/* * drivers/cpufreq/cpufreq_interactive.c * * Copyright (C) 2010 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Author: Mike Chan (mike@android.com) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include struct cpufreq_interactive_policyinfo { struct timer_list policy_timer; struct timer_list policy_slack_timer; spinlock_t load_lock; /* protects load tracking stat */ u64 last_evaluated_jiffy; struct cpufreq_policy *policy; struct cpufreq_policy p_nolim; /* policy copy with no limits */ struct cpufreq_frequency_table *freq_table; spinlock_t target_freq_lock; /*protects target freq */ unsigned int target_freq; unsigned int floor_freq; unsigned int min_freq; u64 floor_validate_time; u64 hispeed_validate_time; u64 max_freq_hyst_start_time; struct rw_semaphore enable_sem; bool reject_notification; bool notif_pending; int governor_enabled; struct cpufreq_interactive_tunables *cached_tunables; struct sched_load *sl; }; /* Protected by per-policy load_lock */ struct cpufreq_interactive_cpuinfo { u64 time_in_idle; u64 time_in_idle_timestamp; u64 cputime_speedadj; u64 cputime_speedadj_timestamp; unsigned int loadadjfreq; }; static DEFINE_PER_CPU(struct cpufreq_interactive_policyinfo *, polinfo); static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo); /* realtime thread handles frequency scaling */ static struct task_struct *speedchange_task; static cpumask_t speedchange_cpumask; static spinlock_t speedchange_cpumask_lock; static struct mutex gov_lock; static int set_window_count; static int migration_register_count; static struct mutex sched_lock; static cpumask_t controlled_cpus; /* Target load. Lower values result in higher CPU speeds. */ #define DEFAULT_TARGET_LOAD 90 static unsigned int default_target_loads[] = {DEFAULT_TARGET_LOAD}; #define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC) #define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE static unsigned int default_above_hispeed_delay[] = { DEFAULT_ABOVE_HISPEED_DELAY }; struct cpufreq_interactive_tunables { int usage_count; /* Hi speed to bump to from lo speed when load burst (default max) */ unsigned int hispeed_freq; /* Go to hi speed when CPU load at or above this value. */ #define DEFAULT_GO_HISPEED_LOAD 99 unsigned long go_hispeed_load; /* Target load. Lower values result in higher CPU speeds. */ spinlock_t target_loads_lock; unsigned int *target_loads; int ntarget_loads; /* * The minimum amount of time to spend at a frequency before we can ramp * down. */ #define DEFAULT_MIN_SAMPLE_TIME (80 * USEC_PER_MSEC) unsigned long min_sample_time; /* * The sample rate of the timer used to increase frequency */ unsigned long timer_rate; /* * Wait this long before raising speed above hispeed, by default a * single timer interval. */ spinlock_t above_hispeed_delay_lock; unsigned int *above_hispeed_delay; int nabove_hispeed_delay; /* Non-zero means indefinite speed boost active */ int boost_val; /* Duration of a boot pulse in usecs */ int boostpulse_duration_val; /* End time of boost pulse in ktime converted to usecs */ u64 boostpulse_endtime; bool boosted; /* * Max additional time to wait in idle, beyond timer_rate, at speeds * above minimum before wakeup to reduce speed, or -1 if unnecessary. */ #define DEFAULT_TIMER_SLACK (4 * DEFAULT_TIMER_RATE) int timer_slack_val; bool io_is_busy; /* scheduler input related flags */ bool use_sched_load; bool use_migration_notif; /* * Whether to align timer windows across all CPUs. When * use_sched_load is true, this flag is ignored and windows * will always be aligned. */ bool align_windows; /* * Stay at max freq for at least max_freq_hysteresis before dropping * frequency. */ unsigned int max_freq_hysteresis; /* Ignore hispeed_freq and above_hispeed_delay for notification */ bool ignore_hispeed_on_notif; /* Ignore min_sample_time for notification */ bool fast_ramp_down; }; /* For cases where we have single governor instance for system */ static struct cpufreq_interactive_tunables *common_tunables; static struct cpufreq_interactive_tunables *cached_common_tunables; static struct attribute_group *get_sysfs_attr(void); /* Round to starting jiffy of next evaluation window */ static u64 round_to_nw_start(u64 jif, struct cpufreq_interactive_tunables *tunables) { unsigned long step = usecs_to_jiffies(tunables->timer_rate); u64 ret; if (tunables->use_sched_load || tunables->align_windows) { do_div(jif, step); ret = (jif + 1) * step; } else { ret = jiffies + usecs_to_jiffies(tunables->timer_rate); } return ret; } static inline int set_window_helper( struct cpufreq_interactive_tunables *tunables) { return sched_set_window(round_to_nw_start(get_jiffies_64(), tunables), usecs_to_jiffies(tunables->timer_rate)); } static void cpufreq_interactive_timer_resched(unsigned long cpu, bool slack_only) { struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu); struct cpufreq_interactive_cpuinfo *pcpu; struct cpufreq_interactive_tunables *tunables = ppol->policy->governor_data; u64 expires; unsigned long flags; int i; spin_lock_irqsave(&ppol->load_lock, flags); expires = round_to_nw_start(ppol->last_evaluated_jiffy, tunables); if (!slack_only) { for_each_cpu(i, ppol->policy->cpus) { pcpu = &per_cpu(cpuinfo, i); pcpu->time_in_idle = get_cpu_idle_time(i, &pcpu->time_in_idle_timestamp, tunables->io_is_busy); pcpu->cputime_speedadj = 0; pcpu->cputime_speedadj_timestamp = pcpu->time_in_idle_timestamp; } del_timer(&ppol->policy_timer); ppol->policy_timer.expires = expires; add_timer(&ppol->policy_timer); } if (tunables->timer_slack_val >= 0 && ppol->target_freq > ppol->policy->min) { expires += usecs_to_jiffies(tunables->timer_slack_val); del_timer(&ppol->policy_slack_timer); ppol->policy_slack_timer.expires = expires; add_timer(&ppol->policy_slack_timer); } spin_unlock_irqrestore(&ppol->load_lock, flags); } /* The caller shall take enable_sem write semaphore to avoid any timer race. * The policy_timer and policy_slack_timer must be deactivated when calling * this function. */ static void cpufreq_interactive_timer_start( struct cpufreq_interactive_tunables *tunables, int cpu) { struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu); struct cpufreq_interactive_cpuinfo *pcpu; u64 expires = round_to_nw_start(ppol->last_evaluated_jiffy, tunables); unsigned long flags; int i; spin_lock_irqsave(&ppol->load_lock, flags); ppol->policy_timer.expires = expires; add_timer(&ppol->policy_timer); if (tunables->timer_slack_val >= 0 && ppol->target_freq > ppol->policy->min) { expires += usecs_to_jiffies(tunables->timer_slack_val); ppol->policy_slack_timer.expires = expires; add_timer(&ppol->policy_slack_timer); } for_each_cpu(i, ppol->policy->cpus) { pcpu = &per_cpu(cpuinfo, i); pcpu->time_in_idle = get_cpu_idle_time(i, &pcpu->time_in_idle_timestamp, tunables->io_is_busy); pcpu->cputime_speedadj = 0; pcpu->cputime_speedadj_timestamp = pcpu->time_in_idle_timestamp; } spin_unlock_irqrestore(&ppol->load_lock, flags); } static unsigned int freq_to_above_hispeed_delay( struct cpufreq_interactive_tunables *tunables, unsigned int freq) { int i; unsigned int ret; unsigned long flags; spin_lock_irqsave(&tunables->above_hispeed_delay_lock, flags); for (i = 0; i < tunables->nabove_hispeed_delay - 1 && freq >= tunables->above_hispeed_delay[i+1]; i += 2) ; ret = tunables->above_hispeed_delay[i]; spin_unlock_irqrestore(&tunables->above_hispeed_delay_lock, flags); return ret; } static unsigned int freq_to_targetload( struct cpufreq_interactive_tunables *tunables, unsigned int freq) { int i; unsigned int ret; unsigned long flags; spin_lock_irqsave(&tunables->target_loads_lock, flags); for (i = 0; i < tunables->ntarget_loads - 1 && freq >= tunables->target_loads[i+1]; i += 2) ; ret = tunables->target_loads[i]; spin_unlock_irqrestore(&tunables->target_loads_lock, flags); return ret; } #define DEFAULT_MAX_LOAD 100 u32 get_freq_max_load(int cpu, unsigned int freq) { struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu); if (!cpumask_test_cpu(cpu, &controlled_cpus)) return DEFAULT_MAX_LOAD; if (have_governor_per_policy()) { if (!ppol || !ppol->cached_tunables) return DEFAULT_MAX_LOAD; return freq_to_targetload(ppol->cached_tunables, freq); } if (!cached_common_tunables) return DEFAULT_MAX_LOAD; return freq_to_targetload(cached_common_tunables, freq); } /* * If increasing frequencies never map to a lower target load then * choose_freq() will find the minimum frequency that does not exceed its * target load given the current load. */ static unsigned int choose_freq(struct cpufreq_interactive_policyinfo *pcpu, unsigned int loadadjfreq) { unsigned int freq = pcpu->policy->cur; unsigned int prevfreq, freqmin, freqmax; unsigned int tl; int index; freqmin = 0; freqmax = UINT_MAX; do { prevfreq = freq; tl = freq_to_targetload(pcpu->policy->governor_data, freq); /* * Find the lowest frequency where the computed load is less * than or equal to the target load. */ if (cpufreq_frequency_table_target( &pcpu->p_nolim, pcpu->freq_table, loadadjfreq / tl, CPUFREQ_RELATION_L, &index)) break; freq = pcpu->freq_table[index].frequency; if (freq > prevfreq) { /* The previous frequency is too low. */ freqmin = prevfreq; if (freq >= freqmax) { /* * Find the highest frequency that is less * than freqmax. */ if (cpufreq_frequency_table_target( &pcpu->p_nolim, pcpu->freq_table, freqmax - 1, CPUFREQ_RELATION_H, &index)) break; freq = pcpu->freq_table[index].frequency; if (freq == freqmin) { /* * The first frequency below freqmax * has already been found to be too * low. freqmax is the lowest speed * we found that is fast enough. */ freq = freqmax; break; } } } else if (freq < prevfreq) { /* The previous frequency is high enough. */ freqmax = prevfreq; if (freq <= freqmin) { /* * Find the lowest frequency that is higher * than freqmin. */ if (cpufreq_frequency_table_target( &pcpu->p_nolim, pcpu->freq_table, freqmin + 1, CPUFREQ_RELATION_L, &index)) break; freq = pcpu->freq_table[index].frequency; /* * If freqmax is the first frequency above * freqmin then we have already found that * this speed is fast enough. */ if (freq == freqmax) break; } } /* If same frequency chosen as previous then done. */ } while (freq != prevfreq); return freq; } static u64 update_load(int cpu) { struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu); struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, cpu); struct cpufreq_interactive_tunables *tunables = ppol->policy->governor_data; u64 now; u64 now_idle; unsigned int delta_idle; unsigned int delta_time; u64 active_time; now_idle = get_cpu_idle_time(cpu, &now, tunables->io_is_busy); delta_idle = (unsigned int)(now_idle - pcpu->time_in_idle); delta_time = (unsigned int)(now - pcpu->time_in_idle_timestamp); if (delta_time <= delta_idle) active_time = 0; else active_time = delta_time - delta_idle; pcpu->cputime_speedadj += active_time * ppol->policy->cur; pcpu->time_in_idle = now_idle; pcpu->time_in_idle_timestamp = now; return now; } #define NEW_TASK_RATIO 75 static void cpufreq_interactive_timer(unsigned long data) { u64 now; unsigned int delta_time; u64 cputime_speedadj; int cpu_load; struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, data); struct cpufreq_interactive_tunables *tunables = ppol->policy->governor_data; struct cpufreq_interactive_cpuinfo *pcpu; unsigned int new_freq; unsigned int loadadjfreq = 0, tmploadadjfreq; unsigned int index; unsigned long flags; unsigned long max_cpu; int i, fcpu; struct sched_load *sl; int new_load_pct = 0; struct cpufreq_govinfo govinfo; bool skip_hispeed_logic, skip_min_sample_time; bool policy_max_fast_restore = false; bool jump_to_max = false; if (!down_read_trylock(&ppol->enable_sem)) return; if (!ppol->governor_enabled) goto exit; fcpu = cpumask_first(ppol->policy->related_cpus); now = ktime_to_us(ktime_get()); spin_lock_irqsave(&ppol->target_freq_lock, flags); spin_lock(&ppol->load_lock); skip_hispeed_logic = tunables->ignore_hispeed_on_notif && ppol->notif_pending; skip_min_sample_time = tunables->fast_ramp_down && ppol->notif_pending; ppol->notif_pending = false; ppol->last_evaluated_jiffy = get_jiffies_64(); if (tunables->use_sched_load) sched_get_cpus_busy(ppol->sl, ppol->policy->related_cpus); max_cpu = cpumask_first(ppol->policy->cpus); for_each_cpu(i, ppol->policy->cpus) { pcpu = &per_cpu(cpuinfo, i); sl = &ppol->sl[i - fcpu]; if (tunables->use_sched_load) { cputime_speedadj = (u64)sl->prev_load * ppol->policy->cpuinfo.max_freq; do_div(cputime_speedadj, tunables->timer_rate); new_load_pct = 0; if (sl->prev_load) new_load_pct = sl->new_task_load * 100 / sl->prev_load; } else { now = update_load(i); delta_time = (unsigned int) (now - pcpu->cputime_speedadj_timestamp); if (WARN_ON_ONCE(!delta_time)) continue; cputime_speedadj = pcpu->cputime_speedadj; do_div(cputime_speedadj, delta_time); } tmploadadjfreq = (unsigned int)cputime_speedadj * 100; pcpu->loadadjfreq = tmploadadjfreq; if (tmploadadjfreq > loadadjfreq) { loadadjfreq = tmploadadjfreq; max_cpu = i; } cpu_load = tmploadadjfreq / ppol->target_freq; trace_cpufreq_interactive_cpuload(i, cpu_load, new_load_pct); if (cpu_load >= tunables->go_hispeed_load && new_load_pct >= NEW_TASK_RATIO) { skip_hispeed_logic = true; jump_to_max = true; } } spin_unlock(&ppol->load_lock); cpu_load = loadadjfreq / ppol->target_freq; tunables->boosted = tunables->boost_val || now < tunables->boostpulse_endtime; if (now - ppol->max_freq_hyst_start_time < tunables->max_freq_hysteresis && cpu_load >= tunables->go_hispeed_load && ppol->target_freq < ppol->policy->max) { skip_hispeed_logic = true; skip_min_sample_time = true; policy_max_fast_restore = true; } if (policy_max_fast_restore || jump_to_max) { new_freq = ppol->policy->cpuinfo.max_freq; } else if (skip_hispeed_logic) { new_freq = choose_freq(ppol, loadadjfreq); } else if (cpu_load >= tunables->go_hispeed_load || tunables->boosted) { if (ppol->target_freq < tunables->hispeed_freq) { new_freq = tunables->hispeed_freq; } else { new_freq = choose_freq(ppol, loadadjfreq); if (new_freq < tunables->hispeed_freq) new_freq = tunables->hispeed_freq; } } else { new_freq = choose_freq(ppol, loadadjfreq); if (new_freq > tunables->hispeed_freq && ppol->policy->cur < tunables->hispeed_freq) new_freq = tunables->hispeed_freq; } if (now - ppol->max_freq_hyst_start_time < tunables->max_freq_hysteresis) new_freq = max(tunables->hispeed_freq, new_freq); if (!skip_hispeed_logic && ppol->target_freq >= tunables->hispeed_freq && new_freq > ppol->target_freq && now - ppol->hispeed_validate_time < freq_to_above_hispeed_delay(tunables, ppol->target_freq)) { trace_cpufreq_interactive_notyet( max_cpu, cpu_load, ppol->target_freq, ppol->policy->cur, new_freq); spin_unlock_irqrestore(&ppol->target_freq_lock, flags); goto rearm; } ppol->hispeed_validate_time = now; if (cpufreq_frequency_table_target(&ppol->p_nolim, ppol->freq_table, new_freq, CPUFREQ_RELATION_L, &index)) { spin_unlock_irqrestore(&ppol->target_freq_lock, flags); goto rearm; } new_freq = ppol->freq_table[index].frequency; /* * Do not scale below floor_freq unless we have been at or above the * floor frequency for the minimum sample time since last validated. */ if (!skip_min_sample_time && new_freq < ppol->floor_freq) { if (now - ppol->floor_validate_time < tunables->min_sample_time) { trace_cpufreq_interactive_notyet( max_cpu, cpu_load, ppol->target_freq, ppol->policy->cur, new_freq); spin_unlock_irqrestore(&ppol->target_freq_lock, flags); goto rearm; } } /* * Update the timestamp for checking whether speed has been held at * or above the selected frequency for a minimum of min_sample_time, * if not boosted to hispeed_freq. If boosted to hispeed_freq then we * allow the speed to drop as soon as the boostpulse duration expires * (or the indefinite boost is turned off). If policy->max is restored * for max_freq_hysteresis, don't extend the timestamp. Otherwise, it * could incorrectly extended the duration of max_freq_hysteresis by * min_sample_time. */ if ((!tunables->boosted || new_freq > tunables->hispeed_freq) && !policy_max_fast_restore) { ppol->floor_freq = new_freq; ppol->floor_validate_time = now; } if (new_freq >= ppol->policy->max && !policy_max_fast_restore) ppol->max_freq_hyst_start_time = now; if (ppol->target_freq == new_freq && ppol->target_freq <= ppol->policy->cur) { trace_cpufreq_interactive_already( max_cpu, cpu_load, ppol->target_freq, ppol->policy->cur, new_freq); spin_unlock_irqrestore(&ppol->target_freq_lock, flags); goto rearm; } trace_cpufreq_interactive_target(max_cpu, cpu_load, ppol->target_freq, ppol->policy->cur, new_freq); ppol->target_freq = new_freq; spin_unlock_irqrestore(&ppol->target_freq_lock, flags); spin_lock_irqsave(&speedchange_cpumask_lock, flags); cpumask_set_cpu(max_cpu, &speedchange_cpumask); spin_unlock_irqrestore(&speedchange_cpumask_lock, flags); wake_up_process(speedchange_task); rearm: if (!timer_pending(&ppol->policy_timer)) cpufreq_interactive_timer_resched(data, false); /* * Send govinfo notification. * Govinfo notification could potentially wake up another thread * managed by its clients. Thread wakeups might trigger a load * change callback that executes this function again. Therefore * no spinlock could be held when sending the notification. */ for_each_cpu(i, ppol->policy->cpus) { pcpu = &per_cpu(cpuinfo, i); govinfo.cpu = i; govinfo.load = pcpu->loadadjfreq / ppol->policy->max; govinfo.sampling_rate_us = tunables->timer_rate; atomic_notifier_call_chain(&cpufreq_govinfo_notifier_list, CPUFREQ_LOAD_CHANGE, &govinfo); } exit: up_read(&ppol->enable_sem); return; } static int cpufreq_interactive_speedchange_task(void *data) { unsigned int cpu; cpumask_t tmp_mask; unsigned long flags; struct cpufreq_interactive_policyinfo *ppol; while (1) { set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&speedchange_cpumask_lock, flags); if (cpumask_empty(&speedchange_cpumask)) { spin_unlock_irqrestore(&speedchange_cpumask_lock, flags); schedule(); if (kthread_should_stop()) break; spin_lock_irqsave(&speedchange_cpumask_lock, flags); } set_current_state(TASK_RUNNING); tmp_mask = speedchange_cpumask; cpumask_clear(&speedchange_cpumask); spin_unlock_irqrestore(&speedchange_cpumask_lock, flags); for_each_cpu(cpu, &tmp_mask) { ppol = per_cpu(polinfo, cpu); if (!down_read_trylock(&ppol->enable_sem)) continue; if (!ppol->governor_enabled) { up_read(&ppol->enable_sem); continue; } if (ppol->target_freq != ppol->policy->cur) __cpufreq_driver_target(ppol->policy, ppol->target_freq, CPUFREQ_RELATION_H); trace_cpufreq_interactive_setspeed(cpu, ppol->target_freq, ppol->policy->cur); up_read(&ppol->enable_sem); } } return 0; } static void cpufreq_interactive_boost(struct cpufreq_interactive_tunables *tunables) { int i; int anyboost = 0; unsigned long flags[2]; struct cpufreq_interactive_policyinfo *ppol; tunables->boosted = true; spin_lock_irqsave(&speedchange_cpumask_lock, flags[0]); for_each_online_cpu(i) { ppol = per_cpu(polinfo, i); if (!ppol || tunables != ppol->policy->governor_data) continue; spin_lock_irqsave(&ppol->target_freq_lock, flags[1]); if (ppol->target_freq < tunables->hispeed_freq) { ppol->target_freq = tunables->hispeed_freq; cpumask_set_cpu(i, &speedchange_cpumask); ppol->hispeed_validate_time = ktime_to_us(ktime_get()); anyboost = 1; } /* * Set floor freq and (re)start timer for when last * validated. */ ppol->floor_freq = tunables->hispeed_freq; ppol->floor_validate_time = ktime_to_us(ktime_get()); spin_unlock_irqrestore(&ppol->target_freq_lock, flags[1]); break; } spin_unlock_irqrestore(&speedchange_cpumask_lock, flags[0]); if (anyboost) wake_up_process(speedchange_task); } static int load_change_callback(struct notifier_block *nb, unsigned long val, void *data) { unsigned long cpu = (unsigned long) data; struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu); struct cpufreq_interactive_tunables *tunables; unsigned long flags; if (speedchange_task == current) return 0; if (!ppol || ppol->reject_notification) return 0; if (!down_read_trylock(&ppol->enable_sem)) return 0; if (!ppol->governor_enabled) { up_read(&ppol->enable_sem); return 0; } tunables = ppol->policy->governor_data; if (!tunables->use_sched_load || !tunables->use_migration_notif) { up_read(&ppol->enable_sem); return 0; } trace_cpufreq_interactive_load_change(cpu); spin_lock_irqsave(&ppol->target_freq_lock, flags); ppol->notif_pending = true; spin_unlock_irqrestore(&ppol->target_freq_lock, flags); del_timer(&ppol->policy_timer); del_timer(&ppol->policy_slack_timer); cpufreq_interactive_timer(cpu); up_read(&ppol->enable_sem); return 0; } static struct notifier_block load_notifier_block = { .notifier_call = load_change_callback, }; static int cpufreq_interactive_notifier( struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_freqs *freq = data; struct cpufreq_interactive_policyinfo *ppol; int cpu; unsigned long flags; if (val == CPUFREQ_POSTCHANGE) { ppol = per_cpu(polinfo, freq->cpu); if (!ppol) return 0; if (!down_read_trylock(&ppol->enable_sem)) return 0; if (!ppol->governor_enabled) { up_read(&ppol->enable_sem); return 0; } if (cpumask_first(ppol->policy->cpus) != freq->cpu) { up_read(&ppol->enable_sem); return 0; } spin_lock_irqsave(&ppol->load_lock, flags); for_each_cpu(cpu, ppol->policy->cpus) update_load(cpu); spin_unlock_irqrestore(&ppol->load_lock, flags); up_read(&ppol->enable_sem); } return 0; } static struct notifier_block cpufreq_notifier_block = { .notifier_call = cpufreq_interactive_notifier, }; static unsigned int *get_tokenized_data(const char *buf, int *num_tokens) { const char *cp; int i; int ntokens = 1; unsigned int *tokenized_data; int err = -EINVAL; cp = buf; while ((cp = strpbrk(cp + 1, " :"))) ntokens++; if (!(ntokens & 0x1)) goto err; tokenized_data = kmalloc(ntokens * sizeof(unsigned int), GFP_KERNEL); if (!tokenized_data) { err = -ENOMEM; goto err; } cp = buf; i = 0; while (i < ntokens) { if (sscanf(cp, "%u", &tokenized_data[i++]) != 1) goto err_kfree; cp = strpbrk(cp, " :"); if (!cp) break; cp++; } if (i != ntokens) goto err_kfree; *num_tokens = ntokens; return tokenized_data; err_kfree: kfree(tokenized_data); err: return ERR_PTR(err); } static ssize_t show_target_loads( struct cpufreq_interactive_tunables *tunables, char *buf) { int i; ssize_t ret = 0; unsigned long flags; spin_lock_irqsave(&tunables->target_loads_lock, flags); for (i = 0; i < tunables->ntarget_loads; i++) ret += sprintf(buf + ret, "%u%s", tunables->target_loads[i], i & 0x1 ? ":" : " "); sprintf(buf + ret - 1, "\n"); spin_unlock_irqrestore(&tunables->target_loads_lock, flags); return ret; } static ssize_t store_target_loads( struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ntokens; unsigned int *new_target_loads = NULL; unsigned long flags; new_target_loads = get_tokenized_data(buf, &ntokens); if (IS_ERR(new_target_loads)) return PTR_RET(new_target_loads); spin_lock_irqsave(&tunables->target_loads_lock, flags); if (tunables->target_loads != default_target_loads) kfree(tunables->target_loads); tunables->target_loads = new_target_loads; tunables->ntarget_loads = ntokens; spin_unlock_irqrestore(&tunables->target_loads_lock, flags); sched_update_freq_max_load(&controlled_cpus); return count; } static ssize_t show_above_hispeed_delay( struct cpufreq_interactive_tunables *tunables, char *buf) { int i; ssize_t ret = 0; unsigned long flags; spin_lock_irqsave(&tunables->above_hispeed_delay_lock, flags); for (i = 0; i < tunables->nabove_hispeed_delay; i++) ret += sprintf(buf + ret, "%u%s", tunables->above_hispeed_delay[i], i & 0x1 ? ":" : " "); sprintf(buf + ret - 1, "\n"); spin_unlock_irqrestore(&tunables->above_hispeed_delay_lock, flags); return ret; } static ssize_t store_above_hispeed_delay( struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ntokens; unsigned int *new_above_hispeed_delay = NULL; unsigned long flags; new_above_hispeed_delay = get_tokenized_data(buf, &ntokens); if (IS_ERR(new_above_hispeed_delay)) return PTR_RET(new_above_hispeed_delay); spin_lock_irqsave(&tunables->above_hispeed_delay_lock, flags); if (tunables->above_hispeed_delay != default_above_hispeed_delay) kfree(tunables->above_hispeed_delay); tunables->above_hispeed_delay = new_above_hispeed_delay; tunables->nabove_hispeed_delay = ntokens; spin_unlock_irqrestore(&tunables->above_hispeed_delay_lock, flags); return count; } static ssize_t show_hispeed_freq(struct cpufreq_interactive_tunables *tunables, char *buf) { return sprintf(buf, "%u\n", tunables->hispeed_freq); } static ssize_t store_hispeed_freq(struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; long unsigned int val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; tunables->hispeed_freq = val; return count; } #define show_store_one(file_name) \ static ssize_t show_##file_name( \ struct cpufreq_interactive_tunables *tunables, char *buf) \ { \ return snprintf(buf, PAGE_SIZE, "%u\n", tunables->file_name); \ } \ static ssize_t store_##file_name( \ struct cpufreq_interactive_tunables *tunables, \ const char *buf, size_t count) \ { \ int ret; \ long unsigned int val; \ \ ret = kstrtoul(buf, 0, &val); \ if (ret < 0) \ return ret; \ tunables->file_name = val; \ return count; \ } show_store_one(max_freq_hysteresis); show_store_one(align_windows); show_store_one(ignore_hispeed_on_notif); show_store_one(fast_ramp_down); static ssize_t show_go_hispeed_load(struct cpufreq_interactive_tunables *tunables, char *buf) { return sprintf(buf, "%lu\n", tunables->go_hispeed_load); } static ssize_t store_go_hispeed_load(struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; tunables->go_hispeed_load = val; return count; } static ssize_t show_min_sample_time(struct cpufreq_interactive_tunables *tunables, char *buf) { return sprintf(buf, "%lu\n", tunables->min_sample_time); } static ssize_t store_min_sample_time(struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; tunables->min_sample_time = val; return count; } static ssize_t show_timer_rate(struct cpufreq_interactive_tunables *tunables, char *buf) { return sprintf(buf, "%lu\n", tunables->timer_rate); } static ssize_t store_timer_rate(struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val, val_round; struct cpufreq_interactive_tunables *t; int cpu; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; val_round = jiffies_to_usecs(usecs_to_jiffies(val)); if (val != val_round) pr_warn("timer_rate not aligned to jiffy. Rounded up to %lu\n", val_round); tunables->timer_rate = val_round; if (!tunables->use_sched_load) return count; for_each_possible_cpu(cpu) { if (!per_cpu(polinfo, cpu)) continue; t = per_cpu(polinfo, cpu)->cached_tunables; if (t && t->use_sched_load) t->timer_rate = val_round; } set_window_helper(tunables); return count; } static ssize_t show_timer_slack(struct cpufreq_interactive_tunables *tunables, char *buf) { return sprintf(buf, "%d\n", tunables->timer_slack_val); } static ssize_t store_timer_slack(struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtol(buf, 10, &val); if (ret < 0) return ret; tunables->timer_slack_val = val; return count; } static ssize_t show_boost(struct cpufreq_interactive_tunables *tunables, char *buf) { return sprintf(buf, "%d\n", tunables->boost_val); } static ssize_t store_boost(struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; tunables->boost_val = val; if (tunables->boost_val) { trace_cpufreq_interactive_boost("on"); if (!tunables->boosted) cpufreq_interactive_boost(tunables); } else { tunables->boostpulse_endtime = ktime_to_us(ktime_get()); trace_cpufreq_interactive_unboost("off"); } return count; } static ssize_t store_boostpulse(struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; tunables->boostpulse_endtime = ktime_to_us(ktime_get()) + tunables->boostpulse_duration_val; trace_cpufreq_interactive_boost("pulse"); if (!tunables->boosted) cpufreq_interactive_boost(tunables); return count; } static ssize_t show_boostpulse_duration(struct cpufreq_interactive_tunables *tunables, char *buf) { return sprintf(buf, "%d\n", tunables->boostpulse_duration_val); } static ssize_t store_boostpulse_duration(struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; tunables->boostpulse_duration_val = val; return count; } static ssize_t show_io_is_busy(struct cpufreq_interactive_tunables *tunables, char *buf) { return sprintf(buf, "%u\n", tunables->io_is_busy); } static ssize_t store_io_is_busy(struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val; struct cpufreq_interactive_tunables *t; int cpu; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; tunables->io_is_busy = val; if (!tunables->use_sched_load) return count; for_each_possible_cpu(cpu) { if (!per_cpu(polinfo, cpu)) continue; t = per_cpu(polinfo, cpu)->cached_tunables; if (t && t->use_sched_load) t->io_is_busy = val; } sched_set_io_is_busy(val); return count; } static int cpufreq_interactive_enable_sched_input( struct cpufreq_interactive_tunables *tunables) { int rc = 0, j; struct cpufreq_interactive_tunables *t; mutex_lock(&sched_lock); set_window_count++; if (set_window_count > 1) { for_each_possible_cpu(j) { if (!per_cpu(polinfo, j)) continue; t = per_cpu(polinfo, j)->cached_tunables; if (t && t->use_sched_load) { tunables->timer_rate = t->timer_rate; tunables->io_is_busy = t->io_is_busy; break; } } } else { rc = set_window_helper(tunables); if (rc) { pr_err("%s: Failed to set sched window\n", __func__); set_window_count--; goto out; } sched_set_io_is_busy(tunables->io_is_busy); } if (!tunables->use_migration_notif) goto out; migration_register_count++; if (migration_register_count > 1) goto out; else atomic_notifier_chain_register(&load_alert_notifier_head, &load_notifier_block); out: mutex_unlock(&sched_lock); return rc; } static int cpufreq_interactive_disable_sched_input( struct cpufreq_interactive_tunables *tunables) { mutex_lock(&sched_lock); if (tunables->use_migration_notif) { migration_register_count--; if (migration_register_count < 1) atomic_notifier_chain_unregister( &load_alert_notifier_head, &load_notifier_block); } set_window_count--; mutex_unlock(&sched_lock); return 0; } static ssize_t show_use_sched_load( struct cpufreq_interactive_tunables *tunables, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", tunables->use_sched_load); } static ssize_t store_use_sched_load( struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; if (tunables->use_sched_load == (bool) val) return count; tunables->use_sched_load = val; if (val) ret = cpufreq_interactive_enable_sched_input(tunables); else ret = cpufreq_interactive_disable_sched_input(tunables); if (ret) { tunables->use_sched_load = !val; return ret; } return count; } static ssize_t show_use_migration_notif( struct cpufreq_interactive_tunables *tunables, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", tunables->use_migration_notif); } static ssize_t store_use_migration_notif( struct cpufreq_interactive_tunables *tunables, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; if (tunables->use_migration_notif == (bool) val) return count; tunables->use_migration_notif = val; if (!tunables->use_sched_load) return count; mutex_lock(&sched_lock); if (val) { migration_register_count++; if (migration_register_count == 1) atomic_notifier_chain_register( &load_alert_notifier_head, &load_notifier_block); } else { migration_register_count--; if (!migration_register_count) atomic_notifier_chain_unregister( &load_alert_notifier_head, &load_notifier_block); } mutex_unlock(&sched_lock); return count; } /* * Create show/store routines * - sys: One governor instance for complete SYSTEM * - pol: One governor instance per struct cpufreq_policy */ #define show_gov_pol_sys(file_name) \ static ssize_t show_##file_name##_gov_sys \ (struct kobject *kobj, struct attribute *attr, char *buf) \ { \ return show_##file_name(common_tunables, buf); \ } \ \ static ssize_t show_##file_name##_gov_pol \ (struct cpufreq_policy *policy, char *buf) \ { \ return show_##file_name(policy->governor_data, buf); \ } #define store_gov_pol_sys(file_name) \ static ssize_t store_##file_name##_gov_sys \ (struct kobject *kobj, struct attribute *attr, const char *buf, \ size_t count) \ { \ return store_##file_name(common_tunables, buf, count); \ } \ \ static ssize_t store_##file_name##_gov_pol \ (struct cpufreq_policy *policy, const char *buf, size_t count) \ { \ return store_##file_name(policy->governor_data, buf, count); \ } #define show_store_gov_pol_sys(file_name) \ show_gov_pol_sys(file_name); \ store_gov_pol_sys(file_name) show_store_gov_pol_sys(target_loads); show_store_gov_pol_sys(above_hispeed_delay); show_store_gov_pol_sys(hispeed_freq); show_store_gov_pol_sys(go_hispeed_load); show_store_gov_pol_sys(min_sample_time); show_store_gov_pol_sys(timer_rate); show_store_gov_pol_sys(timer_slack); show_store_gov_pol_sys(boost); store_gov_pol_sys(boostpulse); show_store_gov_pol_sys(boostpulse_duration); show_store_gov_pol_sys(io_is_busy); show_store_gov_pol_sys(use_sched_load); show_store_gov_pol_sys(use_migration_notif); show_store_gov_pol_sys(max_freq_hysteresis); show_store_gov_pol_sys(align_windows); show_store_gov_pol_sys(ignore_hispeed_on_notif); show_store_gov_pol_sys(fast_ramp_down); #define gov_sys_attr_rw(_name) \ static struct global_attr _name##_gov_sys = \ __ATTR(_name, 0644, show_##_name##_gov_sys, store_##_name##_gov_sys) #define gov_pol_attr_rw(_name) \ static struct freq_attr _name##_gov_pol = \ __ATTR(_name, 0644, show_##_name##_gov_pol, store_##_name##_gov_pol) #define gov_sys_pol_attr_rw(_name) \ gov_sys_attr_rw(_name); \ gov_pol_attr_rw(_name) gov_sys_pol_attr_rw(target_loads); gov_sys_pol_attr_rw(above_hispeed_delay); gov_sys_pol_attr_rw(hispeed_freq); gov_sys_pol_attr_rw(go_hispeed_load); gov_sys_pol_attr_rw(min_sample_time); gov_sys_pol_attr_rw(timer_rate); gov_sys_pol_attr_rw(timer_slack); gov_sys_pol_attr_rw(boost); gov_sys_pol_attr_rw(boostpulse_duration); gov_sys_pol_attr_rw(io_is_busy); gov_sys_pol_attr_rw(use_sched_load); gov_sys_pol_attr_rw(use_migration_notif); gov_sys_pol_attr_rw(max_freq_hysteresis); gov_sys_pol_attr_rw(align_windows); gov_sys_pol_attr_rw(ignore_hispeed_on_notif); gov_sys_pol_attr_rw(fast_ramp_down); static struct global_attr boostpulse_gov_sys = __ATTR(boostpulse, 0200, NULL, store_boostpulse_gov_sys); static struct freq_attr boostpulse_gov_pol = __ATTR(boostpulse, 0200, NULL, store_boostpulse_gov_pol); /* One Governor instance for entire system */ static struct attribute *interactive_attributes_gov_sys[] = { &target_loads_gov_sys.attr, &above_hispeed_delay_gov_sys.attr, &hispeed_freq_gov_sys.attr, &go_hispeed_load_gov_sys.attr, &min_sample_time_gov_sys.attr, &timer_rate_gov_sys.attr, &timer_slack_gov_sys.attr, &boost_gov_sys.attr, &boostpulse_gov_sys.attr, &boostpulse_duration_gov_sys.attr, &io_is_busy_gov_sys.attr, &use_sched_load_gov_sys.attr, &use_migration_notif_gov_sys.attr, &max_freq_hysteresis_gov_sys.attr, &align_windows_gov_sys.attr, &ignore_hispeed_on_notif_gov_sys.attr, &fast_ramp_down_gov_sys.attr, NULL, }; static struct attribute_group interactive_attr_group_gov_sys = { .attrs = interactive_attributes_gov_sys, .name = "interactive", }; /* Per policy governor instance */ static struct attribute *interactive_attributes_gov_pol[] = { &target_loads_gov_pol.attr, &above_hispeed_delay_gov_pol.attr, &hispeed_freq_gov_pol.attr, &go_hispeed_load_gov_pol.attr, &min_sample_time_gov_pol.attr, &timer_rate_gov_pol.attr, &timer_slack_gov_pol.attr, &boost_gov_pol.attr, &boostpulse_gov_pol.attr, &boostpulse_duration_gov_pol.attr, &io_is_busy_gov_pol.attr, &use_sched_load_gov_pol.attr, &use_migration_notif_gov_pol.attr, &max_freq_hysteresis_gov_pol.attr, &align_windows_gov_pol.attr, &ignore_hispeed_on_notif_gov_pol.attr, &fast_ramp_down_gov_pol.attr, NULL, }; static struct attribute_group interactive_attr_group_gov_pol = { .attrs = interactive_attributes_gov_pol, .name = "interactive", }; static struct attribute_group *get_sysfs_attr(void) { if (have_governor_per_policy()) return &interactive_attr_group_gov_pol; else return &interactive_attr_group_gov_sys; } static void cpufreq_interactive_nop_timer(unsigned long data) { } static struct cpufreq_interactive_tunables *alloc_tunable( struct cpufreq_policy *policy) { struct cpufreq_interactive_tunables *tunables; tunables = kzalloc(sizeof(*tunables), GFP_KERNEL); if (!tunables) return ERR_PTR(-ENOMEM); tunables->above_hispeed_delay = default_above_hispeed_delay; tunables->nabove_hispeed_delay = ARRAY_SIZE(default_above_hispeed_delay); tunables->go_hispeed_load = DEFAULT_GO_HISPEED_LOAD; tunables->target_loads = default_target_loads; tunables->ntarget_loads = ARRAY_SIZE(default_target_loads); tunables->min_sample_time = DEFAULT_MIN_SAMPLE_TIME; tunables->timer_rate = DEFAULT_TIMER_RATE; tunables->boostpulse_duration_val = DEFAULT_MIN_SAMPLE_TIME; tunables->timer_slack_val = DEFAULT_TIMER_SLACK; spin_lock_init(&tunables->target_loads_lock); spin_lock_init(&tunables->above_hispeed_delay_lock); return tunables; } static struct cpufreq_interactive_policyinfo *get_policyinfo( struct cpufreq_policy *policy) { struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, policy->cpu); int i; struct sched_load *sl; /* polinfo already allocated for policy, return */ if (ppol) return ppol; ppol = kzalloc(sizeof(*ppol), GFP_KERNEL); if (!ppol) return ERR_PTR(-ENOMEM); sl = kcalloc(cpumask_weight(policy->related_cpus), sizeof(*sl), GFP_KERNEL); if (!sl) { kfree(ppol); return ERR_PTR(-ENOMEM); } ppol->sl = sl; init_timer_deferrable(&ppol->policy_timer); ppol->policy_timer.function = cpufreq_interactive_timer; init_timer(&ppol->policy_slack_timer); ppol->policy_slack_timer.function = cpufreq_interactive_nop_timer; spin_lock_init(&ppol->load_lock); spin_lock_init(&ppol->target_freq_lock); init_rwsem(&ppol->enable_sem); for_each_cpu(i, policy->related_cpus) per_cpu(polinfo, i) = ppol; return ppol; } /* This function is not multithread-safe. */ static void free_policyinfo(int cpu) { struct cpufreq_interactive_policyinfo *ppol = per_cpu(polinfo, cpu); int j; if (!ppol) return; for_each_possible_cpu(j) if (per_cpu(polinfo, j) == ppol) per_cpu(polinfo, cpu) = NULL; kfree(ppol->cached_tunables); kfree(ppol->sl); kfree(ppol); } static struct cpufreq_interactive_tunables *get_tunables( struct cpufreq_interactive_policyinfo *ppol) { if (have_governor_per_policy()) return ppol->cached_tunables; else return cached_common_tunables; } static int cpufreq_governor_interactive(struct cpufreq_policy *policy, unsigned int event) { int rc; struct cpufreq_interactive_policyinfo *ppol; struct cpufreq_frequency_table *freq_table; struct cpufreq_interactive_tunables *tunables; if (have_governor_per_policy()) tunables = policy->governor_data; else tunables = common_tunables; BUG_ON(!tunables && (event != CPUFREQ_GOV_POLICY_INIT)); switch (event) { case CPUFREQ_GOV_POLICY_INIT: ppol = get_policyinfo(policy); if (IS_ERR(ppol)) return PTR_ERR(ppol); if (have_governor_per_policy()) { WARN_ON(tunables); } else if (tunables) { tunables->usage_count++; cpumask_or(&controlled_cpus, &controlled_cpus, policy->related_cpus); sched_update_freq_max_load(policy->related_cpus); policy->governor_data = tunables; return 0; } tunables = get_tunables(ppol); if (!tunables) { tunables = alloc_tunable(policy); if (IS_ERR(tunables)) return PTR_ERR(tunables); } tunables->usage_count = 1; policy->governor_data = tunables; if (!have_governor_per_policy()) { common_tunables = tunables; WARN_ON(cpufreq_get_global_kobject()); } rc = sysfs_create_group(get_governor_parent_kobj(policy), get_sysfs_attr()); if (rc) { kfree(tunables); policy->governor_data = NULL; if (!have_governor_per_policy()) { common_tunables = NULL; cpufreq_put_global_kobject(); } return rc; } if (!policy->governor->initialized) cpufreq_register_notifier(&cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); if (tunables->use_sched_load) cpufreq_interactive_enable_sched_input(tunables); cpumask_or(&controlled_cpus, &controlled_cpus, policy->related_cpus); sched_update_freq_max_load(policy->related_cpus); if (have_governor_per_policy()) ppol->cached_tunables = tunables; else cached_common_tunables = tunables; break; case CPUFREQ_GOV_POLICY_EXIT: cpumask_andnot(&controlled_cpus, &controlled_cpus, policy->related_cpus); sched_update_freq_max_load(cpu_possible_mask); if (!--tunables->usage_count) { if (policy->governor->initialized == 1) cpufreq_unregister_notifier(&cpufreq_notifier_block, CPUFREQ_TRANSITION_NOTIFIER); sysfs_remove_group(get_governor_parent_kobj(policy), get_sysfs_attr()); if (!have_governor_per_policy()) cpufreq_put_global_kobject(); common_tunables = NULL; } policy->governor_data = NULL; if (tunables->use_sched_load) cpufreq_interactive_disable_sched_input(tunables); break; case CPUFREQ_GOV_START: mutex_lock(&gov_lock); freq_table = cpufreq_frequency_get_table(policy->cpu); if (!tunables->hispeed_freq) tunables->hispeed_freq = policy->max; ppol = per_cpu(polinfo, policy->cpu); ppol->policy = policy; ppol->target_freq = policy->cur; ppol->freq_table = freq_table; ppol->p_nolim = *policy; ppol->p_nolim.min = policy->cpuinfo.min_freq; ppol->p_nolim.max = policy->cpuinfo.max_freq; ppol->floor_freq = ppol->target_freq; ppol->floor_validate_time = ktime_to_us(ktime_get()); ppol->hispeed_validate_time = ppol->floor_validate_time; ppol->min_freq = policy->min; ppol->reject_notification = true; ppol->notif_pending = false; down_write(&ppol->enable_sem); del_timer_sync(&ppol->policy_timer); del_timer_sync(&ppol->policy_slack_timer); ppol->policy_timer.data = policy->cpu; ppol->last_evaluated_jiffy = get_jiffies_64(); cpufreq_interactive_timer_start(tunables, policy->cpu); ppol->governor_enabled = 1; up_write(&ppol->enable_sem); ppol->reject_notification = false; mutex_unlock(&gov_lock); break; case CPUFREQ_GOV_STOP: mutex_lock(&gov_lock); ppol = per_cpu(polinfo, policy->cpu); ppol->reject_notification = true; down_write(&ppol->enable_sem); ppol->governor_enabled = 0; ppol->target_freq = 0; del_timer_sync(&ppol->policy_timer); del_timer_sync(&ppol->policy_slack_timer); up_write(&ppol->enable_sem); ppol->reject_notification = false; mutex_unlock(&gov_lock); break; case CPUFREQ_GOV_LIMITS: ppol = per_cpu(polinfo, policy->cpu); __cpufreq_driver_target(policy, ppol->target_freq, CPUFREQ_RELATION_L); down_read(&ppol->enable_sem); if (ppol->governor_enabled) { if (policy->min < ppol->min_freq) cpufreq_interactive_timer_resched(policy->cpu, true); ppol->min_freq = policy->min; } up_read(&ppol->enable_sem); break; } return 0; } #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE static #endif struct cpufreq_governor cpufreq_gov_interactive = { .name = "interactive", .governor = cpufreq_governor_interactive, .max_transition_latency = 10000000, .owner = THIS_MODULE, }; static int __init cpufreq_interactive_init(void) { struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; spin_lock_init(&speedchange_cpumask_lock); mutex_init(&gov_lock); mutex_init(&sched_lock); speedchange_task = kthread_create(cpufreq_interactive_speedchange_task, NULL, "cfinteractive"); if (IS_ERR(speedchange_task)) return PTR_ERR(speedchange_task); sched_setscheduler_nocheck(speedchange_task, SCHED_FIFO, ¶m); get_task_struct(speedchange_task); /* NB: wake up so the thread does not look hung to the freezer */ wake_up_process(speedchange_task); return cpufreq_register_governor(&cpufreq_gov_interactive); } #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE fs_initcall(cpufreq_interactive_init); #else module_init(cpufreq_interactive_init); #endif static void __exit cpufreq_interactive_exit(void) { int cpu; cpufreq_unregister_governor(&cpufreq_gov_interactive); kthread_stop(speedchange_task); put_task_struct(speedchange_task); for_each_possible_cpu(cpu) free_policyinfo(cpu); } module_exit(cpufreq_interactive_exit); MODULE_AUTHOR("Mike Chan "); MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for " "Latency sensitive workloads"); MODULE_LICENSE("GPL");