#ifndef __ASM_SPINLOCK_H #define __ASM_SPINLOCK_H #if __LINUX_ARM_ARCH__ < 6 #error SMP not supported on pre-ARMv6 CPUs #endif #include extern int msm_krait_need_wfe_fixup; /* * sev and wfe are ARMv6K extensions. Uniprocessor ARMv6 may not have the K * extensions, so when running on UP, we have to patch these instructions away. */ #define ALT_SMP(smp, up) \ "9998: " smp "\n" \ " .pushsection \".alt.smp.init\", \"a\"\n" \ " .long 9998b\n" \ " " up "\n" \ " .popsection\n" #ifdef CONFIG_THUMB2_KERNEL #define SEV ALT_SMP("sev.w", "nop.w") /* * Both instructions given to the ALT_SMP macro need to be the same size, to * allow the SMP_ON_UP fixups to function correctly. Hence the explicit encoding * specifications. */ #define WFE() ALT_SMP( \ "wfe.w", \ "nop.w" \ ) #else #define SEV ALT_SMP("sev", "nop") #define WFE() ALT_SMP("wfe", "nop") #endif /* * The fixup involves disabling FIQs during execution of the WFE instruction. * This could potentially lead to deadlock if a thread is trying to acquire a * spinlock which is being released from an FIQ. This should not be a problem * because FIQs are handled by the secure environment and do not directly * manipulate spinlocks. */ #ifdef CONFIG_MSM_KRAIT_WFE_FIXUP #define WFE_SAFE(fixup, tmp) \ " mrs " tmp ", cpsr\n" \ " cmp " fixup ", #0\n" \ " wfeeq\n" \ " beq 10f\n" \ " cpsid f\n" \ " mrc p15, 7, " fixup ", c15, c0, 5\n" \ " bic " fixup ", " fixup ", #0x10000\n" \ " mcr p15, 7, " fixup ", c15, c0, 5\n" \ " isb\n" \ " wfe\n" \ " orr " fixup ", " fixup ", #0x10000\n" \ " mcr p15, 7, " fixup ", c15, c0, 5\n" \ " isb\n" \ "10: msr cpsr_cf, " tmp "\n" #else #define WFE_SAFE(fixup, tmp) " wfe\n" #endif static inline void dsb_sev(void) { #if __LINUX_ARM_ARCH__ >= 7 __asm__ __volatile__ ( "dsb\n" SEV ); #else __asm__ __volatile__ ( "mcr p15, 0, %0, c7, c10, 4\n" SEV : : "r" (0) ); #endif } #ifndef CONFIG_ARM_TICKET_LOCKS /* * ARMv6 Spin-locking. * * We exclusively read the old value. If it is zero, we may have * won the lock, so we try exclusively storing it. A memory barrier * is required after we get a lock, and before we release it, because * V6 CPUs are assumed to have weakly ordered memory. * * Unlocked value: 0 * Locked value: 1 */ #define arch_spin_is_locked(x) ((x)->lock != 0) #define arch_spin_unlock_wait(lock) \ do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0) #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock) static inline void arch_spin_lock(arch_spinlock_t *lock) { unsigned long tmp, fixup = msm_krait_need_wfe_fixup; __asm__ __volatile__( "1: ldrex %[tmp], [%[lock]]\n" " teq %[tmp], #0\n" " beq 2f\n" WFE_SAFE("%[fixup]", "%[tmp]") "2:\n" " strexeq %[tmp], %[bit0], [%[lock]]\n" " teqeq %[tmp], #0\n" " bne 1b" : [tmp] "=&r" (tmp), [fixup] "+r" (fixup) : [lock] "r" (&lock->lock), [bit0] "r" (1) : "cc"); smp_mb(); } static inline int arch_spin_trylock(arch_spinlock_t *lock) { unsigned long tmp; __asm__ __volatile__( " ldrex %0, [%1]\n" " teq %0, #0\n" " strexeq %0, %2, [%1]" : "=&r" (tmp) : "r" (&lock->lock), "r" (1) : "cc"); if (tmp == 0) { smp_mb(); return 1; } else { return 0; } } static inline void arch_spin_unlock(arch_spinlock_t *lock) { smp_mb(); __asm__ __volatile__( " str %1, [%0]\n" : : "r" (&lock->lock), "r" (0) : "cc"); dsb_sev(); } #else /* * ARM Ticket spin-locking * * Ticket locks are conceptually two parts, one indicating the current head of * the queue, and the other indicating the current tail. The lock is acquired * by atomically noting the tail and incrementing it by one (thus adding * ourself to the queue and noting our position), then waiting until the head * becomes equal to the the initial value of the tail. * * Unlocked value: 0 * Locked value: now_serving != next_ticket * * 31 17 16 15 14 0 * +----------------------------------------------------+ * | now_serving | next_ticket | * +----------------------------------------------------+ */ #define TICKET_SHIFT 16 #define TICKET_BITS 16 #define TICKET_MASK 0xFFFF #define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock) static inline void arch_spin_lock(arch_spinlock_t *lock) { unsigned long tmp, ticket, next_ticket; unsigned long fixup = msm_krait_need_wfe_fixup; /* Grab the next ticket and wait for it to be "served" */ __asm__ __volatile__( "1: ldrex %[ticket], [%[lockaddr]]\n" " uadd16 %[next_ticket], %[ticket], %[val1]\n" " strex %[tmp], %[next_ticket], [%[lockaddr]]\n" " teq %[tmp], #0\n" " bne 1b\n" " uxth %[ticket], %[ticket]\n" "2:\n" #ifdef CONFIG_CPU_32v6K " beq 3f\n" WFE_SAFE("%[fixup]", "%[tmp]") "3:\n" #endif " ldr %[tmp], [%[lockaddr]]\n" " cmp %[ticket], %[tmp], lsr #16\n" " bne 2b" : [ticket]"=&r" (ticket), [tmp]"=&r" (tmp), [next_ticket]"=&r" (next_ticket), [fixup]"+r" (fixup) : [lockaddr]"r" (&lock->lock), [val1]"r" (1) : "cc"); smp_mb(); } static inline int arch_spin_trylock(arch_spinlock_t *lock) { unsigned long tmp, ticket, next_ticket; /* Grab lock if now_serving == next_ticket and access is exclusive */ __asm__ __volatile__( " ldrex %[ticket], [%[lockaddr]]\n" " ror %[tmp], %[ticket], #16\n" " eors %[tmp], %[tmp], %[ticket]\n" " bne 1f\n" " uadd16 %[next_ticket], %[ticket], %[val1]\n" " strex %[tmp], %[next_ticket], [%[lockaddr]]\n" "1:" : [ticket]"=&r" (ticket), [tmp]"=&r" (tmp), [next_ticket]"=&r" (next_ticket) : [lockaddr]"r" (&lock->lock), [val1]"r" (1) : "cc"); if (!tmp) smp_mb(); return !tmp; } static inline void arch_spin_unlock(arch_spinlock_t *lock) { unsigned long ticket, tmp; smp_mb(); /* Bump now_serving by 1 */ __asm__ __volatile__( "1: ldrex %[ticket], [%[lockaddr]]\n" " uadd16 %[ticket], %[ticket], %[serving1]\n" " strex %[tmp], %[ticket], [%[lockaddr]]\n" " teq %[tmp], #0\n" " bne 1b" : [ticket]"=&r" (ticket), [tmp]"=&r" (tmp) : [lockaddr]"r" (&lock->lock), [serving1]"r" (0x00010000) : "cc"); dsb_sev(); } static inline void arch_spin_unlock_wait(arch_spinlock_t *lock) { unsigned long ticket, tmp, fixup = msm_krait_need_wfe_fixup; /* Wait for now_serving == next_ticket */ __asm__ __volatile__( #ifdef CONFIG_CPU_32v6K " cmpne %[lockaddr], %[lockaddr]\n" "1:\n" " beq 2f\n" WFE_SAFE("%[fixup]", "%[tmp]") "2:\n" #else "1:\n" #endif " ldr %[ticket], [%[lockaddr]]\n" " eor %[ticket], %[ticket], %[ticket], lsr #16\n" " uxth %[ticket], %[ticket]\n" " cmp %[ticket], #0\n" " bne 1b" : [ticket]"=&r" (ticket), [tmp]"=&r" (tmp), [fixup]"+r" (fixup) : [lockaddr]"r" (&lock->lock) : "cc"); } static inline int arch_spin_is_locked(arch_spinlock_t *lock) { unsigned long tmp = ACCESS_ONCE(lock->lock); return (((tmp >> TICKET_SHIFT) ^ tmp) & TICKET_MASK) != 0; } static inline int arch_spin_is_contended(arch_spinlock_t *lock) { unsigned long tmp = ACCESS_ONCE(lock->lock); return ((tmp - (tmp >> TICKET_SHIFT)) & TICKET_MASK) > 1; } #endif /* * RWLOCKS * * * Write locks are easy - we just set bit 31. When unlocking, we can * just write zero since the lock is exclusively held. */ static inline void arch_write_lock(arch_rwlock_t *rw) { unsigned long tmp, fixup = msm_krait_need_wfe_fixup; __asm__ __volatile__( "1: ldrex %[tmp], [%[lock]]\n" " teq %[tmp], #0\n" " beq 2f\n" WFE_SAFE("%[fixup]", "%[tmp]") "2:\n" " strexeq %[tmp], %[bit31], [%[lock]]\n" " teq %[tmp], #0\n" " bne 1b" : [tmp] "=&r" (tmp), [fixup] "+r" (fixup) : [lock] "r" (&rw->lock), [bit31] "r" (0x80000000) : "cc"); smp_mb(); } static inline int arch_write_trylock(arch_rwlock_t *rw) { unsigned long tmp; __asm__ __volatile__( "1: ldrex %0, [%1]\n" " teq %0, #0\n" " strexeq %0, %2, [%1]" : "=&r" (tmp) : "r" (&rw->lock), "r" (0x80000000) : "cc"); if (tmp == 0) { smp_mb(); return 1; } else { return 0; } } static inline void arch_write_unlock(arch_rwlock_t *rw) { smp_mb(); __asm__ __volatile__( "str %1, [%0]\n" : : "r" (&rw->lock), "r" (0) : "cc"); dsb_sev(); } /* write_can_lock - would write_trylock() succeed? */ #define arch_write_can_lock(x) ((x)->lock == 0) /* * Read locks are a bit more hairy: * - Exclusively load the lock value. * - Increment it. * - Store new lock value if positive, and we still own this location. * If the value is negative, we've already failed. * - If we failed to store the value, we want a negative result. * - If we failed, try again. * Unlocking is similarly hairy. We may have multiple read locks * currently active. However, we know we won't have any write * locks. */ static inline void arch_read_lock(arch_rwlock_t *rw) { unsigned long tmp, tmp2, fixup = msm_krait_need_wfe_fixup; __asm__ __volatile__( "1: ldrex %[tmp], [%[lock]]\n" " adds %[tmp], %[tmp], #1\n" " strexpl %[tmp2], %[tmp], [%[lock]]\n" " bpl 2f\n" WFE_SAFE("%[fixup]", "%[tmp]") "2:\n" " rsbpls %[tmp], %[tmp2], #0\n" " bmi 1b" : [tmp] "=&r" (tmp), [tmp2] "=&r" (tmp2), [fixup] "+r" (fixup) : [lock] "r" (&rw->lock) : "cc"); smp_mb(); } static inline void arch_read_unlock(arch_rwlock_t *rw) { unsigned long tmp, tmp2; smp_mb(); __asm__ __volatile__( "1: ldrex %0, [%2]\n" " sub %0, %0, #1\n" " strex %1, %0, [%2]\n" " teq %1, #0\n" " bne 1b" : "=&r" (tmp), "=&r" (tmp2) : "r" (&rw->lock) : "cc"); if (tmp == 0) dsb_sev(); } static inline int arch_read_trylock(arch_rwlock_t *rw) { unsigned long tmp, tmp2 = 1; __asm__ __volatile__( "1: ldrex %0, [%2]\n" " adds %0, %0, #1\n" " strexpl %1, %0, [%2]\n" : "=&r" (tmp), "+r" (tmp2) : "r" (&rw->lock) : "cc"); smp_mb(); return tmp2 == 0; } /* read_can_lock - would read_trylock() succeed? */ #define arch_read_can_lock(x) ((x)->lock < 0x80000000) #define arch_read_lock_flags(lock, flags) arch_read_lock(lock) #define arch_write_lock_flags(lock, flags) arch_write_lock(lock) #define arch_spin_relax(lock) cpu_relax() #define arch_read_relax(lock) cpu_relax() #define arch_write_relax(lock) cpu_relax() #endif /* __ASM_SPINLOCK_H */