/* Qualcomm CE device driver. * * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qce.h" #define CACHE_LINE_SIZE 32 #define CE_SHA_BLOCK_SIZE SHA256_BLOCK_SIZE static uint8_t _std_init_vector_sha1_uint8[] = { 0x67, 0x45, 0x23, 0x01, 0xEF, 0xCD, 0xAB, 0x89, 0x98, 0xBA, 0xDC, 0xFE, 0x10, 0x32, 0x54, 0x76, 0xC3, 0xD2, 0xE1, 0xF0 }; /* standard initialization vector for SHA-256, source: FIPS 180-2 */ static uint8_t _std_init_vector_sha256_uint8[] = { 0x6A, 0x09, 0xE6, 0x67, 0xBB, 0x67, 0xAE, 0x85, 0x3C, 0x6E, 0xF3, 0x72, 0xA5, 0x4F, 0xF5, 0x3A, 0x51, 0x0E, 0x52, 0x7F, 0x9B, 0x05, 0x68, 0x8C, 0x1F, 0x83, 0xD9, 0xAB, 0x5B, 0xE0, 0xCD, 0x19 }; enum qcedev_crypto_oper_type { QCEDEV_CRYPTO_OPER_CIPHER = 0, QCEDEV_CRYPTO_OPER_SHA = 1, QCEDEV_CRYPTO_OPER_LAST }; struct qcedev_handle; struct qcedev_cipher_req { struct ablkcipher_request creq; void *cookie; }; struct qcedev_sha_req { struct ahash_request sreq; void *cookie; }; struct qcedev_sha_ctxt { uint32_t auth_data[4]; uint8_t digest[QCEDEV_MAX_SHA_DIGEST]; uint32_t diglen; uint8_t trailing_buf[64]; uint32_t trailing_buf_len; uint8_t first_blk; uint8_t last_blk; uint8_t authkey[QCEDEV_MAX_SHA_BLOCK_SIZE]; }; struct qcedev_async_req { struct list_head list; struct completion complete; enum qcedev_crypto_oper_type op_type; union { struct qcedev_cipher_op_req cipher_op_req; struct qcedev_sha_op_req sha_op_req; }; union{ struct qcedev_cipher_req cipher_req; struct qcedev_sha_req sha_req; }; struct qcedev_handle *handle; int err; }; static DEFINE_MUTEX(send_cmd_lock); static DEFINE_MUTEX(qcedev_sent_bw_req); /********************************************************************** * Register ourselves as a misc device to be able to access the dev driver * from userspace. */ #define QCEDEV_DEV "qcedev" struct qcedev_control{ /* CE features supported by platform */ struct msm_ce_hw_support platform_support; uint32_t ce_lock_count; uint32_t high_bw_req_count; /* CE features/algorithms supported by HW engine*/ struct ce_hw_support ce_support; uint32_t bus_scale_handle; /* misc device */ struct miscdevice miscdevice; /* qce handle */ void *qce; /* platform device */ struct platform_device *pdev; unsigned magic; struct list_head ready_commands; struct qcedev_async_req *active_command; spinlock_t lock; struct tasklet_struct done_tasklet; }; struct qcedev_handle { /* qcedev control handle */ struct qcedev_control *cntl; /* qce internal sha context*/ struct qcedev_sha_ctxt sha_ctxt; }; /*------------------------------------------------------------------------- * Resource Locking Service * ------------------------------------------------------------------------*/ #define QCEDEV_CMD_ID 1 #define QCEDEV_CE_LOCK_CMD 1 #define QCEDEV_CE_UNLOCK_CMD 0 #define NUM_RETRY 1000 #define CE_BUSY 55 static int qcedev_scm_cmd(int resource, int cmd, int *response) { #ifdef CONFIG_MSM_SCM struct { int resource; int cmd; } cmd_buf; cmd_buf.resource = resource; cmd_buf.cmd = cmd; return scm_call(SCM_SVC_TZ, QCEDEV_CMD_ID, &cmd_buf, sizeof(cmd_buf), response, sizeof(*response)); #else return 0; #endif } static void qcedev_ce_high_bw_req(struct qcedev_control *podev, bool high_bw_req) { int ret = 0; mutex_lock(&qcedev_sent_bw_req); if (high_bw_req) { if (podev->high_bw_req_count == 0) { ret = qce_enable_clk(podev->qce); if (ret) { pr_err("%s Unable enable clk\n", __func__); mutex_unlock(&qcedev_sent_bw_req); return; } ret = msm_bus_scale_client_update_request( podev->bus_scale_handle, 1); if (ret) { pr_err("%s Unable to set to high bandwidth\n", __func__); ret = qce_disable_clk(podev->qce); mutex_unlock(&qcedev_sent_bw_req); return; } } podev->high_bw_req_count++; } else { if (podev->high_bw_req_count == 1) { ret = msm_bus_scale_client_update_request( podev->bus_scale_handle, 0); if (ret) { pr_err("%s Unable to set to low bandwidth\n", __func__); mutex_unlock(&qcedev_sent_bw_req); return; } ret = qce_disable_clk(podev->qce); if (ret) { pr_err("%s Unable disable clk\n", __func__); ret = msm_bus_scale_client_update_request( podev->bus_scale_handle, 1); if (ret) pr_err("%s Unable to set to high bandwidth\n", __func__); mutex_unlock(&qcedev_sent_bw_req); return; } } podev->high_bw_req_count--; } mutex_unlock(&qcedev_sent_bw_req); } static int qcedev_unlock_ce(struct qcedev_control *podev) { int ret = 0; mutex_lock(&send_cmd_lock); if (podev->ce_lock_count == 1) { int response = 0; if (qcedev_scm_cmd(podev->platform_support.shared_ce_resource, QCEDEV_CE_UNLOCK_CMD, &response)) { pr_err("Failed to release CE lock\n"); ret = -EIO; } } if (ret == 0) { if (podev->ce_lock_count) podev->ce_lock_count--; else { /* We should never be here */ ret = -EIO; pr_err("CE hardware is already unlocked\n"); } } mutex_unlock(&send_cmd_lock); return ret; } static int qcedev_lock_ce(struct qcedev_control *podev) { int ret = 0; mutex_lock(&send_cmd_lock); if (podev->ce_lock_count == 0) { int response = -CE_BUSY; int i = 0; do { if (qcedev_scm_cmd( podev->platform_support.shared_ce_resource, QCEDEV_CE_LOCK_CMD, &response)) { response = -EINVAL; break; } } while ((response == -CE_BUSY) && (i++ < NUM_RETRY)); if ((response == -CE_BUSY) && (i >= NUM_RETRY)) { ret = -EUSERS; } else { if (response < 0) ret = -EINVAL; } } if (ret == 0) podev->ce_lock_count++; mutex_unlock(&send_cmd_lock); return ret; } #define QCEDEV_MAGIC 0x56434544 /* "qced" */ static long qcedev_ioctl(struct file *file, unsigned cmd, unsigned long arg); static int qcedev_open(struct inode *inode, struct file *file); static int qcedev_release(struct inode *inode, struct file *file); static int start_cipher_req(struct qcedev_control *podev); static int start_sha_req(struct qcedev_control *podev); static const struct file_operations qcedev_fops = { .owner = THIS_MODULE, .unlocked_ioctl = qcedev_ioctl, .open = qcedev_open, .release = qcedev_release, }; static struct qcedev_control qce_dev[] = { { .miscdevice = { .minor = MISC_DYNAMIC_MINOR, .name = "qce", .fops = &qcedev_fops, }, .magic = QCEDEV_MAGIC, }, }; #define MAX_QCE_DEVICE ARRAY_SIZE(qce_dev) #define DEBUG_MAX_FNAME 16 #define DEBUG_MAX_RW_BUF 1024 struct qcedev_stat { u32 qcedev_dec_success; u32 qcedev_dec_fail; u32 qcedev_enc_success; u32 qcedev_enc_fail; u32 qcedev_sha_success; u32 qcedev_sha_fail; }; static struct qcedev_stat _qcedev_stat; static struct dentry *_debug_dent; static char _debug_read_buf[DEBUG_MAX_RW_BUF]; static int _debug_qcedev; static struct qcedev_control *qcedev_minor_to_control(unsigned n) { int i; for (i = 0; i < MAX_QCE_DEVICE; i++) { if (qce_dev[i].miscdevice.minor == n) return &qce_dev[i]; } return NULL; } static int qcedev_open(struct inode *inode, struct file *file) { struct qcedev_handle *handle; struct qcedev_control *podev; podev = qcedev_minor_to_control(MINOR(inode->i_rdev)); if (podev == NULL) { pr_err("%s: no such device %d\n", __func__, MINOR(inode->i_rdev)); return -ENOENT; } handle = kzalloc(sizeof(struct qcedev_handle), GFP_KERNEL); if (handle == NULL) { pr_err("Failed to allocate memory %ld\n", PTR_ERR(handle)); return -ENOMEM; } handle->cntl = podev; file->private_data = handle; if (podev->platform_support.bus_scale_table != NULL) qcedev_ce_high_bw_req(podev, true); return 0; } static int qcedev_release(struct inode *inode, struct file *file) { struct qcedev_control *podev; struct qcedev_handle *handle; handle = file->private_data; podev = handle->cntl; if (podev != NULL && podev->magic != QCEDEV_MAGIC) { pr_err("%s: invalid handle %p\n", __func__, podev); } kzfree(handle); file->private_data = NULL; if (podev != NULL && podev->platform_support.bus_scale_table != NULL) qcedev_ce_high_bw_req(podev, false); return 0; } static void req_done(unsigned long data) { struct qcedev_control *podev = (struct qcedev_control *)data; struct qcedev_async_req *areq; unsigned long flags = 0; struct qcedev_async_req *new_req = NULL; int ret = 0; spin_lock_irqsave(&podev->lock, flags); areq = podev->active_command; podev->active_command = NULL; again: if (!list_empty(&podev->ready_commands)) { new_req = container_of(podev->ready_commands.next, struct qcedev_async_req, list); list_del(&new_req->list); podev->active_command = new_req; new_req->err = 0; if (new_req->op_type == QCEDEV_CRYPTO_OPER_CIPHER) ret = start_cipher_req(podev); else ret = start_sha_req(podev); } spin_unlock_irqrestore(&podev->lock, flags); if (areq) complete(&areq->complete); if (new_req && ret) { complete(&new_req->complete); spin_lock_irqsave(&podev->lock, flags); podev->active_command = NULL; areq = NULL; ret = 0; new_req = NULL; goto again; } return; } static void qcedev_sha_req_cb(void *cookie, unsigned char *digest, unsigned char *authdata, int ret) { struct qcedev_sha_req *areq; struct qcedev_control *pdev; struct qcedev_handle *handle; uint32_t *auth32 = (uint32_t *)authdata; areq = (struct qcedev_sha_req *) cookie; handle = (struct qcedev_handle *) areq->cookie; pdev = handle->cntl; if (digest) memcpy(&handle->sha_ctxt.digest[0], digest, 32); if (authdata) { handle->sha_ctxt.auth_data[0] = auth32[0]; handle->sha_ctxt.auth_data[1] = auth32[1]; handle->sha_ctxt.auth_data[2] = auth32[2]; handle->sha_ctxt.auth_data[3] = auth32[3]; } tasklet_schedule(&pdev->done_tasklet); }; static void qcedev_cipher_req_cb(void *cookie, unsigned char *icv, unsigned char *iv, int ret) { struct qcedev_cipher_req *areq; struct qcedev_handle *handle; struct qcedev_control *podev; struct qcedev_async_req *qcedev_areq; areq = (struct qcedev_cipher_req *) cookie; handle = (struct qcedev_handle *) areq->cookie; podev = handle->cntl; qcedev_areq = podev->active_command; if (iv) memcpy(&qcedev_areq->cipher_op_req.iv[0], iv, qcedev_areq->cipher_op_req.ivlen); tasklet_schedule(&podev->done_tasklet); }; static int start_cipher_req(struct qcedev_control *podev) { struct qcedev_async_req *qcedev_areq; struct qce_req creq; int ret = 0; /* start the command on the podev->active_command */ qcedev_areq = podev->active_command; qcedev_areq->cipher_req.cookie = qcedev_areq->handle; if (qcedev_areq->cipher_op_req.use_pmem == QCEDEV_USE_PMEM) { pr_err("%s: Use of PMEM is not supported\n", __func__); goto unsupported; } creq.pmem = NULL; switch (qcedev_areq->cipher_op_req.alg) { case QCEDEV_ALG_DES: creq.alg = CIPHER_ALG_DES; break; case QCEDEV_ALG_3DES: creq.alg = CIPHER_ALG_3DES; break; case QCEDEV_ALG_AES: creq.alg = CIPHER_ALG_AES; break; default: return -EINVAL; }; switch (qcedev_areq->cipher_op_req.mode) { case QCEDEV_AES_MODE_CBC: case QCEDEV_DES_MODE_CBC: creq.mode = QCE_MODE_CBC; break; case QCEDEV_AES_MODE_ECB: case QCEDEV_DES_MODE_ECB: creq.mode = QCE_MODE_ECB; break; case QCEDEV_AES_MODE_CTR: creq.mode = QCE_MODE_CTR; break; case QCEDEV_AES_MODE_XTS: creq.mode = QCE_MODE_XTS; break; default: return -EINVAL; }; if ((creq.alg == CIPHER_ALG_AES) && (creq.mode == QCE_MODE_CTR)) { creq.dir = QCE_ENCRYPT; } else { if (QCEDEV_OPER_ENC == qcedev_areq->cipher_op_req.op) creq.dir = QCE_ENCRYPT; else creq.dir = QCE_DECRYPT; } creq.iv = &qcedev_areq->cipher_op_req.iv[0]; creq.ivsize = qcedev_areq->cipher_op_req.ivlen; creq.enckey = &qcedev_areq->cipher_op_req.enckey[0]; creq.encklen = qcedev_areq->cipher_op_req.encklen; creq.cryptlen = qcedev_areq->cipher_op_req.data_len; if (qcedev_areq->cipher_op_req.encklen == 0) { if ((qcedev_areq->cipher_op_req.op == QCEDEV_OPER_ENC_NO_KEY) || (qcedev_areq->cipher_op_req.op == QCEDEV_OPER_DEC_NO_KEY)) creq.op = QCE_REQ_ABLK_CIPHER_NO_KEY; else { int i; for (i = 0; i < QCEDEV_MAX_KEY_SIZE; i++) { if (qcedev_areq->cipher_op_req.enckey[i] != 0) break; } if ((podev->platform_support.hw_key_support == 1) && (i == QCEDEV_MAX_KEY_SIZE)) creq.op = QCE_REQ_ABLK_CIPHER; else { ret = -EINVAL; goto unsupported; } } } else { creq.op = QCE_REQ_ABLK_CIPHER; } creq.qce_cb = qcedev_cipher_req_cb; creq.areq = (void *)&qcedev_areq->cipher_req; ret = qce_ablk_cipher_req(podev->qce, &creq); unsupported: if (ret) qcedev_areq->err = -ENXIO; else qcedev_areq->err = 0; return ret; }; static int start_sha_req(struct qcedev_control *podev) { struct qcedev_async_req *qcedev_areq; struct qce_sha_req sreq; int ret = 0; struct qcedev_handle *handle; /* start the command on the podev->active_command */ qcedev_areq = podev->active_command; handle = qcedev_areq->handle; switch (qcedev_areq->sha_op_req.alg) { case QCEDEV_ALG_SHA1: sreq.alg = QCE_HASH_SHA1; break; case QCEDEV_ALG_SHA256: sreq.alg = QCE_HASH_SHA256; break; case QCEDEV_ALG_SHA1_HMAC: if (podev->ce_support.sha_hmac) { sreq.alg = QCE_HASH_SHA1_HMAC; sreq.authkey = &handle->sha_ctxt.authkey[0]; sreq.authklen = QCEDEV_MAX_SHA_BLOCK_SIZE; } else { sreq.alg = QCE_HASH_SHA1; sreq.authkey = NULL; } break; case QCEDEV_ALG_SHA256_HMAC: if (podev->ce_support.sha_hmac) { sreq.alg = QCE_HASH_SHA256_HMAC; sreq.authkey = &handle->sha_ctxt.authkey[0]; sreq.authklen = QCEDEV_MAX_SHA_BLOCK_SIZE; } else { sreq.alg = QCE_HASH_SHA256; sreq.authkey = NULL; } break; case QCEDEV_ALG_AES_CMAC: sreq.alg = QCE_HASH_AES_CMAC; sreq.authkey = &handle->sha_ctxt.authkey[0]; sreq.authklen = qcedev_areq->sha_op_req.authklen; break; default: pr_err("Algorithm %d not supported, exiting\n", qcedev_areq->sha_op_req.alg); return -EINVAL; break; }; qcedev_areq->sha_req.cookie = handle; sreq.qce_cb = qcedev_sha_req_cb; if (qcedev_areq->sha_op_req.alg != QCEDEV_ALG_AES_CMAC) { sreq.auth_data[0] = handle->sha_ctxt.auth_data[0]; sreq.auth_data[1] = handle->sha_ctxt.auth_data[1]; sreq.auth_data[2] = handle->sha_ctxt.auth_data[2]; sreq.auth_data[3] = handle->sha_ctxt.auth_data[3]; sreq.digest = &handle->sha_ctxt.digest[0]; sreq.first_blk = handle->sha_ctxt.first_blk; sreq.last_blk = handle->sha_ctxt.last_blk; } sreq.size = qcedev_areq->sha_req.sreq.nbytes; sreq.src = qcedev_areq->sha_req.sreq.src; sreq.areq = (void *)&qcedev_areq->sha_req; ret = qce_process_sha_req(podev->qce, &sreq); if (ret) qcedev_areq->err = -ENXIO; else qcedev_areq->err = 0; return ret; }; static int submit_req(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle) { struct qcedev_control *podev; unsigned long flags = 0; int ret = 0; struct qcedev_stat *pstat; qcedev_areq->err = 0; podev = handle->cntl; if (podev->platform_support.ce_shared) { ret = qcedev_lock_ce(podev); if (ret) return ret; } spin_lock_irqsave(&podev->lock, flags); if (podev->active_command == NULL) { podev->active_command = qcedev_areq; if (qcedev_areq->op_type == QCEDEV_CRYPTO_OPER_CIPHER) ret = start_cipher_req(podev); else ret = start_sha_req(podev); } else { list_add_tail(&qcedev_areq->list, &podev->ready_commands); } if (ret != 0) podev->active_command = NULL; spin_unlock_irqrestore(&podev->lock, flags); if (ret == 0) wait_for_completion(&qcedev_areq->complete); if (podev->platform_support.ce_shared) ret = qcedev_unlock_ce(podev); if (ret) qcedev_areq->err = -EIO; pstat = &_qcedev_stat; if (qcedev_areq->op_type == QCEDEV_CRYPTO_OPER_CIPHER) { switch (qcedev_areq->cipher_op_req.op) { case QCEDEV_OPER_DEC: if (qcedev_areq->err) pstat->qcedev_dec_fail++; else pstat->qcedev_dec_success++; break; case QCEDEV_OPER_ENC: if (qcedev_areq->err) pstat->qcedev_enc_fail++; else pstat->qcedev_enc_success++; break; default: break; }; } else { if (qcedev_areq->err) pstat->qcedev_sha_fail++; else pstat->qcedev_sha_success++; } return qcedev_areq->err; } static int qcedev_sha_init(struct qcedev_async_req *areq, struct qcedev_handle *handle) { struct qcedev_sha_ctxt *sha_ctxt = &handle->sha_ctxt; memset(sha_ctxt, 0, sizeof(struct qcedev_sha_ctxt)); sha_ctxt->first_blk = 1; if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA1) || (areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC)) { memcpy(&sha_ctxt->digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); sha_ctxt->diglen = SHA1_DIGEST_SIZE; } else { if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA256) || (areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC)) { memcpy(&sha_ctxt->digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); sha_ctxt->diglen = SHA256_DIGEST_SIZE; } } return 0; } static int qcedev_sha_update_max_xfer(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err = 0; int i = 0; uint32_t total; uint8_t *user_src = NULL; uint8_t *k_src = NULL; uint8_t *k_buf_src = NULL; uint8_t *k_align_src = NULL; uint32_t sha_pad_len = 0; uint32_t trailing_buf_len = 0; uint32_t t_buf = handle->sha_ctxt.trailing_buf_len; uint32_t sha_block_size; total = qcedev_areq->sha_op_req.data_len + t_buf; if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA1) sha_block_size = SHA1_BLOCK_SIZE; else sha_block_size = SHA256_BLOCK_SIZE; if (total <= sha_block_size) { uint32_t len = qcedev_areq->sha_op_req.data_len; i = 0; k_src = &handle->sha_ctxt.trailing_buf[t_buf]; /* Copy data from user src(s) */ while (len > 0) { user_src = (void __user *)qcedev_areq->sha_op_req.data[i].vaddr; if (user_src && __copy_from_user(k_src, (void __user *)user_src, qcedev_areq->sha_op_req.data[i].len)) return -EFAULT; len -= qcedev_areq->sha_op_req.data[i].len; k_src += qcedev_areq->sha_op_req.data[i].len; i++; } handle->sha_ctxt.trailing_buf_len = total; return 0; } k_buf_src = kmalloc(total + CACHE_LINE_SIZE * 2, GFP_KERNEL); if (k_buf_src == NULL) { pr_err("%s: Can't Allocate memory: k_buf_src 0x%x\n", __func__, (uint32_t)k_buf_src); return -ENOMEM; } k_align_src = (uint8_t *) ALIGN(((unsigned int)k_buf_src), CACHE_LINE_SIZE); k_src = k_align_src; /* check for trailing buffer from previous updates and append it */ if (t_buf > 0) { memcpy(k_src, &handle->sha_ctxt.trailing_buf[0], t_buf); k_src += t_buf; } /* Copy data from user src(s) */ user_src = (void __user *)qcedev_areq->sha_op_req.data[0].vaddr; if (user_src && __copy_from_user(k_src, (void __user *)user_src, qcedev_areq->sha_op_req.data[0].len)) { kfree(k_buf_src); return -EFAULT; } k_src += qcedev_areq->sha_op_req.data[0].len; for (i = 1; i < qcedev_areq->sha_op_req.entries; i++) { user_src = (void __user *)qcedev_areq->sha_op_req.data[i].vaddr; if (user_src && __copy_from_user(k_src, (void __user *)user_src, qcedev_areq->sha_op_req.data[i].len)) { kfree(k_buf_src); return -EFAULT; } k_src += qcedev_areq->sha_op_req.data[i].len; } /* get new trailing buffer */ sha_pad_len = ALIGN(total, CE_SHA_BLOCK_SIZE) - total; trailing_buf_len = CE_SHA_BLOCK_SIZE - sha_pad_len; qcedev_areq->sha_req.sreq.src = sg_src; sg_set_buf(qcedev_areq->sha_req.sreq.src, k_align_src, total-trailing_buf_len); sg_mark_end(qcedev_areq->sha_req.sreq.src); qcedev_areq->sha_req.sreq.nbytes = total - trailing_buf_len; /* update sha_ctxt trailing buf content to new trailing buf */ if (trailing_buf_len > 0) { memset(&handle->sha_ctxt.trailing_buf[0], 0, 64); memcpy(&handle->sha_ctxt.trailing_buf[0], (k_src - trailing_buf_len), trailing_buf_len); } handle->sha_ctxt.trailing_buf_len = trailing_buf_len; err = submit_req(qcedev_areq, handle); handle->sha_ctxt.last_blk = 0; handle->sha_ctxt.first_blk = 0; kfree(k_buf_src); return err; } static int qcedev_sha_update(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err = 0; int i = 0; int j = 0; int k = 0; int num_entries = 0; uint32_t total = 0; /* verify address src(s) */ for (i = 0; i < qcedev_areq->sha_op_req.entries; i++) if (!access_ok(VERIFY_READ, (void __user *)qcedev_areq->sha_op_req.data[i].vaddr, qcedev_areq->sha_op_req.data[i].len)) return -EFAULT; if (qcedev_areq->sha_op_req.data_len > QCE_MAX_OPER_DATA) { struct qcedev_sha_op_req *saved_req; struct qcedev_sha_op_req req; struct qcedev_sha_op_req *sreq = &qcedev_areq->sha_op_req; /* save the original req structure */ saved_req = kmalloc(sizeof(struct qcedev_sha_op_req), GFP_KERNEL); if (saved_req == NULL) { pr_err("%s:Can't Allocate mem:saved_req 0x%x\n", __func__, (uint32_t)saved_req); return -ENOMEM; } memcpy(&req, sreq, sizeof(struct qcedev_sha_op_req)); memcpy(saved_req, sreq, sizeof(struct qcedev_sha_op_req)); i = 0; /* Address 32 KB at a time */ while ((i < req.entries) && (err == 0)) { if (sreq->data[i].len > QCE_MAX_OPER_DATA) { sreq->data[0].len = QCE_MAX_OPER_DATA; if (i > 0) { sreq->data[0].vaddr = sreq->data[i].vaddr; } sreq->data_len = QCE_MAX_OPER_DATA; sreq->entries = 1; err = qcedev_sha_update_max_xfer(qcedev_areq, handle, sg_src); sreq->data[i].len = req.data[i].len - QCE_MAX_OPER_DATA; sreq->data[i].vaddr = req.data[i].vaddr + QCE_MAX_OPER_DATA; req.data[i].vaddr = sreq->data[i].vaddr; req.data[i].len = sreq->data[i].len; } else { total = 0; for (j = i; j < req.entries; j++) { num_entries++; if ((total + sreq->data[j].len) >= QCE_MAX_OPER_DATA) { sreq->data[j].len = (QCE_MAX_OPER_DATA - total); total = QCE_MAX_OPER_DATA; break; } total += sreq->data[j].len; } sreq->data_len = total; if (i > 0) for (k = 0; k < num_entries; k++) { sreq->data[k].len = sreq->data[i+k].len; sreq->data[k].vaddr = sreq->data[i+k].vaddr; } sreq->entries = num_entries; i = j; err = qcedev_sha_update_max_xfer(qcedev_areq, handle, sg_src); num_entries = 0; sreq->data[i].vaddr = req.data[i].vaddr + sreq->data[i].len; sreq->data[i].len = req.data[i].len - sreq->data[i].len; req.data[i].vaddr = sreq->data[i].vaddr; req.data[i].len = sreq->data[i].len; if (sreq->data[i].len == 0) i++; } } /* end of while ((i < req.entries) && (err == 0)) */ /* Restore the original req structure */ for (i = 0; i < saved_req->entries; i++) { sreq->data[i].len = saved_req->data[i].len; sreq->data[i].vaddr = saved_req->data[i].vaddr; } sreq->entries = saved_req->entries; sreq->data_len = saved_req->data_len; kfree(saved_req); } else err = qcedev_sha_update_max_xfer(qcedev_areq, handle, sg_src); return err; } static int qcedev_sha_final(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle) { int err = 0; struct scatterlist sg_src; uint32_t total; uint8_t *k_buf_src = NULL; uint8_t *k_align_src = NULL; handle->sha_ctxt.last_blk = 1; total = handle->sha_ctxt.trailing_buf_len; if (total) { k_buf_src = kmalloc(total + CACHE_LINE_SIZE * 2, GFP_KERNEL); if (k_buf_src == NULL) { pr_err("%s: Can't Allocate memory: k_buf_src 0x%x\n", __func__, (uint32_t)k_buf_src); return -ENOMEM; } k_align_src = (uint8_t *) ALIGN(((unsigned int)k_buf_src), CACHE_LINE_SIZE); memcpy(k_align_src, &handle->sha_ctxt.trailing_buf[0], total); } qcedev_areq->sha_req.sreq.src = (struct scatterlist *) &sg_src; sg_set_buf(qcedev_areq->sha_req.sreq.src, k_align_src, total); sg_mark_end(qcedev_areq->sha_req.sreq.src); qcedev_areq->sha_req.sreq.nbytes = total; err = submit_req(qcedev_areq, handle); handle->sha_ctxt.first_blk = 0; handle->sha_ctxt.last_blk = 0; handle->sha_ctxt.auth_data[0] = 0; handle->sha_ctxt.auth_data[1] = 0; handle->sha_ctxt.trailing_buf_len = 0; memset(&handle->sha_ctxt.trailing_buf[0], 0, 64); kfree(k_buf_src); return err; } static int qcedev_hash_cmac(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err = 0; int i = 0; uint32_t total; uint8_t *user_src = NULL; uint8_t *k_src = NULL; uint8_t *k_buf_src = NULL; total = qcedev_areq->sha_op_req.data_len; /* verify address src(s) */ for (i = 0; i < qcedev_areq->sha_op_req.entries; i++) if (!access_ok(VERIFY_READ, (void __user *)qcedev_areq->sha_op_req.data[i].vaddr, qcedev_areq->sha_op_req.data[i].len)) return -EFAULT; /* Verify Source Address */ if (!access_ok(VERIFY_READ, (void __user *)qcedev_areq->sha_op_req.authkey, qcedev_areq->sha_op_req.authklen)) return -EFAULT; if (__copy_from_user(&handle->sha_ctxt.authkey[0], (void __user *)qcedev_areq->sha_op_req.authkey, qcedev_areq->sha_op_req.authklen)) return -EFAULT; k_buf_src = kmalloc(total, GFP_KERNEL); if (k_buf_src == NULL) { pr_err("%s: Can't Allocate memory: k_buf_src 0x%x\n", __func__, (uint32_t)k_buf_src); return -ENOMEM; } k_src = k_buf_src; /* Copy data from user src(s) */ user_src = (void __user *)qcedev_areq->sha_op_req.data[0].vaddr; for (i = 0; i < qcedev_areq->sha_op_req.entries; i++) { user_src = (void __user *)qcedev_areq->sha_op_req.data[i].vaddr; if (user_src && __copy_from_user(k_src, (void __user *)user_src, qcedev_areq->sha_op_req.data[i].len)) { kfree(k_buf_src); return -EFAULT; } k_src += qcedev_areq->sha_op_req.data[i].len; } qcedev_areq->sha_req.sreq.src = sg_src; sg_set_buf(qcedev_areq->sha_req.sreq.src, k_buf_src, total); sg_mark_end(qcedev_areq->sha_req.sreq.src); qcedev_areq->sha_req.sreq.nbytes = total; handle->sha_ctxt.diglen = qcedev_areq->sha_op_req.diglen; err = submit_req(qcedev_areq, handle); kfree(k_buf_src); return err; } static int qcedev_set_hmac_auth_key(struct qcedev_async_req *areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err = 0; if (areq->sha_op_req.authklen <= QCEDEV_MAX_KEY_SIZE) { qcedev_sha_init(areq, handle); /* Verify Source Address */ if (!access_ok(VERIFY_READ, (void __user *)areq->sha_op_req.authkey, areq->sha_op_req.authklen)) return -EFAULT; if (__copy_from_user(&handle->sha_ctxt.authkey[0], (void __user *)areq->sha_op_req.authkey, areq->sha_op_req.authklen)) return -EFAULT; } else { struct qcedev_async_req authkey_areq; uint8_t authkey[QCEDEV_MAX_SHA_BLOCK_SIZE]; init_completion(&authkey_areq.complete); authkey_areq.sha_op_req.entries = 1; authkey_areq.sha_op_req.data[0].vaddr = areq->sha_op_req.authkey; authkey_areq.sha_op_req.data[0].len = areq->sha_op_req.authklen; authkey_areq.sha_op_req.data_len = areq->sha_op_req.authklen; authkey_areq.sha_op_req.diglen = 0; authkey_areq.handle = handle; memset(&authkey_areq.sha_op_req.digest[0], 0, QCEDEV_MAX_SHA_DIGEST); if (areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) authkey_areq.sha_op_req.alg = QCEDEV_ALG_SHA1; if (areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC) authkey_areq.sha_op_req.alg = QCEDEV_ALG_SHA256; authkey_areq.op_type = QCEDEV_CRYPTO_OPER_SHA; qcedev_sha_init(&authkey_areq, handle); err = qcedev_sha_update(&authkey_areq, handle, sg_src); if (!err) err = qcedev_sha_final(&authkey_areq, handle); else return err; memcpy(&authkey[0], &handle->sha_ctxt.digest[0], handle->sha_ctxt.diglen); qcedev_sha_init(areq, handle); memcpy(&handle->sha_ctxt.authkey[0], &authkey[0], handle->sha_ctxt.diglen); } return err; } static int qcedev_hmac_get_ohash(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle) { int err = 0; struct scatterlist sg_src; uint8_t *k_src = NULL; uint32_t sha_block_size = 0; uint32_t sha_digest_size = 0; if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) { sha_digest_size = SHA1_DIGEST_SIZE; sha_block_size = SHA1_BLOCK_SIZE; } else { if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC) { sha_digest_size = SHA256_DIGEST_SIZE; sha_block_size = SHA256_BLOCK_SIZE; } } k_src = kmalloc(sha_block_size, GFP_KERNEL); if (k_src == NULL) { pr_err("%s: Can't Allocate memory: k_src 0x%x\n", __func__, (uint32_t)k_src); return -ENOMEM; } /* check for trailing buffer from previous updates and append it */ memcpy(k_src, &handle->sha_ctxt.trailing_buf[0], handle->sha_ctxt.trailing_buf_len); qcedev_areq->sha_req.sreq.src = (struct scatterlist *) &sg_src; sg_set_buf(qcedev_areq->sha_req.sreq.src, k_src, sha_block_size); sg_mark_end(qcedev_areq->sha_req.sreq.src); qcedev_areq->sha_req.sreq.nbytes = sha_block_size; memset(&handle->sha_ctxt.trailing_buf[0], 0, sha_block_size); memcpy(&handle->sha_ctxt.trailing_buf[0], &handle->sha_ctxt.digest[0], sha_digest_size); handle->sha_ctxt.trailing_buf_len = sha_digest_size; handle->sha_ctxt.first_blk = 1; handle->sha_ctxt.last_blk = 0; handle->sha_ctxt.auth_data[0] = 0; handle->sha_ctxt.auth_data[1] = 0; if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) { memcpy(&handle->sha_ctxt.digest[0], &_std_init_vector_sha1_uint8[0], SHA1_DIGEST_SIZE); handle->sha_ctxt.diglen = SHA1_DIGEST_SIZE; } if (qcedev_areq->sha_op_req.alg == QCEDEV_ALG_SHA256_HMAC) { memcpy(&handle->sha_ctxt.digest[0], &_std_init_vector_sha256_uint8[0], SHA256_DIGEST_SIZE); handle->sha_ctxt.diglen = SHA256_DIGEST_SIZE; } err = submit_req(qcedev_areq, handle); handle->sha_ctxt.last_blk = 0; handle->sha_ctxt.first_blk = 0; kfree(k_src); return err; } static int qcedev_hmac_update_iokey(struct qcedev_async_req *areq, struct qcedev_handle *handle, bool ikey) { int i; uint32_t constant; uint32_t sha_block_size; if (ikey) constant = 0x36; else constant = 0x5c; if (areq->sha_op_req.alg == QCEDEV_ALG_SHA1_HMAC) sha_block_size = SHA1_BLOCK_SIZE; else sha_block_size = SHA256_BLOCK_SIZE; memset(&handle->sha_ctxt.trailing_buf[0], 0, sha_block_size); for (i = 0; i < sha_block_size; i++) handle->sha_ctxt.trailing_buf[i] = (handle->sha_ctxt.authkey[i] ^ constant); handle->sha_ctxt.trailing_buf_len = sha_block_size; return 0; } static int qcedev_hmac_init(struct qcedev_async_req *areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { int err; struct qcedev_control *podev = handle->cntl; err = qcedev_set_hmac_auth_key(areq, handle, sg_src); if (err) return err; if (!podev->ce_support.sha_hmac) qcedev_hmac_update_iokey(areq, handle, true); return 0; } static int qcedev_hmac_final(struct qcedev_async_req *areq, struct qcedev_handle *handle) { int err; struct qcedev_control *podev = handle->cntl; err = qcedev_sha_final(areq, handle); if (podev->ce_support.sha_hmac) return err; qcedev_hmac_update_iokey(areq, handle, false); err = qcedev_hmac_get_ohash(areq, handle); if (err) return err; err = qcedev_sha_final(areq, handle); return err; } static int qcedev_hash_init(struct qcedev_async_req *areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA1) || (areq->sha_op_req.alg == QCEDEV_ALG_SHA256)) return qcedev_sha_init(areq, handle); else return qcedev_hmac_init(areq, handle, sg_src); } static int qcedev_hash_update(struct qcedev_async_req *qcedev_areq, struct qcedev_handle *handle, struct scatterlist *sg_src) { return qcedev_sha_update(qcedev_areq, handle, sg_src); } static int qcedev_hash_final(struct qcedev_async_req *areq, struct qcedev_handle *handle) { if ((areq->sha_op_req.alg == QCEDEV_ALG_SHA1) || (areq->sha_op_req.alg == QCEDEV_ALG_SHA256)) return qcedev_sha_final(areq, handle); else return qcedev_hmac_final(areq, handle); } static int qcedev_vbuf_ablk_cipher_max_xfer(struct qcedev_async_req *areq, int *di, struct qcedev_handle *handle, uint8_t *k_align_src) { int err = 0; int i = 0; int dst_i = *di; struct scatterlist sg_src; uint32_t byteoffset = 0; uint8_t *user_src = NULL; uint8_t *k_align_dst = k_align_src; struct qcedev_cipher_op_req *creq = &areq->cipher_op_req; if (areq->cipher_op_req.mode == QCEDEV_AES_MODE_CTR) byteoffset = areq->cipher_op_req.byteoffset; user_src = (void __user *)areq->cipher_op_req.vbuf.src[0].vaddr; if (user_src && __copy_from_user((k_align_src + byteoffset), (void __user *)user_src, areq->cipher_op_req.vbuf.src[0].len)) return -EFAULT; k_align_src += areq->cipher_op_req.vbuf.src[0].len; for (i = 1; i < areq->cipher_op_req.entries; i++) { user_src = (void __user *)areq->cipher_op_req.vbuf.src[i].vaddr; if (user_src && __copy_from_user(k_align_src, (void __user *)user_src, areq->cipher_op_req.vbuf.src[i].len)) { return -EFAULT; } k_align_src += areq->cipher_op_req.vbuf.src[i].len; } /* restore src beginning */ k_align_src = k_align_dst; areq->cipher_op_req.data_len += byteoffset; areq->cipher_req.creq.src = (struct scatterlist *) &sg_src; areq->cipher_req.creq.dst = (struct scatterlist *) &sg_src; /* In place encryption/decryption */ sg_set_buf(areq->cipher_req.creq.src, k_align_dst, areq->cipher_op_req.data_len); sg_mark_end(areq->cipher_req.creq.src); areq->cipher_req.creq.nbytes = areq->cipher_op_req.data_len; areq->cipher_req.creq.info = areq->cipher_op_req.iv; areq->cipher_op_req.entries = 1; err = submit_req(areq, handle); /* copy data to destination buffer*/ creq->data_len -= byteoffset; while (creq->data_len > 0) { if (creq->vbuf.dst[dst_i].len <= creq->data_len) { if (err == 0 && __copy_to_user( (void __user *)creq->vbuf.dst[dst_i].vaddr, (k_align_dst + byteoffset), creq->vbuf.dst[dst_i].len)) return -EFAULT; k_align_dst += creq->vbuf.dst[dst_i].len + byteoffset; creq->data_len -= creq->vbuf.dst[dst_i].len; dst_i++; } else { if (err == 0 && __copy_to_user( (void __user *)creq->vbuf.dst[dst_i].vaddr, (k_align_dst + byteoffset), creq->data_len)) return -EFAULT; k_align_dst += creq->data_len; creq->vbuf.dst[dst_i].len -= creq->data_len; creq->vbuf.dst[dst_i].vaddr += creq->data_len; creq->data_len = 0; } } *di = dst_i; return err; }; static int qcedev_vbuf_ablk_cipher(struct qcedev_async_req *areq, struct qcedev_handle *handle) { int err = 0; int di = 0; int i = 0; int j = 0; int k = 0; uint32_t byteoffset = 0; int num_entries = 0; uint32_t total = 0; uint32_t len; uint8_t *k_buf_src = NULL; uint8_t *k_align_src = NULL; uint32_t max_data_xfer; struct qcedev_cipher_op_req *saved_req; struct qcedev_cipher_op_req *creq = &areq->cipher_op_req; /* Verify Source Address's */ for (i = 0; i < areq->cipher_op_req.entries; i++) if (!access_ok(VERIFY_READ, (void __user *)areq->cipher_op_req.vbuf.src[i].vaddr, areq->cipher_op_req.vbuf.src[i].len)) return -EFAULT; /* Verify Destination Address's */ if (areq->cipher_op_req.in_place_op != 1) for (i = 0; i < areq->cipher_op_req.entries; i++) if (!access_ok(VERIFY_READ, (void __user *)areq->cipher_op_req.vbuf.dst[i].vaddr, areq->cipher_op_req.vbuf.dst[i].len)) return -EFAULT; if (areq->cipher_op_req.mode == QCEDEV_AES_MODE_CTR) byteoffset = areq->cipher_op_req.byteoffset; k_buf_src = kmalloc(QCE_MAX_OPER_DATA + CACHE_LINE_SIZE * 2, GFP_KERNEL); if (k_buf_src == NULL) { pr_err("%s: Can't Allocate memory: k_buf_src 0x%x\n", __func__, (uint32_t)k_buf_src); return -ENOMEM; } k_align_src = (uint8_t *) ALIGN(((unsigned int)k_buf_src), CACHE_LINE_SIZE); max_data_xfer = QCE_MAX_OPER_DATA - byteoffset; saved_req = kmalloc(sizeof(struct qcedev_cipher_op_req), GFP_KERNEL); if (saved_req == NULL) { pr_err("%s: Can't Allocate memory:saved_req 0x%x\n", __func__, (uint32_t)saved_req); kfree(k_buf_src); return -ENOMEM; } memcpy(saved_req, creq, sizeof(struct qcedev_cipher_op_req)); if (areq->cipher_op_req.data_len > max_data_xfer) { struct qcedev_cipher_op_req req; /* save the original req structure */ memcpy(&req, creq, sizeof(struct qcedev_cipher_op_req)); i = 0; /* Address 32 KB at a time */ while ((i < req.entries) && (err == 0)) { if (creq->vbuf.src[i].len > max_data_xfer) { creq->vbuf.src[0].len = max_data_xfer; if (i > 0) { creq->vbuf.src[0].vaddr = creq->vbuf.src[i].vaddr; } creq->data_len = max_data_xfer; creq->entries = 1; err = qcedev_vbuf_ablk_cipher_max_xfer(areq, &di, handle, k_align_src); if (err < 0) { kfree(k_buf_src); kfree(saved_req); return err; } creq->vbuf.src[i].len = req.vbuf.src[i].len - max_data_xfer; creq->vbuf.src[i].vaddr = req.vbuf.src[i].vaddr + max_data_xfer; req.vbuf.src[i].vaddr = creq->vbuf.src[i].vaddr; req.vbuf.src[i].len = creq->vbuf.src[i].len; } else { total = areq->cipher_op_req.byteoffset; for (j = i; j < req.entries; j++) { num_entries++; if ((total + creq->vbuf.src[j].len) >= max_data_xfer) { creq->vbuf.src[j].len = max_data_xfer - total; total = max_data_xfer; break; } total += creq->vbuf.src[j].len; } creq->data_len = total; if (i > 0) for (k = 0; k < num_entries; k++) { creq->vbuf.src[k].len = creq->vbuf.src[i+k].len; creq->vbuf.src[k].vaddr = creq->vbuf.src[i+k].vaddr; } creq->entries = num_entries; i = j; err = qcedev_vbuf_ablk_cipher_max_xfer(areq, &di, handle, k_align_src); if (err < 0) { kfree(k_buf_src); kfree(saved_req); return err; } num_entries = 0; areq->cipher_op_req.byteoffset = 0; creq->vbuf.src[i].vaddr = req.vbuf.src[i].vaddr + creq->vbuf.src[i].len; creq->vbuf.src[i].len = req.vbuf.src[i].len - creq->vbuf.src[i].len; req.vbuf.src[i].vaddr = creq->vbuf.src[i].vaddr; req.vbuf.src[i].len = creq->vbuf.src[i].len; if (creq->vbuf.src[i].len == 0) i++; } areq->cipher_op_req.byteoffset = 0; max_data_xfer = QCE_MAX_OPER_DATA; byteoffset = 0; } /* end of while ((i < req.entries) && (err == 0)) */ } else err = qcedev_vbuf_ablk_cipher_max_xfer(areq, &di, handle, k_align_src); /* Restore the original req structure */ for (i = 0; i < saved_req->entries; i++) { creq->vbuf.src[i].len = saved_req->vbuf.src[i].len; creq->vbuf.src[i].vaddr = saved_req->vbuf.src[i].vaddr; } for (len = 0, i = 0; len < saved_req->data_len; i++) { creq->vbuf.dst[i].len = saved_req->vbuf.dst[i].len; creq->vbuf.dst[i].vaddr = saved_req->vbuf.dst[i].vaddr; len += saved_req->vbuf.dst[i].len; } creq->entries = saved_req->entries; creq->data_len = saved_req->data_len; creq->byteoffset = saved_req->byteoffset; kfree(saved_req); kfree(k_buf_src); return err; } static int qcedev_check_cipher_key(struct qcedev_cipher_op_req *req, struct qcedev_control *podev) { if (req->encklen < 0) { pr_err("%s: Invalid key size: %d\n", __func__, req->encklen); return -EINVAL; } /* if intending to use HW key make sure key fields are set * correctly and HW key is indeed supported in target */ if (req->encklen == 0) { int i; for (i = 0; i < QCEDEV_MAX_KEY_SIZE; i++) { if (req->enckey[i]) { pr_err("%s: Invalid key: non-zero key input\n", __func__); goto error; } } if ((req->op != QCEDEV_OPER_ENC_NO_KEY) && (req->op != QCEDEV_OPER_DEC_NO_KEY)) if (!podev->platform_support.hw_key_support) { pr_err("%s: Invalid op %d\n", __func__, (uint32_t)req->op); goto error; } } else { if (req->encklen == QCEDEV_AES_KEY_192) { if (!podev->ce_support.aes_key_192) { pr_err("%s: AES-192 not supported\n", __func__); goto error; } } else { /* if not using HW key make sure key * length is valid */ if ((req->mode == QCEDEV_AES_MODE_XTS)) { if ((req->encklen != QCEDEV_AES_KEY_128*2) && (req->encklen != QCEDEV_AES_KEY_256*2)) { pr_err("%s: unsupported key size: %d\n", __func__, req->encklen); goto error; } } else { if ((req->encklen != QCEDEV_AES_KEY_128) && (req->encklen != QCEDEV_AES_KEY_256)) { pr_err("%s: unsupported key size %d\n", __func__, req->encklen); goto error; } } } } return 0; error: return -EINVAL; } static int qcedev_check_cipher_params(struct qcedev_cipher_op_req *req, struct qcedev_control *podev) { if (req->use_pmem) { pr_err("%s: Use of PMEM is not supported\n", __func__); goto error; } if ((req->entries == 0) || (req->data_len == 0) || (req->entries > QCEDEV_MAX_BUFFERS)) { pr_err("%s: Invalid cipher length/entries\n", __func__); goto error; } if ((req->alg >= QCEDEV_ALG_LAST) || (req->mode >= QCEDEV_AES_DES_MODE_LAST)) { pr_err("%s: Invalid algorithm %d\n", __func__, (uint32_t)req->alg); goto error; } if ((req->mode == QCEDEV_AES_MODE_XTS) && (!podev->ce_support.aes_xts)) { pr_err("%s: XTS algorithm is not supported\n", __func__); goto error; } if (req->alg == QCEDEV_ALG_AES) { if (qcedev_check_cipher_key(req, podev)) goto error; } /* if using a byteoffset, make sure it is CTR mode using vbuf */ if (req->byteoffset) { if (req->mode != QCEDEV_AES_MODE_CTR) { pr_err("%s: Operation on byte offset not supported\n", __func__); goto error; } if (req->byteoffset >= AES_CE_BLOCK_SIZE) { pr_err("%s: Invalid byte offset\n", __func__); goto error; } } /* Ensure zer ivlen for ECB mode */ if (req->ivlen > 0) { if ((req->mode == QCEDEV_AES_MODE_ECB) || (req->mode == QCEDEV_DES_MODE_ECB)) { pr_err("%s: Expecting a zero length IV\n", __func__); goto error; } } else { if ((req->mode != QCEDEV_AES_MODE_ECB) && (req->mode != QCEDEV_DES_MODE_ECB)) { pr_err("%s: Expecting a non-zero ength IV\n", __func__); goto error; } } return 0; error: return -EINVAL; } static int qcedev_check_sha_params(struct qcedev_sha_op_req *req, struct qcedev_control *podev) { if ((req->alg == QCEDEV_ALG_AES_CMAC) && (!podev->ce_support.cmac)) { pr_err("%s: CMAC not supported\n", __func__); goto sha_error; } if ((req->entries == 0) || (req->data_len == 0) || (req->entries > QCEDEV_MAX_BUFFERS)) { pr_err("%s: Invalid data length (%d)/ num entries (%d)\n", __func__, req->data_len, req->entries); goto sha_error; } if (req->alg >= QCEDEV_ALG_SHA_ALG_LAST) { pr_err("%s: Invalid algorithm (%d)\n", __func__, req->alg); goto sha_error; } if ((req->alg == QCEDEV_ALG_SHA1_HMAC) || (req->alg == QCEDEV_ALG_SHA1_HMAC)) { if (req->authkey == NULL) { pr_err("%s: Invalid authkey pointer\n", __func__); goto sha_error; } if (req->authklen <= 0) { pr_err("%s: Invalid authkey length (%d)\n", __func__, req->authklen); goto sha_error; } } if (req->alg == QCEDEV_ALG_AES_CMAC) { if ((req->authklen != QCEDEV_AES_KEY_128) && (req->authklen != QCEDEV_AES_KEY_256)) { pr_err("%s: unsupported key length\n", __func__); goto sha_error; } } return 0; sha_error: return -EINVAL; } static long qcedev_ioctl(struct file *file, unsigned cmd, unsigned long arg) { int err = 0; struct qcedev_handle *handle; struct qcedev_control *podev; struct qcedev_async_req qcedev_areq; struct qcedev_stat *pstat; handle = file->private_data; podev = handle->cntl; qcedev_areq.handle = handle; if (podev == NULL || podev->magic != QCEDEV_MAGIC) { pr_err("%s: invalid handle %p\n", __func__, podev); return -ENOENT; } /* Verify user arguments. */ if (_IOC_TYPE(cmd) != QCEDEV_IOC_MAGIC) return -ENOTTY; init_completion(&qcedev_areq.complete); pstat = &_qcedev_stat; switch (cmd) { case QCEDEV_IOCTL_LOCK_CE: if (podev->platform_support.ce_shared) err = qcedev_lock_ce(podev); else err = -ENOTTY; break; case QCEDEV_IOCTL_UNLOCK_CE: if (podev->platform_support.ce_shared) err = qcedev_unlock_ce(podev); else err = -ENOTTY; break; case QCEDEV_IOCTL_ENC_REQ: case QCEDEV_IOCTL_DEC_REQ: if (!access_ok(VERIFY_WRITE, (void __user *)arg, sizeof(struct qcedev_cipher_op_req))) return -EFAULT; if (__copy_from_user(&qcedev_areq.cipher_op_req, (void __user *)arg, sizeof(struct qcedev_cipher_op_req))) return -EFAULT; qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_CIPHER; if (qcedev_check_cipher_params(&qcedev_areq.cipher_op_req, podev)) return -EINVAL; err = qcedev_vbuf_ablk_cipher(&qcedev_areq, handle); if (err) return err; if (__copy_to_user((void __user *)arg, &qcedev_areq.cipher_op_req, sizeof(struct qcedev_cipher_op_req))) return -EFAULT; break; case QCEDEV_IOCTL_SHA_INIT_REQ: { struct scatterlist sg_src; if (!access_ok(VERIFY_WRITE, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) return -EFAULT; if (__copy_from_user(&qcedev_areq.sha_op_req, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) return -EFAULT; if (qcedev_check_sha_params(&qcedev_areq.sha_op_req, podev)) return -EINVAL; qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_SHA; err = qcedev_hash_init(&qcedev_areq, handle, &sg_src); if (err) return err; if (__copy_to_user((void __user *)arg, &qcedev_areq.sha_op_req, sizeof(struct qcedev_sha_op_req))) return -EFAULT; } break; case QCEDEV_IOCTL_GET_CMAC_REQ: if (!podev->ce_support.cmac) return -ENOTTY; case QCEDEV_IOCTL_SHA_UPDATE_REQ: { struct scatterlist sg_src; if (!access_ok(VERIFY_WRITE, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) return -EFAULT; if (__copy_from_user(&qcedev_areq.sha_op_req, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) return -EFAULT; if (qcedev_check_sha_params(&qcedev_areq.sha_op_req, podev)) return -EINVAL; qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_SHA; if (qcedev_areq.sha_op_req.alg == QCEDEV_ALG_AES_CMAC) { err = qcedev_hash_cmac(&qcedev_areq, handle, &sg_src); if (err) return err; } else { err = qcedev_hash_update(&qcedev_areq, handle, &sg_src); if (err) return err; } memcpy(&qcedev_areq.sha_op_req.digest[0], &handle->sha_ctxt.digest[0], handle->sha_ctxt.diglen); if (__copy_to_user((void __user *)arg, &qcedev_areq.sha_op_req, sizeof(struct qcedev_sha_op_req))) return -EFAULT; } break; case QCEDEV_IOCTL_SHA_FINAL_REQ: if (!access_ok(VERIFY_WRITE, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) return -EFAULT; if (__copy_from_user(&qcedev_areq.sha_op_req, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) return -EFAULT; if (qcedev_check_sha_params(&qcedev_areq.sha_op_req, podev)) return -EINVAL; qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_SHA; err = qcedev_hash_final(&qcedev_areq, handle); if (err) return err; qcedev_areq.sha_op_req.diglen = handle->sha_ctxt.diglen; memcpy(&qcedev_areq.sha_op_req.digest[0], &handle->sha_ctxt.digest[0], handle->sha_ctxt.diglen); if (__copy_to_user((void __user *)arg, &qcedev_areq.sha_op_req, sizeof(struct qcedev_sha_op_req))) return -EFAULT; break; case QCEDEV_IOCTL_GET_SHA_REQ: { struct scatterlist sg_src; if (!access_ok(VERIFY_WRITE, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) return -EFAULT; if (__copy_from_user(&qcedev_areq.sha_op_req, (void __user *)arg, sizeof(struct qcedev_sha_op_req))) return -EFAULT; if (qcedev_check_sha_params(&qcedev_areq.sha_op_req, podev)) return -EINVAL; qcedev_areq.op_type = QCEDEV_CRYPTO_OPER_SHA; qcedev_hash_init(&qcedev_areq, handle, &sg_src); err = qcedev_hash_update(&qcedev_areq, handle, &sg_src); if (err) return err; err = qcedev_hash_final(&qcedev_areq, handle); if (err) return err; qcedev_areq.sha_op_req.diglen = handle->sha_ctxt.diglen; memcpy(&qcedev_areq.sha_op_req.digest[0], &handle->sha_ctxt.digest[0], handle->sha_ctxt.diglen); if (__copy_to_user((void __user *)arg, &qcedev_areq.sha_op_req, sizeof(struct qcedev_sha_op_req))) return -EFAULT; } break; default: return -ENOTTY; } return err; } static int qcedev_probe(struct platform_device *pdev) { void *handle = NULL; int rc = 0; struct qcedev_control *podev; struct msm_ce_hw_support *platform_support; podev = &qce_dev[0]; podev->ce_lock_count = 0; podev->high_bw_req_count = 0; INIT_LIST_HEAD(&podev->ready_commands); podev->active_command = NULL; spin_lock_init(&podev->lock); tasklet_init(&podev->done_tasklet, req_done, (unsigned long)podev); /* open qce */ handle = qce_open(pdev, &rc); if (handle == NULL) { platform_set_drvdata(pdev, NULL); return rc; } podev->qce = handle; podev->pdev = pdev; platform_set_drvdata(pdev, podev); rc = misc_register(&podev->miscdevice); qce_hw_support(podev->qce, &podev->ce_support); if (podev->ce_support.bam) { podev->platform_support.ce_shared = podev->ce_support.is_shared; podev->platform_support.shared_ce_resource = 0; podev->platform_support.hw_key_support = podev->ce_support.hw_key; podev->platform_support.bus_scale_table = NULL; podev->platform_support.sha_hmac = 1; podev->platform_support.bus_scale_table = (struct msm_bus_scale_pdata *) msm_bus_cl_get_pdata(pdev); if (!podev->platform_support.bus_scale_table) pr_err("bus_scale_table is NULL\n"); } else { platform_support = (struct msm_ce_hw_support *)pdev->dev.platform_data; podev->platform_support.ce_shared = platform_support->ce_shared; podev->platform_support.shared_ce_resource = platform_support->shared_ce_resource; podev->platform_support.hw_key_support = platform_support->hw_key_support; podev->platform_support.bus_scale_table = platform_support->bus_scale_table; podev->platform_support.sha_hmac = platform_support->sha_hmac; } if (podev->platform_support.bus_scale_table != NULL) { podev->bus_scale_handle = msm_bus_scale_register_client( (struct msm_bus_scale_pdata *) podev->platform_support.bus_scale_table); if (!podev->bus_scale_handle) { pr_err("%s not able to get bus scale\n", __func__); rc = -ENOMEM; goto err; } } if (rc >= 0) return 0; else if (podev->platform_support.bus_scale_table != NULL) msm_bus_scale_unregister_client( podev->bus_scale_handle); err: if (handle) qce_close(handle); platform_set_drvdata(pdev, NULL); podev->qce = NULL; podev->pdev = NULL; return rc; }; static int qcedev_remove(struct platform_device *pdev) { struct qcedev_control *podev; podev = platform_get_drvdata(pdev); if (!podev) return 0; if (podev->qce) qce_close(podev->qce); if (podev->platform_support.bus_scale_table != NULL) msm_bus_scale_unregister_client(podev->bus_scale_handle); if (podev->miscdevice.minor != MISC_DYNAMIC_MINOR) misc_deregister(&podev->miscdevice); tasklet_kill(&podev->done_tasklet); return 0; }; static struct of_device_id qcedev_match[] = { { .compatible = "qcom,qcedev", }, {} }; static struct platform_driver qcedev_plat_driver = { .probe = qcedev_probe, .remove = qcedev_remove, .driver = { .name = "qce", .owner = THIS_MODULE, .of_match_table = qcedev_match, }, }; static int _disp_stats(int id) { struct qcedev_stat *pstat; int len = 0; pstat = &_qcedev_stat; len = snprintf(_debug_read_buf, DEBUG_MAX_RW_BUF - 1, "\nQualcomm QCE dev driver %d Statistics:\n", id + 1); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Encryption operation success : %d\n", pstat->qcedev_enc_success); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Encryption operation fail : %d\n", pstat->qcedev_enc_fail); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Decryption operation success : %d\n", pstat->qcedev_dec_success); len += snprintf(_debug_read_buf + len, DEBUG_MAX_RW_BUF - len - 1, " Encryption operation fail : %d\n", pstat->qcedev_dec_fail); return len; } static int _debug_stats_open(struct inode *inode, struct file *file) { file->private_data = inode->i_private; return 0; } static ssize_t _debug_stats_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { int rc = -EINVAL; int qcedev = *((int *) file->private_data); int len; len = _disp_stats(qcedev); rc = simple_read_from_buffer((void __user *) buf, len, ppos, (void *) _debug_read_buf, len); return rc; } static ssize_t _debug_stats_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { memset((char *)&_qcedev_stat, 0, sizeof(struct qcedev_stat)); return count; }; static const struct file_operations _debug_stats_ops = { .open = _debug_stats_open, .read = _debug_stats_read, .write = _debug_stats_write, }; static int _qcedev_debug_init(void) { int rc; char name[DEBUG_MAX_FNAME]; struct dentry *dent; _debug_dent = debugfs_create_dir("qcedev", NULL); if (IS_ERR(_debug_dent)) { pr_err("qcedev debugfs_create_dir fail, error %ld\n", PTR_ERR(_debug_dent)); return PTR_ERR(_debug_dent); } snprintf(name, DEBUG_MAX_FNAME-1, "stats-%d", 1); _debug_qcedev = 0; dent = debugfs_create_file(name, 0644, _debug_dent, &_debug_qcedev, &_debug_stats_ops); if (dent == NULL) { pr_err("qcedev debugfs_create_file fail, error %ld\n", PTR_ERR(dent)); rc = PTR_ERR(dent); goto err; } return 0; err: debugfs_remove_recursive(_debug_dent); return rc; } static int qcedev_init(void) { int rc; rc = _qcedev_debug_init(); if (rc) return rc; return platform_driver_register(&qcedev_plat_driver); } static void qcedev_exit(void) { debugfs_remove_recursive(_debug_dent); platform_driver_unregister(&qcedev_plat_driver); } MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Qualcomm DEV Crypto driver"); module_init(qcedev_init); module_exit(qcedev_exit);