/* Copyright (c) 2010-2016, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "peripheral-loader.h" #define pil_err(desc, fmt, ...) \ dev_err(desc->dev, "%s: " fmt, desc->name, ##__VA_ARGS__) #define pil_info(desc, fmt, ...) \ dev_info(desc->dev, "%s: " fmt, desc->name, ##__VA_ARGS__) #if defined(CONFIG_ARM) #define pil_memset_io(d, c, count) memset(d, c, count) #else #define pil_memset_io(d, c, count) memset_io(d, c, count) #endif #define PIL_NUM_DESC 10 static void __iomem *pil_info_base; /** * proxy_timeout - Override for proxy vote timeouts * -1: Use driver-specified timeout * 0: Hold proxy votes until shutdown * >0: Specify a custom timeout in ms */ static int proxy_timeout_ms = -1; module_param(proxy_timeout_ms, int, S_IRUGO | S_IWUSR); /** * struct pil_mdt - Representation of .mdt file in memory * @hdr: ELF32 header * @phdr: ELF32 program headers */ struct pil_mdt { struct elf32_hdr hdr; struct elf32_phdr phdr[]; }; /** * struct pil_seg - memory map representing one segment * @next: points to next seg mentor NULL if last segment * @paddr: physical start address of segment * @sz: size of segment * @filesz: size of segment on disk * @num: segment number * @relocated: true if segment is relocated, false otherwise * * Loosely based on an elf program header. Contains all necessary information * to load and initialize a segment of the image in memory. */ struct pil_seg { phys_addr_t paddr; unsigned long sz; unsigned long filesz; int num; struct list_head list; bool relocated; }; /** * struct pil_priv - Private state for a pil_desc * @proxy: work item used to run the proxy unvoting routine * @ws: wakeup source to prevent suspend during pil_boot * @wname: name of @ws * @desc: pointer to pil_desc this is private data for * @seg: list of segments sorted by physical address * @entry_addr: physical address where processor starts booting at * @base_addr: smallest start address among all segments that are relocatable * @region_start: address where relocatable region starts or lowest address * for non-relocatable images * @region_end: address where relocatable region ends or highest address for * non-relocatable images * @region: region allocated for relocatable images * @unvoted_flag: flag to keep track if we have unvoted or not. * * This struct contains data for a pil_desc that should not be exposed outside * of this file. This structure points to the descriptor and the descriptor * points to this structure so that PIL drivers can't access the private * data of a descriptor but this file can access both. */ struct pil_priv { struct delayed_work proxy; struct wakeup_source ws; char wname[32]; struct pil_desc *desc; struct list_head segs; phys_addr_t entry_addr; phys_addr_t base_addr; phys_addr_t region_start; phys_addr_t region_end; void *region; struct pil_image_info __iomem *info; int id; int unvoted_flag; size_t region_size; }; /** * pil_do_ramdump() - Ramdump an image * @desc: descriptor from pil_desc_init() * @ramdump_dev: ramdump device returned from create_ramdump_device() * * Calls the ramdump API with a list of segments generated from the addresses * that the descriptor corresponds to. */ int pil_do_ramdump(struct pil_desc *desc, void *ramdump_dev) { struct pil_priv *priv = desc->priv; struct pil_seg *seg; int count = 0, ret; struct ramdump_segment *ramdump_segs, *s; list_for_each_entry(seg, &priv->segs, list) count++; ramdump_segs = kcalloc(count, sizeof(*ramdump_segs), GFP_KERNEL); if (!ramdump_segs) return -ENOMEM; if (desc->subsys_vmid > 0) ret = pil_assign_mem_to_linux(desc, priv->region_start, (priv->region_end - priv->region_start)); s = ramdump_segs; list_for_each_entry(seg, &priv->segs, list) { s->address = seg->paddr; s->size = seg->sz; s++; } ret = do_elf_ramdump(ramdump_dev, ramdump_segs, count); kfree(ramdump_segs); if (!ret && desc->subsys_vmid > 0) ret = pil_assign_mem_to_subsys(desc, priv->region_start, (priv->region_end - priv->region_start)); return ret; } EXPORT_SYMBOL(pil_do_ramdump); int pil_assign_mem_to_subsys(struct pil_desc *desc, phys_addr_t addr, size_t size) { int ret; int srcVM[1] = {VMID_HLOS}; int destVM[1] = {desc->subsys_vmid}; int destVMperm[1] = {PERM_READ | PERM_WRITE}; ret = hyp_assign_phys(addr, size, srcVM, 1, destVM, destVMperm, 1); if (ret) pil_err(desc, "%s: failed for %pa address of size %zx - subsys VMid %d\n", __func__, &addr, size, desc->subsys_vmid); return ret; } EXPORT_SYMBOL(pil_assign_mem_to_subsys); int pil_assign_mem_to_linux(struct pil_desc *desc, phys_addr_t addr, size_t size) { int ret; int srcVM[1] = {desc->subsys_vmid}; int destVM[1] = {VMID_HLOS}; int destVMperm[1] = {PERM_READ | PERM_WRITE | PERM_EXEC}; ret = hyp_assign_phys(addr, size, srcVM, 1, destVM, destVMperm, 1); if (ret) panic("%s: failed for %pa address of size %zx - subsys VMid %d. Fatal error.\n", __func__, &addr, size, desc->subsys_vmid); return ret; } EXPORT_SYMBOL(pil_assign_mem_to_linux); int pil_assign_mem_to_subsys_and_linux(struct pil_desc *desc, phys_addr_t addr, size_t size) { int ret; int srcVM[1] = {VMID_HLOS}; int destVM[2] = {VMID_HLOS, desc->subsys_vmid}; int destVMperm[2] = {PERM_READ | PERM_WRITE, PERM_READ | PERM_WRITE}; ret = hyp_assign_phys(addr, size, srcVM, 1, destVM, destVMperm, 2); if (ret) pil_err(desc, "%s: failed for %pa address of size %zx - subsys VMid %d\n", __func__, &addr, size, desc->subsys_vmid); return ret; } EXPORT_SYMBOL(pil_assign_mem_to_subsys_and_linux); int pil_reclaim_mem(struct pil_desc *desc, phys_addr_t addr, size_t size, int VMid) { int ret; int srcVM[2] = {VMID_HLOS, desc->subsys_vmid}; int destVM[1] = {VMid}; int destVMperm[1] = {PERM_READ | PERM_WRITE}; if (VMid == VMID_HLOS) destVMperm[0] = PERM_READ | PERM_WRITE | PERM_EXEC; ret = hyp_assign_phys(addr, size, srcVM, 2, destVM, destVMperm, 1); if (ret) panic("%s: failed for %pa address of size %zx - subsys VMid %d. Fatal error.\n", __func__, &addr, size, desc->subsys_vmid); return ret; } EXPORT_SYMBOL(pil_reclaim_mem); /** * pil_get_entry_addr() - Retrieve the entry address of a peripheral image * @desc: descriptor from pil_desc_init() * * Returns the physical address where the image boots at or 0 if unknown. */ phys_addr_t pil_get_entry_addr(struct pil_desc *desc) { return desc->priv ? desc->priv->entry_addr : 0; } EXPORT_SYMBOL(pil_get_entry_addr); static void __pil_proxy_unvote(struct pil_priv *priv) { struct pil_desc *desc = priv->desc; desc->ops->proxy_unvote(desc); notify_proxy_unvote(desc->dev); __pm_relax(&priv->ws); module_put(desc->owner); } static void pil_proxy_unvote_work(struct work_struct *work) { struct delayed_work *delayed = to_delayed_work(work); struct pil_priv *priv = container_of(delayed, struct pil_priv, proxy); __pil_proxy_unvote(priv); } static int pil_proxy_vote(struct pil_desc *desc) { int ret = 0; struct pil_priv *priv = desc->priv; if (desc->ops->proxy_vote) { __pm_stay_awake(&priv->ws); ret = desc->ops->proxy_vote(desc); if (ret) __pm_relax(&priv->ws); } if (desc->proxy_unvote_irq) enable_irq(desc->proxy_unvote_irq); notify_proxy_vote(desc->dev); return ret; } static void pil_proxy_unvote(struct pil_desc *desc, int immediate) { struct pil_priv *priv = desc->priv; unsigned long timeout; if (proxy_timeout_ms == 0 && !immediate) return; else if (proxy_timeout_ms > 0) timeout = proxy_timeout_ms; else timeout = desc->proxy_timeout; if (desc->ops->proxy_unvote) { if (WARN_ON(!try_module_get(desc->owner))) return; if (immediate) timeout = 0; if (!desc->proxy_unvote_irq || immediate) schedule_delayed_work(&priv->proxy, msecs_to_jiffies(timeout)); } } static irqreturn_t proxy_unvote_intr_handler(int irq, void *dev_id) { struct pil_desc *desc = dev_id; struct pil_priv *priv = desc->priv; pil_info(desc, "Power/Clock ready interrupt received\n"); if (!desc->priv->unvoted_flag) { desc->priv->unvoted_flag = 1; __pil_proxy_unvote(priv); } return IRQ_HANDLED; } static bool segment_is_relocatable(const struct elf32_phdr *p) { return !!(p->p_flags & BIT(27)); } static phys_addr_t pil_reloc(const struct pil_priv *priv, phys_addr_t addr) { return addr - priv->base_addr + priv->region_start; } static struct pil_seg *pil_init_seg(const struct pil_desc *desc, const struct elf32_phdr *phdr, int num) { bool reloc = segment_is_relocatable(phdr); const struct pil_priv *priv = desc->priv; struct pil_seg *seg; if (!reloc && memblock_overlaps_memory(phdr->p_paddr, phdr->p_memsz)) { pil_err(desc, "kernel memory would be overwritten [%#08lx, %#08lx)\n", (unsigned long)phdr->p_paddr, (unsigned long)(phdr->p_paddr + phdr->p_memsz)); return ERR_PTR(-EPERM); } if (phdr->p_filesz > phdr->p_memsz) { pil_err(desc, "Segment %d: file size (%u) is greater than mem size (%u).\n", num, phdr->p_filesz, phdr->p_memsz); return ERR_PTR(-EINVAL); } seg = kmalloc(sizeof(*seg), GFP_KERNEL); if (!seg) return ERR_PTR(-ENOMEM); seg->num = num; seg->paddr = reloc ? pil_reloc(priv, phdr->p_paddr) : phdr->p_paddr; seg->filesz = phdr->p_filesz; seg->sz = phdr->p_memsz; seg->relocated = reloc; INIT_LIST_HEAD(&seg->list); return seg; } #define segment_is_hash(flag) (((flag) & (0x7 << 24)) == (0x2 << 24)) static int segment_is_loadable(const struct elf32_phdr *p) { return (p->p_type == PT_LOAD) && !segment_is_hash(p->p_flags) && p->p_memsz; } static void pil_dump_segs(const struct pil_priv *priv) { struct pil_seg *seg; phys_addr_t seg_h_paddr; list_for_each_entry(seg, &priv->segs, list) { seg_h_paddr = seg->paddr + seg->sz; pil_info(priv->desc, "%d: %pa %pa\n", seg->num, &seg->paddr, &seg_h_paddr); } } /* * Ensure the entry address lies within the image limits and if the image is * relocatable ensure it lies within a relocatable segment. */ static int pil_init_entry_addr(struct pil_priv *priv, const struct pil_mdt *mdt) { struct pil_seg *seg; phys_addr_t entry = mdt->hdr.e_entry; bool image_relocated = priv->region; if (image_relocated) entry = pil_reloc(priv, entry); priv->entry_addr = entry; if (priv->desc->flags & PIL_SKIP_ENTRY_CHECK) return 0; list_for_each_entry(seg, &priv->segs, list) { if (entry >= seg->paddr && entry < seg->paddr + seg->sz) { if (!image_relocated) return 0; else if (seg->relocated) return 0; } } pil_err(priv->desc, "entry address %pa not within range\n", &entry); pil_dump_segs(priv); return -EADDRNOTAVAIL; } static int pil_alloc_region(struct pil_priv *priv, phys_addr_t min_addr, phys_addr_t max_addr, size_t align) { void *region; size_t size = max_addr - min_addr; size_t aligned_size; /* Don't reallocate due to fragmentation concerns, just sanity check */ if (priv->region) { if (WARN(priv->region_end - priv->region_start < size, "Can't reuse PIL memory, too small\n")) return -ENOMEM; return 0; } if (align > SZ_4M) aligned_size = ALIGN(size, SZ_4M); else aligned_size = ALIGN(size, SZ_1M); init_dma_attrs(&priv->desc->attrs); dma_set_attr(DMA_ATTR_SKIP_ZEROING, &priv->desc->attrs); dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &priv->desc->attrs); region = dma_alloc_attrs(priv->desc->dev, aligned_size, &priv->region_start, GFP_KERNEL, &priv->desc->attrs); if (region == NULL) { pil_err(priv->desc, "Failed to allocate relocatable region of size %zx\n", size); return -ENOMEM; } priv->region = region; priv->region_end = priv->region_start + size; priv->base_addr = min_addr; priv->region_size = aligned_size; return 0; } static int pil_setup_region(struct pil_priv *priv, const struct pil_mdt *mdt) { const struct elf32_phdr *phdr; phys_addr_t min_addr_r, min_addr_n, max_addr_r, max_addr_n, start, end; size_t align = 0; int i, ret = 0; bool relocatable = false; min_addr_n = min_addr_r = (phys_addr_t)ULLONG_MAX; max_addr_n = max_addr_r = 0; /* Find the image limits */ for (i = 0; i < mdt->hdr.e_phnum; i++) { phdr = &mdt->phdr[i]; if (!segment_is_loadable(phdr)) continue; start = phdr->p_paddr; end = start + phdr->p_memsz; if (segment_is_relocatable(phdr)) { min_addr_r = min(min_addr_r, start); max_addr_r = max(max_addr_r, end); /* * Lowest relocatable segment dictates alignment of * relocatable region */ if (min_addr_r == start) align = phdr->p_align; relocatable = true; } else { min_addr_n = min(min_addr_n, start); max_addr_n = max(max_addr_n, end); } } /* * Align the max address to the next 4K boundary to satisfy iommus and * XPUs that operate on 4K chunks. */ max_addr_n = ALIGN(max_addr_n, SZ_4K); max_addr_r = ALIGN(max_addr_r, SZ_4K); if (relocatable) { ret = pil_alloc_region(priv, min_addr_r, max_addr_r, align); } else { priv->region_start = min_addr_n; priv->region_end = max_addr_n; priv->base_addr = min_addr_n; } if (priv->info) { __iowrite32_copy(&priv->info->start, &priv->region_start, sizeof(priv->region_start) / 4); writel_relaxed(priv->region_end - priv->region_start, &priv->info->size); } return ret; } static int pil_cmp_seg(void *priv, struct list_head *a, struct list_head *b) { int ret = 0; struct pil_seg *seg_a = list_entry(a, struct pil_seg, list); struct pil_seg *seg_b = list_entry(b, struct pil_seg, list); if (seg_a->paddr < seg_b->paddr) ret = -1; else if (seg_a->paddr > seg_b->paddr) ret = 1; return ret; } static int pil_init_mmap(struct pil_desc *desc, const struct pil_mdt *mdt) { struct pil_priv *priv = desc->priv; const struct elf32_phdr *phdr; struct pil_seg *seg; int i, ret; ret = pil_setup_region(priv, mdt); if (ret) return ret; pil_info(desc, "loading from %pa to %pa\n", &priv->region_start, &priv->region_end); for (i = 0; i < mdt->hdr.e_phnum; i++) { phdr = &mdt->phdr[i]; if (!segment_is_loadable(phdr)) continue; seg = pil_init_seg(desc, phdr, i); if (IS_ERR(seg)) return PTR_ERR(seg); list_add_tail(&seg->list, &priv->segs); } list_sort(NULL, &priv->segs, pil_cmp_seg); return pil_init_entry_addr(priv, mdt); } static void pil_release_mmap(struct pil_desc *desc) { struct pil_priv *priv = desc->priv; struct pil_seg *p, *tmp; u64 zero = 0ULL; if (priv->info) { __iowrite32_copy(&priv->info->start, &zero, sizeof(zero) / 4); writel_relaxed(0, &priv->info->size); } list_for_each_entry_safe(p, tmp, &priv->segs, list) { list_del(&p->list); kfree(p); } } #define IOMAP_SIZE SZ_1M struct pil_map_fw_info { void *region; struct dma_attrs attrs; phys_addr_t base_addr; struct device *dev; }; static void *map_fw_mem(phys_addr_t paddr, size_t size, void *data) { struct pil_map_fw_info *info = data; return dma_remap(info->dev, info->region, paddr, size, &info->attrs); } static void unmap_fw_mem(void *vaddr, size_t size, void *data) { struct pil_map_fw_info *info = data; dma_unremap(info->dev, vaddr, size); } static int pil_load_seg(struct pil_desc *desc, struct pil_seg *seg) { int ret = 0, count; phys_addr_t paddr; char fw_name[30]; int num = seg->num; struct pil_map_fw_info map_fw_info = { .attrs = desc->attrs, .region = desc->priv->region, .base_addr = desc->priv->region_start, .dev = desc->dev, }; void *map_data = desc->map_data ? desc->map_data : &map_fw_info; if (seg->filesz) { snprintf(fw_name, ARRAY_SIZE(fw_name), "%s.b%02d", desc->fw_name, num); ret = request_firmware_into_buf(fw_name, desc->dev, seg->paddr, seg->filesz, desc->map_fw_mem, desc->unmap_fw_mem, map_data); if (ret < 0) { pil_err(desc, "Failed to locate blob %s or blob is too big.\n", fw_name); return ret; } if (ret != seg->filesz) { pil_err(desc, "Blob size %u doesn't match %lu\n", ret, seg->filesz); return -EPERM; } ret = 0; } /* Zero out trailing memory */ paddr = seg->paddr + seg->filesz; count = seg->sz - seg->filesz; while (count > 0) { int size; u8 __iomem *buf; size = min_t(size_t, IOMAP_SIZE, count); buf = desc->map_fw_mem(paddr, size, map_data); if (!buf) { pil_err(desc, "Failed to map memory\n"); return -ENOMEM; } pil_memset_io(buf, 0, size); desc->unmap_fw_mem(buf, size, map_data); count -= size; paddr += size; } if (desc->ops->verify_blob) { ret = desc->ops->verify_blob(desc, seg->paddr, seg->sz); if (ret) pil_err(desc, "Blob%u failed verification\n", num); } return ret; } static int pil_parse_devicetree(struct pil_desc *desc) { struct device_node *ofnode = desc->dev->of_node; int clk_ready = 0; if (!ofnode) return -EINVAL; if (of_property_read_u32(ofnode, "qcom,mem-protect-id", &desc->subsys_vmid)) pr_debug("Unable to read the addr-protect-id for %s\n", desc->name); if (desc->ops->proxy_unvote && of_find_property(ofnode, "qcom,gpio-proxy-unvote", NULL)) { clk_ready = of_get_named_gpio(ofnode, "qcom,gpio-proxy-unvote", 0); if (clk_ready < 0) { dev_dbg(desc->dev, "[%s]: Error getting proxy unvoting gpio\n", desc->name); return clk_ready; } clk_ready = gpio_to_irq(clk_ready); if (clk_ready < 0) { dev_err(desc->dev, "[%s]: Error getting proxy unvote IRQ\n", desc->name); return clk_ready; } } desc->proxy_unvote_irq = clk_ready; return 0; } /* Synchronize request_firmware() with suspend */ static DECLARE_RWSEM(pil_pm_rwsem); /** * pil_boot() - Load a peripheral image into memory and boot it * @desc: descriptor from pil_desc_init() * * Returns 0 on success or -ERROR on failure. */ int pil_boot(struct pil_desc *desc) { int ret; char fw_name[30]; const struct pil_mdt *mdt; const struct elf32_hdr *ehdr; struct pil_seg *seg; const struct firmware *fw; struct pil_priv *priv = desc->priv; bool mem_protect = false; bool hyp_assign = false; if (desc->shutdown_fail) pil_err(desc, "Subsystem shutdown failed previously!\n"); /* Reinitialize for new image */ pil_release_mmap(desc); down_read(&pil_pm_rwsem); snprintf(fw_name, sizeof(fw_name), "%s.mdt", desc->fw_name); ret = request_firmware(&fw, fw_name, desc->dev); if (ret) { pil_err(desc, "Failed to locate %s\n", fw_name); goto out; } if (fw->size < sizeof(*ehdr)) { pil_err(desc, "Not big enough to be an elf header\n"); ret = -EIO; goto release_fw; } mdt = (const struct pil_mdt *)fw->data; ehdr = &mdt->hdr; if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) { pil_err(desc, "Not an elf header\n"); ret = -EIO; goto release_fw; } if (ehdr->e_phnum == 0) { pil_err(desc, "No loadable segments\n"); ret = -EIO; goto release_fw; } if (sizeof(struct elf32_phdr) * ehdr->e_phnum + sizeof(struct elf32_hdr) > fw->size) { pil_err(desc, "Program headers not within mdt\n"); ret = -EIO; goto release_fw; } ret = pil_init_mmap(desc, mdt); if (ret) goto release_fw; desc->priv->unvoted_flag = 0; ret = pil_proxy_vote(desc); if (ret) { pil_err(desc, "Failed to proxy vote\n"); goto release_fw; } if (desc->ops->init_image) ret = desc->ops->init_image(desc, fw->data, fw->size); if (ret) { pil_err(desc, "Invalid firmware metadata\n"); goto err_boot; } if (desc->ops->mem_setup) ret = desc->ops->mem_setup(desc, priv->region_start, priv->region_end - priv->region_start); if (ret) { pil_err(desc, "Memory setup error\n"); goto err_deinit_image; } if (desc->subsys_vmid > 0) { /* Make sure the memory is actually assigned to Linux. In the * case where the shutdown sequence is not able to immediately * assign the memory back to Linux, we need to do this here. */ ret = pil_assign_mem_to_linux(desc, priv->region_start, (priv->region_end - priv->region_start)); if (ret) pil_err(desc, "Failed to assign to linux, ret - %d\n", ret); ret = pil_assign_mem_to_subsys_and_linux(desc, priv->region_start, (priv->region_end - priv->region_start)); if (ret) { pil_err(desc, "Failed to assign memory, ret - %d\n", ret); goto err_deinit_image; } hyp_assign = true; } list_for_each_entry(seg, &desc->priv->segs, list) { ret = pil_load_seg(desc, seg); if (ret) goto err_deinit_image; } if (desc->subsys_vmid > 0) { ret = pil_reclaim_mem(desc, priv->region_start, (priv->region_end - priv->region_start), desc->subsys_vmid); if (ret) { pil_err(desc, "Failed to assign %s memory, ret - %d\n", desc->name, ret); goto err_deinit_image; } hyp_assign = false; } ret = desc->ops->auth_and_reset(desc); if (ret) { pil_err(desc, "Failed to bring out of reset\n"); goto err_auth_and_reset; } pil_info(desc, "Brought out of reset\n"); err_auth_and_reset: if (ret && desc->subsys_vmid > 0) { pil_assign_mem_to_linux(desc, priv->region_start, (priv->region_end - priv->region_start)); mem_protect = true; } err_deinit_image: if (ret && desc->ops->deinit_image) desc->ops->deinit_image(desc); err_boot: if (ret && desc->proxy_unvote_irq) disable_irq(desc->proxy_unvote_irq); pil_proxy_unvote(desc, ret); release_fw: release_firmware(fw); out: up_read(&pil_pm_rwsem); if (ret) { if (priv->region) { if (desc->subsys_vmid > 0 && !mem_protect && hyp_assign) { pil_reclaim_mem(desc, priv->region_start, (priv->region_end - priv->region_start), VMID_HLOS); } dma_free_attrs(desc->dev, priv->region_size, priv->region, priv->region_start, &desc->attrs); priv->region = NULL; } pil_release_mmap(desc); } return ret; } EXPORT_SYMBOL(pil_boot); /** * pil_shutdown() - Shutdown a peripheral * @desc: descriptor from pil_desc_init() */ void pil_shutdown(struct pil_desc *desc) { struct pil_priv *priv = desc->priv; if (desc->ops->shutdown) { if (desc->ops->shutdown(desc)) desc->shutdown_fail = true; else desc->shutdown_fail = false; } if (desc->proxy_unvote_irq) { disable_irq(desc->proxy_unvote_irq); if (!desc->priv->unvoted_flag) pil_proxy_unvote(desc, 1); } else if (!proxy_timeout_ms) pil_proxy_unvote(desc, 1); else flush_delayed_work(&priv->proxy); } EXPORT_SYMBOL(pil_shutdown); /** * pil_free_memory() - Free memory resources associated with a peripheral * @desc: descriptor from pil_desc_init() */ void pil_free_memory(struct pil_desc *desc) { struct pil_priv *priv = desc->priv; if (priv->region) { if (desc->subsys_vmid > 0) pil_assign_mem_to_linux(desc, priv->region_start, (priv->region_end - priv->region_start)); dma_free_attrs(desc->dev, priv->region_size, priv->region, priv->region_start, &desc->attrs); priv->region = NULL; } } EXPORT_SYMBOL(pil_free_memory); static DEFINE_IDA(pil_ida); /** * pil_desc_init() - Initialize a pil descriptor * @desc: descriptor to intialize * * Initialize a pil descriptor for use by other pil functions. This function * must be called before calling pil_boot() or pil_shutdown(). * * Returns 0 for success and -ERROR on failure. */ int pil_desc_init(struct pil_desc *desc) { struct pil_priv *priv; int ret; void __iomem *addr; char buf[sizeof(priv->info->name)]; if (WARN(desc->ops->proxy_unvote && !desc->ops->proxy_vote, "Invalid proxy voting. Ignoring\n")) ((struct pil_reset_ops *)desc->ops)->proxy_unvote = NULL; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; desc->priv = priv; priv->desc = desc; priv->id = ret = ida_simple_get(&pil_ida, 0, PIL_NUM_DESC, GFP_KERNEL); if (priv->id < 0) goto err; if (pil_info_base) { addr = pil_info_base + sizeof(struct pil_image_info) * priv->id; priv->info = (struct pil_image_info __iomem *)addr; strncpy(buf, desc->name, sizeof(buf)); __iowrite32_copy(priv->info->name, buf, sizeof(buf) / 4); } ret = pil_parse_devicetree(desc); if (ret) goto err_parse_dt; /* Ignore users who don't make any sense */ WARN(desc->ops->proxy_unvote && desc->proxy_unvote_irq == 0 && !desc->proxy_timeout, "Invalid proxy unvote callback or a proxy timeout of 0" " was specified or no proxy unvote IRQ was specified.\n"); if (desc->proxy_unvote_irq) { ret = request_threaded_irq(desc->proxy_unvote_irq, NULL, proxy_unvote_intr_handler, IRQF_ONESHOT | IRQF_TRIGGER_RISING, desc->name, desc); if (ret < 0) { dev_err(desc->dev, "Unable to request proxy unvote IRQ: %d\n", ret); goto err; } disable_irq(desc->proxy_unvote_irq); } snprintf(priv->wname, sizeof(priv->wname), "pil-%s", desc->name); wakeup_source_init(&priv->ws, priv->wname); INIT_DELAYED_WORK(&priv->proxy, pil_proxy_unvote_work); INIT_LIST_HEAD(&priv->segs); /* Make sure mapping functions are set. */ if (!desc->map_fw_mem) desc->map_fw_mem = map_fw_mem; if (!desc->unmap_fw_mem) desc->unmap_fw_mem = unmap_fw_mem; return 0; err_parse_dt: ida_simple_remove(&pil_ida, priv->id); err: kfree(priv); return ret; } EXPORT_SYMBOL(pil_desc_init); /** * pil_desc_release() - Release a pil descriptor * @desc: descriptor to free */ void pil_desc_release(struct pil_desc *desc) { struct pil_priv *priv = desc->priv; if (priv) { ida_simple_remove(&pil_ida, priv->id); flush_delayed_work(&priv->proxy); wakeup_source_trash(&priv->ws); } desc->priv = NULL; kfree(priv); } EXPORT_SYMBOL(pil_desc_release); static int pil_pm_notify(struct notifier_block *b, unsigned long event, void *p) { switch (event) { case PM_SUSPEND_PREPARE: down_write(&pil_pm_rwsem); break; case PM_POST_SUSPEND: up_write(&pil_pm_rwsem); break; } return NOTIFY_DONE; } static struct notifier_block pil_pm_notifier = { .notifier_call = pil_pm_notify, }; static int __init msm_pil_init(void) { struct device_node *np; struct resource res; int i; np = of_find_compatible_node(NULL, NULL, "qcom,msm-imem-pil"); if (!np) { pr_warn("pil: failed to find qcom,msm-imem-pil node\n"); goto out; } if (of_address_to_resource(np, 0, &res)) { pr_warn("pil: address to resource on imem region failed\n"); goto out; } pil_info_base = ioremap(res.start, resource_size(&res)); if (!pil_info_base) { pr_warn("pil: could not map imem region\n"); goto out; } for (i = 0; i < resource_size(&res)/sizeof(u32); i++) writel_relaxed(0, pil_info_base + (i * sizeof(u32))); out: return register_pm_notifier(&pil_pm_notifier); } device_initcall(msm_pil_init); static void __exit msm_pil_exit(void) { unregister_pm_notifier(&pil_pm_notifier); if (pil_info_base) iounmap(pil_info_base); } module_exit(msm_pil_exit); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Load peripheral images and bring peripherals out of reset");