_CHANNEL_REF) { adc_scaled_data *= EPM_ADC_SCALE_MILLI; do_div(adc_scaled_data, EPM_ADC_SCALE_CODE_VOLTS); } else if (channel_num == EPM_ADC_ADS_CHANNEL_TEMP) { /* Convert Code to micro-volts */ /* Use this formula to get the temperature reading */ adc_scaled_data -= EPM_ADC_TEMP_TO_DEGC_COEFF; do_div(adc_scaled_data, EPM_ADC_TEMP_SENSOR_COEFF); } else if (channel_num == EPM_ADC_ADS_CHANNEL_OFFSET) { /* The offset should be zero */ pr_debug("%s: ADC Channel Offset\n", __func__); return -EFAULT; } else { channel_num -= EPM_ADC_CHANNEL_AIN_OFFSET; /* * Conversion for the adc channels. * mvVRef is in milli-volts and resistorvalue is in micro-ohms. * Hence, I = V/R gives us current in kilo-amps. */ if (adc_scaled_data & EPM_ADC_MAX_NEGATIVE_SCALE_CODE) { sign_bit = -1; adc_scaled_data = (~adc_scaled_data & EPM_ADC_NEG_LSB_CODE); } if (adc_scaled_data != 0) { adc_scaled_data *= EPM_ADC_SCALE_FACTOR; /* Device is calibrated for 1LSB = VREF/7800h.*/ adc_scaled_data *= EPM_ADC_MILLI_VOLTS_SOURCE; do_div(adc_scaled_data, EPM_ADC_VREF_CODE); /* Data will now be in micro-volts.*/ adc_scaled_data *= EPM_ADC_SCALE_MILLI; /* Divide by amplifier gain value.*/ do_div(adc_scaled_data, pdata->channel[chan_idx].gain); /* Data will now be in nano-volts.*/ do_div(adc_scaled_data, EPM_ADC_SCALE_FACTOR); adc_scaled_data *= EPM_ADC_SCALE_MILLI; /* Data is now in micro-amps.*/ do_div(adc_scaled_data, pdata->channel[chan_idx].resistorvalue); /* Set the sign bit for lekage current. */ adc_scaled_data *= sign_bit; } } conv->physical = (int32_t) adc_scaled_data; return 0; } static int epm_psoc_scale_result(int16_t result, uint32_t index) { struct epm_adc_drv *epm_adc = epm_adc_drv; int32_t result_cur, neg = 0; if ((1 << index) & epm_adc->channel_mask) { if (result & 0x800) { neg = 1; result = result & 0x7ff; } /* result = (2.048V * code)/(4096 * gain * rsense) */ result_cur = ((EPM_PSOC_VREF_VOLTAGE * result)/ EPM_PSOC_MAX_ADC_CODE_12_BIT); result_cur = (result_cur/ (epm_adc->epm_psoc_ch_prop[index].gain * epm_adc->epm_psoc_ch_prop[index].resistorvalue)); if (neg) result_cur -= result_cur; } else { if (result & 0x8000) { neg = 1; result = result & 0x7fff; } /* result = (2.048V * code)/(32767 * gain * rsense) */ result_cur = (((EPM_PSOC_VREF_VOLTAGE * (int) result)/ EPM_PSOC_MAX_ADC_CODE_15_BIT) * 1000); result_cur = (result_cur/ (epm_adc->epm_psoc_ch_prop[index].gain * epm_adc->epm_psoc_ch_prop[index].resistorvalue)); if (neg) result_cur -= result_cur; } return result_cur; } static int epm_adc_blocking_conversion(struct epm_adc_drv *epm_adc, struct epm_chan_request *conv) { struct epm_adc_platform_data *pdata = epm_adc->pdev->dev.platform_data; int32_t channel_num = 0, mux_chan_idx = 0; char adc_data[3]; int rc = 0; mutex_lock(&epm_adc->conv_lock); rc = epm_adc_spi_chip_select(conv->device_idx); if (rc) { pr_err("epm_adc_chip_select failed, rc=%d\n", rc); goto conv_err; } if (conv->channel_idx < pdata->chan_per_mux) { /* Reset MUXSG1_REGISTER */ rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG1_REG_ADDR, 0x0); if (rc) goto conv_err; mux_chan_idx = 1 << conv->channel_idx; /* Select Channel index in MUXSG0_REGISTER */ rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG0_REG_ADDR, mux_chan_idx); if (rc) goto conv_err; } else { /* Reset MUXSG0_REGISTER */ rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG0_REG_ADDR, 0x0); if (rc) goto conv_err; mux_chan_idx = 1 << (conv->channel_idx - pdata->chan_per_mux); /* Select Channel index in MUXSG1_REGISTER */ rc = epm_adc_ads_spi_write(epm_adc, EPM_ADC_ADS_MUXSG1_REG_ADDR, mux_chan_idx); if (rc) goto conv_err; } rc = epm_adc_ads_pulse_convert(epm_adc); if (rc) { pr_err("epm_adc_ads_pulse_convert failed, rc=%d\n", rc); goto conv_err; } rc = epm_adc_ads_read_data(epm_adc, adc_data); if (rc) { pr_err("epm_adc_ads_read_data failed, rc=%d\n", rc); goto conv_err; } channel_num = (adc_data[0] & EPM_ADC_ADS_CHANNEL_DATA_CHID); pr_debug("ADC data Read: adc_data =%d, %d, %d\n", adc_data[0], adc_data[1], adc_data[2]); epm_adc_ads_scale_result(epm_adc, (uint8_t *)adc_data, conv); pr_debug("channel_num(0x) = %x, scaled_data = %d\n", (channel_num - EPM_ADC_ADS_SPI_BITS_PER_WORD), conv->physical); conv_err: mutex_unlock(&epm_adc->conv_lock); return rc; } static int epm_adc_psoc_gpio_init(bool enable) { int rc = 0; if (enable) { rc = gpio_request(EPM_PSOC_GLOBAL_ENABLE, "EPM_PSOC_GLOBAL_EN"); if (!rc) { gpio_direction_output(EPM_PSOC_GLOBAL_ENABLE, 1); } else { pr_err("%s: Configure EPM_GLOBAL_EN Failed\n", __func__); return rc; } } else { gpio_direction_output(EPM_PSOC_GLOBAL_ENABLE, 0); gpio_free(EPM_PSOC_GLOBAL_ENABLE); } return 0; } static int epm_psoc_init(struct epm_adc_drv *epm_adc, struct epm_psoc_init_resp *init_resp) { struct spi_message m; struct spi_transfer t; char tx_buf[17], rx_buf[17]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = init_resp->cmd; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; init_resp->cmd = rx_buf[0]; init_resp->version = rx_buf[1]; init_resp->compatible_ver = rx_buf[2]; init_resp->firm_ver[0] = rx_buf[3]; init_resp->firm_ver[1] = rx_buf[4]; init_resp->firm_ver[2] = rx_buf[5]; init_resp->num_dev = rx_buf[6]; init_resp->num_channel = rx_buf[7]; return rc; } static int epm_psoc_channel_configure(struct epm_adc_drv *epm_adc, struct epm_psoc_channel_configure *psoc_chan_configure) { struct spi_message m; struct spi_transfer t; char tx_buf[9], rx_buf[9]; int32_t rc = 0, chan_num; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); chan_num = psoc_chan_configure->channel_num; tx_buf[0] = psoc_chan_configure->cmd; tx_buf[1] = 0; tx_buf[2] = (chan_num & 0xff000000) >> 24; tx_buf[3] = (chan_num & 0xff0000) >> 16; tx_buf[4] = (chan_num & 0xff00) >> 8; tx_buf[5] = (chan_num & 0xff); t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; psoc_chan_configure->cmd = rx_buf[0]; psoc_chan_configure->device_num = rx_buf[1]; chan_num = rx_buf[2] << 24 | (rx_buf[3] << 16) | (rx_buf[4] << 8) | rx_buf[5]; psoc_chan_configure->channel_num = chan_num; return rc; } static int epm_psoc_set_averaging(struct epm_adc_drv *epm_adc, struct epm_psoc_set_avg *psoc_set_avg) { struct spi_message m; struct spi_transfer t; char tx_buf[4], rx_buf[4]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = psoc_set_avg->cmd; tx_buf[1] = psoc_set_avg->avg_period; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; psoc_set_avg->cmd = rx_buf[0]; psoc_set_avg->return_code = rx_buf[1]; return rc; } static int epm_psoc_get_data(struct epm_adc_drv *epm_adc, struct epm_psoc_get_data *psoc_get_meas) { struct spi_message m; struct spi_transfer t; char tx_buf[10], rx_buf[10]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = psoc_get_meas->cmd; tx_buf[1] = psoc_get_meas->dev_num; tx_buf[2] = psoc_get_meas->chan_num; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; psoc_get_meas->cmd = rx_buf[0]; psoc_get_meas->dev_num = rx_buf[1]; psoc_get_meas->chan_num = rx_buf[2]; psoc_get_meas->timestamp_resp_value = (rx_buf[3] << 24) | (rx_buf[4] << 16) | (rx_buf[5] << 8) | rx_buf[6]; psoc_get_meas->reading_raw = (rx_buf[7] << 8) | rx_buf[8]; return rc; } static int epm_psoc_get_buffered_data(struct epm_adc_drv *epm_adc, struct epm_psoc_get_buffered_data *psoc_get_meas) { struct spi_message m; struct spi_transfer t; char tx_buf[64], rx_buf[64]; int rc = 0, i; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = psoc_get_meas->cmd; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; psoc_get_meas->cmd = rx_buf[0]; psoc_get_meas->dev_num = rx_buf[1]; psoc_get_meas->status_mask = rx_buf[2]; psoc_get_meas->chan_idx = rx_buf[3]; psoc_get_meas->chan_mask = (rx_buf[4] << 24 | rx_buf[5] << 16 | rx_buf[6] << 8 | rx_buf[7]); psoc_get_meas->timestamp_start = (rx_buf[8] << 24 | rx_buf[9] << 16 | rx_buf[10] << 8 | rx_buf[11]); psoc_get_meas->timestamp_end = (rx_buf[12] << 24 | rx_buf[13] << 16 | rx_buf[14] << 8 | rx_buf[15]); for (i = 0; i < EPM_PSOC_BUFFERED_DATA_LENGTH; i++) psoc_get_meas->buff_data[i] = rx_buf[16 + i]; return rc; } static int epm_psoc_timestamp(struct epm_adc_drv *epm_adc, struct epm_psoc_system_time_stamp *psoc_timestamp) { struct spi_message m; struct spi_transfer t; char tx_buf[10], rx_buf[10]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); if (psoc_timestamp->cmd == EPM_PSOC_SET_SYSTEM_TIMESTAMP_CMD) { tx_buf[0] = psoc_timestamp->cmd; tx_buf[1] = (psoc_timestamp->timestamp & 0xff000000) >> 24; tx_buf[2] = (psoc_timestamp->timestamp & 0xff0000) >> 16; tx_buf[3] = (psoc_timestamp->timestamp & 0xff00) >> 8; tx_buf[4] = (psoc_timestamp->timestamp & 0xff); } else if (psoc_timestamp->cmd == EPM_PSOC_GET_SYSTEM_TIMESTAMP_CMD) { tx_buf[0] = psoc_timestamp->cmd; } t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; psoc_timestamp->cmd = rx_buf[0]; psoc_timestamp->timestamp = rx_buf[1] << 24 | rx_buf[2] << 16 | rx_buf[3] << 8 | rx_buf[4]; return rc; } static int epm_psoc_get_avg_buffered_switch_data(struct epm_adc_drv *epm_adc, struct epm_psoc_get_avg_buffered_switch_data *psoc_get_meas) { struct spi_message m; struct spi_transfer t; char tx_buf[64], rx_buf[64]; int rc = 0, i = 0, j = 0, z = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = psoc_get_meas->cmd; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; psoc_get_meas->cmd = rx_buf[0]; psoc_get_meas->status = rx_buf[1]; psoc_get_meas->timestamp_start = (rx_buf[2] << 24 | rx_buf[3] << 16 | rx_buf[4] << 8 | rx_buf[5]); psoc_get_meas->channel_mask = (rx_buf[6] << 24 | rx_buf[7] << 16 | rx_buf[8] << 8 | rx_buf[9]); for (i = 0; i < EPM_PSOC_BUFFERED_DATA_LENGTH2; i++) psoc_get_meas->avg_data[i] = rx_buf[10 + i]; i = j = 0; for (z = 0; z < 4; z++) { psoc_get_meas->data[i].channel = i; psoc_get_meas->data[i].avg_buffer_sample = rx_buf[10 + j] & EPM_AVG_BUF_MASK1; i++; j++; psoc_get_meas->data[i].avg_buffer_sample = rx_buf[10 + j] & EPM_AVG_BUF_MASK2; i++; j++; psoc_get_meas->data[i].avg_buffer_sample = rx_buf[10 + j] & EPM_AVG_BUF_MASK3; psoc_get_meas->data[i].avg_buffer_sample <<= 8; j++; psoc_get_meas->data[i].avg_buffer_sample = psoc_get_meas->data[i].avg_buffer_sample | (rx_buf[10 + j] & EPM_AVG_BUF_MASK4); i++; j++; psoc_get_meas->data[i].avg_buffer_sample = rx_buf[10 + j] & EPM_AVG_BUF_MASK5; i++; j++; psoc_get_meas->data[i].avg_buffer_sample = rx_buf[10 + j] & EPM_AVG_BUF_MASK6; i++; j++; psoc_get_meas->data[i].avg_buffer_sample = rx_buf[10 + j] & EPM_AVG_BUF_MASK7; psoc_get_meas->data[i].avg_buffer_sample <<= 4; j++; psoc_get_meas->data[i].avg_buffer_sample = psoc_get_meas->data[i].avg_buffer_sample | (rx_buf[10 + j] & EPM_AVG_BUF_MASK8); i++; j++; psoc_get_meas->data[i].avg_buffer_sample = rx_buf[10 + j] & EPM_AVG_BUF_MASK9; i++; j++; psoc_get_meas->data[i].avg_buffer_sample = rx_buf[10 + j] & EPM_AVG_BUF_MASK10; } for (z = 0; z < 32; z++) { if (psoc_get_meas->data[z].avg_buffer_sample != 0) psoc_get_meas->data[z].result = epm_psoc_scale_result( psoc_get_meas->data[z].avg_buffer_sample, z); } return rc; } static int epm_psoc_set_vadc(struct epm_adc_drv *epm_adc, struct epm_psoc_set_vadc *psoc_set_vadc) { struct spi_message m; struct spi_transfer t; char tx_buf[10], rx_buf[10]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = psoc_set_vadc->cmd; tx_buf[1] = psoc_set_vadc->vadc_dev; tx_buf[2] = (psoc_set_vadc->vadc_voltage & 0xff000000) >> 24; tx_buf[3] = (psoc_set_vadc->vadc_voltage & 0xff0000) >> 16; tx_buf[4] = (psoc_set_vadc->vadc_voltage & 0xff00) >> 8; tx_buf[5] = psoc_set_vadc->vadc_voltage & 0xff; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; psoc_set_vadc->cmd = rx_buf[0]; psoc_set_vadc->vadc_dev = rx_buf[1]; psoc_set_vadc->vadc_voltage = (rx_buf[2] << 24) | (rx_buf[3] << 16) | (rx_buf[4] << 8) | (rx_buf[5]); return rc; } static int epm_psoc_set_channel_switch(struct epm_adc_drv *epm_adc, struct epm_psoc_set_channel_switch *psoc_channel_switch) { struct spi_message m; struct spi_transfer t; char tx_buf[10], rx_buf[10]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = psoc_channel_switch->cmd; tx_buf[1] = psoc_channel_switch->dev; tx_buf[2] = (psoc_channel_switch->delay & 0xff000000) >> 24; tx_buf[3] = (psoc_channel_switch->delay & 0xff0000) >> 16; tx_buf[4] = (psoc_channel_switch->delay & 0xff00) >> 8; tx_buf[5] = psoc_channel_switch->delay & 0xff; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; psoc_channel_switch->cmd = rx_buf[0]; psoc_channel_switch->dev = rx_buf[1]; psoc_channel_switch->delay = rx_buf[2] << 24 | rx_buf[3] << 16 | rx_buf[4] << 8 | rx_buf[5]; return rc; } static int epm_psoc_clear_buffer(struct epm_adc_drv *epm_adc) { struct spi_message m; struct spi_transfer t; char tx_buf[3], rx_buf[3]; int rc = 0; spi_setup(epm_adc->epm_spi_client); memset(&t, 0, sizeof t); memset(tx_buf, 0, sizeof tx_buf); memset(rx_buf, 0, sizeof tx_buf); t.tx_buf = tx_buf; t.rx_buf = rx_buf; spi_message_init(&m); spi_message_add_tail(&t, &m); tx_buf[0] = EPM_PSOC_CLEAR_BUFFER_CMD; t.len = sizeof(tx_buf); t.bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = spi_sync(epm_adc->epm_spi_client, &m); if (rc) return rc; rc = rx_buf[2]; return rc; } static long epm_adc_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct epm_adc_drv *epm_adc = epm_adc_drv; switch (cmd) { case EPM_ADC_REQUEST: { struct epm_chan_request conv; int rc; if (copy_from_user(&conv, (void __user *)arg, sizeof(struct epm_chan_request))) return -EFAULT; rc = epm_adc_blocking_conversion(epm_adc, &conv); if (rc) { pr_err("Failed EPM conversion:%d\n", rc); return rc; } if (copy_to_user((void __user *)arg, &conv, sizeof(struct epm_chan_request))) return -EFAULT; break; } case EPM_ADC_INIT: { uint32_t result; if (!epm_adc_expander_register) { result = epm_adc_i2c_expander_register(); if (result) { pr_err("Failed i2c register:%d\n", result); return result; } epm_adc_expander_register = true; } result = epm_adc_hw_init(epm_adc); if (copy_to_user((void __user *)arg, &result, sizeof(uint32_t))) return -EFAULT; break; } case EPM_ADC_DEINIT: { uint32_t result; result = epm_adc_hw_deinit(epm_adc); if (copy_to_user((void __user *)arg, &result, sizeof(uint32_t))) return -EFAULT; break; } case EPM_PSOC_ADC_INIT: { struct epm_psoc_init_resp psoc_init; int rc; if (copy_from_user(&psoc_init, (void __user *)arg, sizeof(struct epm_psoc_init_resp))) return -EFAULT; psoc_init.cmd = EPM_PSOC_INIT_CMD; rc = epm_psoc_init(epm_adc, &psoc_init); if (rc) { pr_err("PSOC initialization failed\n"); return -EINVAL; } if (copy_to_user((void __user *)arg, &psoc_init, sizeof(struct epm_psoc_init_resp))) return -EFAULT; break; } case EPM_PSOC_ADC_CHANNEL_ENABLE: case EPM_PSOC_ADC_CHANNEL_DISABLE: { struct epm_psoc_channel_configure psoc_chan_configure; int rc; if (copy_from_user(&psoc_chan_configure, (void __user *)arg, sizeof(struct epm_psoc_channel_configure))) return -EFAULT; psoc_chan_configure.cmd = EPM_PSOC_CHANNEL_ENABLE_DISABLE_CMD; rc = epm_psoc_channel_configure(epm_adc, &psoc_chan_configure); if (rc) { pr_err("PSOC channel configure failed\n"); return -EINVAL; } if (copy_to_user((void __user *)arg, &psoc_chan_configure, sizeof(struct epm_psoc_channel_configure))) return -EFAULT; break; } case EPM_PSOC_ADC_SET_AVERAGING: { struct epm_psoc_set_avg psoc_set_avg; int rc; if (copy_from_user(&psoc_set_avg, (void __user *)arg, sizeof(struct epm_psoc_set_avg))) return -EFAULT; psoc_set_avg.cmd = EPM_PSOC_SET_AVERAGING_CMD; rc = epm_psoc_set_averaging(epm_adc, &psoc_set_avg); if (rc) { pr_err("PSOC averaging failed\n"); return -EINVAL; } if (copy_to_user((void __user *)arg, &psoc_set_avg, sizeof(struct epm_psoc_set_avg))) return -EFAULT; break; } case EPM_PSOC_ADC_GET_LAST_MEASUREMENT: { struct epm_psoc_get_data psoc_get_data; int rc; if (copy_from_user(&psoc_get_data, (void __user *)arg, sizeof(struct epm_psoc_get_data))) return -EFAULT; psoc_get_data.cmd = EPM_PSOC_GET_LAST_MEASUREMENT_CMD; rc = epm_psoc_get_data(epm_adc, &psoc_get_data); if (rc) { pr_err("PSOC last measured data failed\n"); return -EINVAL; } psoc_get_data.reading_value = epm_psoc_scale_result( psoc_get_data.reading_raw, psoc_get_data.chan_num); if (copy_to_user((void __user *)arg, &psoc_get_data, sizeof(struct epm_psoc_get_data))) return -EFAULT; break; } case EPM_PSOC_ADC_GET_BUFFERED_DATA: { struct epm_psoc_get_buffered_data psoc_get_data; int rc; if (copy_from_user(&psoc_get_data, (void __user *)arg, sizeof(struct epm_psoc_get_buffered_data))) return -EFAULT; psoc_get_data.cmd = EPM_PSOC_GET_BUFFERED_DATA_CMD; rc = epm_psoc_get_buffered_data(epm_adc, &psoc_get_data); if (rc) { pr_err("PSOC buffered measurement failed\n"); return -EINVAL; } if (copy_to_user((void __user *)arg, &psoc_get_data, sizeof(struct epm_psoc_get_buffered_data))) return -EFAULT; break; } case EPM_PSOC_ADC_GET_SYSTEM_TIMESTAMP: case EPM_PSOC_ADC_SET_SYSTEM_TIMESTAMP: { struct epm_psoc_system_time_stamp psoc_timestamp; int rc; if (copy_from_user(&psoc_timestamp, (void __user *)arg, sizeof(struct epm_psoc_system_time_stamp))) return -EFAULT; rc = epm_psoc_timestamp(epm_adc, &psoc_timestamp); if (rc) { pr_err("PSOC buffered measurement failed\n"); return -EINVAL; } if (copy_to_user((void __user *)arg, &psoc_timestamp, sizeof(struct epm_psoc_system_time_stamp))) return -EFAULT; break; } case EPM_PSOC_ADC_GET_AVERAGE_DATA: { struct epm_psoc_get_avg_buffered_switch_data psoc_get_data; int rc; if (copy_from_user(&psoc_get_data, (void __user *)arg, sizeof(struct epm_psoc_get_avg_buffered_switch_data))) return -EFAULT; psoc_get_data.cmd = EPM_PSOC_GET_AVERAGED_DATA_CMD; rc = epm_psoc_get_avg_buffered_switch_data(epm_adc, &psoc_get_data); if (rc) { pr_err("Get averaged buffered data failed\n"); return -EINVAL; } if (copy_to_user((void __user *)arg, &psoc_get_data, sizeof(struct epm_psoc_get_avg_buffered_switch_data))) return -EFAULT; break; } case EPM_PSOC_SET_CHANNEL_SWITCH: { struct epm_psoc_set_channel_switch psoc_channel_switch; int rc; if (copy_from_user(&psoc_channel_switch, (void __user *)arg, sizeof(struct epm_psoc_set_channel_switch))) return -EFAULT; rc = epm_psoc_set_channel_switch(epm_adc, &psoc_channel_switch); if (rc) { pr_err("PSOC channel switch failed\n"); return -EINVAL; } if (copy_to_user((void __user *)arg, &psoc_channel_switch, sizeof(struct epm_psoc_set_channel_switch))) return -EFAULT; break; } case EPM_PSOC_CLEAR_BUFFER: { int rc; rc = epm_psoc_clear_buffer(epm_adc); if (rc) { pr_err("PSOC clear buffer failed\n"); return -EINVAL; } if (copy_to_user((void __user *)arg, &rc, sizeof(uint32_t))) return -EFAULT; break; } case EPM_PSOC_ADC_SET_VADC_REFERENCE: { struct epm_psoc_set_vadc psoc_set_vadc; int rc; if (copy_from_user(&psoc_set_vadc, (void __user *)arg, sizeof(struct epm_psoc_set_vadc))) return -EFAULT; rc = epm_psoc_set_vadc(epm_adc, &psoc_set_vadc); if (rc) { pr_err("PSOC set VADC failed\n"); return -EINVAL; } if (copy_to_user((void __user *)arg, &psoc_set_vadc, sizeof(struct epm_psoc_set_vadc))) return -EFAULT; break; } default: return -EINVAL; } return 0; } const struct file_operations epm_adc_fops = { .unlocked_ioctl = epm_adc_ioctl, }; static ssize_t epm_adc_psoc_show_in(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct epm_adc_drv *epm_adc = epm_adc_drv; struct epm_psoc_init_resp init_resp; struct epm_psoc_channel_configure psoc_chan_configure; struct epm_psoc_get_data psoc_get_meas; int rc = 0; rc = epm_adc_psoc_gpio_init(true); if (rc) { pr_err("GPIO init failed\n"); return 0; } usleep_range(EPM_GLOBAL_ENABLE_MIN_DELAY, EPM_GLOBAL_ENABLE_MAX_DELAY); init_resp.cmd = EPM_PSOC_INIT_CMD; rc = epm_psoc_init(epm_adc, &init_resp); if (rc) { pr_err("PSOC init failed %d\n", rc); return 0; } psoc_chan_configure.channel_num = (1 << attr->index); psoc_chan_configure.cmd = EPM_PSOC_CHANNEL_ENABLE_DISABLE_CMD; rc = epm_psoc_channel_configure(epm_adc, &psoc_chan_configure); if (rc) { pr_err("PSOC channel configure failed\n"); return 0; } usleep_range(EPM_GLOBAL_ENABLE_MIN_DELAY, EPM_GLOBAL_ENABLE_MAX_DELAY); psoc_get_meas.cmd = EPM_PSOC_GET_LAST_MEASUREMENT_CMD; psoc_get_meas.dev_num = 0; psoc_get_meas.chan_num = attr->index; rc = epm_psoc_get_data(epm_adc, &psoc_get_meas); if (rc) { pr_err("PSOC get data failed\n"); return 0; } psoc_get_meas.reading_value = epm_psoc_scale_result( psoc_get_meas.reading_value, attr->index); rc = epm_adc_psoc_gpio_init(false); if (rc) { pr_err("GPIO de-init failed\n"); return 0; } return snprintf(buf, 16, "Result: %d\n", psoc_get_meas.reading_value); } static struct sensor_device_attribute epm_adc_psoc_in_attrs[] = { SENSOR_ATTR(psoc0_chan0, S_IRUGO, epm_adc_psoc_show_in, NULL, 0), SENSOR_ATTR(psoc0_chan1, S_IRUGO, epm_adc_psoc_show_in, NULL, 1), SENSOR_ATTR(psoc0_chan2, S_IRUGO, epm_adc_psoc_show_in, NULL, 2), SENSOR_ATTR(psoc0_chan3, S_IRUGO, epm_adc_psoc_show_in, NULL, 3), SENSOR_ATTR(psoc0_chan4, S_IRUGO, epm_adc_psoc_show_in, NULL, 4), SENSOR_ATTR(psoc0_chan5, S_IRUGO, epm_adc_psoc_show_in, NULL, 5), SENSOR_ATTR(psoc0_chan6, S_IRUGO, epm_adc_psoc_show_in, NULL, 6), SENSOR_ATTR(psoc0_chan7, S_IRUGO, epm_adc_psoc_show_in, NULL, 7), SENSOR_ATTR(psoc0_chan8, S_IRUGO, epm_adc_psoc_show_in, NULL, 8), SENSOR_ATTR(psoc0_chan9, S_IRUGO, epm_adc_psoc_show_in, NULL, 9), SENSOR_ATTR(psoc0_chan10, S_IRUGO, epm_adc_psoc_show_in, NULL, 10), SENSOR_ATTR(psoc0_chan11, S_IRUGO, epm_adc_psoc_show_in, NULL, 11), SENSOR_ATTR(psoc0_chan12, S_IRUGO, epm_adc_psoc_show_in, NULL, 12), SENSOR_ATTR(psoc0_chan13, S_IRUGO, epm_adc_psoc_show_in, NULL, 13), SENSOR_ATTR(psoc0_chan14, S_IRUGO, epm_adc_psoc_show_in, NULL, 14), SENSOR_ATTR(psoc0_chan15, S_IRUGO, epm_adc_psoc_show_in, NULL, 15), SENSOR_ATTR(psoc0_chan16, S_IRUGO, epm_adc_psoc_show_in, NULL, 16), SENSOR_ATTR(psoc0_chan17, S_IRUGO, epm_adc_psoc_show_in, NULL, 17), SENSOR_ATTR(psoc0_chan18, S_IRUGO, epm_adc_psoc_show_in, NULL, 18), SENSOR_ATTR(psoc0_chan19, S_IRUGO, epm_adc_psoc_show_in, NULL, 19), SENSOR_ATTR(psoc0_chan20, S_IRUGO, epm_adc_psoc_show_in, NULL, 20), SENSOR_ATTR(psoc0_chan21, S_IRUGO, epm_adc_psoc_show_in, NULL, 21), SENSOR_ATTR(psoc0_chan22, S_IRUGO, epm_adc_psoc_show_in, NULL, 22), SENSOR_ATTR(psoc0_chan23, S_IRUGO, epm_adc_psoc_show_in, NULL, 23), SENSOR_ATTR(psoc0_chan24, S_IRUGO, epm_adc_psoc_show_in, NULL, 24), SENSOR_ATTR(psoc0_chan25, S_IRUGO, epm_adc_psoc_show_in, NULL, 25), SENSOR_ATTR(psoc0_chan26, S_IRUGO, epm_adc_psoc_show_in, NULL, 26), SENSOR_ATTR(psoc0_chan27, S_IRUGO, epm_adc_psoc_show_in, NULL, 27), SENSOR_ATTR(psoc0_chan28, S_IRUGO, epm_adc_psoc_show_in, NULL, 28), SENSOR_ATTR(psoc0_chan29, S_IRUGO, epm_adc_psoc_show_in, NULL, 29), SENSOR_ATTR(psoc0_chan30, S_IRUGO, epm_adc_psoc_show_in, NULL, 30), SENSOR_ATTR(psoc0_chan31, S_IRUGO, epm_adc_psoc_show_in, NULL, 31), }; static int __devinit epm_adc_psoc_init_hwmon(struct spi_device *spi, struct epm_adc_drv *epm_adc) { int i, rc, num_chans = 31; for (i = 0; i < num_chans; i++) { rc = device_create_file(&spi->dev, &epm_adc_psoc_in_attrs[i].dev_attr); if (rc) { dev_err(&spi->dev, "device_create_file failed\n"); return rc; } } return 0; } static int get_device_tree_data(struct spi_device *spi) { const struct device_node *node = spi->dev.of_node; struct epm_adc_drv *epm_adc; u32 *epm_ch_gain, *epm_ch_rsense; u32 rc = 0, epm_num_channels, i, channel_mask; if (!node) return -EINVAL; rc = of_property_read_u32(node, "qcom,channels", &epm_num_channels); if (rc) { dev_err(&spi->dev, "missing channel numbers\n"); return -ENODEV; } epm_ch_gain = devm_kzalloc(&spi->dev, epm_num_channels * sizeof(u32), GFP_KERNEL); if (!epm_ch_gain) { dev_err(&spi->dev, "cannot allocate gain\n"); return -ENOMEM; } epm_ch_rsense = devm_kzalloc(&spi->dev, epm_num_channels * sizeof(u32), GFP_KERNEL); if (!epm_ch_rsense) { dev_err(&spi->dev, "cannot allocate rsense\n"); return -ENOMEM; } rc = of_property_read_u32_array(node, "qcom,gain", epm_ch_gain, epm_num_channels); if (rc) { dev_err(&spi->dev, "invalid gain property:%d\n", rc); return rc; } rc = of_property_read_u32_array(node, "qcom,rsense", epm_ch_rsense, epm_num_channels); if (rc) { dev_err(&spi->dev, "invalid rsense property:%d\n", rc); return rc; } rc = of_property_read_u32(node, "qcom,channel-type", &channel_mask); if (rc) { dev_err(&spi->dev, "missing channel mask\n"); return -ENODEV; } epm_adc = devm_kzalloc(&spi->dev, sizeof(struct epm_adc_drv) + (epm_num_channels * sizeof(struct epm_chan_properties)), GFP_KERNEL); if (!epm_adc) { dev_err(&spi->dev, "Unable to allocate memory\n"); return -ENOMEM; } for (i = 0; i < epm_num_channels; i++) { epm_adc->epm_psoc_ch_prop[i].resistorvalue = epm_ch_rsense[i]; epm_adc->epm_psoc_ch_prop[i].gain = epm_ch_gain[i]; } epm_adc->channel_mask = channel_mask; epm_adc_drv = epm_adc; return 0; } static int __devinit epm_adc_psoc_spi_probe(struct spi_device *spi) { struct epm_adc_drv *epm_adc; struct device_node *node = spi->dev.of_node; int rc = 0; if (node) { rc = get_device_tree_data(spi); if (rc) return rc; } else { epm_adc = epm_adc_drv; epm_adc_drv->epm_spi_client = spi; epm_adc_drv->epm_spi_client->bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; return rc; } epm_adc = epm_adc_drv; epm_adc->misc.name = EPM_ADC_DRIVER_NAME; epm_adc->misc.minor = MISC_DYNAMIC_MINOR; if (node) { epm_adc->misc.fops = &epm_adc_fops; if (misc_register(&epm_adc->misc)) { pr_err("Unable to register misc device!\n"); return -EFAULT; } } epm_adc_drv->epm_spi_client = spi; epm_adc_drv->epm_spi_client->bits_per_word = EPM_ADC_ADS_SPI_BITS_PER_WORD; rc = epm_adc_psoc_init_hwmon(spi, epm_adc); if (rc) { dev_err(&spi->dev, "msm_adc_dev_init failed\n"); return rc; } epm_adc->hwmon = hwmon_device_register(&spi->dev); if (IS_ERR(epm_adc->hwmon)) { dev_err(&spi->dev, "hwmon_device_register failed\n"); return rc; } mutex_init(&epm_adc->conv_lock); return rc; } static int __devexit epm_adc_psoc_spi_remove(struct spi_device *spi) { epm_adc_drv->epm_spi_client = NULL; return 0; } static const struct of_device_id epm_adc_psoc_match_table[] = { { .compatible = "cy,epm-adc-cy8c5568lti-114", }, {} }; static struct spi_driver epm_spi_driver = { .probe = epm_adc_psoc_spi_probe, .remove = __devexit_p(epm_adc_psoc_spi_remove), .driver = { .name = EPM_ADC_DRIVER_NAME, .of_match_table = epm_adc_psoc_match_table, }, }; static ssize_t epm_adc_show_in(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct epm_adc_drv *epm_adc = dev_get_drvdata(dev); struct epm_adc_platform_data *pdata = epm_adc->pdev->dev.platform_data; struct epm_chan_request conv; int rc = 0; conv.device_idx = attr->index / pdata->chan_per_adc; conv.channel_idx = attr->index % pdata->chan_per_adc; conv.physical = 0; if (!epm_adc_expander_register) { rc = epm_adc_i2c_expander_register(); if (rc) { pr_err("I2C expander register failed:%d\n", rc); return rc; } epm_adc_expander_register = true; } rc = epm_adc_hw_init(epm_adc); if (rc) { pr_err("%s: epm_adc_hw_init() failed, rc = %d", __func__, rc); return 0; } rc = epm_adc_blocking_conversion(epm_adc, &conv); if (rc) { pr_err("%s: epm_adc_blocking_conversion() failed, rc = %d\n", __func__, rc); return 0; } rc = epm_adc_hw_deinit(epm_adc); if (rc) { pr_err("%s: epm_adc_hw_deinit() failed, rc = %d", __func__, rc); return 0; } return snprintf(buf, 16, "Result: %d\n", conv.physical); } static struct sensor_device_attribute epm_adc_in_attrs[] = { SENSOR_ATTR(ads0_chan0, S_IRUGO, epm_adc_show_in, NULL, 0), SENSOR_ATTR(ads0_chan1, S_IRUGO, epm_adc_show_in, NULL, 1), SENSOR_ATTR(ads0_chan2, S_IRUGO, epm_adc_show_in, NULL, 2), SENSOR_ATTR(ads0_chan3, S_IRUGO, epm_adc_show_in, NULL, 3), SENSOR_ATTR(ads0_chan4, S_IRUGO, epm_adc_show_in, NULL, 4), SENSOR_ATTR(ads0_chan5, S_IRUGO, epm_adc_show_in, NULL, 5), SENSOR_ATTR(ads0_chan6, S_IRUGO, epm_adc_show_in, NULL, 6), SENSOR_ATTR(ads0_chan7, S_IRUGO, epm_adc_show_in, NULL, 7), SENSOR_ATTR(ads0_chan8, S_IRUGO, epm_adc_show_in, NULL, 8), SENSOR_ATTR(ads0_chan9, S_IRUGO, epm_adc_show_in, NULL, 9), SENSOR_ATTR(ads0_chan10, S_IRUGO, epm_adc_show_in, NULL, 10), SENSOR_ATTR(ads0_chan11, S_IRUGO, epm_adc_show_in, NULL, 11), SENSOR_ATTR(ads0_chan12, S_IRUGO, epm_adc_show_in, NULL, 12), SENSOR_ATTR(ads0_chan13, S_IRUGO, epm_adc_show_in, NULL, 13), SENSOR_ATTR(ads0_chan14, S_IRUGO, epm_adc_show_in, NULL, 14), SENSOR_ATTR(ads0_chan15, S_IRUGO, epm_adc_show_in, NULL, 15), SENSOR_ATTR(ads1_chan0, S_IRUGO, epm_adc_show_in, NULL, 16), SENSOR_ATTR(ads1_chan1, S_IRUGO, epm_adc_show_in, NULL, 17), SENSOR_ATTR(ads1_chan2, S_IRUGO, epm_adc_show_in, NULL, 18), SENSOR_ATTR(ads1_chan3, S_IRUGO, epm_adc_show_in, NULL, 19), SENSOR_ATTR(ads1_chan4, S_IRUGO, epm_adc_show_in, NULL, 20), SENSOR_ATTR(ads1_chan5, S_IRUGO, epm_adc_show_in, NULL, 21), SENSOR_ATTR(ads1_chan6, S_IRUGO, epm_adc_show_in, NULL, 22), SENSOR_ATTR(ads1_chan7, S_IRUGO, epm_adc_show_in, NULL, 23), SENSOR_ATTR(ads1_chan8, S_IRUGO, epm_adc_show_in, NULL, 24), SENSOR_ATTR(ads1_chan9, S_IRUGO, epm_adc_show_in, NULL, 25), SENSOR_ATTR(ads1_chan10, S_IRUGO, epm_adc_show_in, NULL, 26), SENSOR_ATTR(ads1_chan11, S_IRUGO, epm_adc_show_in, NULL, 27), SENSOR_ATTR(ads1_chan12, S_IRUGO, epm_adc_show_in, NULL, 28), SENSOR_ATTR(ads1_chan13, S_IRUGO, epm_adc_show_in, NULL, 29), SENSOR_ATTR(ads1_chan14, S_IRUGO, epm_adc_show_in, NULL, 30), SENSOR_ATTR(ads1_chan15, S_IRUGO, epm_adc_show_in, NULL, 31), }; static int __devinit epm_adc_init_hwmon(struct platform_device *pdev, struct epm_adc_drv *epm_adc) { struct epm_adc_platform_data *pdata = pdev->dev.platform_data; int i, rc, num_chans = pdata->num_channels; for (i = 0; i < num_chans; i++) { rc = device_create_file(&pdev->dev, &epm_adc_in_attrs[i].dev_attr); if (rc) { dev_err(&pdev->dev, "device_create_file failed\n"); return rc; } } return 0; } static int __devinit epm_adc_probe(struct platform_device *pdev) { struct epm_adc_drv *epm_adc; struct epm_adc_platform_data *pdata = pdev->dev.platform_data; int rc = 0; if (!pdata) { dev_err(&pdev->dev, "no platform data?\n"); return -EINVAL; } epm_adc = kzalloc(sizeof(struct epm_adc_drv), GFP_KERNEL); if (!epm_adc) { dev_err(&pdev->dev, "Unable to allocate memory\n"); return -ENOMEM; } platform_set_drvdata(pdev, epm_adc); epm_adc_drv = epm_adc; epm_adc->pdev = pdev; epm_adc->misc.name = EPM_ADC_DRIVER_NAME; epm_adc->misc.minor = MISC_DYNAMIC_MINOR; epm_adc->misc.fops = &epm_adc_fops; if (misc_register(&epm_adc->misc)) { dev_err(&pdev->dev, "Unable to register misc device!\n"); return -EFAULT; } rc = epm_adc_init_hwmon(pdev, epm_adc); if (rc) { dev_err(&pdev->dev, "msm_adc_dev_init failed\n"); misc_deregister(&epm_adc->misc); return rc; } epm_adc->hwmon = hwmon_device_register(&pdev->dev); if (IS_ERR(epm_adc->hwmon)) { dev_err(&pdev->dev, "hwmon_device_register failed\n"); misc_deregister(&epm_adc->misc); rc = PTR_ERR(epm_adc->hwmon); return rc; } mutex_init(&epm_adc->conv_lock); epm_i2c_info = &pdata->epm_i2c_board_info; epm_adc->bus_id = pdata->bus_id; epm_gpio_expander_base_addr = pdata->gpio_expander_base_addr; epm_adc_expander_register = false; return rc; } static int __devexit epm_adc_remove(struct platform_device *pdev) { struct epm_adc_drv *epm_adc = platform_get_drvdata(pdev); struct epm_adc_platform_data *pdata = pdev->dev.platform_data; int num_chans = pdata->num_channels; int i = 0; for (i = 0; i < num_chans; i++) device_remove_file(&pdev->dev, &epm_adc_in_attrs[i].dev_attr); hwmon_device_unregister(epm_adc->hwmon); misc_deregister(&epm_adc->misc); epm_adc = NULL; return 0; } static struct platform_driver epm_adc_driver = { .probe = epm_adc_probe, .remove = __devexit_p(epm_adc_remove), .driver = { .name = EPM_ADC_DRIVER_NAME, .owner = THIS_MODULE, }, }; static int __init epm_adc_init(void) { int ret = 0; ret = platform_driver_register(&epm_adc_driver); if (ret) { pr_err("%s: driver register failed, rc=%d\n", __func__, ret); return ret; } ret = spi_register_driver(&epm_spi_driver); if (ret) pr_err("%s: spi register failed: rc=%d\n", __func__, ret); return ret; } static void __exit epm_adc_exit(void) { spi_unregister_driver(&epm_spi_driver); platform_driver_unregister(&epm_adc_driver); } module_init(epm_adc_init); module_exit(epm_adc_exit); MODULE_DESCRIPTION("EPM ADC Driver"); MODULE_ALIAS("platform:epm_adc"); MODULE_LICENSE("GPL v2");