/* * Copyright (c) 2008 Travis Geiselbrecht * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files * (the "Software"), to deal in the Software without restriction, * including without limitation the rights to use, copy, modify, merge, * publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include static int sleep_thread(void *arg) { for(;;) { printf("sleeper %p\n", current_thread); thread_sleep(rand() % 500); } return 0; } int sleep_test(void) { int i; for(i=0; i < 16; i++) thread_resume(thread_create("sleeper", &sleep_thread, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); return 0; } static volatile int shared = 0; static mutex_t m; static volatile int mutex_thread_count = 0; static int mutex_thread(void *arg) { int i; const int iterations = 10000; atomic_add(&mutex_thread_count, 1); printf("mutex tester thread %p starting up, will go for %d iterations\n", current_thread, iterations); for (i = 0; i < iterations; i++) { mutex_acquire(&m); if (shared != 0) panic("someone else has messed with the shared data\n"); shared = (int)current_thread; thread_yield(); shared = 0; mutex_release(&m); thread_yield(); } atomic_add(&mutex_thread_count, -1); return 0; } static int mutex_timeout_thread(void *arg) { mutex_t *timeout_mutex = (mutex_t *)arg; status_t err; printf("mutex_timeout_thread acquiring mutex %p with 1 second timeout\n", timeout_mutex); err = mutex_acquire_timeout(timeout_mutex, 1000); printf("mutex_acquire_timeout returns %d\n", err); return err; } static int mutex_zerotimeout_thread(void *arg) { mutex_t *timeout_mutex = (mutex_t *)arg; status_t err; printf("mutex_zerotimeout_thread acquiring mutex %p with zero second timeout\n", timeout_mutex); err = mutex_acquire_timeout(timeout_mutex, 0); printf("mutex_acquire_timeout returns %d\n", err); return err; } int mutex_test(void) { mutex_init(&m); int i; for(i=0; i < 5; i++) thread_resume(thread_create("mutex tester", &mutex_thread, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(1000); while (mutex_thread_count > 0) thread_yield(); printf("done with simple mutex tests\n"); printf("testing mutex timeout\n"); mutex_t timeout_mutex; mutex_init(&timeout_mutex); mutex_acquire(&timeout_mutex); for (i=0; i < 2; i++) thread_resume(thread_create("mutex timeout tester", &mutex_timeout_thread, (void *)&timeout_mutex, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); for (i=0; i < 2; i++) thread_resume(thread_create("mutex timeout tester", &mutex_zerotimeout_thread, (void *)&timeout_mutex, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(5000); mutex_release(&timeout_mutex); printf("done with mutex tests\n"); mutex_destroy(&timeout_mutex); return 0; } static event_t e; static int event_signaller(void *arg) { printf("event signaller pausing\n"); thread_sleep(1000); // for (;;) { printf("signalling event\n"); event_signal(&e, true); printf("done signalling event\n"); thread_yield(); // } return 0; } static int event_waiter(void *arg) { printf("event waiter starting\n"); for (;;) { printf("%p: waiting on event...\n", current_thread); if (event_wait(&e) < 0) { printf("%p: event_wait() returned error\n", current_thread); return -1; } printf("%p: done waiting on event...\n", current_thread); thread_yield(); } return 0; } void event_test(void) { /* make sure signalling the event wakes up all the threads */ event_init(&e, false, 0); thread_resume(thread_create("event signaller", &event_signaller, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("event waiter 0", &event_waiter, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("event waiter 1", &event_waiter, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("event waiter 2", &event_waiter, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("event waiter 3", &event_waiter, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(2000); event_destroy(&e); /* make sure signalling the event wakes up precisely one thread */ event_init(&e, false, EVENT_FLAG_AUTOUNSIGNAL); thread_resume(thread_create("event signaller", &event_signaller, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("event waiter 0", &event_waiter, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("event waiter 1", &event_waiter, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("event waiter 2", &event_waiter, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("event waiter 3", &event_waiter, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(2000); event_destroy(&e); } static int quantum_tester(void *arg) { for (;;) { printf("%p: in this thread. rq %d\n", current_thread, current_thread->remaining_quantum); } return 0; } void quantum_test(void) { thread_resume(thread_create("quantum tester 0", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("quantum tester 1", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("quantum tester 2", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("quantum tester 3", &quantum_tester, NULL, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); } static event_t context_switch_event; static event_t context_switch_done_event; static int context_switch_tester(void *arg) { int i; uint total_count = 0; const int iter = 100000; int thread_count = (int)arg; event_wait(&context_switch_event); uint count = arch_cycle_count(); for (i = 0; i < iter; i++) { thread_yield(); } total_count += arch_cycle_count() - count; thread_sleep(1000); printf("took %u cycles to yield %d times, %u per yield, %u per yield per thread\n", total_count, iter, total_count / iter, total_count / iter / thread_count); event_signal(&context_switch_done_event, true); return 0; } void context_switch_test(void) { event_init(&context_switch_event, false, 0); event_init(&context_switch_done_event, false, 0); thread_resume(thread_create("context switch idle", &context_switch_tester, (void *)1, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(100); event_signal(&context_switch_event, true); event_wait(&context_switch_done_event); thread_sleep(100); event_unsignal(&context_switch_event); event_unsignal(&context_switch_done_event); thread_resume(thread_create("context switch 2a", &context_switch_tester, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("context switch 2b", &context_switch_tester, (void *)2, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(100); event_signal(&context_switch_event, true); event_wait(&context_switch_done_event); thread_sleep(100); event_unsignal(&context_switch_event); event_unsignal(&context_switch_done_event); thread_resume(thread_create("context switch 4a", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("context switch 4b", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("context switch 4c", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("context switch 4d", &context_switch_tester, (void *)4, DEFAULT_PRIORITY, DEFAULT_STACK_SIZE)); thread_sleep(100); event_signal(&context_switch_event, true); event_wait(&context_switch_done_event); thread_sleep(100); } static volatile int atomic; static volatile int atomic_count; static int atomic_tester(void *arg) { int add = (int)arg; int i; TRACEF("add %d\n", add); for (i=0; i < 1000000; i++) { atomic_add(&atomic, add); } int old = atomic_add(&atomic_count, -1); TRACEF("exiting, old count %d\n", old); return 0; } static void atomic_test(void) { atomic = 0; atomic_count = 8; thread_resume(thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("atomic tester 1", &atomic_tester, (void *)1, LOW_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE)); thread_resume(thread_create("atomic tester 2", &atomic_tester, (void *)-1, LOW_PRIORITY, DEFAULT_STACK_SIZE)); while (atomic_count > 0) { thread_sleep(1); } printf("atomic count == %d (should be zero)\n", atomic); } int thread_tests(void) { mutex_test(); event_test(); thread_sleep(200); context_switch_test(); atomic_test(); return 0; }