/* Copyright (c) 2009-2012, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #define ACPU_806MHZ 42 #define ACPU_1024MHZ 53 #define ACPU_1200MHZ 125 #define ACPU_1400MHZ 73 /* Macros to select PLL2 with divide by 1 */ #define ACPU_SRC_SEL 3 #define ACPU_SRC_DIV 0 #define BIT(n) (1 << (n)) #define VREG_CONFIG (BIT(7) | BIT(6)) /* Enable VREG, pull-down if disabled. */ #define VREG_DATA (VREG_CONFIG | (VREF_SEL << 5)) #define VREF_SEL 1 /* 0: 0.625V (50mV step), 1: 0.3125V (25mV step). */ #define V_STEP (25 * (2 - VREF_SEL)) /* Minimum voltage step size. */ #define MV(mv) ((mv) / (!((mv) % V_STEP))) /* mv = (750mV + (raw * 25mV)) * (2 - VREF_SEL) */ #define VDD_RAW(mv) (((MV(mv) / V_STEP) - 30) | VREG_DATA) /* enum for SDC CLK IDs */ enum { SDC1_CLK = 19, SDC1_PCLK = 20, SDC2_CLK = 21, SDC2_PCLK = 22, SDC3_CLK = 23, SDC3_PCLK = 24, SDC4_CLK = 25, SDC4_PCLK = 26 }; /* Zero'th entry is dummy */ static uint8_t sdc_clk[] = { 0, SDC1_CLK, SDC2_CLK, SDC3_CLK, SDC4_CLK }; static uint8_t sdc_pclk[] = { 0, SDC1_PCLK, SDC2_PCLK, SDC3_PCLK, SDC4_PCLK }; void spm_init(void) { writel(0x05, MSM_SAW_BASE + 0x10); /* MSM_SPM_REG_SAW_CFG */ writel(0x18, MSM_SAW_BASE + 0x14); /* MSM_SPM_REG_SAW_SPM_CTL */ writel(0x00006666, MSM_SAW_BASE + 0x18); /* MSM_SPM_REG_SAW_SPM_SLP_TMR_DLY */ writel(0xFF000666, MSM_SAW_BASE + 0x1C); /* MSM_SPM_REG_SAW_SPM_WAKE_TMR_DLY */ writel(0x01, MSM_SAW_BASE + 0x24); /* MSM_SPM_REG_SAW_SLP_CLK_EN */ writel(0x03, MSM_SAW_BASE + 0x28); /* MSM_SPM_REG_SAW_SLP_HSFS_PRECLMP_EN */ writel(0x00, MSM_SAW_BASE + 0x2C); /* MSM_SPM_REG_SAW_SLP_HSFS_POSTCLMP_EN */ writel(0x01, MSM_SAW_BASE + 0x30); /* MSM_SPM_REG_SAW_SLP_CLMP_EN */ writel(0x00, MSM_SAW_BASE + 0x34); /* MSM_SPM_REG_SAW_SLP_RST_EN */ writel(0x00, MSM_SAW_BASE + 0x38); /* MSM_SPM_REG_SAW_SPM_MPM_CFG */ } /* Configures msmc2 voltage. vlevel is in mV */ void msmc2_config(unsigned vlevel) { unsigned val; val = readl(MSM_SAW_BASE + 0x08); /* MSM_SPM_REG_SAW_VCTL */ val &= ~0xFF; val |= VDD_RAW(vlevel); writel(val, MSM_SAW_BASE + 0x08); /* MSM_SPM_REG_SAW_VCTL */ /* Wait for PMIC state to return to idle and for VDD to stabilize */ while (((readl(MSM_SAW_BASE + 0x0C) >> 0x20) & 0x3) != 0) ; udelay(160); } void enable_pll(unsigned num) { unsigned reg_val; reg_val = readl(PLL_ENA_REG); reg_val |= (1 << num); writel(reg_val, PLL_ENA_REG); /* Wait until PLL is enabled */ while ((readl(PLL2_STATUS_BASE_REG) & (1 << 16)) == 0) ; } void acpu_clock_init(void) { unsigned clk, reg_clksel, reg_clkctl, src_sel; /* Fixing msmc2 voltage */ spm_init(); clk = readl(PLL2_L_VAL_ADDR) & 0xFF; if (clk == ACPU_806MHZ) msmc2_config(1100); else if (clk == ACPU_1024MHZ || clk == ACPU_1200MHZ) msmc2_config(1200); else if (clk == ACPU_1400MHZ) msmc2_config(1250); /* Enable pll 2 */ enable_pll(2); reg_clksel = readl(SCSS_CLK_SEL); /* CLK_SEL_SRC1NO */ src_sel = reg_clksel & 1; /* Program clock source and divider. */ reg_clkctl = readl(SCSS_CLK_CTL); reg_clkctl &= ~(0xFF << (8 * src_sel)); reg_clkctl |= ACPU_SRC_SEL << (4 + 8 * src_sel); reg_clkctl |= ACPU_SRC_DIV << (0 + 8 * src_sel); writel(reg_clkctl, SCSS_CLK_CTL); /* Toggle clock source. */ reg_clksel ^= 1; /* Program clock source selection. */ writel(reg_clksel, SCSS_CLK_SEL); } void hsusb_clock_init(void) { int val = 0; unsigned sh2_own_row2; unsigned sh2_own_row2_hsusb_mask = (1 << 11); sh2_own_row2 = readl(SH2_OWN_ROW2_BASE_REG); if (sh2_own_row2 & sh2_own_row2_hsusb_mask) { /* USB local clock control enabled */ /* Set value in MD register */ val = 0x5DF; writel(val, SH2_USBH_MD_REG); /* Set value in NS register */ val = 1 << 8; val = val | readl(SH2_USBH_NS_REG); writel(val, SH2_USBH_NS_REG); val = 1 << 11; val = val | readl(SH2_USBH_NS_REG); writel(val, SH2_USBH_NS_REG); val = 1 << 9; val = val | readl(SH2_USBH_NS_REG); writel(val, SH2_USBH_NS_REG); val = 1 << 13; val = val | readl(SH2_USBH_NS_REG); writel(val, SH2_USBH_NS_REG); /* Enable USBH_P_CLK */ val = 1 << 25; val = val | readl(SH2_GLBL_CLK_ENA_SC); writel(val, SH2_GLBL_CLK_ENA_SC); } else { /* USB local clock control not enabled; use proc comm */ usb_clock_init(); } } void adm_enable_clock(void) { unsigned int val = 0; /* Enable ADM_CLK */ val = 1 << 5; val = val | readl(SH2_GLBL_CLK_ENA_SC); writel(val, SH2_GLBL_CLK_ENA_SC); } void mdp_lcdc_clock_init(void) { unsigned int val = 0; unsigned sh2_own_apps2; unsigned sh2_own_apps2_lcdc_mask = (1 << 3); sh2_own_apps2 = readl(SH2_OWN_APPS2_BASE_REG); if (sh2_own_apps2 & sh2_own_apps2_lcdc_mask) { /* MDP local clock control enabled */ /* Select clock source and divider */ val = 0x29; val = val | readl(SH2_MDP_NS_REG); writel(val, SH2_MDP_NS_REG); /* Enable MDP source clock(root) */ val = 1 << 11; val = val | readl(SH2_MDP_NS_REG); writel(val, SH2_MDP_NS_REG); /* Enable graphics clock(branch) */ val = 1 << 9; val = val | readl(SH2_MDP_NS_REG); writel(val, SH2_MDP_NS_REG); /* Enable MDP_P_CLK */ val = 1 << 6; val = val | readl(SH2_GLBL_CLK_ENA_2_SC); writel(val, SH2_GLBL_CLK_ENA_2_SC); /* Enable AXI_MDP_CLK */ val = 1 << 29; val = val | readl(SH2_GLBL_CLK_ENA_2_SC); writel(val, SH2_GLBL_CLK_ENA_2_SC); /* LCDC local clock control enabled */ /* Set value in MD register */ val = 0x1FFF9; writel(val, SH2_MDP_LCDC_MD_REG); /* Set MDP_LCDC_N_VAL in NS register */ val = 0xFFFA << 16; val = val | readl(SH2_MDP_LCDC_NS_REG); writel(val, SH2_MDP_LCDC_NS_REG); /* Set clock source */ val = 1; val = val | readl(SH2_MDP_LCDC_NS_REG); writel(val, SH2_MDP_LCDC_NS_REG); /* Set divider */ val = 3 << 3; val = val | readl(SH2_MDP_LCDC_NS_REG); writel(val, SH2_MDP_LCDC_NS_REG); /* Set MN counter mode */ val = 2 << 5; val = val | readl(SH2_MDP_LCDC_NS_REG); writel(val, SH2_MDP_LCDC_NS_REG); /* Enable MN counter */ val = 1 << 8; val = val | readl(SH2_MDP_LCDC_NS_REG); writel(val, SH2_MDP_LCDC_NS_REG); /* Enable mdp_lcdc_src(root) clock */ val = 1 << 11; val = val | readl(SH2_MDP_LCDC_NS_REG); writel(val, SH2_MDP_LCDC_NS_REG); /* Enable mdp_lcdc_pclk(branch) clock */ val = 1 << 9; val = val | readl(SH2_MDP_LCDC_NS_REG); writel(val, SH2_MDP_LCDC_NS_REG); /* Enable mdp_lcdc_pad_pclk(branch) clock */ val = 1 << 12; val = val | readl(SH2_MDP_LCDC_NS_REG); writel(val, SH2_MDP_LCDC_NS_REG); } else { /* MDP local clock control not enabled; use proc comm */ mdp_clock_init(122880000); /* LCDC local clock control not enabled; use proc comm */ lcdc_clock_init(27648000); } } void mddi_pmdh_clock_init(void) { unsigned int val = 0; unsigned sh2_own_row1; unsigned sh2_own_row1_pmdh_mask = (1 << 19); sh2_own_row1 = readl(SH2_OWN_ROW1_BASE_REG); if (sh2_own_row1 & sh2_own_row1_pmdh_mask) { /* Select clock source and divider */ val = 1; val |= (1 << 3); val = val | readl(SH2_PMDH_NS_REG); writel(val, SH2_PMDH_NS_REG); /* Enable PMDH_SRC (root) signal */ val = 1 << 11; val = val | readl(SH2_PMDH_NS_REG); writel(val, SH2_PMDH_NS_REG); /* Enable PMDH_P_CLK */ val = 1 << 4; val = val | readl(SH2_GLBL_CLK_ENA_2_SC); writel(val, SH2_GLBL_CLK_ENA_2_SC); } else { /* MDDI local clock control not enabled; use proc comm */ mddi_clock_init(0, 480000000); } } void ce_clock_init(void) { unsigned int val = 0; /* Enable CE_CLK */ val = 1 << 6; val = val | readl(SH2_GLBL_CLK_ENA_SC); writel(val, SH2_GLBL_CLK_ENA_SC); } /* Configure MMC clock */ void clock_config_mmc(uint32_t interface, uint32_t freq) { uint32_t reg = 0; if (mmc_clock_set_rate(sdc_clk[interface], freq) < 0) { dprintf(CRITICAL, "Failure setting clock rate for MCLK - " "clk_rate: %d\n!", freq); ASSERT(0); } /* enable clock */ if (mmc_clock_enable_disable(sdc_clk[interface], MMC_CLK_ENABLE) < 0) { dprintf(CRITICAL, "Failure enabling MMC Clock!\n"); ASSERT(0); } reg |= MMC_BOOT_MCI_CLK_ENABLE; reg |= MMC_BOOT_MCI_CLK_ENA_FLOW; reg |= MMC_BOOT_MCI_CLK_IN_FEEDBACK; writel(reg, MMC_BOOT_MCI_CLK); /* Wait for the MMC_BOOT_MCI_CLK write to go through. */ mmc_mclk_reg_wr_delay(); /* Wait 1 ms to provide the free running SD CLK to the card. */ mdelay(1); } /* Intialize MMC clock */ void clock_init_mmc(uint32_t interface) { if (mmc_clock_enable_disable(sdc_pclk[interface], MMC_CLK_ENABLE) < 0) { dprintf(CRITICAL, "Failure enabling PCLK!\n"); ASSERT(0); } }