/* * Block driver for media (i.e., flash cards) * * Copyright 2002 Hewlett-Packard Company * Copyright 2005-2008 Pierre Ossman * * Use consistent with the GNU GPL is permitted, * provided that this copyright notice is * preserved in its entirety in all copies and derived works. * * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS * FITNESS FOR ANY PARTICULAR PURPOSE. * * Many thanks to Alessandro Rubini and Jonathan Corbet! * * Author: Andrew Christian * 28 May 2002 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include #include #include #include #include #include #include #include "queue.h" MODULE_ALIAS("mmc:block"); #ifdef MODULE_PARAM_PREFIX #undef MODULE_PARAM_PREFIX #endif #define MODULE_PARAM_PREFIX "mmcblk." #define INAND_CMD38_ARG_EXT_CSD 113 #define INAND_CMD38_ARG_ERASE 0x00 #define INAND_CMD38_ARG_TRIM 0x01 #define INAND_CMD38_ARG_SECERASE 0x80 #define INAND_CMD38_ARG_SECTRIM1 0x81 #define INAND_CMD38_ARG_SECTRIM2 0x88 #define MMC_BLK_TIMEOUT_MS (30 * 1000) /* 30 sec timeout */ #define MMC_SANITIZE_REQ_TIMEOUT 240000 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) #define MMC_CMDQ_STOP_TIMEOUT_MS 100 #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \ (req->cmd_flags & REQ_META)) && \ (rq_data_dir(req) == WRITE)) #define PACKED_CMD_VER 0x01 #define PACKED_CMD_WR 0x02 #define PACKED_TRIGGER_MAX_ELEMENTS 5000 #define MMC_BLK_MAX_RETRIES 5 /* max # of retries before aborting a command */ #define MMC_BLK_UPDATE_STOP_REASON(stats, reason) \ do { \ if (stats->enabled) \ stats->pack_stop_reason[reason]++; \ } while (0) #define MAX_RETRIES 5 #define PCKD_TRGR_INIT_MEAN_POTEN 17 #define PCKD_TRGR_POTEN_LOWER_BOUND 5 #define PCKD_TRGR_URGENT_PENALTY 2 #define PCKD_TRGR_LOWER_BOUND 5 #define PCKD_TRGR_PRECISION_MULTIPLIER 100 static struct mmc_cmdq_req *mmc_cmdq_prep_dcmd( struct mmc_queue_req *mqrq, struct mmc_queue *mq); static DEFINE_MUTEX(block_mutex); /* * The defaults come from config options but can be overriden by module * or bootarg options. */ static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; /* * We've only got one major, so number of mmcblk devices is * limited to 256 / number of minors per device. */ static int max_devices; /* 256 minors, so at most 256 separate devices */ static DECLARE_BITMAP(dev_use, 256); static DECLARE_BITMAP(name_use, 256); /* * There is one mmc_blk_data per slot. */ struct mmc_blk_data { spinlock_t lock; struct gendisk *disk; struct mmc_queue queue; struct list_head part; unsigned int flags; #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */ #define MMC_BLK_CMD_QUEUE (1 << 3) /* MMC command queue support */ unsigned int usage; unsigned int read_only; unsigned int part_type; unsigned int name_idx; unsigned int reset_done; #define MMC_BLK_READ BIT(0) #define MMC_BLK_WRITE BIT(1) #define MMC_BLK_DISCARD BIT(2) #define MMC_BLK_SECDISCARD BIT(3) #define MMC_BLK_FLUSH BIT(4) /* * Only set in main mmc_blk_data associated * with mmc_card with mmc_set_drvdata, and keeps * track of the current selected device partition. */ unsigned int part_curr; struct device_attribute force_ro; struct device_attribute power_ro_lock; struct device_attribute num_wr_reqs_to_start_packing; struct device_attribute no_pack_for_random; int area_type; }; static DEFINE_MUTEX(open_lock); enum { MMC_PACKED_NR_IDX = -1, MMC_PACKED_NR_ZERO, MMC_PACKED_NR_SINGLE, }; module_param(perdev_minors, int, 0444); MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); static inline int mmc_blk_part_switch(struct mmc_card *card, struct mmc_blk_data *md); static int get_card_status(struct mmc_card *card, u32 *status, int retries); static int mmc_blk_cmdq_switch(struct mmc_card *card, struct mmc_blk_data *md, bool enable); static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq) { struct mmc_packed *packed = mqrq->packed; BUG_ON(!packed); mqrq->cmd_type = MMC_PACKED_NONE; packed->nr_entries = MMC_PACKED_NR_ZERO; packed->idx_failure = MMC_PACKED_NR_IDX; packed->retries = 0; packed->blocks = 0; } static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) { struct mmc_blk_data *md; mutex_lock(&open_lock); md = disk->private_data; if (md && md->usage == 0) md = NULL; if (md) md->usage++; mutex_unlock(&open_lock); return md; } static inline int mmc_get_devidx(struct gendisk *disk) { int devidx = disk->first_minor / perdev_minors; return devidx; } static void mmc_blk_put(struct mmc_blk_data *md) { mutex_lock(&open_lock); md->usage--; if (md->usage == 0) { int devidx = mmc_get_devidx(md->disk); blk_cleanup_queue(md->queue.queue); __clear_bit(devidx, dev_use); put_disk(md->disk); kfree(md); } mutex_unlock(&open_lock); } static ssize_t power_ro_lock_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); struct mmc_card *card; int locked = 0; if (!md) return -EINVAL; card = md->queue.card; if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) locked = 2; else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) locked = 1; ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); mmc_blk_put(md); return ret; } static ssize_t power_ro_lock_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; struct mmc_blk_data *md, *part_md; struct mmc_card *card; unsigned long set; if (kstrtoul(buf, 0, &set)) return -EINVAL; if (set != 1) return count; md = mmc_blk_get(dev_to_disk(dev)); if (!md) return -EINVAL; card = md->queue.card; mmc_get_card(card); ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, card->ext_csd.boot_ro_lock | EXT_CSD_BOOT_WP_B_PWR_WP_EN, card->ext_csd.part_time); if (ret) pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret); else card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN; mmc_put_card(card); if (!ret) { pr_info("%s: Locking boot partition ro until next power on\n", md->disk->disk_name); set_disk_ro(md->disk, 1); list_for_each_entry(part_md, &md->part, part) if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); set_disk_ro(part_md->disk, 1); } } mmc_blk_put(md); return count; } static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, char *buf) { int ret; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); if (!md) return -EINVAL; ret = snprintf(buf, PAGE_SIZE, "%d\n", get_disk_ro(dev_to_disk(dev)) ^ md->read_only); mmc_blk_put(md); return ret; } static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; char *end; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); unsigned long set = simple_strtoul(buf, &end, 0); if (!md) return -EINVAL; if (end == buf) { ret = -EINVAL; goto out; } set_disk_ro(dev_to_disk(dev), set || md->read_only); ret = count; out: mmc_blk_put(md); return ret; } static ssize_t num_wr_reqs_to_start_packing_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); int num_wr_reqs_to_start_packing; int ret; if (!md) return -EINVAL; num_wr_reqs_to_start_packing = md->queue.num_wr_reqs_to_start_packing; ret = snprintf(buf, PAGE_SIZE, "%d\n", num_wr_reqs_to_start_packing); mmc_blk_put(md); return ret; } static ssize_t num_wr_reqs_to_start_packing_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); struct mmc_card *card; int ret = count; if (!md) return -EINVAL; card = md->queue.card; if (!card) { ret = -EINVAL; goto exit; } sscanf(buf, "%d", &value); if (value >= 0) { md->queue.num_wr_reqs_to_start_packing = min_t(int, value, (int)card->ext_csd.max_packed_writes); pr_debug("%s: trigger to pack: new value = %d", mmc_hostname(card->host), md->queue.num_wr_reqs_to_start_packing); } else { pr_err("%s: value %d is not valid. old value remains = %d", mmc_hostname(card->host), value, md->queue.num_wr_reqs_to_start_packing); ret = -EINVAL; } exit: mmc_blk_put(md); return ret; } static ssize_t no_pack_for_random_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); int ret; if (!md) return -EINVAL; ret = snprintf(buf, PAGE_SIZE, "%d\n", md->queue.no_pack_for_random); mmc_blk_put(md); return ret; } static ssize_t no_pack_for_random_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int value; struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); struct mmc_card *card; int ret = count; if (!md) return -EINVAL; card = md->queue.card; if (!card) { ret = -EINVAL; goto exit; } sscanf(buf, "%d", &value); if (value < 0) { pr_err("%s: value %d is not valid. old value remains = %d", mmc_hostname(card->host), value, md->queue.no_pack_for_random); ret = -EINVAL; goto exit; } md->queue.no_pack_for_random = (value > 0) ? true : false; pr_debug("%s: no_pack_for_random: new value = %d", mmc_hostname(card->host), md->queue.no_pack_for_random); exit: mmc_blk_put(md); return ret; } static int mmc_blk_open(struct block_device *bdev, fmode_t mode) { struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); int ret = -ENXIO; mutex_lock(&block_mutex); if (md) { if (md->usage == 2) check_disk_change(bdev); ret = 0; if ((mode & FMODE_WRITE) && md->read_only) { mmc_blk_put(md); ret = -EROFS; } } mutex_unlock(&block_mutex); return ret; } static void mmc_blk_release(struct gendisk *disk, fmode_t mode) { struct mmc_blk_data *md = disk->private_data; mutex_lock(&block_mutex); mmc_blk_put(md); mutex_unlock(&block_mutex); } static int mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) { geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); geo->heads = 4; geo->sectors = 16; return 0; } struct mmc_blk_ioc_data { struct mmc_ioc_cmd ic; unsigned char *buf; u64 buf_bytes; }; static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( struct mmc_ioc_cmd __user *user) { struct mmc_blk_ioc_data *idata; int err; idata = kzalloc(sizeof(*idata), GFP_KERNEL); if (!idata) { err = -ENOMEM; goto out; } if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { err = -EFAULT; goto idata_err; } idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { err = -EOVERFLOW; goto idata_err; } if (!idata->buf_bytes) return idata; idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL); if (!idata->buf) { err = -ENOMEM; goto idata_err; } if (copy_from_user(idata->buf, (void __user *)(unsigned long) idata->ic.data_ptr, idata->buf_bytes)) { err = -EFAULT; goto copy_err; } return idata; copy_err: kfree(idata->buf); idata_err: kfree(idata); out: return ERR_PTR(err); } static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, u32 retries_max) { int err; u32 retry_count = 0; if (!status || !retries_max) return -EINVAL; do { err = get_card_status(card, status, 5); if (err) break; if (!R1_STATUS(*status) && (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) break; /* RPMB programming operation complete */ /* * Rechedule to give the MMC device a chance to continue * processing the previous command without being polled too * frequently. */ usleep_range(1000, 5000); } while (++retry_count < retries_max); if (retry_count == retries_max) err = -EPERM; return err; } static int ioctl_do_sanitize(struct mmc_card *card) { int err; if (!mmc_can_sanitize(card) && (card->host->caps2 & MMC_CAP2_SANITIZE)) { pr_warn("%s: %s - SANITIZE is not supported\n", mmc_hostname(card->host), __func__); err = -EOPNOTSUPP; goto out; } pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", mmc_hostname(card->host), __func__); trace_mmc_blk_erase_start(EXT_CSD_SANITIZE_START, 0, 0); err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START, 1, MMC_SANITIZE_REQ_TIMEOUT); trace_mmc_blk_erase_end(EXT_CSD_SANITIZE_START, 0, 0); if (err) pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", mmc_hostname(card->host), __func__, err); pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), __func__); out: return err; } static int mmc_blk_ioctl_cmd(struct block_device *bdev, struct mmc_ioc_cmd __user *ic_ptr) { struct mmc_blk_ioc_data *idata; struct mmc_blk_data *md; struct mmc_card *card; struct mmc_command cmd = {0}; struct mmc_data data = {0}; struct mmc_request mrq = {NULL}; struct scatterlist sg; int err; /* * The caller must have CAP_SYS_RAWIO, and must be calling this on the * whole block device, not on a partition. This prevents overspray * between sibling partitions. */ if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) return -EPERM; idata = mmc_blk_ioctl_copy_from_user(ic_ptr); if (IS_ERR_OR_NULL(idata)) return PTR_ERR(idata); md = mmc_blk_get(bdev->bd_disk); if (!md) { err = -EINVAL; goto cmd_err; } card = md->queue.card; if (IS_ERR_OR_NULL(card)) { err = PTR_ERR(card); goto cmd_done; } cmd.opcode = idata->ic.opcode; cmd.arg = idata->ic.arg; cmd.flags = idata->ic.flags; if (idata->buf_bytes) { data.sg = &sg; data.sg_len = 1; data.blksz = idata->ic.blksz; data.blocks = idata->ic.blocks; sg_init_one(data.sg, idata->buf, idata->buf_bytes); if (idata->ic.write_flag) data.flags = MMC_DATA_WRITE; else data.flags = MMC_DATA_READ; /* data.flags must already be set before doing this. */ mmc_set_data_timeout(&data, card); /* Allow overriding the timeout_ns for empirical tuning. */ if (idata->ic.data_timeout_ns) data.timeout_ns = idata->ic.data_timeout_ns; if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { /* * Pretend this is a data transfer and rely on the * host driver to compute timeout. When all host * drivers support cmd.cmd_timeout for R1B, this * can be changed to: * * mrq.data = NULL; * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; */ data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; } mrq.data = &data; } mrq.cmd = &cmd; mmc_get_card(card); if (mmc_card_cmdq(card)) { err = mmc_cmdq_halt_on_empty_queue(card->host); if (err) { pr_err("%s: halt failed while doing %s err (%d)\n", mmc_hostname(card->host), __func__, err); goto cmd_rel_host_halt; } } if (mmc_card_doing_bkops(card)) { err = mmc_stop_bkops(card); if (err) { dev_err(mmc_dev(card->host), "%s: stop_bkops failed %d\n", __func__, err); goto cmd_rel_host; } } err = mmc_blk_part_switch(card, md); if (err) goto cmd_rel_host; if (idata->ic.is_acmd) { err = mmc_app_cmd(card->host, card); if (err) goto cmd_rel_host; } if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && (cmd.opcode == MMC_SWITCH)) { err = ioctl_do_sanitize(card); if (err) pr_err("%s: ioctl_do_sanitize() failed. err = %d", __func__, err); goto cmd_rel_host; } mmc_wait_for_req(card->host, &mrq); if (cmd.error) { dev_err(mmc_dev(card->host), "%s: cmd error %d\n", __func__, cmd.error); err = cmd.error; goto cmd_rel_host; } if (data.error) { dev_err(mmc_dev(card->host), "%s: data error %d\n", __func__, data.error); err = data.error; goto cmd_rel_host; } /* * According to the SD specs, some commands require a delay after * issuing the command. */ if (idata->ic.postsleep_min_us) usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) { err = -EFAULT; goto cmd_rel_host; } if (!idata->ic.write_flag) { if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr, idata->buf, idata->buf_bytes)) { err = -EFAULT; goto cmd_rel_host; } } cmd_rel_host: if (mmc_card_cmdq(card)) { if (mmc_cmdq_halt(card->host, false)) pr_err("%s: %s: cmdq unhalt failed\n", mmc_hostname(card->host), __func__); } cmd_rel_host_halt: mmc_release_host(card->host); cmd_done: mmc_blk_put(md); cmd_err: kfree(idata->buf); kfree(idata); return err; } struct mmc_blk_ioc_rpmb_data { struct mmc_blk_ioc_data *data[MMC_IOC_MAX_RPMB_CMD]; }; static struct mmc_blk_ioc_rpmb_data *mmc_blk_ioctl_rpmb_copy_from_user( struct mmc_ioc_rpmb __user *user) { struct mmc_blk_ioc_rpmb_data *idata; int err, i; idata = kzalloc(sizeof(*idata), GFP_KERNEL); if (!idata) { err = -ENOMEM; goto out; } for (i = 0; i < MMC_IOC_MAX_RPMB_CMD; i++) { idata->data[i] = mmc_blk_ioctl_copy_from_user(&(user->cmds[i])); if (IS_ERR(idata->data[i])) { err = PTR_ERR(idata->data[i]); goto copy_err; } } return idata; copy_err: while (--i >= 0) { kfree(idata->data[i]->buf); kfree(idata->data[i]); } kfree(idata); out: return ERR_PTR(err); } static int mmc_blk_ioctl_rpmb_cmd(struct block_device *bdev, struct mmc_ioc_rpmb __user *ic_ptr) { struct mmc_blk_ioc_rpmb_data *idata; struct mmc_blk_data *md; struct mmc_card *card; struct mmc_command cmd = {0}; struct mmc_data data = {0}; struct mmc_request mrq = {NULL}; struct scatterlist sg; int err = 0, i = 0; u32 status = 0; /* The caller must have CAP_SYS_RAWIO */ if (!capable(CAP_SYS_RAWIO)) return -EPERM; md = mmc_blk_get(bdev->bd_disk); /* make sure this is a rpmb partition */ if ((!md) || (!(md->area_type & MMC_BLK_DATA_AREA_RPMB))) { err = -EINVAL; return err; } idata = mmc_blk_ioctl_rpmb_copy_from_user(ic_ptr); if (IS_ERR(idata)) { err = PTR_ERR(idata); goto cmd_done; } card = md->queue.card; if (IS_ERR(card)) { err = PTR_ERR(card); goto idata_free; } mmc_get_card(card); if (mmc_card_doing_bkops(card)) { if (mmc_card_cmdq(card)) { err = mmc_cmdq_halt(card->host, true); if (err) goto cmd_rel_host; } err = mmc_stop_bkops(card); if (err) { dev_err(mmc_dev(card->host), "%s: stop_bkops failed %d\n", __func__, err); goto cmd_rel_host; } if (mmc_card_cmdq(card)) { err = mmc_cmdq_halt(card->host, false); if (err) goto cmd_rel_host; } } err = mmc_blk_part_switch(card, md); if (err) goto cmd_rel_host; for (i = 0; i < MMC_IOC_MAX_RPMB_CMD; i++) { struct mmc_blk_ioc_data *curr_data; struct mmc_ioc_cmd *curr_cmd; curr_data = idata->data[i]; curr_cmd = &curr_data->ic; if (!curr_cmd->opcode) break; cmd.opcode = curr_cmd->opcode; cmd.arg = curr_cmd->arg; cmd.flags = curr_cmd->flags; if (curr_data->buf_bytes) { data.sg = &sg; data.sg_len = 1; data.blksz = curr_cmd->blksz; data.blocks = curr_cmd->blocks; sg_init_one(data.sg, curr_data->buf, curr_data->buf_bytes); if (curr_cmd->write_flag) data.flags = MMC_DATA_WRITE; else data.flags = MMC_DATA_READ; /* data.flags must already be set before doing this. */ mmc_set_data_timeout(&data, card); /* * Allow overriding the timeout_ns for empirical tuning. */ if (curr_cmd->data_timeout_ns) data.timeout_ns = curr_cmd->data_timeout_ns; mrq.data = &data; } mrq.cmd = &cmd; err = mmc_set_blockcount(card, data.blocks, curr_cmd->write_flag & (1 << 31)); if (err) goto cmd_rel_host; mmc_wait_for_req(card->host, &mrq); if (cmd.error) { dev_err(mmc_dev(card->host), "%s: cmd error %d\n", __func__, cmd.error); err = cmd.error; goto cmd_rel_host; } if (data.error) { dev_err(mmc_dev(card->host), "%s: data error %d\n", __func__, data.error); err = data.error; goto cmd_rel_host; } if (copy_to_user(&(ic_ptr->cmds[i].response), cmd.resp, sizeof(cmd.resp))) { err = -EFAULT; goto cmd_rel_host; } if (!curr_cmd->write_flag) { if (copy_to_user((void __user *)(unsigned long) curr_cmd->data_ptr, curr_data->buf, curr_data->buf_bytes)) { err = -EFAULT; goto cmd_rel_host; } } /* * Ensure RPMB command has completed by polling CMD13 * "Send Status". */ err = ioctl_rpmb_card_status_poll(card, &status, 5); if (err) dev_err(mmc_dev(card->host), "%s: Card Status=0x%08X, error %d\n", __func__, status, err); } cmd_rel_host: mmc_put_card(card); idata_free: for (i = 0; i < MMC_IOC_MAX_RPMB_CMD; i++) { kfree(idata->data[i]->buf); kfree(idata->data[i]); } kfree(idata); cmd_done: mmc_blk_put(md); if (card->cmdq_init) wake_up(&card->host->cmdq_ctx.wait); return err; } static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { int ret = -EINVAL; if (cmd == MMC_IOC_CMD) ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg); if (cmd == MMC_IOC_RPMB_CMD) ret = mmc_blk_ioctl_rpmb_cmd(bdev, (struct mmc_ioc_rpmb __user *)arg); return ret; } #ifdef CONFIG_COMPAT static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); } #endif static const struct block_device_operations mmc_bdops = { .open = mmc_blk_open, .release = mmc_blk_release, .getgeo = mmc_blk_getgeo, .owner = THIS_MODULE, .ioctl = mmc_blk_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mmc_blk_compat_ioctl, #endif }; static int mmc_blk_cmdq_switch(struct mmc_card *card, struct mmc_blk_data *md, bool enable) { int ret = 0; bool cmdq_mode = !!mmc_card_cmdq(card); struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx; if (!(card->host->caps2 & MMC_CAP2_CMD_QUEUE) || !card->ext_csd.cmdq_support || (enable && !(md->flags & MMC_BLK_CMD_QUEUE)) || (cmdq_mode == enable)) return 0; if (enable) { ret = mmc_set_blocklen(card, MMC_CARD_CMDQ_BLK_SIZE); if (ret) { pr_err("%s: failed (%d) to set block-size to %d\n", __func__, ret, MMC_CARD_CMDQ_BLK_SIZE); goto out; } } else { if (!test_bit(CMDQ_STATE_HALT, &ctx->curr_state)) { ret = mmc_cmdq_halt(host, true); if (ret) { pr_err("%s: halt: failed: %d\n", mmc_hostname(host), ret); goto out; } } } ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ, enable, card->ext_csd.generic_cmd6_time); if (ret) { pr_err("%s: cmdq mode %sable failed %d\n", md->disk->disk_name, enable ? "en" : "dis", ret); goto out; } if (enable) mmc_card_set_cmdq(card); else mmc_card_clr_cmdq(card); out: return ret; } static inline int mmc_blk_part_switch(struct mmc_card *card, struct mmc_blk_data *md) { int ret; struct mmc_blk_data *main_md = mmc_get_drvdata(card); if ((main_md->part_curr == md->part_type) && (card->part_curr == md->part_type)) return 0; if (mmc_card_mmc(card)) { u8 part_config = card->ext_csd.part_config; if (md->part_type) { /* disable CQ mode for non-user data partitions */ ret = mmc_blk_cmdq_switch(card, md, false); if (ret) return ret; } part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; part_config |= md->part_type; ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, part_config, card->ext_csd.part_time); if (ret) return ret; card->ext_csd.part_config = part_config; card->part_curr = md->part_type; } main_md->part_curr = md->part_type; return 0; } static u32 mmc_sd_num_wr_blocks(struct mmc_card *card) { int err; u32 result; __be32 *blocks; struct mmc_request mrq = {NULL}; struct mmc_command cmd = {0}; struct mmc_data data = {0}; struct scatterlist sg; cmd.opcode = MMC_APP_CMD; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) return (u32)-1; if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) return (u32)-1; memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; cmd.arg = 0; cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = 4; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; mmc_set_data_timeout(&data, card); mrq.cmd = &cmd; mrq.data = &data; blocks = kmalloc(4, GFP_KERNEL); if (!blocks) return (u32)-1; sg_init_one(&sg, blocks, 4); mmc_wait_for_req(card->host, &mrq); result = ntohl(*blocks); kfree(blocks); if (cmd.error || data.error) result = (u32)-1; return result; } static int get_card_status(struct mmc_card *card, u32 *status, int retries) { struct mmc_command cmd = {0}; int err; cmd.opcode = MMC_SEND_STATUS; if (!mmc_host_is_spi(card->host)) cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, retries); if (err == 0) *status = cmd.resp[0]; return err; } static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, bool hw_busy_detect, struct request *req, int *gen_err) { unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); int err = 0; u32 status; do { err = get_card_status(card, &status, 5); if (err) { pr_err("%s: error %d requesting status\n", req->rq_disk->disk_name, err); return err; } if (status & R1_ERROR) { pr_err("%s: %s: error sending status cmd, status %#x\n", req->rq_disk->disk_name, __func__, status); *gen_err = 1; } /* We may rely on the host hw to handle busy detection.*/ if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && hw_busy_detect) break; /* * Timeout if the device never becomes ready for data and never * leaves the program state. */ if (time_after(jiffies, timeout)) { pr_err("%s: Card stuck in programming state! %s %s\n", mmc_hostname(card->host), req->rq_disk->disk_name, __func__); return -ETIMEDOUT; } /* * Some cards mishandle the status bits, * so make sure to check both the busy * indication and the card state. */ } while (!(status & R1_READY_FOR_DATA) || (R1_CURRENT_STATE(status) == R1_STATE_PRG)); return err; } static int send_stop(struct mmc_card *card, unsigned int timeout_ms, struct request *req, int *gen_err, u32 *stop_status) { struct mmc_host *host = card->host; struct mmc_command cmd = {0}; int err; bool use_r1b_resp = rq_data_dir(req) == WRITE; /* * Normally we use R1B responses for WRITE, but in cases where the host * has specified a max_busy_timeout we need to validate it. A failure * means we need to prevent the host from doing hw busy detection, which * is done by converting to a R1 response instead. */ if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) use_r1b_resp = false; cmd.opcode = MMC_STOP_TRANSMISSION; if (use_r1b_resp) { cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; cmd.busy_timeout = timeout_ms; } else { cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; } err = mmc_wait_for_cmd(host, &cmd, 5); if (err) return err; *stop_status = cmd.resp[0]; /* No need to check card status in case of READ. */ if (rq_data_dir(req) == READ) return 0; if (!mmc_host_is_spi(host) && (*stop_status & R1_ERROR)) { pr_err("%s: %s: general error sending stop command, resp %#x\n", req->rq_disk->disk_name, __func__, *stop_status); *gen_err = 1; } return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err); } #define ERR_NOMEDIUM 3 #define ERR_RETRY 2 #define ERR_ABORT 1 #define ERR_CONTINUE 0 static int mmc_blk_cmd_error(struct request *req, const char *name, int error, bool status_valid, u32 status) { switch (error) { case -EILSEQ: /* response crc error, retry the r/w cmd */ pr_err_ratelimited( "%s: response CRC error sending %s command, card status %#x\n", req->rq_disk->disk_name, name, status); return ERR_RETRY; case -ETIMEDOUT: pr_err_ratelimited( "%s: timed out sending %s command, card status %#x\n", req->rq_disk->disk_name, name, status); /* If the status cmd initially failed, retry the r/w cmd */ if (!status_valid) { pr_err_ratelimited("%s: status not valid, retrying timeout\n", req->rq_disk->disk_name); return ERR_RETRY; } /* * If it was a r/w cmd crc error, or illegal command * (eg, issued in wrong state) then retry - we should * have corrected the state problem above. */ if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) { pr_err_ratelimited( "%s: command error, retrying timeout\n", req->rq_disk->disk_name); return ERR_RETRY; } /* Otherwise abort the command */ pr_err_ratelimited( "%s: not retrying timeout\n", req->rq_disk->disk_name); return ERR_ABORT; default: /* We don't understand the error code the driver gave us */ pr_err_ratelimited( "%s: unknown error %d sending read/write command, card status %#x\n", req->rq_disk->disk_name, error, status); return ERR_ABORT; } } /* * Initial r/w and stop cmd error recovery. * We don't know whether the card received the r/w cmd or not, so try to * restore things back to a sane state. Essentially, we do this as follows: * - Obtain card status. If the first attempt to obtain card status fails, * the status word will reflect the failed status cmd, not the failed * r/w cmd. If we fail to obtain card status, it suggests we can no * longer communicate with the card. * - Check the card state. If the card received the cmd but there was a * transient problem with the response, it might still be in a data transfer * mode. Try to send it a stop command. If this fails, we can't recover. * - If the r/w cmd failed due to a response CRC error, it was probably * transient, so retry the cmd. * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry. * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or * illegal cmd, retry. * Otherwise we don't understand what happened, so abort. */ static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req, struct mmc_blk_request *brq, int *ecc_err, int *gen_err) { bool prev_cmd_status_valid = true; u32 status, stop_status = 0; int err, retry; if (mmc_card_removed(card)) return ERR_NOMEDIUM; /* * Try to get card status which indicates both the card state * and why there was no response. If the first attempt fails, * we can't be sure the returned status is for the r/w command. */ for (retry = 2; retry >= 0; retry--) { err = get_card_status(card, &status, 0); if (!err) break; prev_cmd_status_valid = false; pr_err("%s: error %d sending status command, %sing\n", req->rq_disk->disk_name, err, retry ? "retry" : "abort"); } /* We couldn't get a response from the card. Give up. */ if (err) { /* Check if the card is removed */ if (mmc_detect_card_removed(card->host)) return ERR_NOMEDIUM; return ERR_ABORT; } /* Flag ECC errors */ if ((status & R1_CARD_ECC_FAILED) || (brq->stop.resp[0] & R1_CARD_ECC_FAILED) || (brq->cmd.resp[0] & R1_CARD_ECC_FAILED)) *ecc_err = 1; /* Flag General errors */ if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) if ((status & R1_ERROR) || (brq->stop.resp[0] & R1_ERROR)) { pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n", req->rq_disk->disk_name, __func__, brq->stop.resp[0], status); *gen_err = 1; } /* * Check the current card state. If it is in some data transfer * mode, tell it to stop (and hopefully transition back to TRAN.) */ if (R1_CURRENT_STATE(status) == R1_STATE_DATA || R1_CURRENT_STATE(status) == R1_STATE_RCV) { err = send_stop(card, DIV_ROUND_UP(brq->data.timeout_ns, 1000000), req, gen_err, &stop_status); if (err) { pr_err("%s: error %d sending stop command\n", req->rq_disk->disk_name, err); /* * If the stop cmd also timed out, the card is probably * not present, so abort. Other errors are bad news too. */ return ERR_ABORT; } if (stop_status & R1_CARD_ECC_FAILED) *ecc_err = 1; } /* Check for set block count errors */ if (brq->sbc.error) return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error, prev_cmd_status_valid, status); /* Check for r/w command errors */ if (brq->cmd.error) return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error, prev_cmd_status_valid, status); /* Data errors */ if (!brq->stop.error) return ERR_CONTINUE; /* Now for stop errors. These aren't fatal to the transfer. */ pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n", req->rq_disk->disk_name, brq->stop.error, brq->cmd.resp[0], status); /* * Subsitute in our own stop status as this will give the error * state which happened during the execution of the r/w command. */ if (stop_status) { brq->stop.resp[0] = stop_status; brq->stop.error = 0; } return ERR_CONTINUE; } static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, int type) { int err; if (md->reset_done & type) return -EEXIST; md->reset_done |= type; err = mmc_hw_reset(host); if (err && err != -EOPNOTSUPP) { /* We failed to reset so we need to abort the request */ pr_err("%s: %s: failed to reset %d\n", mmc_hostname(host), __func__, err); return -ENODEV; } /* Ensure we switch back to the correct partition */ if (host->card) { struct mmc_blk_data *main_md = mmc_get_drvdata(host->card); int part_err; main_md->part_curr = main_md->part_type; part_err = mmc_blk_part_switch(host->card, md); if (part_err) { /* * We have failed to get back into the correct * partition, so we need to abort the whole request. */ return -ENODEV; } } return err; } static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) { md->reset_done &= ~type; } int mmc_access_rpmb(struct mmc_queue *mq) { struct mmc_blk_data *md = mq->data; /* * If this is a RPMB partition access, return ture */ if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) return true; return false; } static struct mmc_cmdq_req *mmc_blk_cmdq_prep_discard_req(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; struct mmc_cmdq_req *cmdq_req; struct mmc_queue_req *active_mqrq; BUG_ON(req->tag > card->ext_csd.cmdq_depth); BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.active_reqs)); set_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state); active_mqrq = &mq->mqrq_cmdq[req->tag]; active_mqrq->req = req; cmdq_req = mmc_cmdq_prep_dcmd(active_mqrq, mq); cmdq_req->cmdq_req_flags |= QBR; cmdq_req->mrq.cmd = &cmdq_req->cmd; cmdq_req->tag = req->tag; return cmdq_req; } static int mmc_blk_cmdq_issue_discard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; struct mmc_cmdq_req *cmdq_req = NULL; unsigned int from, nr, arg; int err = 0; if (!mmc_can_erase(card)) { err = -EOPNOTSUPP; blk_end_request(req, err, blk_rq_bytes(req)); goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_discard(card)) arg = MMC_DISCARD_ARG; else if (mmc_can_trim(card)) arg = MMC_TRIM_ARG; else arg = MMC_ERASE_ARG; cmdq_req = mmc_blk_cmdq_prep_discard_req(mq, req); if (card->quirks & MMC_QUIRK_INAND_CMD38) { __mmc_switch_cmdq_mode(cmdq_req->mrq.cmd, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_TRIM_ARG ? INAND_CMD38_ARG_TRIM : INAND_CMD38_ARG_ERASE, 0, true, false); err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req); if (err) goto clear_dcmd; } err = mmc_cmdq_erase(cmdq_req, card, from, nr, arg); clear_dcmd: mmc_host_clk_hold(card->host); blk_complete_request(req); out: return err ? 1 : 0; } static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; unsigned int from, nr, arg; int err = 0, type = MMC_BLK_DISCARD; if (!mmc_can_erase(card)) { err = -EOPNOTSUPP; goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_discard(card)) arg = MMC_DISCARD_ARG; else if (mmc_can_trim(card)) arg = MMC_TRIM_ARG; else arg = MMC_ERASE_ARG; retry: if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_TRIM_ARG ? INAND_CMD38_ARG_TRIM : INAND_CMD38_ARG_ERASE, 0); if (err) goto out; } err = mmc_erase(card, from, nr, arg); out: if (err == -EIO && !mmc_blk_reset(md, card->host, type)) goto retry; if (!err) mmc_blk_reset_success(md, type); blk_end_request(req, err, blk_rq_bytes(req)); return err ? 0 : 1; } static int mmc_blk_cmdq_issue_secdiscard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; struct mmc_cmdq_req *cmdq_req = NULL; unsigned int from, nr, arg; int err = 0; if (!(mmc_can_secure_erase_trim(card))) { err = -EOPNOTSUPP; blk_end_request(req, err, blk_rq_bytes(req)); goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) arg = MMC_SECURE_TRIM1_ARG; else arg = MMC_SECURE_ERASE_ARG; cmdq_req = mmc_blk_cmdq_prep_discard_req(mq, req); if (card->quirks & MMC_QUIRK_INAND_CMD38) { __mmc_switch_cmdq_mode(cmdq_req->mrq.cmd, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_SECURE_TRIM1_ARG ? INAND_CMD38_ARG_SECTRIM1 : INAND_CMD38_ARG_SECERASE, 0, true, false); err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req); if (err) goto clear_dcmd; } err = mmc_cmdq_erase(cmdq_req, card, from, nr, arg); if (err) goto clear_dcmd; if (arg == MMC_SECURE_TRIM1_ARG) { if (card->quirks & MMC_QUIRK_INAND_CMD38) { __mmc_switch_cmdq_mode(cmdq_req->mrq.cmd, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, INAND_CMD38_ARG_SECTRIM2, 0, true, false); err = mmc_cmdq_wait_for_dcmd(card->host, cmdq_req); if (err) goto clear_dcmd; } err = mmc_cmdq_erase(cmdq_req, card, from, nr, MMC_SECURE_TRIM2_ARG); } clear_dcmd: mmc_host_clk_hold(card->host); blk_complete_request(req); out: return err ? 1 : 0; } static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; unsigned int from, nr, arg; int err = 0, type = MMC_BLK_SECDISCARD; if (!(mmc_can_secure_erase_trim(card))) { err = -EOPNOTSUPP; goto out; } from = blk_rq_pos(req); nr = blk_rq_sectors(req); if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) arg = MMC_SECURE_TRIM1_ARG; else arg = MMC_SECURE_ERASE_ARG; retry: if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, arg == MMC_SECURE_TRIM1_ARG ? INAND_CMD38_ARG_SECTRIM1 : INAND_CMD38_ARG_SECERASE, 0); if (err) goto out_retry; } err = mmc_erase(card, from, nr, arg); if (err == -EIO) goto out_retry; if (err) goto out; if (arg == MMC_SECURE_TRIM1_ARG) { if (card->quirks & MMC_QUIRK_INAND_CMD38) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, INAND_CMD38_ARG_EXT_CSD, INAND_CMD38_ARG_SECTRIM2, 0); if (err) goto out_retry; } err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); if (err == -EIO) goto out_retry; if (err) goto out; } out_retry: if (err && !mmc_blk_reset(md, card->host, type)) goto retry; if (!err) mmc_blk_reset_success(md, type); out: blk_end_request(req, err, blk_rq_bytes(req)); return err ? 0 : 1; } static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; int ret = 0; if (!req) return 0; if (req->cmd_flags & REQ_BARRIER) { /* * If eMMC cache flush policy is set to 1, then the device * shall flush the requests in First-In-First-Out (FIFO) order. * In this case, as per spec, the host must not send any cache * barrier requests as they are redundant and add unnecessary * overhead to both device and host. */ if (card->ext_csd.cache_flush_policy & 1) goto end_req; /* * In case barrier is not supported or enabled in the device, * use flush as a fallback option. */ ret = mmc_cache_barrier(card); if (ret) ret = mmc_flush_cache(card); } else if (req->cmd_flags & REQ_FLUSH) { ret = mmc_flush_cache(card); } if (ret == -ENODEV) { pr_err("%s: %s: restart mmc card", req->rq_disk->disk_name, __func__); if (mmc_blk_reset(md, card->host, MMC_BLK_FLUSH)) pr_err("%s: %s: fail to restart mmc", req->rq_disk->disk_name, __func__); else mmc_blk_reset_success(md, MMC_BLK_FLUSH); } if (ret) { pr_err("%s: %s: notify flush error to upper layers", req->rq_disk->disk_name, __func__); ret = -EIO; } end_req: blk_end_request_all(req, ret); return ret ? 0 : 1; } /* * Reformat current write as a reliable write, supporting * both legacy and the enhanced reliable write MMC cards. * In each transfer we'll handle only as much as a single * reliable write can handle, thus finish the request in * partial completions. */ static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, struct mmc_card *card, struct request *req) { if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { /* Legacy mode imposes restrictions on transfers. */ if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors)) brq->data.blocks = 1; if (brq->data.blocks > card->ext_csd.rel_sectors) brq->data.blocks = card->ext_csd.rel_sectors; else if (brq->data.blocks < card->ext_csd.rel_sectors) brq->data.blocks = 1; } } #define CMD_ERRORS \ (R1_OUT_OF_RANGE | /* Command argument out of range */ \ R1_ADDRESS_ERROR | /* Misaligned address */ \ R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ R1_WP_VIOLATION | /* Tried to write to protected block */ \ R1_CC_ERROR | /* Card controller error */ \ R1_ERROR) /* General/unknown error */ static int mmc_blk_err_check(struct mmc_card *card, struct mmc_async_req *areq) { struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req, mmc_active); struct mmc_blk_request *brq = &mq_mrq->brq; struct request *req = mq_mrq->req; int ecc_err = 0, gen_err = 0; /* * sbc.error indicates a problem with the set block count * command. No data will have been transferred. * * cmd.error indicates a problem with the r/w command. No * data will have been transferred. * * stop.error indicates a problem with the stop command. Data * may have been transferred, or may still be transferring. */ if (brq->sbc.error || brq->cmd.error || brq->stop.error || brq->data.error) { switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) { case ERR_RETRY: return MMC_BLK_RETRY; case ERR_ABORT: return MMC_BLK_ABORT; case ERR_NOMEDIUM: return MMC_BLK_NOMEDIUM; case ERR_CONTINUE: break; } } /* * Check for errors relating to the execution of the * initial command - such as address errors. No data * has been transferred. */ if (brq->cmd.resp[0] & CMD_ERRORS) { pr_err("%s: r/w command failed, status = %#x\n", req->rq_disk->disk_name, brq->cmd.resp[0]); return MMC_BLK_ABORT; } /* * Everything else is either success, or a data error of some * kind. If it was a write, we may have transitioned to * program mode, which we have to wait for it to complete. */ if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) { int err; /* Check stop command response */ if (brq->stop.resp[0] & R1_ERROR) { pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n", req->rq_disk->disk_name, __func__, brq->stop.resp[0]); gen_err = 1; } err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req, &gen_err); if (err) return MMC_BLK_CMD_ERR; } /* if general error occurs, retry the write operation. */ if (gen_err) { pr_warn("%s: retrying write for general error\n", req->rq_disk->disk_name); return MMC_BLK_RETRY; } if (brq->data.error) { pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n", req->rq_disk->disk_name, brq->data.error, (unsigned)blk_rq_pos(req), (unsigned)blk_rq_sectors(req), brq->cmd.resp[0], brq->stop.resp[0]); if (rq_data_dir(req) == READ) { if (ecc_err) return MMC_BLK_ECC_ERR; return MMC_BLK_DATA_ERR; } else { return MMC_BLK_CMD_ERR; } } if (!brq->data.bytes_xfered) return MMC_BLK_RETRY; if (mmc_packed_cmd(mq_mrq->cmd_type)) { if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered)) return MMC_BLK_PARTIAL; else return MMC_BLK_SUCCESS; } if (blk_rq_bytes(req) != brq->data.bytes_xfered) return MMC_BLK_PARTIAL; return MMC_BLK_SUCCESS; } static int mmc_blk_packed_err_check(struct mmc_card *card, struct mmc_async_req *areq) { struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req, mmc_active); struct request *req = mq_rq->req; struct mmc_packed *packed = mq_rq->packed; int err, check, status; u8 *ext_csd; BUG_ON(!packed); packed->retries--; check = mmc_blk_err_check(card, areq); err = get_card_status(card, &status, 0); if (err) { pr_err("%s: error %d sending status command\n", req->rq_disk->disk_name, err); return MMC_BLK_ABORT; } if (status & R1_EXCEPTION_EVENT) { ext_csd = kzalloc(512, GFP_KERNEL); if (!ext_csd) { pr_err("%s: unable to allocate buffer for ext_csd\n", req->rq_disk->disk_name); return -ENOMEM; } err = mmc_send_ext_csd(card, ext_csd); if (err) { pr_err("%s: error %d sending ext_csd\n", req->rq_disk->disk_name, err); check = MMC_BLK_ABORT; goto free; } if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] & EXT_CSD_PACKED_FAILURE) && (ext_csd[EXT_CSD_PACKED_CMD_STATUS] & EXT_CSD_PACKED_GENERIC_ERROR)) { if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] & EXT_CSD_PACKED_INDEXED_ERROR) { packed->idx_failure = ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1; check = MMC_BLK_PARTIAL; } pr_err("%s: packed cmd failed, nr %u, sectors %u, " "failure index: %d\n", req->rq_disk->disk_name, packed->nr_entries, packed->blocks, packed->idx_failure); } free: kfree(ext_csd); } return check; } static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, struct mmc_card *card, int disable_multi, struct mmc_queue *mq) { u32 readcmd, writecmd; struct mmc_blk_request *brq = &mqrq->brq; struct request *req = mqrq->req; struct mmc_blk_data *md = mq->data; bool do_data_tag; /* * Reliable writes are used to implement Forced Unit Access and * REQ_META accesses, and are supported only on MMCs. * * XXX: this really needs a good explanation of why REQ_META * is treated special. */ bool do_rel_wr = ((req->cmd_flags & REQ_FUA) || (req->cmd_flags & REQ_META)) && (rq_data_dir(req) == WRITE) && (md->flags & MMC_BLK_REL_WR); memset(brq, 0, sizeof(struct mmc_blk_request)); brq->mrq.cmd = &brq->cmd; brq->mrq.data = &brq->data; brq->cmd.arg = blk_rq_pos(req); if (!mmc_card_blockaddr(card)) brq->cmd.arg <<= 9; brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; brq->data.blksz = 512; brq->stop.opcode = MMC_STOP_TRANSMISSION; brq->stop.arg = 0; brq->data.blocks = blk_rq_sectors(req); brq->data.fault_injected = false; /* * The block layer doesn't support all sector count * restrictions, so we need to be prepared for too big * requests. */ if (brq->data.blocks > card->host->max_blk_count) brq->data.blocks = card->host->max_blk_count; if (brq->data.blocks > 1) { /* * After a read error, we redo the request one sector * at a time in order to accurately determine which * sectors can be read successfully. */ if (disable_multi) brq->data.blocks = 1; /* * Some controllers have HW issues while operating * in multiple I/O mode */ if (card->host->ops->multi_io_quirk) brq->data.blocks = card->host->ops->multi_io_quirk(card, (rq_data_dir(req) == READ) ? MMC_DATA_READ : MMC_DATA_WRITE, brq->data.blocks); } if (brq->data.blocks > 1 || do_rel_wr) { /* SPI multiblock writes terminate using a special * token, not a STOP_TRANSMISSION request. */ if (!mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) brq->mrq.stop = &brq->stop; readcmd = MMC_READ_MULTIPLE_BLOCK; writecmd = MMC_WRITE_MULTIPLE_BLOCK; } else { brq->mrq.stop = NULL; readcmd = MMC_READ_SINGLE_BLOCK; writecmd = MMC_WRITE_BLOCK; } if (rq_data_dir(req) == READ) { brq->cmd.opcode = readcmd; brq->data.flags |= MMC_DATA_READ; if (brq->mrq.stop) brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; } else { brq->cmd.opcode = writecmd; brq->data.flags |= MMC_DATA_WRITE; if (brq->mrq.stop) brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; } if (do_rel_wr) mmc_apply_rel_rw(brq, card, req); /* * Data tag is used only during writing meta data to speed * up write and any subsequent read of this meta data */ do_data_tag = (card->ext_csd.data_tag_unit_size) && (req->cmd_flags & REQ_META) && (rq_data_dir(req) == WRITE) && ((brq->data.blocks * brq->data.blksz) >= card->ext_csd.data_tag_unit_size); /* * Pre-defined multi-block transfers are preferable to * open ended-ones (and necessary for reliable writes). * However, it is not sufficient to just send CMD23, * and avoid the final CMD12, as on an error condition * CMD12 (stop) needs to be sent anyway. This, coupled * with Auto-CMD23 enhancements provided by some * hosts, means that the complexity of dealing * with this is best left to the host. If CMD23 is * supported by card and host, we'll fill sbc in and let * the host deal with handling it correctly. This means * that for hosts that don't expose MMC_CAP_CMD23, no * change of behavior will be observed. * * N.B: Some MMC cards experience perf degradation. * We'll avoid using CMD23-bounded multiblock writes for * these, while retaining features like reliable writes. */ if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || do_data_tag)) { brq->sbc.opcode = MMC_SET_BLOCK_COUNT; brq->sbc.arg = brq->data.blocks | (do_rel_wr ? (1 << 31) : 0) | (do_data_tag ? (1 << 29) : 0); brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; brq->mrq.sbc = &brq->sbc; } mmc_set_data_timeout(&brq->data, card); brq->data.sg = mqrq->sg; brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); /* * Adjust the sg list so it is the same size as the * request. */ if (brq->data.blocks != blk_rq_sectors(req)) { int i, data_size = brq->data.blocks << 9; struct scatterlist *sg; for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { data_size -= sg->length; if (data_size <= 0) { sg->length += data_size; i++; break; } } brq->data.sg_len = i; } mqrq->mmc_active.mrq = &brq->mrq; mqrq->mmc_active.mrq->req = mqrq->req; mqrq->mmc_active.err_check = mmc_blk_err_check; mmc_queue_bounce_pre(mqrq); } static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q, struct mmc_card *card) { unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512; unsigned int max_seg_sz = queue_max_segment_size(q); unsigned int len, nr_segs = 0; do { len = min(hdr_sz, max_seg_sz); hdr_sz -= len; nr_segs++; } while (hdr_sz); return nr_segs; } /** * mmc_blk_disable_wr_packing() - disables packing mode * @mq: MMC queue. * */ void mmc_blk_disable_wr_packing(struct mmc_queue *mq) { if (mq) { mq->wr_packing_enabled = false; mq->num_of_potential_packed_wr_reqs = 0; } } EXPORT_SYMBOL(mmc_blk_disable_wr_packing); static int get_packed_trigger(int potential, struct mmc_card *card, struct request *req, int curr_trigger) { static int num_mean_elements = 1; static unsigned long mean_potential = PCKD_TRGR_INIT_MEAN_POTEN; unsigned int trigger = curr_trigger; unsigned int pckd_trgr_upper_bound = card->ext_csd.max_packed_writes; /* scale down the upper bound to 75% */ pckd_trgr_upper_bound = (pckd_trgr_upper_bound * 3) / 4; /* * since the most common calls for this function are with small * potential write values and since we don't want these calls to affect * the packed trigger, set a lower bound and ignore calls with * potential lower than that bound */ if (potential <= PCKD_TRGR_POTEN_LOWER_BOUND) return trigger; /* * this is to prevent integer overflow in the following calculation: * once every PACKED_TRIGGER_MAX_ELEMENTS reset the algorithm */ if (num_mean_elements > PACKED_TRIGGER_MAX_ELEMENTS) { num_mean_elements = 1; mean_potential = PCKD_TRGR_INIT_MEAN_POTEN; } /* * get next mean value based on previous mean value and current * potential packed writes. Calculation is as follows: * mean_pot[i+1] = * ((mean_pot[i] * num_mean_elem) + potential)/(num_mean_elem + 1) */ mean_potential *= num_mean_elements; /* * add num_mean_elements so that the division of two integers doesn't * lower mean_potential too much */ if (potential > mean_potential) mean_potential += num_mean_elements; mean_potential += potential; /* this is for gaining more precision when dividing two integers */ mean_potential *= PCKD_TRGR_PRECISION_MULTIPLIER; /* this completes the mean calculation */ mean_potential /= ++num_mean_elements; mean_potential /= PCKD_TRGR_PRECISION_MULTIPLIER; /* * if current potential packed writes is greater than the mean potential * then the heuristic is that the following workload will contain many * write requests, therefore we lower the packed trigger. In the * opposite case we want to increase the trigger in order to get less * packing events. */ if (potential >= mean_potential) trigger = (trigger <= PCKD_TRGR_LOWER_BOUND) ? PCKD_TRGR_LOWER_BOUND : trigger - 1; else trigger = (trigger >= pckd_trgr_upper_bound) ? pckd_trgr_upper_bound : trigger + 1; /* * an urgent read request indicates a packed list being interrupted * by this read, therefore we aim for less packing, hence the trigger * gets increased */ if (req && (req->cmd_flags & REQ_URGENT) && (rq_data_dir(req) == READ)) trigger += PCKD_TRGR_URGENT_PENALTY; return trigger; } static void mmc_blk_write_packing_control(struct mmc_queue *mq, struct request *req) { struct mmc_host *host = mq->card->host; int data_dir; if (!(host->caps2 & MMC_CAP2_PACKED_WR)) return; /* Support for the write packing on eMMC 4.5 or later */ if (mq->card->ext_csd.rev <= 5) return; /* * In case the packing control is not supported by the host, it should * not have an effect on the write packing. Therefore we have to enable * the write packing */ if (!(host->caps2 & MMC_CAP2_PACKED_WR_CONTROL)) { mq->wr_packing_enabled = true; return; } if (!req || (req && (req->cmd_flags & REQ_FLUSH))) { if (mq->num_of_potential_packed_wr_reqs > mq->num_wr_reqs_to_start_packing) mq->wr_packing_enabled = true; mq->num_wr_reqs_to_start_packing = get_packed_trigger(mq->num_of_potential_packed_wr_reqs, mq->card, req, mq->num_wr_reqs_to_start_packing); mq->num_of_potential_packed_wr_reqs = 0; return; } data_dir = rq_data_dir(req); if (data_dir == READ) { mmc_blk_disable_wr_packing(mq); mq->num_wr_reqs_to_start_packing = get_packed_trigger(mq->num_of_potential_packed_wr_reqs, mq->card, req, mq->num_wr_reqs_to_start_packing); mq->num_of_potential_packed_wr_reqs = 0; mq->wr_packing_enabled = false; return; } else if (data_dir == WRITE) { mq->num_of_potential_packed_wr_reqs++; } if (mq->num_of_potential_packed_wr_reqs > mq->num_wr_reqs_to_start_packing) mq->wr_packing_enabled = true; } struct mmc_wr_pack_stats *mmc_blk_get_packed_statistics(struct mmc_card *card) { if (!card) return NULL; return &card->wr_pack_stats; } EXPORT_SYMBOL(mmc_blk_get_packed_statistics); void mmc_blk_init_packed_statistics(struct mmc_card *card) { int max_num_of_packed_reqs = 0; if (!card || !card->wr_pack_stats.packing_events) return; max_num_of_packed_reqs = card->ext_csd.max_packed_writes; spin_lock(&card->wr_pack_stats.lock); memset(card->wr_pack_stats.packing_events, 0, (max_num_of_packed_reqs + 1) * sizeof(*card->wr_pack_stats.packing_events)); memset(&card->wr_pack_stats.pack_stop_reason, 0, sizeof(card->wr_pack_stats.pack_stop_reason)); card->wr_pack_stats.enabled = true; spin_unlock(&card->wr_pack_stats.lock); } EXPORT_SYMBOL(mmc_blk_init_packed_statistics); static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req) { struct request_queue *q = mq->queue; struct mmc_card *card = mq->card; struct request *cur = req, *next = NULL; struct mmc_blk_data *md = mq->data; struct mmc_queue_req *mqrq = mq->mqrq_cur; bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN; unsigned int req_sectors = 0, phys_segments = 0; unsigned int max_blk_count, max_phys_segs; bool put_back = true; u8 max_packed_rw = 0; u8 reqs = 0; struct mmc_wr_pack_stats *stats = &card->wr_pack_stats; if (!(md->flags & MMC_BLK_PACKED_CMD)) goto no_packed; if (!mq->wr_packing_enabled) goto no_packed; if ((rq_data_dir(cur) == WRITE) && mmc_host_packed_wr(card->host)) max_packed_rw = card->ext_csd.max_packed_writes; if (max_packed_rw == 0) goto no_packed; if (mmc_req_rel_wr(cur) && (md->flags & MMC_BLK_REL_WR) && !en_rel_wr) goto no_packed; if (mmc_large_sector(card) && !IS_ALIGNED(blk_rq_sectors(cur), 8)) goto no_packed; if (cur->cmd_flags & REQ_FUA) goto no_packed; mmc_blk_clear_packed(mqrq); max_blk_count = min(card->host->max_blk_count, card->host->max_req_size >> 9); if (unlikely(max_blk_count > 0xffff)) max_blk_count = 0xffff; max_phys_segs = queue_max_segments(q); req_sectors += blk_rq_sectors(cur); phys_segments += cur->nr_phys_segments; if (rq_data_dir(cur) == WRITE) { req_sectors += mmc_large_sector(card) ? 8 : 1; phys_segments += mmc_calc_packed_hdr_segs(q, card); } spin_lock(&stats->lock); do { if (reqs >= max_packed_rw - 1) { put_back = false; break; } spin_lock_irq(q->queue_lock); next = blk_fetch_request(q); spin_unlock_irq(q->queue_lock); if (!next) { MMC_BLK_UPDATE_STOP_REASON(stats, EMPTY_QUEUE); put_back = false; break; } if (mmc_large_sector(card) && !IS_ALIGNED(blk_rq_sectors(next), 8)) { MMC_BLK_UPDATE_STOP_REASON(stats, LARGE_SEC_ALIGN); break; } if (next->cmd_flags & REQ_DISCARD || next->cmd_flags & REQ_FLUSH) { MMC_BLK_UPDATE_STOP_REASON(stats, FLUSH_OR_DISCARD); break; } if (next->cmd_flags & REQ_FUA) { MMC_BLK_UPDATE_STOP_REASON(stats, FUA); break; } if (rq_data_dir(cur) != rq_data_dir(next)) { MMC_BLK_UPDATE_STOP_REASON(stats, WRONG_DATA_DIR); break; } if (mmc_req_rel_wr(next) && (md->flags & MMC_BLK_REL_WR) && !en_rel_wr) { MMC_BLK_UPDATE_STOP_REASON(stats, REL_WRITE); break; } req_sectors += blk_rq_sectors(next); if (req_sectors > max_blk_count) { if (stats->enabled) stats->pack_stop_reason[EXCEEDS_SECTORS]++; break; } phys_segments += next->nr_phys_segments; if (phys_segments > max_phys_segs) { MMC_BLK_UPDATE_STOP_REASON(stats, EXCEEDS_SEGMENTS); break; } if (mq->no_pack_for_random) { if ((blk_rq_pos(cur) + blk_rq_sectors(cur)) != blk_rq_pos(next)) { MMC_BLK_UPDATE_STOP_REASON(stats, RANDOM); put_back = 1; break; } } if (rq_data_dir(next) == WRITE) mq->num_of_potential_packed_wr_reqs++; list_add_tail(&next->queuelist, &mqrq->packed->list); cur = next; reqs++; } while (1); if (put_back) { spin_lock_irq(q->queue_lock); blk_requeue_request(q, next); spin_unlock_irq(q->queue_lock); } if (stats->enabled) { if (reqs + 1 <= card->ext_csd.max_packed_writes) stats->packing_events[reqs + 1]++; if (reqs + 1 == max_packed_rw) MMC_BLK_UPDATE_STOP_REASON(stats, THRESHOLD); } spin_unlock(&stats->lock); if (reqs > 0) { list_add(&req->queuelist, &mqrq->packed->list); mqrq->packed->nr_entries = ++reqs; mqrq->packed->retries = reqs; return reqs; } no_packed: mqrq->cmd_type = MMC_PACKED_NONE; return 0; } static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq, struct mmc_card *card, struct mmc_queue *mq) { struct mmc_blk_request *brq = &mqrq->brq; struct request *req = mqrq->req; struct request *prq; struct mmc_blk_data *md = mq->data; struct mmc_packed *packed = mqrq->packed; bool do_rel_wr, do_data_tag; u32 *packed_cmd_hdr; u8 hdr_blocks; u8 i = 1; BUG_ON(!packed); mqrq->cmd_type = MMC_PACKED_WRITE; packed->blocks = 0; packed->idx_failure = MMC_PACKED_NR_IDX; packed_cmd_hdr = packed->cmd_hdr; memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr)); packed_cmd_hdr[0] = (packed->nr_entries << 16) | (PACKED_CMD_WR << 8) | PACKED_CMD_VER; hdr_blocks = mmc_large_sector(card) ? 8 : 1; /* * Argument for each entry of packed group */ list_for_each_entry(prq, &packed->list, queuelist) { do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR); do_data_tag = (card->ext_csd.data_tag_unit_size) && (prq->cmd_flags & REQ_META) && (rq_data_dir(prq) == WRITE) && ((brq->data.blocks * brq->data.blksz) >= card->ext_csd.data_tag_unit_size); /* Argument of CMD23 */ packed_cmd_hdr[(i * 2)] = (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) | (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) | blk_rq_sectors(prq); /* Argument of CMD18 or CMD25 */ packed_cmd_hdr[((i * 2)) + 1] = mmc_card_blockaddr(card) ? blk_rq_pos(prq) : blk_rq_pos(prq) << 9; packed->blocks += blk_rq_sectors(prq); i++; } memset(brq, 0, sizeof(struct mmc_blk_request)); brq->mrq.cmd = &brq->cmd; brq->mrq.data = &brq->data; brq->mrq.sbc = &brq->sbc; brq->mrq.stop = &brq->stop; brq->sbc.opcode = MMC_SET_BLOCK_COUNT; brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks); brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK; brq->cmd.arg = blk_rq_pos(req); if (!mmc_card_blockaddr(card)) brq->cmd.arg <<= 9; brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; brq->data.blksz = 512; brq->data.blocks = packed->blocks + hdr_blocks; brq->data.flags |= MMC_DATA_WRITE; brq->data.fault_injected = false; brq->stop.opcode = MMC_STOP_TRANSMISSION; brq->stop.arg = 0; brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; mmc_set_data_timeout(&brq->data, card); brq->data.sg = mqrq->sg; brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); mqrq->mmc_active.mrq = &brq->mrq; /* * This is intended for packed commands tests usage - in case these * functions are not in use the respective pointers are NULL */ if (mq->err_check_fn) mqrq->mmc_active.err_check = mq->err_check_fn; else mqrq->mmc_active.err_check = mmc_blk_packed_err_check; if (mq->packed_test_fn) mq->packed_test_fn(mq->queue, mqrq); mmc_queue_bounce_pre(mqrq); } static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card, struct mmc_blk_request *brq, struct request *req, int ret) { struct mmc_queue_req *mq_rq; mq_rq = container_of(brq, struct mmc_queue_req, brq); /* * If this is an SD card and we're writing, we can first * mark the known good sectors as ok. * * If the card is not SD, we can still ok written sectors * as reported by the controller (which might be less than * the real number of written sectors, but never more). */ if (mmc_card_sd(card)) { u32 blocks; if (!brq->data.fault_injected) { blocks = mmc_sd_num_wr_blocks(card); if (blocks != (u32)-1) ret = blk_end_request(req, 0, blocks << 9); } else ret = blk_end_request(req, 0, brq->data.bytes_xfered); } else { if (!mmc_packed_cmd(mq_rq->cmd_type)) ret = blk_end_request(req, 0, brq->data.bytes_xfered); } return ret; } static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq) { struct request *prq; struct mmc_packed *packed = mq_rq->packed; int idx = packed->idx_failure, i = 0; int ret = 0; BUG_ON(!packed); while (!list_empty(&packed->list)) { prq = list_entry_rq(packed->list.next); if (idx == i) { /* retry from error index */ packed->nr_entries -= idx; mq_rq->req = prq; ret = 1; if (packed->nr_entries == MMC_PACKED_NR_SINGLE) { list_del_init(&prq->queuelist); mmc_blk_clear_packed(mq_rq); } return ret; } list_del_init(&prq->queuelist); blk_end_request(prq, 0, blk_rq_bytes(prq)); i++; } mmc_blk_clear_packed(mq_rq); return ret; } static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq) { struct request *prq; struct mmc_packed *packed = mq_rq->packed; BUG_ON(!packed); while (!list_empty(&packed->list)) { prq = list_entry_rq(packed->list.next); list_del_init(&prq->queuelist); blk_end_request(prq, -EIO, blk_rq_bytes(prq)); } mmc_blk_clear_packed(mq_rq); } static void mmc_blk_revert_packed_req(struct mmc_queue *mq, struct mmc_queue_req *mq_rq) { struct request *prq; struct request_queue *q = mq->queue; struct mmc_packed *packed = mq_rq->packed; BUG_ON(!packed); while (!list_empty(&packed->list)) { prq = list_entry_rq(packed->list.prev); if (prq->queuelist.prev != &packed->list) { list_del_init(&prq->queuelist); spin_lock_irq(q->queue_lock); blk_requeue_request(mq->queue, prq); spin_unlock_irq(q->queue_lock); } else { list_del_init(&prq->queuelist); } } mmc_blk_clear_packed(mq_rq); } static int mmc_blk_cmdq_start_req(struct mmc_host *host, struct mmc_cmdq_req *cmdq_req) { struct mmc_request *mrq = &cmdq_req->mrq; mrq->done = mmc_blk_cmdq_req_done; return mmc_cmdq_start_req(host, cmdq_req); } /* prepare for non-data commands */ static struct mmc_cmdq_req *mmc_cmdq_prep_dcmd( struct mmc_queue_req *mqrq, struct mmc_queue *mq) { struct request *req = mqrq->req; struct mmc_cmdq_req *cmdq_req = &mqrq->cmdq_req; memset(&mqrq->cmdq_req, 0, sizeof(struct mmc_cmdq_req)); cmdq_req->mrq.data = NULL; cmdq_req->cmd_flags = req->cmd_flags; cmdq_req->mrq.req = mqrq->req; req->special = mqrq; cmdq_req->cmdq_req_flags |= DCMD; cmdq_req->mrq.cmdq_req = cmdq_req; return &mqrq->cmdq_req; } #define IS_RT_CLASS_REQ(x) \ (IOPRIO_PRIO_CLASS(req_get_ioprio(x)) == IOPRIO_CLASS_RT) static struct mmc_cmdq_req *mmc_blk_cmdq_rw_prep( struct mmc_queue_req *mqrq, struct mmc_queue *mq) { struct mmc_card *card = mq->card; struct request *req = mqrq->req; struct mmc_blk_data *md = mq->data; bool do_rel_wr = mmc_req_rel_wr(req) && (md->flags & MMC_BLK_REL_WR); bool do_data_tag; bool read_dir = (rq_data_dir(req) == READ); bool prio = IS_RT_CLASS_REQ(req); struct mmc_cmdq_req *cmdq_rq = &mqrq->cmdq_req; memset(&mqrq->cmdq_req, 0, sizeof(struct mmc_cmdq_req)); cmdq_rq->tag = req->tag; if (read_dir) { cmdq_rq->cmdq_req_flags |= DIR; cmdq_rq->data.flags = MMC_DATA_READ; } else { cmdq_rq->data.flags = MMC_DATA_WRITE; } if (prio) cmdq_rq->cmdq_req_flags |= PRIO; if (do_rel_wr) cmdq_rq->cmdq_req_flags |= REL_WR; cmdq_rq->data.blocks = blk_rq_sectors(req); cmdq_rq->blk_addr = blk_rq_pos(req); cmdq_rq->data.blksz = MMC_CARD_CMDQ_BLK_SIZE; mmc_set_data_timeout(&cmdq_rq->data, card); do_data_tag = (card->ext_csd.data_tag_unit_size) && (req->cmd_flags & REQ_META) && (rq_data_dir(req) == WRITE) && ((cmdq_rq->data.blocks * cmdq_rq->data.blksz) >= card->ext_csd.data_tag_unit_size); if (do_data_tag) cmdq_rq->cmdq_req_flags |= DAT_TAG; cmdq_rq->data.sg = mqrq->sg; cmdq_rq->data.sg_len = mmc_queue_map_sg(mq, mqrq); /* * Adjust the sg list so it is the same size as the * request. */ if (cmdq_rq->data.blocks > card->host->max_blk_count) cmdq_rq->data.blocks = card->host->max_blk_count; if (cmdq_rq->data.blocks != blk_rq_sectors(req)) { int i, data_size = cmdq_rq->data.blocks << 9; struct scatterlist *sg; for_each_sg(cmdq_rq->data.sg, sg, cmdq_rq->data.sg_len, i) { data_size -= sg->length; if (data_size <= 0) { sg->length += data_size; i++; break; } } cmdq_rq->data.sg_len = i; } mqrq->cmdq_req.cmd_flags = req->cmd_flags; mqrq->cmdq_req.mrq.req = mqrq->req; mqrq->cmdq_req.mrq.cmdq_req = &mqrq->cmdq_req; mqrq->cmdq_req.mrq.data = &mqrq->cmdq_req.data; mqrq->req->special = mqrq; pr_debug("%s: %s: mrq: 0x%p req: 0x%p mqrq: 0x%p bytes to xf: %d mmc_cmdq_req: 0x%p card-addr: 0x%08x dir(r-1/w-0): %d\n", mmc_hostname(card->host), __func__, &mqrq->cmdq_req.mrq, mqrq->req, mqrq, (cmdq_rq->data.blocks * cmdq_rq->data.blksz), cmdq_rq, cmdq_rq->blk_addr, (cmdq_rq->cmdq_req_flags & DIR) ? 1 : 0); return &mqrq->cmdq_req; } static int mmc_blk_cmdq_issue_rw_rq(struct mmc_queue *mq, struct request *req) { struct mmc_queue_req *active_mqrq; struct mmc_card *card = mq->card; struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx; struct mmc_cmdq_req *mc_rq; u8 active_small_sector_read = 0; int ret = 0; mmc_deferred_scaling(host); mmc_cmdq_clk_scaling_start_busy(host, true); BUG_ON((req->tag < 0) || (req->tag > card->ext_csd.cmdq_depth)); BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.data_active_reqs)); BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.active_reqs)); active_mqrq = &mq->mqrq_cmdq[req->tag]; active_mqrq->req = req; mc_rq = mmc_blk_cmdq_rw_prep(active_mqrq, mq); if (card->quirks & MMC_QUIRK_CMDQ_EMPTY_BEFORE_DCMD) { unsigned int sectors = blk_rq_sectors(req); if (((sectors > 0) && (sectors < 8)) && (rq_data_dir(req) == READ)) active_small_sector_read = 1; } ret = mmc_blk_cmdq_start_req(card->host, mc_rq); if (!ret && active_small_sector_read) host->cmdq_ctx.active_small_sector_read_reqs++; /* * When in SVS2 on low load scenario and there are lots of requests * queued for CMDQ we need to wait till the queue is empty to scale * back up to Nominal even if there is a sudden increase in load. * This impacts performance where lots of IO get executed in SVS2 * frequency since the queue is full. As SVS2 is a low load use case * we can serialize the requests and not queue them in parallel * without impacting other use cases. This makes sure the queue gets * empty faster and we will be able to scale up to Nominal frequency * when needed. */ if (!ret && (host->clk_scaling.state == MMC_LOAD_LOW)) wait_event_interruptible(ctx->queue_empty_wq, (!ctx->active_reqs)); return ret; } /* * Issues a flush (dcmd) request */ int mmc_blk_cmdq_issue_flush_rq(struct mmc_queue *mq, struct request *req) { int err; struct mmc_queue_req *active_mqrq; struct mmc_card *card = mq->card; struct mmc_host *host; struct mmc_cmdq_req *cmdq_req; struct mmc_cmdq_context_info *ctx_info; BUG_ON(!card); host = card->host; BUG_ON(!host); BUG_ON(req->tag > card->ext_csd.cmdq_depth); BUG_ON(test_and_set_bit(req->tag, &host->cmdq_ctx.active_reqs)); ctx_info = &host->cmdq_ctx; set_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state); active_mqrq = &mq->mqrq_cmdq[req->tag]; active_mqrq->req = req; cmdq_req = mmc_cmdq_prep_dcmd(active_mqrq, mq); cmdq_req->cmdq_req_flags |= QBR; cmdq_req->mrq.cmd = &cmdq_req->cmd; cmdq_req->tag = req->tag; err = mmc_cmdq_prepare_flush(cmdq_req->mrq.cmd); if (err) { pr_err("%s: failed (%d) preparing flush req\n", mmc_hostname(host), err); return err; } err = mmc_blk_cmdq_start_req(card->host, cmdq_req); return err; } EXPORT_SYMBOL(mmc_blk_cmdq_issue_flush_rq); static void mmc_blk_cmdq_reset(struct mmc_host *host, bool clear_all) { int err = 0; if (mmc_cmdq_halt(host, true)) { pr_err("%s: halt failed\n", mmc_hostname(host)); goto reset; } if (clear_all) mmc_cmdq_discard_queue(host, 0); reset: mmc_host_clk_hold(host); host->cmdq_ops->disable(host, true); mmc_host_clk_release(host); err = mmc_cmdq_hw_reset(host); if (err && err != -EOPNOTSUPP) { pr_err("%s: failed to cmdq_hw_reset err = %d\n", mmc_hostname(host), err); mmc_host_clk_hold(host); host->cmdq_ops->enable(host); mmc_host_clk_release(host); mmc_cmdq_halt(host, false); goto out; } /* * CMDQ HW reset would have already made CQE * in unhalted state, but reflect the same * in software state of cmdq_ctx. */ mmc_host_clr_halt(host); out: return; } /** * is_cmdq_dcmd_req - Checks if tag belongs to DCMD request. * @q: request_queue pointer. * @tag: tag number of request to check. * * This function checks if the request with tag number "tag" * is a DCMD request or not based on cmdq_req_flags set. * * returns true if DCMD req, otherwise false. */ static bool is_cmdq_dcmd_req(struct request_queue *q, int tag) { struct request *req; struct mmc_queue_req *mq_rq; struct mmc_cmdq_req *cmdq_req; req = blk_queue_find_tag(q, tag); if (WARN_ON(!req)) goto out; mq_rq = req->special; if (WARN_ON(!mq_rq)) goto out; cmdq_req = &(mq_rq->cmdq_req); return (cmdq_req->cmdq_req_flags & DCMD); out: return -ENOENT; } /** * mmc_blk_cmdq_reset_all - Reset everything for CMDQ block request. * @host: mmc_host pointer. * @err: error for which reset is performed. * * This function implements reset_all functionality for * cmdq. It resets the controller, power cycle the card, * and invalidate all busy tags(requeue all request back to * elevator). */ static void mmc_blk_cmdq_reset_all(struct mmc_host *host, int err) { struct mmc_request *mrq = host->err_mrq; struct mmc_card *card = host->card; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; struct request_queue *q; int itag = 0; int ret = 0; if (WARN_ON(!mrq)) return; q = mrq->req->q; WARN_ON(!test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)); pr_debug("%s: %s: active_reqs = %lu, clk_requests = %d\n", mmc_hostname(host), __func__, ctx_info->active_reqs, host->clk_requests); mmc_blk_cmdq_reset(host, false); for_each_set_bit(itag, &ctx_info->active_reqs, host->num_cq_slots) { ret = is_cmdq_dcmd_req(q, itag); if (WARN_ON(ret == -ENOENT)) continue; if (!ret) { WARN_ON(!test_and_clear_bit(itag, &ctx_info->data_active_reqs)); mmc_cmdq_post_req(host, itag, err); } else { clear_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state); } WARN_ON(!test_and_clear_bit(itag, &ctx_info->active_reqs)); mmc_host_clk_release(host); mmc_put_card(card); } spin_lock_irq(q->queue_lock); blk_queue_invalidate_tags(q); spin_unlock_irq(q->queue_lock); } static void mmc_blk_cmdq_shutdown(struct mmc_queue *mq) { int err; struct mmc_card *card = mq->card; struct mmc_host *host = card->host; mmc_get_card(card); mmc_host_clk_hold(host); err = mmc_cmdq_halt(host, true); if (err) { pr_err("%s: halt: failed: %d\n", __func__, err); goto out; } /* disable CQ mode in card */ if (mmc_card_cmdq(card)) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ, 0, card->ext_csd.generic_cmd6_time); if (err) { pr_err("%s: failed to switch card to legacy mode: %d\n", __func__, err); goto out; } mmc_card_clr_cmdq(card); } host->cmdq_ops->disable(host, false); host->card->cmdq_init = false; out: mmc_host_clk_release(host); mmc_put_card(card); } static enum blk_eh_timer_return mmc_blk_cmdq_req_timed_out(struct request *req) { struct mmc_queue *mq = req->q->queuedata; struct mmc_host *host = mq->card->host; struct mmc_queue_req *mq_rq = req->special; struct mmc_request *mrq; struct mmc_cmdq_req *cmdq_req; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; BUG_ON(!host); /* * The mmc_queue_req will be present only if the request * is issued to the LLD. The request could be fetched from * block layer queue but could be waiting to be issued * (for e.g. clock scaling is waiting for an empty cmdq queue) * Reset the timer in such cases to give LLD more time */ if (!mq_rq) { pr_warn("%s: restart timer for tag: %d\n", __func__, req->tag); return BLK_EH_RESET_TIMER; } mrq = &mq_rq->cmdq_req.mrq; cmdq_req = &mq_rq->cmdq_req; BUG_ON(!mrq || !cmdq_req); if (cmdq_req->cmdq_req_flags & DCMD) mrq->cmd->error = -ETIMEDOUT; else mrq->data->error = -ETIMEDOUT; if (mrq->cmd && mrq->cmd->error) { if (!(mrq->req->cmd_flags & REQ_FLUSH)) { /* * Notify completion for non flush commands like * discard that wait for DCMD finish. */ set_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state); complete(&mrq->completion); return BLK_EH_NOT_HANDLED; } } if (test_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state) || test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)) return BLK_EH_NOT_HANDLED; set_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state); return BLK_EH_HANDLED; } /* * mmc_blk_cmdq_err: error handling of cmdq error requests. * Function should be called in context of error out request * which has claim_host and rpm acquired. * This may be called with CQ engine halted. Make sure to * unhalt it after error recovery. * * TODO: Currently cmdq error handler does reset_all in case * of any erorr. Need to optimize error handling. */ static void mmc_blk_cmdq_err(struct mmc_queue *mq) { struct mmc_host *host = mq->card->host; struct mmc_request *mrq = host->err_mrq; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; struct request_queue *q; int err; mmc_host_clk_hold(host); host->cmdq_ops->dumpstate(host); mmc_host_clk_release(host); if (WARN_ON(!mrq)) return; q = mrq->req->q; err = mmc_cmdq_halt(host, true); if (err) { pr_err("halt: failed: %d\n", err); goto reset; } /* RED error - Fatal: requires reset */ if (mrq->cmdq_req->resp_err) { err = mrq->cmdq_req->resp_err; pr_crit("%s: Response error detected: Device in bad state\n", mmc_hostname(host)); goto reset; } /* * In case of software request time-out, we schedule err work only for * the first error out request and handles all other request in flight * here. */ if (test_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state)) { err = -ETIMEDOUT; } else if (mrq->data && mrq->data->error) { err = mrq->data->error; } else if (mrq->cmd && mrq->cmd->error) { /* DCMD commands */ err = mrq->cmd->error; } reset: mmc_blk_cmdq_reset_all(host, err); if (mrq->cmdq_req->resp_err) mrq->cmdq_req->resp_err = false; mmc_cmdq_halt(host, false); host->err_mrq = NULL; clear_bit(CMDQ_STATE_REQ_TIMED_OUT, &ctx_info->curr_state); WARN_ON(!test_and_clear_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)); wake_up(&ctx_info->wait); } /* invoked by block layer in softirq context */ void mmc_blk_cmdq_complete_rq(struct request *rq) { struct mmc_queue_req *mq_rq = rq->special; struct mmc_request *mrq = &mq_rq->cmdq_req.mrq; struct mmc_host *host = mrq->host; struct mmc_cmdq_context_info *ctx_info = &host->cmdq_ctx; struct mmc_cmdq_req *cmdq_req = &mq_rq->cmdq_req; struct mmc_queue *mq = (struct mmc_queue *)rq->q->queuedata; int err = 0; bool is_dcmd = false; if (mrq->cmd && mrq->cmd->error) err = mrq->cmd->error; else if (mrq->data && mrq->data->error) err = mrq->data->error; if (err || cmdq_req->resp_err) { pr_err("%s: %s: txfr error(%d)/resp_err(%d)\n", mmc_hostname(mrq->host), __func__, err, cmdq_req->resp_err); if (test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)) { pr_err("%s: CQ in error state, ending current req: %d\n", __func__, err); } else { set_bit(CMDQ_STATE_ERR, &ctx_info->curr_state); BUG_ON(host->err_mrq != NULL); host->err_mrq = mrq; schedule_work(&mq->cmdq_err_work); } goto out; } /* * In case of error CMDQ is expected to be either in halted * or disable state so cannot receive any completion of * other requests. */ BUG_ON(test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)); /* clear pending request */ BUG_ON(!test_and_clear_bit(cmdq_req->tag, &ctx_info->active_reqs)); if (cmdq_req->cmdq_req_flags & DCMD) is_dcmd = true; else BUG_ON(!test_and_clear_bit(cmdq_req->tag, &ctx_info->data_active_reqs)); if (!is_dcmd) mmc_cmdq_post_req(host, cmdq_req->tag, err); if (cmdq_req->cmdq_req_flags & DCMD) { clear_bit(CMDQ_STATE_DCMD_ACTIVE, &ctx_info->curr_state); blk_end_request_all(rq, err); goto out; } blk_end_request(rq, err, cmdq_req->data.bytes_xfered); out: mmc_cmdq_clk_scaling_stop_busy(host, true, is_dcmd); if (!test_bit(CMDQ_STATE_ERR, &ctx_info->curr_state)) { wake_up(&ctx_info->wait); mmc_put_card(host->card); } if (!ctx_info->active_reqs) wake_up_interruptible(&host->cmdq_ctx.queue_empty_wq); return; } /* * Complete reqs from block layer softirq context * Invoked in irq context */ void mmc_blk_cmdq_req_done(struct mmc_request *mrq) { struct request *req = mrq->req; blk_complete_request(req); } EXPORT_SYMBOL(mmc_blk_cmdq_req_done); static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc) { struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; struct mmc_blk_request *brq = &mq->mqrq_cur->brq; int ret = 1, disable_multi = 0, retry = 0, type; enum mmc_blk_status status; struct mmc_queue_req *mq_rq; struct request *req = rqc; struct mmc_async_req *areq; const u8 packed_nr = 2; u8 reqs = 0; if (!rqc && !mq->mqrq_prev->req) return 0; if (rqc) reqs = mmc_blk_prep_packed_list(mq, rqc); do { if (rqc) { /* * When 4KB native sector is enabled, only 8 blocks * multiple read or write is allowed */ if ((brq->data.blocks & 0x07) && (card->ext_csd.data_sector_size == 4096)) { pr_err("%s: Transfer size is not 4KB sector size aligned\n", req->rq_disk->disk_name); mq_rq = mq->mqrq_cur; goto cmd_abort; } if (reqs >= packed_nr) mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur, card, mq); else mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); areq = &mq->mqrq_cur->mmc_active; } else areq = NULL; areq = mmc_start_req(card->host, areq, (int *) &status); if (!areq) { if (status == MMC_BLK_NEW_REQUEST) set_bit(MMC_QUEUE_NEW_REQUEST, &mq->flags); return 0; } mq_rq = container_of(areq, struct mmc_queue_req, mmc_active); brq = &mq_rq->brq; req = mq_rq->req; type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; mmc_queue_bounce_post(mq_rq); switch (status) { case MMC_BLK_SUCCESS: case MMC_BLK_PARTIAL: /* * A block was successfully transferred. */ mmc_blk_reset_success(md, type); if (mmc_packed_cmd(mq_rq->cmd_type)) { ret = mmc_blk_end_packed_req(mq_rq); break; } else { ret = blk_end_request(req, 0, brq->data.bytes_xfered); } /* * If the blk_end_request function returns non-zero even * though all data has been transferred and no errors * were returned by the host controller, it's a bug. */ if (status == MMC_BLK_SUCCESS && ret) { pr_err("%s BUG rq_tot %d d_xfer %d\n", __func__, blk_rq_bytes(req), brq->data.bytes_xfered); rqc = NULL; goto cmd_abort; } break; case MMC_BLK_CMD_ERR: ret = mmc_blk_cmd_err(md, card, brq, req, ret); if (mmc_blk_reset(md, card->host, type)) goto cmd_abort; if (!ret) goto start_new_req; break; case MMC_BLK_RETRY: if (retry++ < MMC_BLK_MAX_RETRIES) break; /* Fall through */ case MMC_BLK_ABORT: if (!mmc_blk_reset(md, card->host, type) && (retry++ < (MMC_BLK_MAX_RETRIES + 1))) break; goto cmd_abort; case MMC_BLK_DATA_ERR: { int err; err = mmc_blk_reset(md, card->host, type); if (!err) break; goto cmd_abort; } case MMC_BLK_ECC_ERR: if (brq->data.blocks > 1) { /* Redo read one sector at a time */ pr_warn("%s: retrying using single block read\n", req->rq_disk->disk_name); disable_multi = 1; break; } /* * After an error, we redo I/O one sector at a * time, so we only reach here after trying to * read a single sector. */ ret = blk_end_request(req, -EIO, brq->data.blksz); if (!ret) goto start_new_req; break; case MMC_BLK_NOMEDIUM: goto cmd_abort; default: pr_err("%s: Unhandled return value (%d)", req->rq_disk->disk_name, status); goto cmd_abort; } if (ret) { if (mmc_packed_cmd(mq_rq->cmd_type)) { if (!mq_rq->packed->retries) goto cmd_abort; mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq); mmc_start_req(card->host, &mq_rq->mmc_active, NULL); } else { /* * In case of a incomplete request * prepare it again and resend. */ mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq); mmc_start_req(card->host, &mq_rq->mmc_active, NULL); } } } while (ret); return 1; cmd_abort: if (mmc_packed_cmd(mq_rq->cmd_type)) { mmc_blk_abort_packed_req(mq_rq); } else { if (mmc_card_removed(card)) req->cmd_flags |= REQ_QUIET; while (ret) ret = blk_end_request(req, -EIO, blk_rq_cur_bytes(req)); } start_new_req: if (rqc) { if (mmc_card_removed(card)) { rqc->cmd_flags |= REQ_QUIET; blk_end_request_all(rqc, -EIO); } else { /* * If current request is packed, it needs to put back. */ if (mmc_packed_cmd(mq->mqrq_cur->cmd_type)) mmc_blk_revert_packed_req(mq, mq->mqrq_cur); mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL); } } return 0; } static inline int mmc_blk_cmdq_part_switch(struct mmc_card *card, struct mmc_blk_data *md) { struct mmc_blk_data *main_md = mmc_get_drvdata(card); struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx; u8 part_config = card->ext_csd.part_config; if ((main_md->part_curr == md->part_type) && (card->part_curr == md->part_type)) return 0; WARN_ON(!((card->host->caps2 & MMC_CAP2_CMD_QUEUE) && card->ext_csd.cmdq_support && (md->flags & MMC_BLK_CMD_QUEUE))); if (!test_bit(CMDQ_STATE_HALT, &ctx->curr_state)) WARN_ON(mmc_cmdq_halt(host, true)); /* disable CQ mode in card */ if (mmc_card_cmdq(card)) { WARN_ON(mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ, 0, card->ext_csd.generic_cmd6_time)); mmc_card_clr_cmdq(card); } part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; part_config |= md->part_type; WARN_ON(mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG, part_config, card->ext_csd.part_time)); card->ext_csd.part_config = part_config; card->part_curr = md->part_type; main_md->part_curr = md->part_type; WARN_ON(mmc_blk_cmdq_switch(card, md, true)); WARN_ON(mmc_cmdq_halt(host, false)); return 0; } static int mmc_blk_cmdq_issue_rq(struct mmc_queue *mq, struct request *req) { int ret; struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; unsigned int cmd_flags = req ? req->cmd_flags : 0; mmc_get_card(card); if (!card->host->cmdq_ctx.active_reqs && mmc_card_doing_bkops(card)) { ret = mmc_cmdq_halt(card->host, true); if (ret) goto out; ret = mmc_stop_bkops(card); if (ret) { pr_err("%s: %s: mmc_stop_bkops failed %d\n", md->disk->disk_name, __func__, ret); goto out; } ret = mmc_cmdq_halt(card->host, false); if (ret) goto out; } ret = mmc_blk_cmdq_part_switch(card, md); if (ret) { pr_err("%s: %s: partition switch failed %d\n", md->disk->disk_name, __func__, ret); goto out; } if (req) { struct mmc_host *host = card->host; struct mmc_cmdq_context_info *ctx = &host->cmdq_ctx; if ((cmd_flags & (REQ_FLUSH | REQ_DISCARD)) && (card->quirks & MMC_QUIRK_CMDQ_EMPTY_BEFORE_DCMD) && ctx->active_small_sector_read_reqs) { ret = wait_event_interruptible(ctx->queue_empty_wq, !ctx->active_reqs); if (ret) { pr_err("%s: failed while waiting for the CMDQ to be empty %s err (%d)\n", mmc_hostname(host), __func__, ret); BUG_ON(1); } /* clear the counter now */ ctx->active_small_sector_read_reqs = 0; /* * If there were small sector (less than 8 sectors) read * operations in progress then we have to wait for the * outstanding requests to finish and should also have * atleast 6 microseconds delay before queuing the DCMD * request. */ udelay(MMC_QUIRK_CMDQ_DELAY_BEFORE_DCMD); } if (cmd_flags & REQ_DISCARD) { if (cmd_flags & REQ_SECURE && !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) ret = mmc_blk_cmdq_issue_secdiscard_rq(mq, req); else ret = mmc_blk_cmdq_issue_discard_rq(mq, req); } else if (cmd_flags & REQ_FLUSH) { ret = mmc_blk_cmdq_issue_flush_rq(mq, req); } else { ret = mmc_blk_cmdq_issue_rw_rq(mq, req); } } return ret; out: if (req) blk_end_request_all(req, ret); mmc_put_card(card); return ret; } static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) { int ret; struct mmc_blk_data *md = mq->data; struct mmc_card *card = md->queue.card; struct mmc_host *host = card->host; unsigned long flags; unsigned int cmd_flags = req ? req->cmd_flags : 0; if (req && !mq->mqrq_prev->req) { /* claim host only for the first request */ mmc_get_card(card); #ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME if (mmc_bus_needs_resume(card->host)) mmc_resume_bus(card->host); #endif if (mmc_card_doing_bkops(host->card)) { ret = mmc_stop_bkops(host->card); if (ret) goto out; } } ret = mmc_blk_part_switch(card, md); if (ret) { if (req) { blk_end_request_all(req, -EIO); } ret = 0; goto out; } mmc_blk_write_packing_control(mq, req); clear_bit(MMC_QUEUE_NEW_REQUEST, &mq->flags); if (cmd_flags & REQ_DISCARD) { /* complete ongoing async transfer before issuing discard */ if (card->host->areq) mmc_blk_issue_rw_rq(mq, NULL); if (cmd_flags & REQ_SECURE && !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN)) ret = mmc_blk_issue_secdiscard_rq(mq, req); else ret = mmc_blk_issue_discard_rq(mq, req); } else if (cmd_flags & (REQ_FLUSH | REQ_BARRIER)) { /* complete ongoing async transfer before issuing flush */ if (card->host->areq) mmc_blk_issue_rw_rq(mq, NULL); ret = mmc_blk_issue_flush(mq, req); } else { if (!req && host->areq) { spin_lock_irqsave(&host->context_info.lock, flags); host->context_info.is_waiting_last_req = true; spin_unlock_irqrestore(&host->context_info.lock, flags); } ret = mmc_blk_issue_rw_rq(mq, req); } out: if ((!req && !(test_bit(MMC_QUEUE_NEW_REQUEST, &mq->flags))) || (cmd_flags & MMC_REQ_SPECIAL_MASK)) /* * Release host when there are no more requests * and after special request(discard, flush) is done. * In case sepecial request, there is no reentry to * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'. */ mmc_put_card(card); return ret; } static inline int mmc_blk_readonly(struct mmc_card *card) { return mmc_card_readonly(card) || !(card->csd.cmdclass & CCC_BLOCK_WRITE); } static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, struct device *parent, sector_t size, bool default_ro, const char *subname, int area_type) { struct mmc_blk_data *md; int devidx, ret; devidx = find_first_zero_bit(dev_use, max_devices); if (devidx >= max_devices) return ERR_PTR(-ENOSPC); __set_bit(devidx, dev_use); md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); if (!md) { ret = -ENOMEM; goto out; } /* * !subname implies we are creating main mmc_blk_data that will be * associated with mmc_card with mmc_set_drvdata. Due to device * partitions, devidx will not coincide with a per-physical card * index anymore so we keep track of a name index. */ if (!subname) { md->name_idx = find_first_zero_bit(name_use, max_devices); __set_bit(md->name_idx, name_use); } else md->name_idx = ((struct mmc_blk_data *) dev_to_disk(parent)->private_data)->name_idx; md->area_type = area_type; /* * Set the read-only status based on the supported commands * and the write protect switch. */ md->read_only = mmc_blk_readonly(card); md->disk = alloc_disk(perdev_minors); if (md->disk == NULL) { ret = -ENOMEM; goto err_kfree; } spin_lock_init(&md->lock); INIT_LIST_HEAD(&md->part); md->usage = 1; ret = mmc_init_queue(&md->queue, card, &md->lock, subname, area_type); if (ret) goto err_putdisk; md->queue.issue_fn = mmc_blk_issue_rq; md->queue.data = md; md->disk->major = MMC_BLOCK_MAJOR; md->disk->first_minor = devidx * perdev_minors; md->disk->fops = &mmc_bdops; md->disk->private_data = md; md->disk->queue = md->queue.queue; md->disk->driverfs_dev = parent; set_disk_ro(md->disk, md->read_only || default_ro); md->disk->flags = GENHD_FL_EXT_DEVT; if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) md->disk->flags |= GENHD_FL_NO_PART_SCAN; /* * As discussed on lkml, GENHD_FL_REMOVABLE should: * * - be set for removable media with permanent block devices * - be unset for removable block devices with permanent media * * Since MMC block devices clearly fall under the second * case, we do not set GENHD_FL_REMOVABLE. Userspace * should use the block device creation/destruction hotplug * messages to tell when the card is present. */ snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), "mmcblk%d%s", md->name_idx, subname ? subname : ""); if (mmc_card_mmc(card)) blk_queue_logical_block_size(md->queue.queue, card->ext_csd.data_sector_size); else blk_queue_logical_block_size(md->queue.queue, 512); set_capacity(md->disk, size); if (mmc_host_cmd23(card->host)) { if (mmc_card_mmc(card) || (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT)) md->flags |= MMC_BLK_CMD23; } if (mmc_card_mmc(card) && md->flags & MMC_BLK_CMD23 && ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || card->ext_csd.rel_sectors)) { md->flags |= MMC_BLK_REL_WR; blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA); } if (card->cmdq_init) { md->flags |= MMC_BLK_CMD_QUEUE; md->queue.cmdq_complete_fn = mmc_blk_cmdq_complete_rq; md->queue.cmdq_issue_fn = mmc_blk_cmdq_issue_rq; md->queue.cmdq_error_fn = mmc_blk_cmdq_err; md->queue.cmdq_req_timed_out = mmc_blk_cmdq_req_timed_out; md->queue.cmdq_shutdown = mmc_blk_cmdq_shutdown; } if (mmc_card_mmc(card) && !card->cmdq_init && (area_type == MMC_BLK_DATA_AREA_MAIN) && (md->flags & MMC_BLK_CMD23) && card->ext_csd.packed_event_en) { if (!mmc_packed_init(&md->queue, card)) md->flags |= MMC_BLK_PACKED_CMD; } return md; err_putdisk: put_disk(md->disk); err_kfree: if (!subname) __clear_bit(md->name_idx, name_use); kfree(md); out: __clear_bit(devidx, dev_use); return ERR_PTR(ret); } static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) { sector_t size; struct mmc_blk_data *md; if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { /* * The EXT_CSD sector count is in number or 512 byte * sectors. */ size = card->ext_csd.sectors; } else { /* * The CSD capacity field is in units of read_blkbits. * set_capacity takes units of 512 bytes. */ size = card->csd.capacity << (card->csd.read_blkbits - 9); } md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL, MMC_BLK_DATA_AREA_MAIN); return md; } static int mmc_blk_alloc_part(struct mmc_card *card, struct mmc_blk_data *md, unsigned int part_type, sector_t size, bool default_ro, const char *subname, int area_type) { char cap_str[10]; struct mmc_blk_data *part_md; part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, subname, area_type); if (IS_ERR(part_md)) return PTR_ERR(part_md); part_md->part_type = part_type; list_add(&part_md->part, &md->part); string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2, cap_str, sizeof(cap_str)); pr_info("%s: %s %s partition %u %s\n", part_md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), part_md->part_type, cap_str); return 0; } /* MMC Physical partitions consist of two boot partitions and * up to four general purpose partitions. * For each partition enabled in EXT_CSD a block device will be allocatedi * to provide access to the partition. */ static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) { int idx, ret = 0; if (!mmc_card_mmc(card)) return 0; for (idx = 0; idx < card->nr_parts; idx++) { if (card->part[idx].size) { ret = mmc_blk_alloc_part(card, md, card->part[idx].part_cfg, card->part[idx].size >> 9, card->part[idx].force_ro, card->part[idx].name, card->part[idx].area_type); if (ret) return ret; } } return ret; } static void mmc_blk_remove_req(struct mmc_blk_data *md) { struct mmc_card *card; if (md) { /* * Flush remaining requests and free queues. It * is freeing the queue that stops new requests * from being accepted. */ card = md->queue.card; mmc_cleanup_queue(&md->queue); if (md->flags & MMC_BLK_PACKED_CMD) mmc_packed_clean(&md->queue); if (md->flags & MMC_BLK_CMD_QUEUE) mmc_cmdq_clean(&md->queue, card); device_remove_file(disk_to_dev(md->disk), &md->num_wr_reqs_to_start_packing); if (md->disk->flags & GENHD_FL_UP) { device_remove_file(disk_to_dev(md->disk), &md->force_ro); if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && card->ext_csd.boot_ro_lockable) device_remove_file(disk_to_dev(md->disk), &md->power_ro_lock); del_gendisk(md->disk); } mmc_blk_put(md); } } static void mmc_blk_remove_parts(struct mmc_card *card, struct mmc_blk_data *md) { struct list_head *pos, *q; struct mmc_blk_data *part_md; __clear_bit(md->name_idx, name_use); list_for_each_safe(pos, q, &md->part) { part_md = list_entry(pos, struct mmc_blk_data, part); list_del(pos); mmc_blk_remove_req(part_md); } } static int mmc_add_disk(struct mmc_blk_data *md) { int ret; struct mmc_card *card = md->queue.card; add_disk(md->disk); md->force_ro.show = force_ro_show; md->force_ro.store = force_ro_store; sysfs_attr_init(&md->force_ro.attr); md->force_ro.attr.name = "force_ro"; md->force_ro.attr.mode = S_IRUGO | S_IWUSR; ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); if (ret) goto force_ro_fail; if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && card->ext_csd.boot_ro_lockable) { umode_t mode; if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) mode = S_IRUGO; else mode = S_IRUGO | S_IWUSR; md->power_ro_lock.show = power_ro_lock_show; md->power_ro_lock.store = power_ro_lock_store; sysfs_attr_init(&md->power_ro_lock.attr); md->power_ro_lock.attr.mode = mode; md->power_ro_lock.attr.name = "ro_lock_until_next_power_on"; ret = device_create_file(disk_to_dev(md->disk), &md->power_ro_lock); if (ret) goto power_ro_lock_fail; } md->num_wr_reqs_to_start_packing.show = num_wr_reqs_to_start_packing_show; md->num_wr_reqs_to_start_packing.store = num_wr_reqs_to_start_packing_store; sysfs_attr_init(&md->num_wr_reqs_to_start_packing.attr); md->num_wr_reqs_to_start_packing.attr.name = "num_wr_reqs_to_start_packing"; md->num_wr_reqs_to_start_packing.attr.mode = S_IRUGO | S_IWUSR; ret = device_create_file(disk_to_dev(md->disk), &md->num_wr_reqs_to_start_packing); if (ret) goto num_wr_reqs_to_start_packing_fail; md->no_pack_for_random.show = no_pack_for_random_show; md->no_pack_for_random.store = no_pack_for_random_store; sysfs_attr_init(&md->no_pack_for_random.attr); md->no_pack_for_random.attr.name = "no_pack_for_random"; md->no_pack_for_random.attr.mode = S_IRUGO | S_IWUSR; ret = device_create_file(disk_to_dev(md->disk), &md->no_pack_for_random); if (ret) goto no_pack_for_random_fails; return ret; no_pack_for_random_fails: device_remove_file(disk_to_dev(md->disk), &md->num_wr_reqs_to_start_packing); num_wr_reqs_to_start_packing_fail: device_remove_file(disk_to_dev(md->disk), &md->power_ro_lock); power_ro_lock_fail: device_remove_file(disk_to_dev(md->disk), &md->force_ro); force_ro_fail: del_gendisk(md->disk); return ret; } static const struct mmc_fixup blk_fixups[] = { MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38), /* * Some MMC cards experience performance degradation with CMD23 * instead of CMD12-bounded multiblock transfers. For now we'll * black list what's bad... * - Certain Toshiba cards. * * N.B. This doesn't affect SD cards. */ MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_BLK_NO_CMD23), MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_BLK_NO_CMD23), MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_BLK_NO_CMD23), MMC_FIXUP(CID_NAME_ANY, CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_CMDQ_EMPTY_BEFORE_DCMD), /* * Some Micron MMC cards needs longer data read timeout than * indicated in CSD. */ MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc, MMC_QUIRK_LONG_READ_TIME), /* * Some Samsung MMC cards need longer data read timeout than * indicated in CSD. */ MMC_FIXUP("Q7XSAB", CID_MANFID_SAMSUNG, 0x100, add_quirk_mmc, MMC_QUIRK_LONG_READ_TIME), /* * On these Samsung MoviNAND parts, performing secure erase or * secure trim can result in unrecoverable corruption due to a * firmware bug. */ MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), /* Some INAND MCP devices advertise incorrect timeout values */ MMC_FIXUP("SEM04G", 0x45, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_INAND_DATA_TIMEOUT), /* * On these Samsung MoviNAND parts, performing secure erase or * secure trim can result in unrecoverable corruption due to a * firmware bug. */ MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), END_FIXUP }; static int mmc_blk_probe(struct mmc_card *card) { struct mmc_blk_data *md, *part_md; char cap_str[10]; /* * Check that the card supports the command class(es) we need. */ if (!(card->csd.cmdclass & CCC_BLOCK_READ)) return -ENODEV; mmc_fixup_device(card, blk_fixups); md = mmc_blk_alloc(card); if (IS_ERR(md)) return PTR_ERR(md); string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2, cap_str, sizeof(cap_str)); pr_info("%s: %s %s %s %s\n", md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), cap_str, md->read_only ? "(ro)" : ""); if (mmc_blk_alloc_parts(card, md)) goto out; mmc_set_drvdata(card, md); #ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME mmc_set_bus_resume_policy(card->host, 1); #endif if (mmc_add_disk(md)) goto out; list_for_each_entry(part_md, &md->part, part) { if (mmc_add_disk(part_md)) goto out; } pm_runtime_set_autosuspend_delay(&card->dev, MMC_AUTOSUSPEND_DELAY_MS); /* * If there is a runtime_idle function, it should take care of * suspending the card */ if (card->host->bus_ops->runtime_idle) pm_runtime_dont_use_autosuspend(&card->dev); else pm_runtime_use_autosuspend(&card->dev); /* * Don't enable runtime PM for SD-combo cards here. Leave that * decision to be taken during the SDIO init sequence instead. */ if (card->type != MMC_TYPE_SD_COMBO) { pm_runtime_set_active(&card->dev); pm_runtime_enable(&card->dev); } return 0; out: mmc_blk_remove_parts(card, md); mmc_blk_remove_req(md); return 0; } static void mmc_blk_remove(struct mmc_card *card) { struct mmc_blk_data *md = mmc_get_drvdata(card); mmc_blk_remove_parts(card, md); pm_runtime_get_sync(&card->dev); mmc_claim_host(card->host); mmc_blk_part_switch(card, md); mmc_release_host(card->host); if (card->type != MMC_TYPE_SD_COMBO) pm_runtime_disable(&card->dev); pm_runtime_put_noidle(&card->dev); mmc_blk_remove_req(md); mmc_set_drvdata(card, NULL); #ifdef CONFIG_MMC_BLOCK_DEFERRED_RESUME mmc_set_bus_resume_policy(card->host, 0); #endif } static int _mmc_blk_suspend(struct mmc_card *card, bool wait) { struct mmc_blk_data *part_md; struct mmc_blk_data *md = mmc_get_drvdata(card); int rc = 0; if (md) { rc = mmc_queue_suspend(&md->queue, wait); if (rc) goto out; list_for_each_entry(part_md, &md->part, part) { rc = mmc_queue_suspend(&part_md->queue, wait); if (rc) goto out_resume; } } goto out; out_resume: mmc_queue_resume(&md->queue); list_for_each_entry(part_md, &md->part, part) { mmc_queue_resume(&part_md->queue); } out: return rc; } static void mmc_blk_shutdown(struct mmc_card *card) { _mmc_blk_suspend(card, 1); /* send power off notification */ if (mmc_card_mmc(card)) mmc_send_pon(card); } #ifdef CONFIG_PM static int mmc_blk_suspend(struct mmc_card *card) { return _mmc_blk_suspend(card, 0); } static int mmc_blk_resume(struct mmc_card *card) { struct mmc_blk_data *part_md; struct mmc_blk_data *md = mmc_get_drvdata(card); if (md) { /* * Resume involves the card going into idle state, * so current partition is always the main one. */ md->part_curr = md->part_type; mmc_queue_resume(&md->queue); list_for_each_entry(part_md, &md->part, part) { mmc_queue_resume(&part_md->queue); } } return 0; } #else #define mmc_blk_suspend NULL #define mmc_blk_resume NULL #endif static struct mmc_driver mmc_driver = { .drv = { .name = "mmcblk", }, .probe = mmc_blk_probe, .remove = mmc_blk_remove, .suspend = mmc_blk_suspend, .resume = mmc_blk_resume, .shutdown = mmc_blk_shutdown, }; static int __init mmc_blk_init(void) { int res; if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) pr_info("mmcblk: using %d minors per device\n", perdev_minors); max_devices = 256 / perdev_minors; res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); if (res) goto out; res = mmc_register_driver(&mmc_driver); if (res) goto out2; return 0; out2: unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); out: return res; } static void __exit mmc_blk_exit(void) { mmc_unregister_driver(&mmc_driver); unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); } module_init(mmc_blk_init); module_exit(mmc_blk_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");