/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Toplevel file. Relies on dhd_linux.c to send commands to the dongle. */ #undef pr_fmt #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dhd.h" #include "wl_cfg80211.h" #define BRCMF_ASSOC_PARAMS_FIXED_SIZE \ (sizeof(struct brcmf_assoc_params_le) - sizeof(u16)) static const u8 ether_bcast[ETH_ALEN] = {255, 255, 255, 255, 255, 255}; static u32 brcmf_dbg_level = WL_DBG_ERR; static void brcmf_set_drvdata(struct brcmf_cfg80211_dev *dev, void *data) { dev->driver_data = data; } static void *brcmf_get_drvdata(struct brcmf_cfg80211_dev *dev) { void *data = NULL; if (dev) data = dev->driver_data; return data; } static struct brcmf_cfg80211_priv *brcmf_priv_get(struct brcmf_cfg80211_dev *cfg_dev) { struct brcmf_cfg80211_iface *ci = brcmf_get_drvdata(cfg_dev); return ci->cfg_priv; } static bool check_sys_up(struct wiphy *wiphy) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); if (!test_bit(WL_STATUS_READY, &cfg_priv->status)) { WL_INFO("device is not ready : status (%d)\n", (int)cfg_priv->status); return false; } return true; } #define CHAN2G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _flags) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = 5000 + (5 * (_channel)), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2) #define RATETAB_ENT(_rateid, _flags) \ { \ .bitrate = RATE_TO_BASE100KBPS(_rateid), \ .hw_value = (_rateid), \ .flags = (_flags), \ } static struct ieee80211_rate __wl_rates[] = { RATETAB_ENT(BRCM_RATE_1M, 0), RATETAB_ENT(BRCM_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(BRCM_RATE_6M, 0), RATETAB_ENT(BRCM_RATE_9M, 0), RATETAB_ENT(BRCM_RATE_12M, 0), RATETAB_ENT(BRCM_RATE_18M, 0), RATETAB_ENT(BRCM_RATE_24M, 0), RATETAB_ENT(BRCM_RATE_36M, 0), RATETAB_ENT(BRCM_RATE_48M, 0), RATETAB_ENT(BRCM_RATE_54M, 0), }; #define wl_a_rates (__wl_rates + 4) #define wl_a_rates_size 8 #define wl_g_rates (__wl_rates + 0) #define wl_g_rates_size 12 static struct ieee80211_channel __wl_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static struct ieee80211_channel __wl_5ghz_a_channels[] = { CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(52, 0), CHAN5G(56, 0), CHAN5G(60, 0), CHAN5G(64, 0), CHAN5G(100, 0), CHAN5G(104, 0), CHAN5G(108, 0), CHAN5G(112, 0), CHAN5G(116, 0), CHAN5G(120, 0), CHAN5G(124, 0), CHAN5G(128, 0), CHAN5G(132, 0), CHAN5G(136, 0), CHAN5G(140, 0), CHAN5G(149, 0), CHAN5G(153, 0), CHAN5G(157, 0), CHAN5G(161, 0), CHAN5G(165, 0), CHAN5G(184, 0), CHAN5G(188, 0), CHAN5G(192, 0), CHAN5G(196, 0), CHAN5G(200, 0), CHAN5G(204, 0), CHAN5G(208, 0), CHAN5G(212, 0), CHAN5G(216, 0), }; static struct ieee80211_channel __wl_5ghz_n_channels[] = { CHAN5G(32, 0), CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(50, 0), CHAN5G(52, 0), CHAN5G(54, 0), CHAN5G(56, 0), CHAN5G(58, 0), CHAN5G(60, 0), CHAN5G(62, 0), CHAN5G(64, 0), CHAN5G(66, 0), CHAN5G(68, 0), CHAN5G(70, 0), CHAN5G(72, 0), CHAN5G(74, 0), CHAN5G(76, 0), CHAN5G(78, 0), CHAN5G(80, 0), CHAN5G(82, 0), CHAN5G(84, 0), CHAN5G(86, 0), CHAN5G(88, 0), CHAN5G(90, 0), CHAN5G(92, 0), CHAN5G(94, 0), CHAN5G(96, 0), CHAN5G(98, 0), CHAN5G(100, 0), CHAN5G(102, 0), CHAN5G(104, 0), CHAN5G(106, 0), CHAN5G(108, 0), CHAN5G(110, 0), CHAN5G(112, 0), CHAN5G(114, 0), CHAN5G(116, 0), CHAN5G(118, 0), CHAN5G(120, 0), CHAN5G(122, 0), CHAN5G(124, 0), CHAN5G(126, 0), CHAN5G(128, 0), CHAN5G(130, 0), CHAN5G(132, 0), CHAN5G(134, 0), CHAN5G(136, 0), CHAN5G(138, 0), CHAN5G(140, 0), CHAN5G(142, 0), CHAN5G(144, 0), CHAN5G(145, 0), CHAN5G(146, 0), CHAN5G(147, 0), CHAN5G(148, 0), CHAN5G(149, 0), CHAN5G(150, 0), CHAN5G(151, 0), CHAN5G(152, 0), CHAN5G(153, 0), CHAN5G(154, 0), CHAN5G(155, 0), CHAN5G(156, 0), CHAN5G(157, 0), CHAN5G(158, 0), CHAN5G(159, 0), CHAN5G(160, 0), CHAN5G(161, 0), CHAN5G(162, 0), CHAN5G(163, 0), CHAN5G(164, 0), CHAN5G(165, 0), CHAN5G(166, 0), CHAN5G(168, 0), CHAN5G(170, 0), CHAN5G(172, 0), CHAN5G(174, 0), CHAN5G(176, 0), CHAN5G(178, 0), CHAN5G(180, 0), CHAN5G(182, 0), CHAN5G(184, 0), CHAN5G(186, 0), CHAN5G(188, 0), CHAN5G(190, 0), CHAN5G(192, 0), CHAN5G(194, 0), CHAN5G(196, 0), CHAN5G(198, 0), CHAN5G(200, 0), CHAN5G(202, 0), CHAN5G(204, 0), CHAN5G(206, 0), CHAN5G(208, 0), CHAN5G(210, 0), CHAN5G(212, 0), CHAN5G(214, 0), CHAN5G(216, 0), CHAN5G(218, 0), CHAN5G(220, 0), CHAN5G(222, 0), CHAN5G(224, 0), CHAN5G(226, 0), CHAN5G(228, 0), }; static struct ieee80211_supported_band __wl_band_2ghz = { .band = IEEE80211_BAND_2GHZ, .channels = __wl_2ghz_channels, .n_channels = ARRAY_SIZE(__wl_2ghz_channels), .bitrates = wl_g_rates, .n_bitrates = wl_g_rates_size, }; static struct ieee80211_supported_band __wl_band_5ghz_a = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_a_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_a_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; static struct ieee80211_supported_band __wl_band_5ghz_n = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_n_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_n_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; static const u32 __wl_cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_AES_CMAC, }; /* tag_ID/length/value_buffer tuple */ struct brcmf_tlv { u8 id; u8 len; u8 data[1]; }; /* Quarter dBm units to mW * Table starts at QDBM_OFFSET, so the first entry is mW for qdBm=153 * Table is offset so the last entry is largest mW value that fits in * a u16. */ #define QDBM_OFFSET 153 /* Offset for first entry */ #define QDBM_TABLE_LEN 40 /* Table size */ /* Smallest mW value that will round up to the first table entry, QDBM_OFFSET. * Value is ( mW(QDBM_OFFSET - 1) + mW(QDBM_OFFSET) ) / 2 */ #define QDBM_TABLE_LOW_BOUND 6493 /* Low bound */ /* Largest mW value that will round down to the last table entry, * QDBM_OFFSET + QDBM_TABLE_LEN-1. * Value is ( mW(QDBM_OFFSET + QDBM_TABLE_LEN - 1) + * mW(QDBM_OFFSET + QDBM_TABLE_LEN) ) / 2. */ #define QDBM_TABLE_HIGH_BOUND 64938 /* High bound */ static const u16 nqdBm_to_mW_map[QDBM_TABLE_LEN] = { /* qdBm: +0 +1 +2 +3 +4 +5 +6 +7 */ /* 153: */ 6683, 7079, 7499, 7943, 8414, 8913, 9441, 10000, /* 161: */ 10593, 11220, 11885, 12589, 13335, 14125, 14962, 15849, /* 169: */ 16788, 17783, 18836, 19953, 21135, 22387, 23714, 25119, /* 177: */ 26607, 28184, 29854, 31623, 33497, 35481, 37584, 39811, /* 185: */ 42170, 44668, 47315, 50119, 53088, 56234, 59566, 63096 }; static u16 brcmf_qdbm_to_mw(u8 qdbm) { uint factor = 1; int idx = qdbm - QDBM_OFFSET; if (idx >= QDBM_TABLE_LEN) /* clamp to max u16 mW value */ return 0xFFFF; /* scale the qdBm index up to the range of the table 0-40 * where an offset of 40 qdBm equals a factor of 10 mW. */ while (idx < 0) { idx += 40; factor *= 10; } /* return the mW value scaled down to the correct factor of 10, * adding in factor/2 to get proper rounding. */ return (nqdBm_to_mW_map[idx] + factor / 2) / factor; } static u8 brcmf_mw_to_qdbm(u16 mw) { u8 qdbm; int offset; uint mw_uint = mw; uint boundary; /* handle boundary case */ if (mw_uint <= 1) return 0; offset = QDBM_OFFSET; /* move mw into the range of the table */ while (mw_uint < QDBM_TABLE_LOW_BOUND) { mw_uint *= 10; offset -= 40; } for (qdbm = 0; qdbm < QDBM_TABLE_LEN - 1; qdbm++) { boundary = nqdBm_to_mW_map[qdbm] + (nqdBm_to_mW_map[qdbm + 1] - nqdBm_to_mW_map[qdbm]) / 2; if (mw_uint < boundary) break; } qdbm += (u8) offset; return qdbm; } /* function for reading/writing a single u32 from/to the dongle */ static int brcmf_exec_dcmd_u32(struct net_device *ndev, u32 cmd, u32 *par) { int err; __le32 par_le = cpu_to_le32(*par); err = brcmf_exec_dcmd(ndev, cmd, &par_le, sizeof(__le32)); *par = le32_to_cpu(par_le); return err; } static void convert_key_from_CPU(struct brcmf_wsec_key *key, struct brcmf_wsec_key_le *key_le) { key_le->index = cpu_to_le32(key->index); key_le->len = cpu_to_le32(key->len); key_le->algo = cpu_to_le32(key->algo); key_le->flags = cpu_to_le32(key->flags); key_le->rxiv.hi = cpu_to_le32(key->rxiv.hi); key_le->rxiv.lo = cpu_to_le16(key->rxiv.lo); key_le->iv_initialized = cpu_to_le32(key->iv_initialized); memcpy(key_le->data, key->data, sizeof(key->data)); memcpy(key_le->ea, key->ea, sizeof(key->ea)); } static int send_key_to_dongle(struct net_device *ndev, struct brcmf_wsec_key *key) { int err; struct brcmf_wsec_key_le key_le; convert_key_from_CPU(key, &key_le); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_KEY, &key_le, sizeof(key_le)); if (err) WL_ERR("WLC_SET_KEY error (%d)\n", err); return err; } static s32 brcmf_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct wireless_dev *wdev; s32 infra = 0; s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; switch (type) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: WL_ERR("type (%d) : currently we do not support this type\n", type); return -EOPNOTSUPP; case NL80211_IFTYPE_ADHOC: cfg_priv->conf->mode = WL_MODE_IBSS; infra = 0; break; case NL80211_IFTYPE_STATION: cfg_priv->conf->mode = WL_MODE_BSS; infra = 1; break; default: err = -EINVAL; goto done; } err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_INFRA, &infra); if (err) { WL_ERR("WLC_SET_INFRA error (%d)\n", err); err = -EAGAIN; } else { wdev = ndev->ieee80211_ptr; wdev->iftype = type; } WL_INFO("IF Type = %s\n", (cfg_priv->conf->mode == WL_MODE_IBSS) ? "Adhoc" : "Infra"); done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_dev_intvar_set(struct net_device *ndev, s8 *name, s32 val) { s8 buf[BRCMF_DCMD_SMLEN]; u32 len; s32 err = 0; __le32 val_le; val_le = cpu_to_le32(val); len = brcmf_c_mkiovar(name, (char *)(&val_le), sizeof(val_le), buf, sizeof(buf)); BUG_ON(!len); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, buf, len); if (err) WL_ERR("error (%d)\n", err); return err; } static s32 brcmf_dev_intvar_get(struct net_device *ndev, s8 *name, s32 *retval) { union { s8 buf[BRCMF_DCMD_SMLEN]; __le32 val; } var; u32 len; u32 data_null; s32 err = 0; len = brcmf_c_mkiovar(name, (char *)(&data_null), 0, (char *)(&var), sizeof(var.buf)); BUG_ON(!len); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, &var, len); if (err) WL_ERR("error (%d)\n", err); *retval = le32_to_cpu(var.val); return err; } static void brcmf_set_mpc(struct net_device *ndev, int mpc) { s32 err = 0; struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); if (test_bit(WL_STATUS_READY, &cfg_priv->status)) { err = brcmf_dev_intvar_set(ndev, "mpc", mpc); if (err) { WL_ERR("fail to set mpc\n"); return; } WL_INFO("MPC : %d\n", mpc); } } static void wl_iscan_prep(struct brcmf_scan_params_le *params_le, struct brcmf_ssid *ssid) { memcpy(params_le->bssid, ether_bcast, ETH_ALEN); params_le->bss_type = DOT11_BSSTYPE_ANY; params_le->scan_type = 0; params_le->channel_num = 0; params_le->nprobes = cpu_to_le32(-1); params_le->active_time = cpu_to_le32(-1); params_le->passive_time = cpu_to_le32(-1); params_le->home_time = cpu_to_le32(-1); if (ssid && ssid->SSID_len) memcpy(¶ms_le->ssid_le, ssid, sizeof(struct brcmf_ssid)); } static s32 brcmf_dev_iovar_setbuf(struct net_device *ndev, s8 * iovar, void *param, s32 paramlen, void *bufptr, s32 buflen) { s32 iolen; iolen = brcmf_c_mkiovar(iovar, param, paramlen, bufptr, buflen); BUG_ON(!iolen); return brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, bufptr, iolen); } static s32 brcmf_dev_iovar_getbuf(struct net_device *ndev, s8 * iovar, void *param, s32 paramlen, void *bufptr, s32 buflen) { s32 iolen; iolen = brcmf_c_mkiovar(iovar, param, paramlen, bufptr, buflen); BUG_ON(!iolen); return brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, bufptr, buflen); } static s32 brcmf_run_iscan(struct brcmf_cfg80211_iscan_ctrl *iscan, struct brcmf_ssid *ssid, u16 action) { s32 params_size = BRCMF_SCAN_PARAMS_FIXED_SIZE + offsetof(struct brcmf_iscan_params_le, params_le); struct brcmf_iscan_params_le *params; s32 err = 0; if (ssid && ssid->SSID_len) params_size += sizeof(struct brcmf_ssid); params = kzalloc(params_size, GFP_KERNEL); if (!params) return -ENOMEM; BUG_ON(params_size >= BRCMF_DCMD_SMLEN); wl_iscan_prep(¶ms->params_le, ssid); params->version = cpu_to_le32(BRCMF_ISCAN_REQ_VERSION); params->action = cpu_to_le16(action); params->scan_duration = cpu_to_le16(0); err = brcmf_dev_iovar_setbuf(iscan->ndev, "iscan", params, params_size, iscan->dcmd_buf, BRCMF_DCMD_SMLEN); if (err) { if (err == -EBUSY) WL_INFO("system busy : iscan canceled\n"); else WL_ERR("error (%d)\n", err); } kfree(params); return err; } static s32 brcmf_do_iscan(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg_priv); struct net_device *ndev = cfg_to_ndev(cfg_priv); struct brcmf_ssid ssid; __le32 passive_scan; s32 err = 0; /* Broadcast scan by default */ memset(&ssid, 0, sizeof(ssid)); iscan->state = WL_ISCAN_STATE_SCANING; passive_scan = cfg_priv->active_scan ? 0 : cpu_to_le32(1); err = brcmf_exec_dcmd(cfg_to_ndev(cfg_priv), BRCMF_C_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan)); if (err) { WL_ERR("error (%d)\n", err); return err; } brcmf_set_mpc(ndev, 0); cfg_priv->iscan_kickstart = true; err = brcmf_run_iscan(iscan, &ssid, BRCMF_SCAN_ACTION_START); if (err) { brcmf_set_mpc(ndev, 1); cfg_priv->iscan_kickstart = false; return err; } mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 __brcmf_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request, struct cfg80211_ssid *this_ssid) { struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); struct cfg80211_ssid *ssids; struct brcmf_cfg80211_scan_req *sr = cfg_priv->scan_req_int; __le32 passive_scan; bool iscan_req; bool spec_scan; s32 err = 0; u32 SSID_len; if (test_bit(WL_STATUS_SCANNING, &cfg_priv->status)) { WL_ERR("Scanning already : status (%lu)\n", cfg_priv->status); return -EAGAIN; } if (test_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status)) { WL_ERR("Scanning being aborted : status (%lu)\n", cfg_priv->status); return -EAGAIN; } if (test_bit(WL_STATUS_CONNECTING, &cfg_priv->status)) { WL_ERR("Connecting : status (%lu)\n", cfg_priv->status); return -EAGAIN; } iscan_req = false; spec_scan = false; if (request) { /* scan bss */ ssids = request->ssids; if (cfg_priv->iscan_on && (!ssids || !ssids->ssid_len)) iscan_req = true; } else { /* scan in ibss */ /* we don't do iscan in ibss */ ssids = this_ssid; } cfg_priv->scan_request = request; set_bit(WL_STATUS_SCANNING, &cfg_priv->status); if (iscan_req) { err = brcmf_do_iscan(cfg_priv); if (!err) return err; else goto scan_out; } else { WL_SCAN("ssid \"%s\", ssid_len (%d)\n", ssids->ssid, ssids->ssid_len); memset(&sr->ssid_le, 0, sizeof(sr->ssid_le)); SSID_len = min_t(u8, sizeof(sr->ssid_le.SSID), ssids->ssid_len); sr->ssid_le.SSID_len = cpu_to_le32(0); if (SSID_len) { memcpy(sr->ssid_le.SSID, ssids->ssid, SSID_len); sr->ssid_le.SSID_len = cpu_to_le32(SSID_len); spec_scan = true; } else { WL_SCAN("Broadcast scan\n"); } passive_scan = cfg_priv->active_scan ? 0 : cpu_to_le32(1); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan)); if (err) { WL_ERR("WLC_SET_PASSIVE_SCAN error (%d)\n", err); goto scan_out; } brcmf_set_mpc(ndev, 0); err = brcmf_exec_dcmd(ndev, BRCMF_C_SCAN, &sr->ssid_le, sizeof(sr->ssid_le)); if (err) { if (err == -EBUSY) WL_INFO("system busy : scan for \"%s\" " "canceled\n", sr->ssid_le.SSID); else WL_ERR("WLC_SCAN error (%d)\n", err); brcmf_set_mpc(ndev, 1); goto scan_out; } } return 0; scan_out: clear_bit(WL_STATUS_SCANNING, &cfg_priv->status); cfg_priv->scan_request = NULL; return err; } static s32 brcmf_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request) { s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; err = __brcmf_cfg80211_scan(wiphy, ndev, request, NULL); if (err) WL_ERR("scan error (%d)\n", err); WL_TRACE("Exit\n"); return err; } static s32 brcmf_set_rts(struct net_device *ndev, u32 rts_threshold) { s32 err = 0; err = brcmf_dev_intvar_set(ndev, "rtsthresh", rts_threshold); if (err) WL_ERR("Error (%d)\n", err); return err; } static s32 brcmf_set_frag(struct net_device *ndev, u32 frag_threshold) { s32 err = 0; err = brcmf_dev_intvar_set(ndev, "fragthresh", frag_threshold); if (err) WL_ERR("Error (%d)\n", err); return err; } static s32 brcmf_set_retry(struct net_device *ndev, u32 retry, bool l) { s32 err = 0; u32 cmd = (l ? BRCM_SET_LRL : BRCM_SET_SRL); err = brcmf_exec_dcmd_u32(ndev, cmd, &retry); if (err) { WL_ERR("cmd (%d) , error (%d)\n", cmd, err); return err; } return err; } static s32 brcmf_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg_priv); s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; if (changed & WIPHY_PARAM_RTS_THRESHOLD && (cfg_priv->conf->rts_threshold != wiphy->rts_threshold)) { cfg_priv->conf->rts_threshold = wiphy->rts_threshold; err = brcmf_set_rts(ndev, cfg_priv->conf->rts_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_FRAG_THRESHOLD && (cfg_priv->conf->frag_threshold != wiphy->frag_threshold)) { cfg_priv->conf->frag_threshold = wiphy->frag_threshold; err = brcmf_set_frag(ndev, cfg_priv->conf->frag_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_LONG && (cfg_priv->conf->retry_long != wiphy->retry_long)) { cfg_priv->conf->retry_long = wiphy->retry_long; err = brcmf_set_retry(ndev, cfg_priv->conf->retry_long, true); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_SHORT && (cfg_priv->conf->retry_short != wiphy->retry_short)) { cfg_priv->conf->retry_short = wiphy->retry_short; err = brcmf_set_retry(ndev, cfg_priv->conf->retry_short, false); if (!err) goto done; } done: WL_TRACE("Exit\n"); return err; } static void *brcmf_read_prof(struct brcmf_cfg80211_priv *cfg_priv, s32 item) { switch (item) { case WL_PROF_SEC: return &cfg_priv->profile->sec; case WL_PROF_BSSID: return &cfg_priv->profile->bssid; case WL_PROF_SSID: return &cfg_priv->profile->ssid; } WL_ERR("invalid item (%d)\n", item); return NULL; } static s32 brcmf_update_prof(struct brcmf_cfg80211_priv *cfg_priv, const struct brcmf_event_msg *e, void *data, s32 item) { s32 err = 0; struct brcmf_ssid *ssid; switch (item) { case WL_PROF_SSID: ssid = (struct brcmf_ssid *) data; memset(cfg_priv->profile->ssid.SSID, 0, sizeof(cfg_priv->profile->ssid.SSID)); memcpy(cfg_priv->profile->ssid.SSID, ssid->SSID, ssid->SSID_len); cfg_priv->profile->ssid.SSID_len = ssid->SSID_len; break; case WL_PROF_BSSID: if (data) memcpy(cfg_priv->profile->bssid, data, ETH_ALEN); else memset(cfg_priv->profile->bssid, 0, ETH_ALEN); break; case WL_PROF_SEC: memcpy(&cfg_priv->profile->sec, data, sizeof(cfg_priv->profile->sec)); break; case WL_PROF_BEACONINT: cfg_priv->profile->beacon_interval = *(u16 *)data; break; case WL_PROF_DTIMPERIOD: cfg_priv->profile->dtim_period = *(u8 *)data; break; default: WL_ERR("unsupported item (%d)\n", item); err = -EOPNOTSUPP; break; } return err; } static void brcmf_init_prof(struct brcmf_cfg80211_profile *prof) { memset(prof, 0, sizeof(*prof)); } static void brcmf_ch_to_chanspec(int ch, struct brcmf_join_params *join_params, size_t *join_params_size) { u16 chanspec = 0; if (ch != 0) { if (ch <= CH_MAX_2G_CHANNEL) chanspec |= WL_CHANSPEC_BAND_2G; else chanspec |= WL_CHANSPEC_BAND_5G; chanspec |= WL_CHANSPEC_BW_20; chanspec |= WL_CHANSPEC_CTL_SB_NONE; *join_params_size += BRCMF_ASSOC_PARAMS_FIXED_SIZE + sizeof(u16); chanspec |= (ch & WL_CHANSPEC_CHAN_MASK); join_params->params_le.chanspec_list[0] = cpu_to_le16(chanspec); join_params->params_le.chanspec_num = cpu_to_le32(1); WL_CONN("join_params->params.chanspec_list[0]= %#X," "channel %d, chanspec %#X\n", chanspec, ch, chanspec); } } static void brcmf_link_down(struct brcmf_cfg80211_priv *cfg_priv) { struct net_device *ndev = NULL; s32 err = 0; WL_TRACE("Enter\n"); if (cfg_priv->link_up) { ndev = cfg_to_ndev(cfg_priv); WL_INFO("Call WLC_DISASSOC to stop excess roaming\n "); err = brcmf_exec_dcmd(ndev, BRCMF_C_DISASSOC, NULL, 0); if (err) WL_ERR("WLC_DISASSOC failed (%d)\n", err); cfg_priv->link_up = false; } WL_TRACE("Exit\n"); } static s32 brcmf_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_ibss_params *params) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct brcmf_join_params join_params; size_t join_params_size = 0; s32 err = 0; s32 wsec = 0; s32 bcnprd; struct brcmf_ssid ssid; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; if (params->ssid) WL_CONN("SSID: %s\n", params->ssid); else { WL_CONN("SSID: NULL, Not supported\n"); return -EOPNOTSUPP; } set_bit(WL_STATUS_CONNECTING, &cfg_priv->status); if (params->bssid) WL_CONN("BSSID: %02X %02X %02X %02X %02X %02X\n", params->bssid[0], params->bssid[1], params->bssid[2], params->bssid[3], params->bssid[4], params->bssid[5]); else WL_CONN("No BSSID specified\n"); if (params->channel) WL_CONN("channel: %d\n", params->channel->center_freq); else WL_CONN("no channel specified\n"); if (params->channel_fixed) WL_CONN("fixed channel required\n"); else WL_CONN("no fixed channel required\n"); if (params->ie && params->ie_len) WL_CONN("ie len: %d\n", params->ie_len); else WL_CONN("no ie specified\n"); if (params->beacon_interval) WL_CONN("beacon interval: %d\n", params->beacon_interval); else WL_CONN("no beacon interval specified\n"); if (params->basic_rates) WL_CONN("basic rates: %08X\n", params->basic_rates); else WL_CONN("no basic rates specified\n"); if (params->privacy) WL_CONN("privacy required\n"); else WL_CONN("no privacy required\n"); /* Configure Privacy for starter */ if (params->privacy) wsec |= WEP_ENABLED; err = brcmf_dev_intvar_set(ndev, "wsec", wsec); if (err) { WL_ERR("wsec failed (%d)\n", err); goto done; } /* Configure Beacon Interval for starter */ if (params->beacon_interval) bcnprd = params->beacon_interval; else bcnprd = 100; err = brcmf_exec_dcmd_u32(ndev, BRCM_SET_BCNPRD, &bcnprd); if (err) { WL_ERR("WLC_SET_BCNPRD failed (%d)\n", err); goto done; } /* Configure required join parameter */ memset(&join_params, 0, sizeof(struct brcmf_join_params)); /* SSID */ ssid.SSID_len = min_t(u32, params->ssid_len, 32); memcpy(ssid.SSID, params->ssid, ssid.SSID_len); memcpy(join_params.ssid_le.SSID, params->ssid, ssid.SSID_len); join_params.ssid_le.SSID_len = cpu_to_le32(ssid.SSID_len); join_params_size = sizeof(join_params.ssid_le); brcmf_update_prof(cfg_priv, NULL, &ssid, WL_PROF_SSID); /* BSSID */ if (params->bssid) { memcpy(join_params.params_le.bssid, params->bssid, ETH_ALEN); join_params_size = sizeof(join_params.ssid_le) + BRCMF_ASSOC_PARAMS_FIXED_SIZE; } else { memcpy(join_params.params_le.bssid, ether_bcast, ETH_ALEN); } brcmf_update_prof(cfg_priv, NULL, &join_params.params_le.bssid, WL_PROF_BSSID); /* Channel */ if (params->channel) { u32 target_channel; cfg_priv->channel = ieee80211_frequency_to_channel( params->channel->center_freq); if (params->channel_fixed) { /* adding chanspec */ brcmf_ch_to_chanspec(cfg_priv->channel, &join_params, &join_params_size); } /* set channel for starter */ target_channel = cfg_priv->channel; err = brcmf_exec_dcmd_u32(ndev, BRCM_SET_CHANNEL, &target_channel); if (err) { WL_ERR("WLC_SET_CHANNEL failed (%d)\n", err); goto done; } } else cfg_priv->channel = 0; cfg_priv->ibss_starter = false; err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SSID, &join_params, join_params_size); if (err) { WL_ERR("WLC_SET_SSID failed (%d)\n", err); goto done; } done: if (err) clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status); WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; brcmf_link_down(cfg_priv); WL_TRACE("Exit\n"); return err; } static s32 brcmf_set_wpa_version(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1) val = WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED; else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2) val = WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED; else val = WPA_AUTH_DISABLED; WL_CONN("setting wpa_auth to 0x%0x\n", val); err = brcmf_dev_intvar_set(ndev, "wpa_auth", val); if (err) { WL_ERR("set wpa_auth failed (%d)\n", err); return err; } sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC); sec->wpa_versions = sme->crypto.wpa_versions; return err; } static s32 brcmf_set_auth_type(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; switch (sme->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: val = 0; WL_CONN("open system\n"); break; case NL80211_AUTHTYPE_SHARED_KEY: val = 1; WL_CONN("shared key\n"); break; case NL80211_AUTHTYPE_AUTOMATIC: val = 2; WL_CONN("automatic\n"); break; case NL80211_AUTHTYPE_NETWORK_EAP: WL_CONN("network eap\n"); default: val = 2; WL_ERR("invalid auth type (%d)\n", sme->auth_type); break; } err = brcmf_dev_intvar_set(ndev, "auth", val); if (err) { WL_ERR("set auth failed (%d)\n", err); return err; } sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC); sec->auth_type = sme->auth_type; return err; } static s32 brcmf_set_set_cipher(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); struct brcmf_cfg80211_security *sec; s32 pval = 0; s32 gval = 0; s32 err = 0; if (sme->crypto.n_ciphers_pairwise) { switch (sme->crypto.ciphers_pairwise[0]) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: pval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: pval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: pval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: pval = AES_ENABLED; break; default: WL_ERR("invalid cipher pairwise (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } } if (sme->crypto.cipher_group) { switch (sme->crypto.cipher_group) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: gval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: gval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: gval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: gval = AES_ENABLED; break; default: WL_ERR("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } WL_CONN("pval (%d) gval (%d)\n", pval, gval); err = brcmf_dev_intvar_set(ndev, "wsec", pval | gval); if (err) { WL_ERR("error (%d)\n", err); return err; } sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC); sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0]; sec->cipher_group = sme->crypto.cipher_group; return err; } static s32 brcmf_set_key_mgmt(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); struct brcmf_cfg80211_security *sec; s32 val = 0; s32 err = 0; if (sme->crypto.n_akm_suites) { err = brcmf_dev_intvar_get(ndev, "wpa_auth", &val); if (err) { WL_ERR("could not get wpa_auth (%d)\n", err); return err; } if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA_AUTH_PSK; break; default: WL_ERR("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA2_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA2_AUTH_PSK; break; default: WL_ERR("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } WL_CONN("setting wpa_auth to %d\n", val); err = brcmf_dev_intvar_set(ndev, "wpa_auth", val); if (err) { WL_ERR("could not set wpa_auth (%d)\n", err); return err; } } sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC); sec->wpa_auth = sme->crypto.akm_suites[0]; return err; } static s32 brcmf_set_wep_sharedkey(struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); struct brcmf_cfg80211_security *sec; struct brcmf_wsec_key key; s32 val; s32 err = 0; WL_CONN("key len (%d)\n", sme->key_len); if (sme->key_len == 0) return 0; sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC); WL_CONN("wpa_versions 0x%x cipher_pairwise 0x%x\n", sec->wpa_versions, sec->cipher_pairwise); if (sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2)) return 0; if (sec->cipher_pairwise & (WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104)) { memset(&key, 0, sizeof(key)); key.len = (u32) sme->key_len; key.index = (u32) sme->key_idx; if (key.len > sizeof(key.data)) { WL_ERR("Too long key length (%u)\n", key.len); return -EINVAL; } memcpy(key.data, sme->key, key.len); key.flags = BRCMF_PRIMARY_KEY; switch (sec->cipher_pairwise) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; break; default: WL_ERR("Invalid algorithm (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } /* Set the new key/index */ WL_CONN("key length (%d) key index (%d) algo (%d)\n", key.len, key.index, key.algo); WL_CONN("key \"%s\"\n", key.data); err = send_key_to_dongle(ndev, &key); if (err) return err; if (sec->auth_type == NL80211_AUTHTYPE_OPEN_SYSTEM) { WL_CONN("set auth_type to shared key\n"); val = 1; /* shared key */ err = brcmf_dev_intvar_set(ndev, "auth", val); if (err) { WL_ERR("set auth failed (%d)\n", err); return err; } } } return err; } static s32 brcmf_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct ieee80211_channel *chan = sme->channel; struct brcmf_join_params join_params; size_t join_params_size; struct brcmf_ssid ssid; s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; if (!sme->ssid) { WL_ERR("Invalid ssid\n"); return -EOPNOTSUPP; } set_bit(WL_STATUS_CONNECTING, &cfg_priv->status); if (chan) { cfg_priv->channel = ieee80211_frequency_to_channel(chan->center_freq); WL_CONN("channel (%d), center_req (%d)\n", cfg_priv->channel, chan->center_freq); } else cfg_priv->channel = 0; WL_INFO("ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len); err = brcmf_set_wpa_version(ndev, sme); if (err) { WL_ERR("wl_set_wpa_version failed (%d)\n", err); goto done; } err = brcmf_set_auth_type(ndev, sme); if (err) { WL_ERR("wl_set_auth_type failed (%d)\n", err); goto done; } err = brcmf_set_set_cipher(ndev, sme); if (err) { WL_ERR("wl_set_set_cipher failed (%d)\n", err); goto done; } err = brcmf_set_key_mgmt(ndev, sme); if (err) { WL_ERR("wl_set_key_mgmt failed (%d)\n", err); goto done; } err = brcmf_set_wep_sharedkey(ndev, sme); if (err) { WL_ERR("brcmf_set_wep_sharedkey failed (%d)\n", err); goto done; } memset(&join_params, 0, sizeof(join_params)); join_params_size = sizeof(join_params.ssid_le); ssid.SSID_len = min_t(u32, sizeof(ssid.SSID), (u32)sme->ssid_len); memcpy(&join_params.ssid_le.SSID, sme->ssid, ssid.SSID_len); memcpy(&ssid.SSID, sme->ssid, ssid.SSID_len); join_params.ssid_le.SSID_len = cpu_to_le32(ssid.SSID_len); brcmf_update_prof(cfg_priv, NULL, &ssid, WL_PROF_SSID); memcpy(join_params.params_le.bssid, ether_bcast, ETH_ALEN); if (ssid.SSID_len < IEEE80211_MAX_SSID_LEN) WL_CONN("ssid \"%s\", len (%d)\n", ssid.SSID, ssid.SSID_len); brcmf_ch_to_chanspec(cfg_priv->channel, &join_params, &join_params_size); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SSID, &join_params, join_params_size); if (err) WL_ERR("WLC_SET_SSID failed (%d)\n", err); done: if (err) clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status); WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *ndev, u16 reason_code) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct brcmf_scb_val_le scbval; s32 err = 0; WL_TRACE("Enter. Reason code = %d\n", reason_code); if (!check_sys_up(wiphy)) return -EIO; clear_bit(WL_STATUS_CONNECTED, &cfg_priv->status); memcpy(&scbval.ea, brcmf_read_prof(cfg_priv, WL_PROF_BSSID), ETH_ALEN); scbval.val = cpu_to_le32(reason_code); err = brcmf_exec_dcmd(ndev, BRCMF_C_DISASSOC, &scbval, sizeof(struct brcmf_scb_val_le)); if (err) WL_ERR("error (%d)\n", err); cfg_priv->link_up = false; WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_set_tx_power(struct wiphy *wiphy, enum nl80211_tx_power_setting type, s32 mbm) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg_priv); u16 txpwrmw; s32 err = 0; s32 disable = 0; s32 dbm = MBM_TO_DBM(mbm); WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; switch (type) { case NL80211_TX_POWER_AUTOMATIC: break; case NL80211_TX_POWER_LIMITED: case NL80211_TX_POWER_FIXED: if (dbm < 0) { WL_ERR("TX_POWER_FIXED - dbm is negative\n"); err = -EINVAL; goto done; } break; } /* Make sure radio is off or on as far as software is concerned */ disable = WL_RADIO_SW_DISABLE << 16; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_RADIO, &disable); if (err) WL_ERR("WLC_SET_RADIO error (%d)\n", err); if (dbm > 0xffff) txpwrmw = 0xffff; else txpwrmw = (u16) dbm; err = brcmf_dev_intvar_set(ndev, "qtxpower", (s32) (brcmf_mw_to_qdbm(txpwrmw))); if (err) WL_ERR("qtxpower error (%d)\n", err); cfg_priv->conf->tx_power = dbm; done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg_priv); s32 txpwrdbm; u8 result; s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; err = brcmf_dev_intvar_get(ndev, "qtxpower", &txpwrdbm); if (err) { WL_ERR("error (%d)\n", err); goto done; } result = (u8) (txpwrdbm & ~WL_TXPWR_OVERRIDE); *dbm = (s32) brcmf_qdbm_to_mw(result); done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool unicast, bool multicast) { u32 index; u32 wsec; s32 err = 0; WL_TRACE("Enter\n"); WL_CONN("key index (%d)\n", key_idx); if (!check_sys_up(wiphy)) return -EIO; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_GET_WSEC, &wsec); if (err) { WL_ERR("WLC_GET_WSEC error (%d)\n", err); goto done; } if (wsec & WEP_ENABLED) { /* Just select a new current key */ index = key_idx; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_KEY_PRIMARY, &index); if (err) WL_ERR("error (%d)\n", err); } done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_add_keyext(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, const u8 *mac_addr, struct key_params *params) { struct brcmf_wsec_key key; struct brcmf_wsec_key_le key_le; s32 err = 0; memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; /* Instead of bcast for ea address for default wep keys, driver needs it to be Null */ if (!is_multicast_ether_addr(mac_addr)) memcpy((char *)&key.ea, (void *)mac_addr, ETH_ALEN); key.len = (u32) params->key_len; /* check for key index change */ if (key.len == 0) { /* key delete */ err = send_key_to_dongle(ndev, &key); if (err) return err; } else { if (key.len > sizeof(key.data)) { WL_ERR("Invalid key length (%d)\n", key.len); return -EINVAL; } WL_CONN("Setting the key index %d\n", key.index); memcpy(key.data, params->key, key.len); if (params->cipher == WLAN_CIPHER_SUITE_TKIP) { u8 keybuf[8]; memcpy(keybuf, &key.data[24], sizeof(keybuf)); memcpy(&key.data[24], &key.data[16], sizeof(keybuf)); memcpy(&key.data[16], keybuf, sizeof(keybuf)); } /* if IW_ENCODE_EXT_RX_SEQ_VALID set */ if (params->seq && params->seq_len == 6) { /* rx iv */ u8 *ivptr; ivptr = (u8 *) params->seq; key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) | (ivptr[3] << 8) | ivptr[2]; key.rxiv.lo = (ivptr[1] << 8) | ivptr[0]; key.iv_initialized = true; } switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; WL_CONN("WLAN_CIPHER_SUITE_WEP40\n"); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; WL_CONN("WLAN_CIPHER_SUITE_WEP104\n"); break; case WLAN_CIPHER_SUITE_TKIP: key.algo = CRYPTO_ALGO_TKIP; WL_CONN("WLAN_CIPHER_SUITE_TKIP\n"); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n"); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_CCMP\n"); break; default: WL_ERR("Invalid cipher (0x%x)\n", params->cipher); return -EINVAL; } convert_key_from_CPU(&key, &key_le); brcmf_netdev_wait_pend8021x(ndev); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_KEY, &key_le, sizeof(key_le)); if (err) { WL_ERR("WLC_SET_KEY error (%d)\n", err); return err; } } return err; } static s32 brcmf_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct brcmf_wsec_key key; s32 val; s32 wsec; s32 err = 0; u8 keybuf[8]; WL_TRACE("Enter\n"); WL_CONN("key index (%d)\n", key_idx); if (!check_sys_up(wiphy)) return -EIO; if (mac_addr) { WL_TRACE("Exit"); return brcmf_add_keyext(wiphy, ndev, key_idx, mac_addr, params); } memset(&key, 0, sizeof(key)); key.len = (u32) params->key_len; key.index = (u32) key_idx; if (key.len > sizeof(key.data)) { WL_ERR("Too long key length (%u)\n", key.len); err = -EINVAL; goto done; } memcpy(key.data, params->key, key.len); key.flags = BRCMF_PRIMARY_KEY; switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; WL_CONN("WLAN_CIPHER_SUITE_WEP40\n"); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; WL_CONN("WLAN_CIPHER_SUITE_WEP104\n"); break; case WLAN_CIPHER_SUITE_TKIP: memcpy(keybuf, &key.data[24], sizeof(keybuf)); memcpy(&key.data[24], &key.data[16], sizeof(keybuf)); memcpy(&key.data[16], keybuf, sizeof(keybuf)); key.algo = CRYPTO_ALGO_TKIP; WL_CONN("WLAN_CIPHER_SUITE_TKIP\n"); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n"); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_CCMP\n"); break; default: WL_ERR("Invalid cipher (0x%x)\n", params->cipher); err = -EINVAL; goto done; } err = send_key_to_dongle(ndev, &key); /* Set the new key/index */ if (err) goto done; val = WEP_ENABLED; err = brcmf_dev_intvar_get(ndev, "wsec", &wsec); if (err) { WL_ERR("get wsec error (%d)\n", err); goto done; } wsec &= ~(WEP_ENABLED); wsec |= val; err = brcmf_dev_intvar_set(ndev, "wsec", wsec); if (err) { WL_ERR("set wsec error (%d)\n", err); goto done; } val = 1; /* assume shared key. otherwise 0 */ err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_AUTH, &val); if (err) WL_ERR("WLC_SET_AUTH error (%d)\n", err); done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool pairwise, const u8 *mac_addr) { struct brcmf_wsec_key key; s32 err = 0; s32 val; s32 wsec; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; key.flags = BRCMF_PRIMARY_KEY; key.algo = CRYPTO_ALGO_OFF; WL_CONN("key index (%d)\n", key_idx); /* Set the new key/index */ err = send_key_to_dongle(ndev, &key); if (err) { if (err == -EINVAL) { if (key.index >= DOT11_MAX_DEFAULT_KEYS) /* we ignore this key index in this case */ WL_ERR("invalid key index (%d)\n", key_idx); } /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } val = 0; err = brcmf_dev_intvar_get(ndev, "wsec", &wsec); if (err) { WL_ERR("get wsec error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } wsec &= ~(WEP_ENABLED); wsec |= val; err = brcmf_dev_intvar_set(ndev, "wsec", wsec); if (err) { WL_ERR("set wsec error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } val = 0; /* assume open key. otherwise 1 */ err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_AUTH, &val); if (err) { WL_ERR("WLC_SET_AUTH error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; } done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params * params)) { struct key_params params; struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct brcmf_cfg80211_security *sec; s32 wsec; s32 err = 0; WL_TRACE("Enter\n"); WL_CONN("key index (%d)\n", key_idx); if (!check_sys_up(wiphy)) return -EIO; memset(¶ms, 0, sizeof(params)); err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_GET_WSEC, &wsec); if (err) { WL_ERR("WLC_GET_WSEC error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } switch (wsec) { case WEP_ENABLED: sec = brcmf_read_prof(cfg_priv, WL_PROF_SEC); if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) { params.cipher = WLAN_CIPHER_SUITE_WEP40; WL_CONN("WLAN_CIPHER_SUITE_WEP40\n"); } else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) { params.cipher = WLAN_CIPHER_SUITE_WEP104; WL_CONN("WLAN_CIPHER_SUITE_WEP104\n"); } break; case TKIP_ENABLED: params.cipher = WLAN_CIPHER_SUITE_TKIP; WL_CONN("WLAN_CIPHER_SUITE_TKIP\n"); break; case AES_ENABLED: params.cipher = WLAN_CIPHER_SUITE_AES_CMAC; WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n"); break; default: WL_ERR("Invalid algo (0x%x)\n", wsec); err = -EINVAL; goto done; } callback(cookie, ¶ms); done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_idx) { WL_INFO("Not supported\n"); return -EOPNOTSUPP; } static s32 brcmf_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev, u8 *mac, struct station_info *sinfo) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct brcmf_scb_val_le scb_val; int rssi; s32 rate; s32 err = 0; u8 *bssid = brcmf_read_prof(cfg_priv, WL_PROF_BSSID); WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; if (memcmp(mac, bssid, ETH_ALEN)) { WL_ERR("Wrong Mac address cfg_mac-%X:%X:%X:%X:%X:%X" "wl_bssid-%X:%X:%X:%X:%X:%X\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]); err = -ENOENT; goto done; } /* Report the current tx rate */ err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_GET_RATE, &rate); if (err) { WL_ERR("Could not get rate (%d)\n", err); } else { sinfo->filled |= STATION_INFO_TX_BITRATE; sinfo->txrate.legacy = rate * 5; WL_CONN("Rate %d Mbps\n", rate / 2); } if (test_bit(WL_STATUS_CONNECTED, &cfg_priv->status)) { scb_val.val = cpu_to_le32(0); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_RSSI, &scb_val, sizeof(struct brcmf_scb_val_le)); if (err) WL_ERR("Could not get rssi (%d)\n", err); rssi = le32_to_cpu(scb_val.val); sinfo->filled |= STATION_INFO_SIGNAL; sinfo->signal = rssi; WL_CONN("RSSI %d dBm\n", rssi); } done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *ndev, bool enabled, s32 timeout) { s32 pm; s32 err = 0; struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); WL_TRACE("Enter\n"); /* * Powersave enable/disable request is coming from the * cfg80211 even before the interface is up. In that * scenario, driver will be storing the power save * preference in cfg_priv struct to apply this to * FW later while initializing the dongle */ cfg_priv->pwr_save = enabled; if (!test_bit(WL_STATUS_READY, &cfg_priv->status)) { WL_INFO("Device is not ready," "storing the value in cfg_priv struct\n"); goto done; } pm = enabled ? PM_FAST : PM_OFF; WL_INFO("power save %s\n", (pm ? "enabled" : "disabled")); err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_PM, &pm); if (err) { if (err == -ENODEV) WL_ERR("net_device is not ready yet\n"); else WL_ERR("error (%d)\n", err); } done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_set_bitrate_mask(struct wiphy *wiphy, struct net_device *ndev, const u8 *addr, const struct cfg80211_bitrate_mask *mask) { struct brcm_rateset_le rateset_le; s32 rate; s32 val; s32 err_bg; s32 err_a; u32 legacy; s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; /* addr param is always NULL. ignore it */ /* Get current rateset */ err = brcmf_exec_dcmd(ndev, BRCM_GET_CURR_RATESET, &rateset_le, sizeof(rateset_le)); if (err) { WL_ERR("could not get current rateset (%d)\n", err); goto done; } legacy = ffs(mask->control[IEEE80211_BAND_2GHZ].legacy & 0xFFFF); if (!legacy) legacy = ffs(mask->control[IEEE80211_BAND_5GHZ].legacy & 0xFFFF); val = wl_g_rates[legacy - 1].bitrate * 100000; if (val < le32_to_cpu(rateset_le.count)) /* Select rate by rateset index */ rate = rateset_le.rates[val] & 0x7f; else /* Specified rate in bps */ rate = val / 500000; WL_CONN("rate %d mbps\n", rate / 2); /* * * Set rate override, * Since the is a/b/g-blind, both a/bg_rate are enforced. */ err_bg = brcmf_dev_intvar_set(ndev, "bg_rate", rate); err_a = brcmf_dev_intvar_set(ndev, "a_rate", rate); if (err_bg && err_a) { WL_ERR("could not set fixed rate (%d) (%d)\n", err_bg, err_a); err = err_bg | err_a; } done: WL_TRACE("Exit\n"); return err; } static s32 brcmf_inform_single_bss(struct brcmf_cfg80211_priv *cfg_priv, struct brcmf_bss_info_le *bi) { struct wiphy *wiphy = cfg_to_wiphy(cfg_priv); struct ieee80211_channel *notify_channel; struct cfg80211_bss *bss; struct ieee80211_supported_band *band; s32 err = 0; u16 channel; u32 freq; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; s32 notify_signal; if (le32_to_cpu(bi->length) > WL_BSS_INFO_MAX) { WL_ERR("Bss info is larger than buffer. Discarding\n"); return 0; } channel = bi->ctl_ch ? bi->ctl_ch : CHSPEC_CHANNEL(le16_to_cpu(bi->chanspec)); if (channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(channel, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le32_to_cpu(bi->ie_length); notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100; WL_CONN("bssid: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n", bi->BSSID[0], bi->BSSID[1], bi->BSSID[2], bi->BSSID[3], bi->BSSID[4], bi->BSSID[5]); WL_CONN("Channel: %d(%d)\n", channel, freq); WL_CONN("Capability: %X\n", notify_capability); WL_CONN("Beacon interval: %d\n", notify_interval); WL_CONN("Signal: %d\n", notify_signal); bss = cfg80211_inform_bss(wiphy, notify_channel, (const u8 *)bi->BSSID, 0, notify_capability, notify_interval, notify_ie, notify_ielen, notify_signal, GFP_KERNEL); if (!bss) return -ENOMEM; cfg80211_put_bss(bss); return err; } static struct brcmf_bss_info_le * next_bss_le(struct brcmf_scan_results *list, struct brcmf_bss_info_le *bss) { if (bss == NULL) return list->bss_info_le; return (struct brcmf_bss_info_le *)((unsigned long)bss + le32_to_cpu(bss->length)); } static s32 brcmf_inform_bss(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_scan_results *bss_list; struct brcmf_bss_info_le *bi = NULL; /* must be initialized */ s32 err = 0; int i; bss_list = cfg_priv->bss_list; if (bss_list->version != BRCMF_BSS_INFO_VERSION) { WL_ERR("Version %d != WL_BSS_INFO_VERSION\n", bss_list->version); return -EOPNOTSUPP; } WL_SCAN("scanned AP count (%d)\n", bss_list->count); for (i = 0; i < bss_list->count && i < WL_AP_MAX; i++) { bi = next_bss_le(bss_list, bi); err = brcmf_inform_single_bss(cfg_priv, bi); if (err) break; } return err; } static s32 wl_inform_ibss(struct brcmf_cfg80211_priv *cfg_priv, struct net_device *ndev, const u8 *bssid) { struct wiphy *wiphy = cfg_to_wiphy(cfg_priv); struct ieee80211_channel *notify_channel; struct brcmf_bss_info_le *bi = NULL; struct ieee80211_supported_band *band; struct cfg80211_bss *bss; u8 *buf = NULL; s32 err = 0; u16 channel; u32 freq; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; s32 notify_signal; WL_TRACE("Enter\n"); buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (buf == NULL) { err = -ENOMEM; goto CleanUp; } *(__le32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_BSS_INFO, buf, WL_BSS_INFO_MAX); if (err) { WL_ERR("WLC_GET_BSS_INFO failed: %d\n", err); goto CleanUp; } bi = (struct brcmf_bss_info_le *)(buf + 4); channel = bi->ctl_ch ? bi->ctl_ch : CHSPEC_CHANNEL(le16_to_cpu(bi->chanspec)); if (channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(channel, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le32_to_cpu(bi->ie_length); notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100; WL_CONN("channel: %d(%d)\n", channel, freq); WL_CONN("capability: %X\n", notify_capability); WL_CONN("beacon interval: %d\n", notify_interval); WL_CONN("signal: %d\n", notify_signal); bss = cfg80211_inform_bss(wiphy, notify_channel, bssid, 0, notify_capability, notify_interval, notify_ie, notify_ielen, notify_signal, GFP_KERNEL); if (!bss) { err = -ENOMEM; goto CleanUp; } cfg80211_put_bss(bss); CleanUp: kfree(buf); WL_TRACE("Exit\n"); return err; } static bool brcmf_is_ibssmode(struct brcmf_cfg80211_priv *cfg_priv) { return cfg_priv->conf->mode == WL_MODE_IBSS; } /* * Traverse a string of 1-byte tag/1-byte length/variable-length value * triples, returning a pointer to the substring whose first element * matches tag */ static struct brcmf_tlv *brcmf_parse_tlvs(void *buf, int buflen, uint key) { struct brcmf_tlv *elt; int totlen; elt = (struct brcmf_tlv *) buf; totlen = buflen; /* find tagged parameter */ while (totlen >= 2) { int len = elt->len; /* validate remaining totlen */ if ((elt->id == key) && (totlen >= (len + 2))) return elt; elt = (struct brcmf_tlv *) ((u8 *) elt + (len + 2)); totlen -= (len + 2); } return NULL; } static s32 brcmf_update_bss_info(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_bss_info_le *bi; struct brcmf_ssid *ssid; struct brcmf_tlv *tim; u16 beacon_interval; u8 dtim_period; size_t ie_len; u8 *ie; s32 err = 0; WL_TRACE("Enter\n"); if (brcmf_is_ibssmode(cfg_priv)) return err; ssid = (struct brcmf_ssid *)brcmf_read_prof(cfg_priv, WL_PROF_SSID); *(__le32 *)cfg_priv->extra_buf = cpu_to_le32(WL_EXTRA_BUF_MAX); err = brcmf_exec_dcmd(cfg_to_ndev(cfg_priv), BRCMF_C_GET_BSS_INFO, cfg_priv->extra_buf, WL_EXTRA_BUF_MAX); if (err) { WL_ERR("Could not get bss info %d\n", err); goto update_bss_info_out; } bi = (struct brcmf_bss_info_le *)(cfg_priv->extra_buf + 4); err = brcmf_inform_single_bss(cfg_priv, bi); if (err) goto update_bss_info_out; ie = ((u8 *)bi) + le16_to_cpu(bi->ie_offset); ie_len = le32_to_cpu(bi->ie_length); beacon_interval = le16_to_cpu(bi->beacon_period); tim = brcmf_parse_tlvs(ie, ie_len, WLAN_EID_TIM); if (tim) dtim_period = tim->data[1]; else { /* * active scan was done so we could not get dtim * information out of probe response. * so we speficially query dtim information to dongle. */ u32 var; err = brcmf_dev_intvar_get(cfg_to_ndev(cfg_priv), "dtim_assoc", &var); if (err) { WL_ERR("wl dtim_assoc failed (%d)\n", err); goto update_bss_info_out; } dtim_period = (u8)var; } brcmf_update_prof(cfg_priv, NULL, &beacon_interval, WL_PROF_BEACONINT); brcmf_update_prof(cfg_priv, NULL, &dtim_period, WL_PROF_DTIMPERIOD); update_bss_info_out: WL_TRACE("Exit"); return err; } static void brcmf_term_iscan(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg_priv); struct brcmf_ssid ssid; if (cfg_priv->iscan_on) { iscan->state = WL_ISCAN_STATE_IDLE; if (iscan->timer_on) { del_timer_sync(&iscan->timer); iscan->timer_on = 0; } cancel_work_sync(&iscan->work); /* Abort iscan running in FW */ memset(&ssid, 0, sizeof(ssid)); brcmf_run_iscan(iscan, &ssid, WL_SCAN_ACTION_ABORT); } } static void brcmf_notify_iscan_complete(struct brcmf_cfg80211_iscan_ctrl *iscan, bool aborted) { struct brcmf_cfg80211_priv *cfg_priv = iscan_to_cfg(iscan); struct net_device *ndev = cfg_to_ndev(cfg_priv); if (!test_and_clear_bit(WL_STATUS_SCANNING, &cfg_priv->status)) { WL_ERR("Scan complete while device not scanning\n"); return; } if (cfg_priv->scan_request) { WL_SCAN("ISCAN Completed scan: %s\n", aborted ? "Aborted" : "Done"); cfg80211_scan_done(cfg_priv->scan_request, aborted); brcmf_set_mpc(ndev, 1); cfg_priv->scan_request = NULL; } cfg_priv->iscan_kickstart = false; } static s32 brcmf_wakeup_iscan(struct brcmf_cfg80211_iscan_ctrl *iscan) { if (iscan->state != WL_ISCAN_STATE_IDLE) { WL_SCAN("wake up iscan\n"); schedule_work(&iscan->work); return 0; } return -EIO; } static s32 brcmf_get_iscan_results(struct brcmf_cfg80211_iscan_ctrl *iscan, u32 *status, struct brcmf_scan_results **bss_list) { struct brcmf_iscan_results list; struct brcmf_scan_results *results; struct brcmf_scan_results_le *results_le; struct brcmf_iscan_results *list_buf; s32 err = 0; memset(iscan->scan_buf, 0, WL_ISCAN_BUF_MAX); list_buf = (struct brcmf_iscan_results *)iscan->scan_buf; results = &list_buf->results; results_le = &list_buf->results_le; results->buflen = BRCMF_ISCAN_RESULTS_FIXED_SIZE; results->version = 0; results->count = 0; memset(&list, 0, sizeof(list)); list.results_le.buflen = cpu_to_le32(WL_ISCAN_BUF_MAX); err = brcmf_dev_iovar_getbuf(iscan->ndev, "iscanresults", &list, BRCMF_ISCAN_RESULTS_FIXED_SIZE, iscan->scan_buf, WL_ISCAN_BUF_MAX); if (err) { WL_ERR("error (%d)\n", err); return err; } results->buflen = le32_to_cpu(results_le->buflen); results->version = le32_to_cpu(results_le->version); results->count = le32_to_cpu(results_le->count); WL_SCAN("results->count = %d\n", results_le->count); WL_SCAN("results->buflen = %d\n", results_le->buflen); *status = le32_to_cpu(list_buf->status_le); WL_SCAN("status = %d\n", *status); *bss_list = results; return err; } static s32 brcmf_iscan_done(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_priv->iscan; s32 err = 0; iscan->state = WL_ISCAN_STATE_IDLE; brcmf_inform_bss(cfg_priv); brcmf_notify_iscan_complete(iscan, false); return err; } static s32 brcmf_iscan_pending(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_priv->iscan; s32 err = 0; /* Reschedule the timer */ mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 brcmf_iscan_inprogress(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_priv->iscan; s32 err = 0; brcmf_inform_bss(cfg_priv); brcmf_run_iscan(iscan, NULL, BRCMF_SCAN_ACTION_CONTINUE); /* Reschedule the timer */ mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 brcmf_iscan_aborted(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_priv->iscan; s32 err = 0; iscan->state = WL_ISCAN_STATE_IDLE; brcmf_notify_iscan_complete(iscan, true); return err; } static void brcmf_cfg80211_iscan_handler(struct work_struct *work) { struct brcmf_cfg80211_iscan_ctrl *iscan = container_of(work, struct brcmf_cfg80211_iscan_ctrl, work); struct brcmf_cfg80211_priv *cfg_priv = iscan_to_cfg(iscan); struct brcmf_cfg80211_iscan_eloop *el = &iscan->el; u32 status = BRCMF_SCAN_RESULTS_PARTIAL; if (iscan->timer_on) { del_timer_sync(&iscan->timer); iscan->timer_on = 0; } if (brcmf_get_iscan_results(iscan, &status, &cfg_priv->bss_list)) { status = BRCMF_SCAN_RESULTS_ABORTED; WL_ERR("Abort iscan\n"); } el->handler[status](cfg_priv); } static void brcmf_iscan_timer(unsigned long data) { struct brcmf_cfg80211_iscan_ctrl *iscan = (struct brcmf_cfg80211_iscan_ctrl *)data; if (iscan) { iscan->timer_on = 0; WL_SCAN("timer expired\n"); brcmf_wakeup_iscan(iscan); } } static s32 brcmf_invoke_iscan(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg_priv); if (cfg_priv->iscan_on) { iscan->state = WL_ISCAN_STATE_IDLE; INIT_WORK(&iscan->work, brcmf_cfg80211_iscan_handler); } return 0; } static void brcmf_init_iscan_eloop(struct brcmf_cfg80211_iscan_eloop *el) { memset(el, 0, sizeof(*el)); el->handler[BRCMF_SCAN_RESULTS_SUCCESS] = brcmf_iscan_done; el->handler[BRCMF_SCAN_RESULTS_PARTIAL] = brcmf_iscan_inprogress; el->handler[BRCMF_SCAN_RESULTS_PENDING] = brcmf_iscan_pending; el->handler[BRCMF_SCAN_RESULTS_ABORTED] = brcmf_iscan_aborted; el->handler[BRCMF_SCAN_RESULTS_NO_MEM] = brcmf_iscan_aborted; } static s32 brcmf_init_iscan(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_iscan_ctrl *iscan = cfg_to_iscan(cfg_priv); int err = 0; if (cfg_priv->iscan_on) { iscan->ndev = cfg_to_ndev(cfg_priv); brcmf_init_iscan_eloop(&iscan->el); iscan->timer_ms = WL_ISCAN_TIMER_INTERVAL_MS; init_timer(&iscan->timer); iscan->timer.data = (unsigned long) iscan; iscan->timer.function = brcmf_iscan_timer; err = brcmf_invoke_iscan(cfg_priv); if (!err) iscan->data = cfg_priv; } return err; } static __always_inline void brcmf_delay(u32 ms) { if (ms < 1000 / HZ) { cond_resched(); mdelay(ms); } else { msleep(ms); } } static s32 brcmf_cfg80211_resume(struct wiphy *wiphy) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); /* * Check for WL_STATUS_READY before any function call which * could result is bus access. Don't block the resume for * any driver error conditions */ WL_TRACE("Enter\n"); if (test_bit(WL_STATUS_READY, &cfg_priv->status)) brcmf_invoke_iscan(wiphy_to_cfg(wiphy)); WL_TRACE("Exit\n"); return 0; } static s32 brcmf_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wow) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct net_device *ndev = cfg_to_ndev(cfg_priv); WL_TRACE("Enter\n"); /* * Check for WL_STATUS_READY before any function call which * could result is bus access. Don't block the suspend for * any driver error conditions */ /* * While going to suspend if associated with AP disassociate * from AP to save power while system is in suspended state */ if ((test_bit(WL_STATUS_CONNECTED, &cfg_priv->status) || test_bit(WL_STATUS_CONNECTING, &cfg_priv->status)) && test_bit(WL_STATUS_READY, &cfg_priv->status)) { WL_INFO("Disassociating from AP" " while entering suspend state\n"); brcmf_link_down(cfg_priv); /* * Make sure WPA_Supplicant receives all the event * generated due to DISASSOC call to the fw to keep * the state fw and WPA_Supplicant state consistent */ brcmf_delay(500); } set_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status); if (test_bit(WL_STATUS_READY, &cfg_priv->status)) brcmf_term_iscan(cfg_priv); if (cfg_priv->scan_request) { /* Indidate scan abort to cfg80211 layer */ WL_INFO("Terminating scan in progress\n"); cfg80211_scan_done(cfg_priv->scan_request, true); cfg_priv->scan_request = NULL; } clear_bit(WL_STATUS_SCANNING, &cfg_priv->status); clear_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status); /* Turn off watchdog timer */ if (test_bit(WL_STATUS_READY, &cfg_priv->status)) { WL_INFO("Enable MPC\n"); brcmf_set_mpc(ndev, 1); } WL_TRACE("Exit\n"); return 0; } static __used s32 brcmf_dev_bufvar_set(struct net_device *ndev, s8 *name, s8 *buf, s32 len) { struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); u32 buflen; buflen = brcmf_c_mkiovar(name, buf, len, cfg_priv->dcmd_buf, WL_DCMD_LEN_MAX); BUG_ON(!buflen); return brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, cfg_priv->dcmd_buf, buflen); } static s32 brcmf_dev_bufvar_get(struct net_device *ndev, s8 *name, s8 *buf, s32 buf_len) { struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); u32 len; s32 err = 0; len = brcmf_c_mkiovar(name, NULL, 0, cfg_priv->dcmd_buf, WL_DCMD_LEN_MAX); BUG_ON(!len); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, cfg_priv->dcmd_buf, WL_DCMD_LEN_MAX); if (err) { WL_ERR("error (%d)\n", err); return err; } memcpy(buf, cfg_priv->dcmd_buf, buf_len); return err; } static __used s32 brcmf_update_pmklist(struct net_device *ndev, struct brcmf_cfg80211_pmk_list *pmk_list, s32 err) { int i, j; int pmkid_len; pmkid_len = le32_to_cpu(pmk_list->pmkids.npmkid); WL_CONN("No of elements %d\n", pmkid_len); for (i = 0; i < pmkid_len; i++) { WL_CONN("PMKID[%d]: %pM =\n", i, &pmk_list->pmkids.pmkid[i].BSSID); for (j = 0; j < WLAN_PMKID_LEN; j++) WL_CONN("%02x\n", pmk_list->pmkids.pmkid[i].PMKID[j]); } if (!err) brcmf_dev_bufvar_set(ndev, "pmkid_info", (char *)pmk_list, sizeof(*pmk_list)); return err; } static s32 brcmf_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_pmksa *pmksa) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct pmkid_list *pmkids = &cfg_priv->pmk_list->pmkids; s32 err = 0; int i; int pmkid_len; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; pmkid_len = le32_to_cpu(pmkids->npmkid); for (i = 0; i < pmkid_len; i++) if (!memcmp(pmksa->bssid, pmkids->pmkid[i].BSSID, ETH_ALEN)) break; if (i < WL_NUM_PMKIDS_MAX) { memcpy(pmkids->pmkid[i].BSSID, pmksa->bssid, ETH_ALEN); memcpy(pmkids->pmkid[i].PMKID, pmksa->pmkid, WLAN_PMKID_LEN); if (i == pmkid_len) { pmkid_len++; pmkids->npmkid = cpu_to_le32(pmkid_len); } } else err = -EINVAL; WL_CONN("set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n", pmkids->pmkid[pmkid_len].BSSID); for (i = 0; i < WLAN_PMKID_LEN; i++) WL_CONN("%02x\n", pmkids->pmkid[pmkid_len].PMKID[i]); err = brcmf_update_pmklist(ndev, cfg_priv->pmk_list, err); WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_pmksa *pmksa) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); struct pmkid_list pmkid; s32 err = 0; int i, pmkid_len; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETH_ALEN); memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WLAN_PMKID_LEN); WL_CONN("del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n", &pmkid.pmkid[0].BSSID); for (i = 0; i < WLAN_PMKID_LEN; i++) WL_CONN("%02x\n", pmkid.pmkid[0].PMKID[i]); pmkid_len = le32_to_cpu(cfg_priv->pmk_list->pmkids.npmkid); for (i = 0; i < pmkid_len; i++) if (!memcmp (pmksa->bssid, &cfg_priv->pmk_list->pmkids.pmkid[i].BSSID, ETH_ALEN)) break; if ((pmkid_len > 0) && (i < pmkid_len)) { memset(&cfg_priv->pmk_list->pmkids.pmkid[i], 0, sizeof(struct pmkid)); for (; i < (pmkid_len - 1); i++) { memcpy(&cfg_priv->pmk_list->pmkids.pmkid[i].BSSID, &cfg_priv->pmk_list->pmkids.pmkid[i + 1].BSSID, ETH_ALEN); memcpy(&cfg_priv->pmk_list->pmkids.pmkid[i].PMKID, &cfg_priv->pmk_list->pmkids.pmkid[i + 1].PMKID, WLAN_PMKID_LEN); } cfg_priv->pmk_list->pmkids.npmkid = cpu_to_le32(pmkid_len - 1); } else err = -EINVAL; err = brcmf_update_pmklist(ndev, cfg_priv->pmk_list, err); WL_TRACE("Exit\n"); return err; } static s32 brcmf_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *ndev) { struct brcmf_cfg80211_priv *cfg_priv = wiphy_to_cfg(wiphy); s32 err = 0; WL_TRACE("Enter\n"); if (!check_sys_up(wiphy)) return -EIO; memset(cfg_priv->pmk_list, 0, sizeof(*cfg_priv->pmk_list)); err = brcmf_update_pmklist(ndev, cfg_priv->pmk_list, err); WL_TRACE("Exit\n"); return err; } static struct cfg80211_ops wl_cfg80211_ops = { .change_virtual_intf = brcmf_cfg80211_change_iface, .scan = brcmf_cfg80211_scan, .set_wiphy_params = brcmf_cfg80211_set_wiphy_params, .join_ibss = brcmf_cfg80211_join_ibss, .leave_ibss = brcmf_cfg80211_leave_ibss, .get_station = brcmf_cfg80211_get_station, .set_tx_power = brcmf_cfg80211_set_tx_power, .get_tx_power = brcmf_cfg80211_get_tx_power, .add_key = brcmf_cfg80211_add_key, .del_key = brcmf_cfg80211_del_key, .get_key = brcmf_cfg80211_get_key, .set_default_key = brcmf_cfg80211_config_default_key, .set_default_mgmt_key = brcmf_cfg80211_config_default_mgmt_key, .set_power_mgmt = brcmf_cfg80211_set_power_mgmt, .set_bitrate_mask = brcmf_cfg80211_set_bitrate_mask, .connect = brcmf_cfg80211_connect, .disconnect = brcmf_cfg80211_disconnect, .suspend = brcmf_cfg80211_suspend, .resume = brcmf_cfg80211_resume, .set_pmksa = brcmf_cfg80211_set_pmksa, .del_pmksa = brcmf_cfg80211_del_pmksa, .flush_pmksa = brcmf_cfg80211_flush_pmksa }; static s32 brcmf_mode_to_nl80211_iftype(s32 mode) { s32 err = 0; switch (mode) { case WL_MODE_BSS: return NL80211_IFTYPE_STATION; case WL_MODE_IBSS: return NL80211_IFTYPE_ADHOC; default: return NL80211_IFTYPE_UNSPECIFIED; } return err; } static struct wireless_dev *brcmf_alloc_wdev(s32 sizeof_iface, struct device *ndev) { struct wireless_dev *wdev; s32 err = 0; wdev = kzalloc(sizeof(*wdev), GFP_KERNEL); if (!wdev) return ERR_PTR(-ENOMEM); wdev->wiphy = wiphy_new(&wl_cfg80211_ops, sizeof(struct brcmf_cfg80211_priv) + sizeof_iface); if (!wdev->wiphy) { WL_ERR("Could not allocate wiphy device\n"); err = -ENOMEM; goto wiphy_new_out; } set_wiphy_dev(wdev->wiphy, ndev); wdev->wiphy->max_scan_ssids = WL_NUM_SCAN_MAX; wdev->wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX; wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz; wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_a; /* Set * it as 11a by default. * This will be updated with * 11n phy tables in * "ifconfig up" * if phy has 11n capability */ wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wdev->wiphy->cipher_suites = __wl_cipher_suites; wdev->wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites); wdev->wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT; /* enable power * save mode * by default */ err = wiphy_register(wdev->wiphy); if (err < 0) { WL_ERR("Could not register wiphy device (%d)\n", err); goto wiphy_register_out; } return wdev; wiphy_register_out: wiphy_free(wdev->wiphy); wiphy_new_out: kfree(wdev); return ERR_PTR(err); } static void brcmf_free_wdev(struct brcmf_cfg80211_priv *cfg_priv) { struct wireless_dev *wdev = cfg_priv->wdev; if (!wdev) { WL_ERR("wdev is invalid\n"); return; } wiphy_unregister(wdev->wiphy); wiphy_free(wdev->wiphy); kfree(wdev); cfg_priv->wdev = NULL; } static bool brcmf_is_linkup(struct brcmf_cfg80211_priv *cfg_priv, const struct brcmf_event_msg *e) { u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); if (event == BRCMF_E_SET_SSID && status == BRCMF_E_STATUS_SUCCESS) { WL_CONN("Processing set ssid\n"); cfg_priv->link_up = true; return true; } return false; } static bool brcmf_is_linkdown(struct brcmf_cfg80211_priv *cfg_priv, const struct brcmf_event_msg *e) { u32 event = be32_to_cpu(e->event_type); u16 flags = be16_to_cpu(e->flags); if (event == BRCMF_E_LINK && (!(flags & BRCMF_EVENT_MSG_LINK))) { WL_CONN("Processing link down\n"); return true; } return false; } static bool brcmf_is_nonetwork(struct brcmf_cfg80211_priv *cfg_priv, const struct brcmf_event_msg *e) { u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); if (event == BRCMF_E_LINK && status == BRCMF_E_STATUS_NO_NETWORKS) { WL_CONN("Processing Link %s & no network found\n", be16_to_cpu(e->flags) & BRCMF_EVENT_MSG_LINK ? "up" : "down"); return true; } if (event == BRCMF_E_SET_SSID && status != BRCMF_E_STATUS_SUCCESS) { WL_CONN("Processing connecting & no network found\n"); return true; } return false; } static void brcmf_clear_assoc_ies(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg_priv); kfree(conn_info->req_ie); conn_info->req_ie = NULL; conn_info->req_ie_len = 0; kfree(conn_info->resp_ie); conn_info->resp_ie = NULL; conn_info->resp_ie_len = 0; } static s32 brcmf_get_assoc_ies(struct brcmf_cfg80211_priv *cfg_priv) { struct net_device *ndev = cfg_to_ndev(cfg_priv); struct brcmf_cfg80211_assoc_ielen_le *assoc_info; struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg_priv); u32 req_len; u32 resp_len; s32 err = 0; brcmf_clear_assoc_ies(cfg_priv); err = brcmf_dev_bufvar_get(ndev, "assoc_info", cfg_priv->extra_buf, WL_ASSOC_INFO_MAX); if (err) { WL_ERR("could not get assoc info (%d)\n", err); return err; } assoc_info = (struct brcmf_cfg80211_assoc_ielen_le *)cfg_priv->extra_buf; req_len = le32_to_cpu(assoc_info->req_len); resp_len = le32_to_cpu(assoc_info->resp_len); if (req_len) { err = brcmf_dev_bufvar_get(ndev, "assoc_req_ies", cfg_priv->extra_buf, WL_ASSOC_INFO_MAX); if (err) { WL_ERR("could not get assoc req (%d)\n", err); return err; } conn_info->req_ie_len = req_len; conn_info->req_ie = kmemdup(cfg_priv->extra_buf, conn_info->req_ie_len, GFP_KERNEL); } else { conn_info->req_ie_len = 0; conn_info->req_ie = NULL; } if (resp_len) { err = brcmf_dev_bufvar_get(ndev, "assoc_resp_ies", cfg_priv->extra_buf, WL_ASSOC_INFO_MAX); if (err) { WL_ERR("could not get assoc resp (%d)\n", err); return err; } conn_info->resp_ie_len = resp_len; conn_info->resp_ie = kmemdup(cfg_priv->extra_buf, conn_info->resp_ie_len, GFP_KERNEL); } else { conn_info->resp_ie_len = 0; conn_info->resp_ie = NULL; } WL_CONN("req len (%d) resp len (%d)\n", conn_info->req_ie_len, conn_info->resp_ie_len); return err; } static s32 brcmf_bss_roaming_done(struct brcmf_cfg80211_priv *cfg_priv, struct net_device *ndev, const struct brcmf_event_msg *e) { struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg_priv); struct wiphy *wiphy = cfg_to_wiphy(cfg_priv); struct brcmf_channel_info_le channel_le; struct ieee80211_channel *notify_channel; struct ieee80211_supported_band *band; u32 freq; s32 err = 0; u32 target_channel; WL_TRACE("Enter\n"); brcmf_get_assoc_ies(cfg_priv); brcmf_update_prof(cfg_priv, NULL, &e->addr, WL_PROF_BSSID); brcmf_update_bss_info(cfg_priv); brcmf_exec_dcmd(ndev, BRCMF_C_GET_CHANNEL, &channel_le, sizeof(channel_le)); target_channel = le32_to_cpu(channel_le.target_channel); WL_CONN("Roamed to channel %d\n", target_channel); if (target_channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(target_channel, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); cfg80211_roamed(ndev, notify_channel, (u8 *)brcmf_read_prof(cfg_priv, WL_PROF_BSSID), conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL); WL_CONN("Report roaming result\n"); set_bit(WL_STATUS_CONNECTED, &cfg_priv->status); WL_TRACE("Exit\n"); return err; } static s32 brcmf_bss_connect_done(struct brcmf_cfg80211_priv *cfg_priv, struct net_device *ndev, const struct brcmf_event_msg *e, bool completed) { struct brcmf_cfg80211_connect_info *conn_info = cfg_to_conn(cfg_priv); s32 err = 0; WL_TRACE("Enter\n"); if (test_and_clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status)) { if (completed) { brcmf_get_assoc_ies(cfg_priv); brcmf_update_prof(cfg_priv, NULL, &e->addr, WL_PROF_BSSID); brcmf_update_bss_info(cfg_priv); } cfg80211_connect_result(ndev, (u8 *)brcmf_read_prof(cfg_priv, WL_PROF_BSSID), conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, completed ? WLAN_STATUS_SUCCESS : WLAN_STATUS_AUTH_TIMEOUT, GFP_KERNEL); if (completed) set_bit(WL_STATUS_CONNECTED, &cfg_priv->status); WL_CONN("Report connect result - connection %s\n", completed ? "succeeded" : "failed"); } WL_TRACE("Exit\n"); return err; } static s32 brcmf_notify_connect_status(struct brcmf_cfg80211_priv *cfg_priv, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { s32 err = 0; if (brcmf_is_linkup(cfg_priv, e)) { WL_CONN("Linkup\n"); if (brcmf_is_ibssmode(cfg_priv)) { brcmf_update_prof(cfg_priv, NULL, (void *)e->addr, WL_PROF_BSSID); wl_inform_ibss(cfg_priv, ndev, e->addr); cfg80211_ibss_joined(ndev, e->addr, GFP_KERNEL); clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status); set_bit(WL_STATUS_CONNECTED, &cfg_priv->status); } else brcmf_bss_connect_done(cfg_priv, ndev, e, true); } else if (brcmf_is_linkdown(cfg_priv, e)) { WL_CONN("Linkdown\n"); if (brcmf_is_ibssmode(cfg_priv)) { clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status); if (test_and_clear_bit(WL_STATUS_CONNECTED, &cfg_priv->status)) brcmf_link_down(cfg_priv); } else { brcmf_bss_connect_done(cfg_priv, ndev, e, false); if (test_and_clear_bit(WL_STATUS_CONNECTED, &cfg_priv->status)) { cfg80211_disconnected(ndev, 0, NULL, 0, GFP_KERNEL); brcmf_link_down(cfg_priv); } } brcmf_init_prof(cfg_priv->profile); } else if (brcmf_is_nonetwork(cfg_priv, e)) { if (brcmf_is_ibssmode(cfg_priv)) clear_bit(WL_STATUS_CONNECTING, &cfg_priv->status); else brcmf_bss_connect_done(cfg_priv, ndev, e, false); } return err; } static s32 brcmf_notify_roaming_status(struct brcmf_cfg80211_priv *cfg_priv, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { s32 err = 0; u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); if (event == BRCMF_E_ROAM && status == BRCMF_E_STATUS_SUCCESS) { if (test_bit(WL_STATUS_CONNECTED, &cfg_priv->status)) brcmf_bss_roaming_done(cfg_priv, ndev, e); else brcmf_bss_connect_done(cfg_priv, ndev, e, true); } return err; } static s32 brcmf_notify_mic_status(struct brcmf_cfg80211_priv *cfg_priv, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { u16 flags = be16_to_cpu(e->flags); enum nl80211_key_type key_type; if (flags & BRCMF_EVENT_MSG_GROUP) key_type = NL80211_KEYTYPE_GROUP; else key_type = NL80211_KEYTYPE_PAIRWISE; cfg80211_michael_mic_failure(ndev, (u8 *)&e->addr, key_type, -1, NULL, GFP_KERNEL); return 0; } static s32 brcmf_notify_scan_status(struct brcmf_cfg80211_priv *cfg_priv, struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { struct brcmf_channel_info_le channel_inform_le; struct brcmf_scan_results_le *bss_list_le; u32 len = WL_SCAN_BUF_MAX; s32 err = 0; bool scan_abort = false; u32 scan_channel; WL_TRACE("Enter\n"); if (cfg_priv->iscan_on && cfg_priv->iscan_kickstart) { WL_TRACE("Exit\n"); return brcmf_wakeup_iscan(cfg_to_iscan(cfg_priv)); } if (!test_and_clear_bit(WL_STATUS_SCANNING, &cfg_priv->status)) { WL_ERR("Scan complete while device not scanning\n"); scan_abort = true; err = -EINVAL; goto scan_done_out; } err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_CHANNEL, &channel_inform_le, sizeof(channel_inform_le)); if (err) { WL_ERR("scan busy (%d)\n", err); scan_abort = true; goto scan_done_out; } scan_channel = le32_to_cpu(channel_inform_le.scan_channel); if (scan_channel) WL_CONN("channel_inform.scan_channel (%d)\n", scan_channel); cfg_priv->bss_list = cfg_priv->scan_results; bss_list_le = (struct brcmf_scan_results_le *) cfg_priv->bss_list; memset(cfg_priv->scan_results, 0, len); bss_list_le->buflen = cpu_to_le32(len); err = brcmf_exec_dcmd(ndev, BRCMF_C_SCAN_RESULTS, cfg_priv->scan_results, len); if (err) { WL_ERR("%s Scan_results error (%d)\n", ndev->name, err); err = -EINVAL; scan_abort = true; goto scan_done_out; } cfg_priv->scan_results->buflen = le32_to_cpu(bss_list_le->buflen); cfg_priv->scan_results->version = le32_to_cpu(bss_list_le->version); cfg_priv->scan_results->count = le32_to_cpu(bss_list_le->count); err = brcmf_inform_bss(cfg_priv); if (err) { scan_abort = true; goto scan_done_out; } scan_done_out: if (cfg_priv->scan_request) { WL_SCAN("calling cfg80211_scan_done\n"); cfg80211_scan_done(cfg_priv->scan_request, scan_abort); brcmf_set_mpc(ndev, 1); cfg_priv->scan_request = NULL; } WL_TRACE("Exit\n"); return err; } static void brcmf_init_conf(struct brcmf_cfg80211_conf *conf) { conf->mode = (u32)-1; conf->frag_threshold = (u32)-1; conf->rts_threshold = (u32)-1; conf->retry_short = (u32)-1; conf->retry_long = (u32)-1; conf->tx_power = -1; } static void brcmf_init_eloop_handler(struct brcmf_cfg80211_event_loop *el) { memset(el, 0, sizeof(*el)); el->handler[BRCMF_E_SCAN_COMPLETE] = brcmf_notify_scan_status; el->handler[BRCMF_E_LINK] = brcmf_notify_connect_status; el->handler[BRCMF_E_ROAM] = brcmf_notify_roaming_status; el->handler[BRCMF_E_MIC_ERROR] = brcmf_notify_mic_status; el->handler[BRCMF_E_SET_SSID] = brcmf_notify_connect_status; } static void brcmf_deinit_priv_mem(struct brcmf_cfg80211_priv *cfg_priv) { kfree(cfg_priv->scan_results); cfg_priv->scan_results = NULL; kfree(cfg_priv->bss_info); cfg_priv->bss_info = NULL; kfree(cfg_priv->conf); cfg_priv->conf = NULL; kfree(cfg_priv->profile); cfg_priv->profile = NULL; kfree(cfg_priv->scan_req_int); cfg_priv->scan_req_int = NULL; kfree(cfg_priv->dcmd_buf); cfg_priv->dcmd_buf = NULL; kfree(cfg_priv->extra_buf); cfg_priv->extra_buf = NULL; kfree(cfg_priv->iscan); cfg_priv->iscan = NULL; kfree(cfg_priv->pmk_list); cfg_priv->pmk_list = NULL; } static s32 brcmf_init_priv_mem(struct brcmf_cfg80211_priv *cfg_priv) { cfg_priv->scan_results = kzalloc(WL_SCAN_BUF_MAX, GFP_KERNEL); if (!cfg_priv->scan_results) goto init_priv_mem_out; cfg_priv->conf = kzalloc(sizeof(*cfg_priv->conf), GFP_KERNEL); if (!cfg_priv->conf) goto init_priv_mem_out; cfg_priv->profile = kzalloc(sizeof(*cfg_priv->profile), GFP_KERNEL); if (!cfg_priv->profile) goto init_priv_mem_out; cfg_priv->bss_info = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (!cfg_priv->bss_info) goto init_priv_mem_out; cfg_priv->scan_req_int = kzalloc(sizeof(*cfg_priv->scan_req_int), GFP_KERNEL); if (!cfg_priv->scan_req_int) goto init_priv_mem_out; cfg_priv->dcmd_buf = kzalloc(WL_DCMD_LEN_MAX, GFP_KERNEL); if (!cfg_priv->dcmd_buf) goto init_priv_mem_out; cfg_priv->extra_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (!cfg_priv->extra_buf) goto init_priv_mem_out; cfg_priv->iscan = kzalloc(sizeof(*cfg_priv->iscan), GFP_KERNEL); if (!cfg_priv->iscan) goto init_priv_mem_out; cfg_priv->pmk_list = kzalloc(sizeof(*cfg_priv->pmk_list), GFP_KERNEL); if (!cfg_priv->pmk_list) goto init_priv_mem_out; return 0; init_priv_mem_out: brcmf_deinit_priv_mem(cfg_priv); return -ENOMEM; } /* * retrieve first queued event from head */ static struct brcmf_cfg80211_event_q *brcmf_deq_event( struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_event_q *e = NULL; spin_lock_irq(&cfg_priv->evt_q_lock); if (!list_empty(&cfg_priv->evt_q_list)) { e = list_first_entry(&cfg_priv->evt_q_list, struct brcmf_cfg80211_event_q, evt_q_list); list_del(&e->evt_q_list); } spin_unlock_irq(&cfg_priv->evt_q_lock); return e; } /* * push event to tail of the queue * * remark: this function may not sleep as it is called in atomic context. */ static s32 brcmf_enq_event(struct brcmf_cfg80211_priv *cfg_priv, u32 event, const struct brcmf_event_msg *msg) { struct brcmf_cfg80211_event_q *e; s32 err = 0; ulong flags; e = kzalloc(sizeof(struct brcmf_cfg80211_event_q), GFP_ATOMIC); if (!e) return -ENOMEM; e->etype = event; memcpy(&e->emsg, msg, sizeof(struct brcmf_event_msg)); spin_lock_irqsave(&cfg_priv->evt_q_lock, flags); list_add_tail(&e->evt_q_list, &cfg_priv->evt_q_list); spin_unlock_irqrestore(&cfg_priv->evt_q_lock, flags); return err; } static void brcmf_put_event(struct brcmf_cfg80211_event_q *e) { kfree(e); } static void brcmf_cfg80211_event_handler(struct work_struct *work) { struct brcmf_cfg80211_priv *cfg_priv = container_of(work, struct brcmf_cfg80211_priv, event_work); struct brcmf_cfg80211_event_q *e; e = brcmf_deq_event(cfg_priv); if (unlikely(!e)) { WL_ERR("event queue empty...\n"); return; } do { WL_INFO("event type (%d)\n", e->etype); if (cfg_priv->el.handler[e->etype]) cfg_priv->el.handler[e->etype](cfg_priv, cfg_to_ndev(cfg_priv), &e->emsg, e->edata); else WL_INFO("Unknown Event (%d): ignoring\n", e->etype); brcmf_put_event(e); } while ((e = brcmf_deq_event(cfg_priv))); } static void brcmf_init_eq(struct brcmf_cfg80211_priv *cfg_priv) { spin_lock_init(&cfg_priv->evt_q_lock); INIT_LIST_HEAD(&cfg_priv->evt_q_list); } static void brcmf_flush_eq(struct brcmf_cfg80211_priv *cfg_priv) { struct brcmf_cfg80211_event_q *e; spin_lock_irq(&cfg_priv->evt_q_lock); while (!list_empty(&cfg_priv->evt_q_list)) { e = list_first_entry(&cfg_priv->evt_q_list, struct brcmf_cfg80211_event_q, evt_q_list); list_del(&e->evt_q_list); kfree(e); } spin_unlock_irq(&cfg_priv->evt_q_lock); } static s32 wl_init_priv(struct brcmf_cfg80211_priv *cfg_priv) { s32 err = 0; cfg_priv->scan_request = NULL; cfg_priv->pwr_save = true; cfg_priv->iscan_on = true; /* iscan on & off switch. we enable iscan per default */ cfg_priv->roam_on = true; /* roam on & off switch. we enable roam per default */ cfg_priv->iscan_kickstart = false; cfg_priv->active_scan = true; /* we do active scan for specific scan per default */ cfg_priv->dongle_up = false; /* dongle is not up yet */ brcmf_init_eq(cfg_priv); err = brcmf_init_priv_mem(cfg_priv); if (err) return err; INIT_WORK(&cfg_priv->event_work, brcmf_cfg80211_event_handler); brcmf_init_eloop_handler(&cfg_priv->el); mutex_init(&cfg_priv->usr_sync); err = brcmf_init_iscan(cfg_priv); if (err) return err; brcmf_init_conf(cfg_priv->conf); brcmf_init_prof(cfg_priv->profile); brcmf_link_down(cfg_priv); return err; } static void wl_deinit_priv(struct brcmf_cfg80211_priv *cfg_priv) { cancel_work_sync(&cfg_priv->event_work); cfg_priv->dongle_up = false; /* dongle down */ brcmf_flush_eq(cfg_priv); brcmf_link_down(cfg_priv); brcmf_term_iscan(cfg_priv); brcmf_deinit_priv_mem(cfg_priv); } struct brcmf_cfg80211_dev *brcmf_cfg80211_attach(struct net_device *ndev, struct device *busdev, void *data) { struct wireless_dev *wdev; struct brcmf_cfg80211_priv *cfg_priv; struct brcmf_cfg80211_iface *ci; struct brcmf_cfg80211_dev *cfg_dev; s32 err = 0; if (!ndev) { WL_ERR("ndev is invalid\n"); return NULL; } cfg_dev = kzalloc(sizeof(struct brcmf_cfg80211_dev), GFP_KERNEL); if (!cfg_dev) return NULL; wdev = brcmf_alloc_wdev(sizeof(struct brcmf_cfg80211_iface), busdev); if (IS_ERR(wdev)) { kfree(cfg_dev); return NULL; } wdev->iftype = brcmf_mode_to_nl80211_iftype(WL_MODE_BSS); cfg_priv = wdev_to_cfg(wdev); cfg_priv->wdev = wdev; cfg_priv->pub = data; ci = (struct brcmf_cfg80211_iface *)&cfg_priv->ci; ci->cfg_priv = cfg_priv; ndev->ieee80211_ptr = wdev; SET_NETDEV_DEV(ndev, wiphy_dev(wdev->wiphy)); wdev->netdev = ndev; err = wl_init_priv(cfg_priv); if (err) { WL_ERR("Failed to init iwm_priv (%d)\n", err); goto cfg80211_attach_out; } brcmf_set_drvdata(cfg_dev, ci); return cfg_dev; cfg80211_attach_out: brcmf_free_wdev(cfg_priv); kfree(cfg_dev); return NULL; } void brcmf_cfg80211_detach(struct brcmf_cfg80211_dev *cfg_dev) { struct brcmf_cfg80211_priv *cfg_priv; cfg_priv = brcmf_priv_get(cfg_dev); wl_deinit_priv(cfg_priv); brcmf_free_wdev(cfg_priv); brcmf_set_drvdata(cfg_dev, NULL); kfree(cfg_dev); } void brcmf_cfg80211_event(struct net_device *ndev, const struct brcmf_event_msg *e, void *data) { u32 event_type = be32_to_cpu(e->event_type); struct brcmf_cfg80211_priv *cfg_priv = ndev_to_cfg(ndev); if (!brcmf_enq_event(cfg_priv, event_type, e)) schedule_work(&cfg_priv->event_work); } static s32 brcmf_dongle_mode(struct net_device *ndev, s32 iftype) { s32 infra = 0; s32 err = 0; switch (iftype) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: WL_ERR("type (%d) : currently we do not support this mode\n", iftype); err = -EINVAL; return err; case NL80211_IFTYPE_ADHOC: infra = 0; break; case NL80211_IFTYPE_STATION: infra = 1; break; default: err = -EINVAL; WL_ERR("invalid type (%d)\n", iftype); return err; } err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_INFRA, &infra); if (err) { WL_ERR("WLC_SET_INFRA error (%d)\n", err); return err; } return 0; } static s32 brcmf_dongle_eventmsg(struct net_device *ndev) { /* Room for "event_msgs" + '\0' + bitvec */ s8 iovbuf[BRCMF_EVENTING_MASK_LEN + 12]; s8 eventmask[BRCMF_EVENTING_MASK_LEN]; s32 err = 0; WL_TRACE("Enter\n"); /* Setup event_msgs */ brcmf_c_mkiovar("event_msgs", eventmask, BRCMF_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = brcmf_exec_dcmd(ndev, BRCMF_C_GET_VAR, iovbuf, sizeof(iovbuf)); if (err) { WL_ERR("Get event_msgs error (%d)\n", err); goto dongle_eventmsg_out; } memcpy(eventmask, iovbuf, BRCMF_EVENTING_MASK_LEN); setbit(eventmask, BRCMF_E_SET_SSID); setbit(eventmask, BRCMF_E_ROAM); setbit(eventmask, BRCMF_E_PRUNE); setbit(eventmask, BRCMF_E_AUTH); setbit(eventmask, BRCMF_E_REASSOC); setbit(eventmask, BRCMF_E_REASSOC_IND); setbit(eventmask, BRCMF_E_DEAUTH_IND); setbit(eventmask, BRCMF_E_DISASSOC_IND); setbit(eventmask, BRCMF_E_DISASSOC); setbit(eventmask, BRCMF_E_JOIN); setbit(eventmask, BRCMF_E_ASSOC_IND); setbit(eventmask, BRCMF_E_PSK_SUP); setbit(eventmask, BRCMF_E_LINK); setbit(eventmask, BRCMF_E_NDIS_LINK); setbit(eventmask, BRCMF_E_MIC_ERROR); setbit(eventmask, BRCMF_E_PMKID_CACHE); setbit(eventmask, BRCMF_E_TXFAIL); setbit(eventmask, BRCMF_E_JOIN_START); setbit(eventmask, BRCMF_E_SCAN_COMPLETE); brcmf_c_mkiovar("event_msgs", eventmask, BRCMF_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, iovbuf, sizeof(iovbuf)); if (err) { WL_ERR("Set event_msgs error (%d)\n", err); goto dongle_eventmsg_out; } dongle_eventmsg_out: WL_TRACE("Exit\n"); return err; } static s32 brcmf_dongle_roam(struct net_device *ndev, u32 roamvar, u32 bcn_timeout) { s8 iovbuf[32]; s32 err = 0; __le32 roamtrigger[2]; __le32 roam_delta[2]; __le32 bcn_to_le; __le32 roamvar_le; /* * Setup timeout if Beacons are lost and roam is * off to report link down */ if (roamvar) { bcn_to_le = cpu_to_le32(bcn_timeout); brcmf_c_mkiovar("bcn_timeout", (char *)&bcn_to_le, sizeof(bcn_to_le), iovbuf, sizeof(iovbuf)); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, iovbuf, sizeof(iovbuf)); if (err) { WL_ERR("bcn_timeout error (%d)\n", err); goto dongle_rom_out; } } /* * Enable/Disable built-in roaming to allow supplicant * to take care of roaming */ WL_INFO("Internal Roaming = %s\n", roamvar ? "Off" : "On"); roamvar_le = cpu_to_le32(roamvar); brcmf_c_mkiovar("roam_off", (char *)&roamvar_le, sizeof(roamvar_le), iovbuf, sizeof(iovbuf)); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_VAR, iovbuf, sizeof(iovbuf)); if (err) { WL_ERR("roam_off error (%d)\n", err); goto dongle_rom_out; } roamtrigger[0] = cpu_to_le32(WL_ROAM_TRIGGER_LEVEL); roamtrigger[1] = cpu_to_le32(BRCM_BAND_ALL); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_ROAM_TRIGGER, (void *)roamtrigger, sizeof(roamtrigger)); if (err) { WL_ERR("WLC_SET_ROAM_TRIGGER error (%d)\n", err); goto dongle_rom_out; } roam_delta[0] = cpu_to_le32(WL_ROAM_DELTA); roam_delta[1] = cpu_to_le32(BRCM_BAND_ALL); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_ROAM_DELTA, (void *)roam_delta, sizeof(roam_delta)); if (err) { WL_ERR("WLC_SET_ROAM_DELTA error (%d)\n", err); goto dongle_rom_out; } dongle_rom_out: return err; } static s32 brcmf_dongle_scantime(struct net_device *ndev, s32 scan_assoc_time, s32 scan_unassoc_time, s32 scan_passive_time) { s32 err = 0; __le32 scan_assoc_tm_le = cpu_to_le32(scan_assoc_time); __le32 scan_unassoc_tm_le = cpu_to_le32(scan_unassoc_time); __le32 scan_passive_tm_le = cpu_to_le32(scan_passive_time); err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SCAN_CHANNEL_TIME, &scan_assoc_tm_le, sizeof(scan_assoc_tm_le)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("Scan assoc time is not supported\n"); else WL_ERR("Scan assoc time error (%d)\n", err); goto dongle_scantime_out; } err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SCAN_UNASSOC_TIME, &scan_unassoc_tm_le, sizeof(scan_unassoc_tm_le)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("Scan unassoc time is not supported\n"); else WL_ERR("Scan unassoc time error (%d)\n", err); goto dongle_scantime_out; } err = brcmf_exec_dcmd(ndev, BRCMF_C_SET_SCAN_PASSIVE_TIME, &scan_passive_tm_le, sizeof(scan_passive_tm_le)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("Scan passive time is not supported\n"); else WL_ERR("Scan passive time error (%d)\n", err); goto dongle_scantime_out; } dongle_scantime_out: return err; } static s32 wl_update_wiphybands(struct brcmf_cfg80211_priv *cfg_priv) { struct wiphy *wiphy; s32 phy_list; s8 phy; s32 err = 0; err = brcmf_exec_dcmd(cfg_to_ndev(cfg_priv), BRCM_GET_PHYLIST, &phy_list, sizeof(phy_list)); if (err) { WL_ERR("error (%d)\n", err); return err; } phy = ((char *)&phy_list)[1]; WL_INFO("%c phy\n", phy); if (phy == 'n' || phy == 'a') { wiphy = cfg_to_wiphy(cfg_priv); wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_n; } return err; } static s32 brcmf_dongle_probecap(struct brcmf_cfg80211_priv *cfg_priv) { return wl_update_wiphybands(cfg_priv); } static s32 brcmf_config_dongle(struct brcmf_cfg80211_priv *cfg_priv) { struct net_device *ndev; struct wireless_dev *wdev; s32 power_mode; s32 err = 0; if (cfg_priv->dongle_up) return err; ndev = cfg_to_ndev(cfg_priv); wdev = ndev->ieee80211_ptr; brcmf_dongle_scantime(ndev, WL_SCAN_CHANNEL_TIME, WL_SCAN_UNASSOC_TIME, WL_SCAN_PASSIVE_TIME); err = brcmf_dongle_eventmsg(ndev); if (err) goto default_conf_out; power_mode = cfg_priv->pwr_save ? PM_FAST : PM_OFF; err = brcmf_exec_dcmd_u32(ndev, BRCMF_C_SET_PM, &power_mode); if (err) goto default_conf_out; WL_INFO("power save set to %s\n", (power_mode ? "enabled" : "disabled")); err = brcmf_dongle_roam(ndev, (cfg_priv->roam_on ? 0 : 1), WL_BEACON_TIMEOUT); if (err) goto default_conf_out; err = brcmf_dongle_mode(ndev, wdev->iftype); if (err && err != -EINPROGRESS) goto default_conf_out; err = brcmf_dongle_probecap(cfg_priv); if (err) goto default_conf_out; /* -EINPROGRESS: Call commit handler */ default_conf_out: cfg_priv->dongle_up = true; return err; } static int brcmf_debugfs_add_netdev_params(struct brcmf_cfg80211_priv *cfg_priv) { char buf[10+IFNAMSIZ]; struct dentry *fd; s32 err = 0; sprintf(buf, "netdev:%s", cfg_to_ndev(cfg_priv)->name); cfg_priv->debugfsdir = debugfs_create_dir(buf, cfg_to_wiphy(cfg_priv)->debugfsdir); fd = debugfs_create_u16("beacon_int", S_IRUGO, cfg_priv->debugfsdir, (u16 *)&cfg_priv->profile->beacon_interval); if (!fd) { err = -ENOMEM; goto err_out; } fd = debugfs_create_u8("dtim_period", S_IRUGO, cfg_priv->debugfsdir, (u8 *)&cfg_priv->profile->dtim_period); if (!fd) { err = -ENOMEM; goto err_out; } err_out: return err; } static void brcmf_debugfs_remove_netdev(struct brcmf_cfg80211_priv *cfg_priv) { debugfs_remove_recursive(cfg_priv->debugfsdir); cfg_priv->debugfsdir = NULL; } static s32 __brcmf_cfg80211_up(struct brcmf_cfg80211_priv *cfg_priv) { s32 err = 0; set_bit(WL_STATUS_READY, &cfg_priv->status); brcmf_debugfs_add_netdev_params(cfg_priv); err = brcmf_config_dongle(cfg_priv); if (err) return err; brcmf_invoke_iscan(cfg_priv); return err; } static s32 __brcmf_cfg80211_down(struct brcmf_cfg80211_priv *cfg_priv) { /* * While going down, if associated with AP disassociate * from AP to save power */ if ((test_bit(WL_STATUS_CONNECTED, &cfg_priv->status) || test_bit(WL_STATUS_CONNECTING, &cfg_priv->status)) && test_bit(WL_STATUS_READY, &cfg_priv->status)) { WL_INFO("Disassociating from AP"); brcmf_link_down(cfg_priv); /* Make sure WPA_Supplicant receives all the event generated due to DISASSOC call to the fw to keep the state fw and WPA_Supplicant state consistent */ brcmf_delay(500); } set_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status); brcmf_term_iscan(cfg_priv); if (cfg_priv->scan_request) { cfg80211_scan_done(cfg_priv->scan_request, true); /* May need to perform this to cover rmmod */ /* wl_set_mpc(cfg_to_ndev(wl), 1); */ cfg_priv->scan_request = NULL; } clear_bit(WL_STATUS_READY, &cfg_priv->status); clear_bit(WL_STATUS_SCANNING, &cfg_priv->status); clear_bit(WL_STATUS_SCAN_ABORTING, &cfg_priv->status); brcmf_debugfs_remove_netdev(cfg_priv); return 0; } s32 brcmf_cfg80211_up(struct brcmf_cfg80211_dev *cfg_dev) { struct brcmf_cfg80211_priv *cfg_priv; s32 err = 0; cfg_priv = brcmf_priv_get(cfg_dev); mutex_lock(&cfg_priv->usr_sync); err = __brcmf_cfg80211_up(cfg_priv); mutex_unlock(&cfg_priv->usr_sync); return err; } s32 brcmf_cfg80211_down(struct brcmf_cfg80211_dev *cfg_dev) { struct brcmf_cfg80211_priv *cfg_priv; s32 err = 0; cfg_priv = brcmf_priv_get(cfg_dev); mutex_lock(&cfg_priv->usr_sync); err = __brcmf_cfg80211_down(cfg_priv); mutex_unlock(&cfg_priv->usr_sync); return err; } static __used s32 brcmf_add_ie(struct brcmf_cfg80211_priv *cfg_priv, u8 t, u8 l, u8 *v) { struct brcmf_cfg80211_ie *ie = &cfg_priv->ie; s32 err = 0; if (ie->offset + l + 2 > WL_TLV_INFO_MAX) { WL_ERR("ei crosses buffer boundary\n"); return -ENOSPC; } ie->buf[ie->offset] = t; ie->buf[ie->offset + 1] = l; memcpy(&ie->buf[ie->offset + 2], v, l); ie->offset += l + 2; return err; }