M7350v1_en_gpl

This commit is contained in:
T
2024-09-09 08:52:07 +00:00
commit f9cc65cfda
65988 changed files with 26357421 additions and 0 deletions

View File

@ -0,0 +1 @@
d root root 0700 /var/run/wpa_supplicant none

View File

@ -0,0 +1,8 @@
# Useful flags:
# -i <ifname> Interface (required, unless specified in config)
# -D <driver> Wireless Driver
# -d Debugging (-dd for more)
# -q Quiet (-qq for more)
CONFIG="/etc/wpa_supplicant.conf"
OPTIONS="-i eth1 -D wext"

View File

@ -0,0 +1,157 @@
# This file lists the configuration options that are used when building the
# hostapd binary. All lines starting with # are ignored. Configuration option
# lines must be commented out complete, if they are not to be included, i.e.,
# just setting VARIABLE=n is not disabling that variable.
#
# This file is included in Makefile, so variables like CFLAGS and LIBS can also
# be modified from here. In most cass, these lines should use += in order not
# to override previous values of the variables.
CFLAGS = $(TARGET_CFLAGS) -I../hostapd -I../utils -I../driver/modules -Wall -MMD
# for wpa_supplicant, wpa_cli
LIBS = $(TARGET_LDFLAGS)
# for wpa_passphrase:
LIBS_p = $(TARGET_LDFLAGS)
# Uncomment following two lines and fix the paths if you have installed openssl
# in non-default location
#CFLAGS += -I/usr/local/openssl/include
#LIBS += -L/usr/local/openssl/lib
# Example configuration for various cross-compilation platforms
#### sveasoft (e.g., for Linksys WRT54G) ######################################
#CC=mipsel-uclibc-gcc
#CC=/opt/brcm/hndtools-mipsel-uclibc/bin/mipsel-uclibc-gcc
#CFLAGS += -Os
#CPPFLAGS += -I../src/include -I../../src/router/openssl/include
#LIBS += -L/opt/brcm/hndtools-mipsel-uclibc-0.9.19/lib -lssl
###############################################################################
#### openwrt (e.g., for Linksys WRT54G) #######################################
#CC=mipsel-uclibc-gcc
#CC=/opt/brcm/hndtools-mipsel-uclibc/bin/mipsel-uclibc-gcc
#CFLAGS += -Os
#CPPFLAGS=-I../src/include -I../openssl-0.9.7d/include \
# -I../WRT54GS/release/src/include
#LIBS = -lssl
###############################################################################
# Driver interface for Host AP driver
CONFIG_DRIVER_HOSTAP=y
# Driver interface for Agere driver
CONFIG_DRIVER_HERMES=y
# Driver interface for madwifi driver
#CONFIG_DRIVER_MADWIFI=y
# Change include directories to match with the local setup
#CFLAGS += -I../madwifi/wpa
# Driver interface for Prism54 driver
#CONFIG_DRIVER_PRISM54=y
# Driver interface for ndiswrapper
#CONFIG_DRIVER_NDISWRAPPER=y
# Driver interface for Atmel driver
#CONFIG_DRIVER_ATMEL=y
# Driver interface for Broadcom driver
#CONFIG_DRIVER_BROADCOM=y
# Example path for wlioctl.h; change to match your configuration
#CFLAGS += -I/opt/WRT54GS/release/src/include
# Driver interface for Intel ipw2100 driver
#CONFIG_DRIVER_IPW2100=y
# Driver interface for generic Linux wireless extensions
CONFIG_DRIVER_WEXT=y
# Driver interface for FreeBSD net80211 layer (e.g., Atheros driver)
#CONFIG_DRIVER_BSD=y
#CFLAGS += -I/usr/local/include
#LIBS += -L/usr/local/lib
# Driver interface for Windows NDIS
#CONFIG_DRIVER_NDIS=y
#CFLAGS += -I/usr/include/w32api/ddk
#LIBS += -L/usr/local/lib
# For native build using mingw
#CONFIG_NATIVE_WINDOWS=y
# Additional directories for cross-compilation on Linux host for mingw target
#CFLAGS += -I/opt/mingw/mingw32/include/ddk
#LIBS += -L/opt/mingw/mingw32/lib
#CC=mingw32-gcc
# Driver interface for development testing
#CONFIG_DRIVER_TEST=y
# Enable IEEE 802.1X Supplicant (automatically included if any EAP method is
# included)
CONFIG_IEEE8021X_EAPOL=y
# EAP-MD5 (automatically included if EAP-TTLS is enabled)
CONFIG_EAP_MD5=y
# EAP-MSCHAPv2 (automatically included if EAP-PEAP is enabled)
CONFIG_EAP_MSCHAPV2=y
# EAP-TLS
CONFIG_EAP_TLS=y
# EAL-PEAP
CONFIG_EAP_PEAP=y
# EAP-TTLS
CONFIG_EAP_TTLS=y
# EAP-GTC
CONFIG_EAP_GTC=y
# EAP-OTP
CONFIG_EAP_OTP=y
# EAP-SIM (enable CONFIG_PCSC, if EAP-SIM is used)
#CONFIG_EAP_SIM=y
# EAP-PSK (experimental; this is _not_ needed for WPA-PSK)
#CONFIG_EAP_PSK=y
# LEAP
CONFIG_EAP_LEAP=y
# EAP-AKA (enable CONFIG_PCSC, if EAP-AKA is used)
#CONFIG_EAP_AKA=y
# PKCS#12 (PFX) support (used to read private key and certificate file from
# a file that usually has extension .p12 or .pfx)
CONFIG_PKCS12=y
# PC/SC interface for smartcards (USIM, GSM SIM)
# Enable this if EAP-SIM or EAP-AKA is included
#CONFIG_PCSC=y
# Development testing
#CONFIG_EAPOL_TEST=y
# Replace native Linux implementation of packet sockets with libdnet/libpcap.
# This will be automatically set for non-Linux OS.
#CONFIG_DNET_PCAP=y
# Include control interface for external programs, e.g, wpa_cli
CONFIG_CTRL_IFACE=y
# Include interface for using external supplicant (Xsupplicant) for EAP
# authentication
#CONFIG_XSUPPLICANT_IFACE=y
# Include support for GNU Readline and History Libraries in wpa_cli.
# When building a wpa_cli binary for distribution, please note that these
# libraries are licensed under GPL and as such, BSD license may not apply for
# the resulting binary.
#CONFIG_READLINE=y

View File

@ -0,0 +1,409 @@
# Example wpa_supplicant build time configuration
#
# This file lists the configuration options that are used when building the
# hostapd binary. All lines starting with # are ignored. Configuration option
# lines must be commented out complete, if they are not to be included, i.e.,
# just setting VARIABLE=n is not disabling that variable.
#
# This file is included in Makefile, so variables like CFLAGS and LIBS can also
# be modified from here. In most cases, these lines should use += in order not
# to override previous values of the variables.
# Uncomment following two lines and fix the paths if you have installed OpenSSL
# or GnuTLS in non-default location
#CFLAGS += -I/usr/local/openssl/include
#LIBS += -L/usr/local/openssl/lib
# Some Red Hat versions seem to include kerberos header files from OpenSSL, but
# the kerberos files are not in the default include path. Following line can be
# used to fix build issues on such systems (krb5.h not found).
#CFLAGS += -I/usr/include/kerberos
# Example configuration for various cross-compilation platforms
#### sveasoft (e.g., for Linksys WRT54G) ######################################
#CC=mipsel-uclibc-gcc
#CC=/opt/brcm/hndtools-mipsel-uclibc/bin/mipsel-uclibc-gcc
#CFLAGS += -Os
#CPPFLAGS += -I../src/include -I../../src/router/openssl/include
#LIBS += -L/opt/brcm/hndtools-mipsel-uclibc-0.9.19/lib -lssl
###############################################################################
#### openwrt (e.g., for Linksys WRT54G) #######################################
#CC=mipsel-uclibc-gcc
#CC=/opt/brcm/hndtools-mipsel-uclibc/bin/mipsel-uclibc-gcc
#CFLAGS += -Os
#CPPFLAGS=-I../src/include -I../openssl-0.9.7d/include \
# -I../WRT54GS/release/src/include
#LIBS = -lssl
###############################################################################
# Driver interface for Host AP driver
CONFIG_DRIVER_HOSTAP=y
# Driver interface for Agere driver
#CONFIG_DRIVER_HERMES=y
# Change include directories to match with the local setup
#CFLAGS += -I../../hcf -I../../include -I../../include/hcf
#CFLAGS += -I../../include/wireless
# Driver interface for madwifi driver
# Deprecated; use CONFIG_DRIVER_WEXT=y instead.
#CONFIG_DRIVER_MADWIFI=y
# Set include directory to the madwifi source tree
#CFLAGS += -I../../madwifi
# Driver interface for ndiswrapper
# Deprecated; use CONFIG_DRIVER_WEXT=y instead.
#CONFIG_DRIVER_NDISWRAPPER=y
# Driver interface for Atmel driver
# CONFIG_DRIVER_ATMEL=y
# Driver interface for old Broadcom driver
# Please note that the newer Broadcom driver ("hybrid Linux driver") supports
# Linux wireless extensions and does not need (or even work) with the old
# driver wrapper. Use CONFIG_DRIVER_WEXT=y with that driver.
#CONFIG_DRIVER_BROADCOM=y
# Example path for wlioctl.h; change to match your configuration
#CFLAGS += -I/opt/WRT54GS/release/src/include
# Driver interface for Intel ipw2100/2200 driver
# Deprecated; use CONFIG_DRIVER_WEXT=y instead.
#CONFIG_DRIVER_IPW=y
# Driver interface for Ralink driver
#CONFIG_DRIVER_RALINK=y
# Driver interface for generic Linux wireless extensions
CONFIG_DRIVER_WEXT=y
# Driver interface for Linux drivers using the nl80211 kernel interface
CONFIG_LIBNL20=y
CONFIG_DRIVER_NL80211=y
# Driver interface for FreeBSD net80211 layer (e.g., Atheros driver)
#CONFIG_DRIVER_BSD=y
#CFLAGS += -I/usr/local/include
#LIBS += -L/usr/local/lib
#LIBS_p += -L/usr/local/lib
#LIBS_c += -L/usr/local/lib
# Driver interface for Windows NDIS
#CONFIG_DRIVER_NDIS=y
#CFLAGS += -I/usr/include/w32api/ddk
#LIBS += -L/usr/local/lib
# For native build using mingw
#CONFIG_NATIVE_WINDOWS=y
# Additional directories for cross-compilation on Linux host for mingw target
#CFLAGS += -I/opt/mingw/mingw32/include/ddk
#LIBS += -L/opt/mingw/mingw32/lib
#CC=mingw32-gcc
# By default, driver_ndis uses WinPcap for low-level operations. This can be
# replaced with the following option which replaces WinPcap calls with NDISUIO.
# However, this requires that WZC is disabled (net stop wzcsvc) before starting
# wpa_supplicant.
# CONFIG_USE_NDISUIO=y
# Driver interface for development testing
#CONFIG_DRIVER_TEST=y
# Include client MLME (management frame processing) for test driver
# This can be used to test MLME operations in hostapd with the test interface.
# space.
#CONFIG_CLIENT_MLME=y
# Driver interface for wired Ethernet drivers
CONFIG_DRIVER_WIRED=y
# Driver interface for the Broadcom RoboSwitch family
#CONFIG_DRIVER_ROBOSWITCH=y
# Driver interface for no driver (e.g., WPS ER only)
#CONFIG_DRIVER_NONE=y
# Enable IEEE 802.1X Supplicant (automatically included if any EAP method is
# included)
CONFIG_IEEE8021X_EAPOL=y
# EAP-MD5
CONFIG_EAP_MD5=y
# EAP-MSCHAPv2
CONFIG_EAP_MSCHAPV2=y
# EAP-TLS
CONFIG_EAP_TLS=y
# EAL-PEAP
CONFIG_EAP_PEAP=y
# EAP-TTLS
CONFIG_EAP_TTLS=y
# EAP-FAST
# Note: Default OpenSSL package does not include support for all the
# functionality needed for EAP-FAST. If EAP-FAST is enabled with OpenSSL,
# the OpenSSL library must be patched (openssl-0.9.8d-tls-extensions.patch)
# to add the needed functions.
#CONFIG_EAP_FAST=y
# EAP-GTC
CONFIG_EAP_GTC=y
# EAP-OTP
CONFIG_EAP_OTP=y
# EAP-SIM (enable CONFIG_PCSC, if EAP-SIM is used)
#CONFIG_EAP_SIM=y
# EAP-PSK (experimental; this is _not_ needed for WPA-PSK)
#CONFIG_EAP_PSK=y
# EAP-PAX
#CONFIG_EAP_PAX=y
# LEAP
CONFIG_EAP_LEAP=y
# EAP-AKA (enable CONFIG_PCSC, if EAP-AKA is used)
#CONFIG_EAP_AKA=y
# EAP-AKA' (enable CONFIG_PCSC, if EAP-AKA' is used).
# This requires CONFIG_EAP_AKA to be enabled, too.
#CONFIG_EAP_AKA_PRIME=y
# Enable USIM simulator (Milenage) for EAP-AKA
#CONFIG_USIM_SIMULATOR=y
# EAP-SAKE
#CONFIG_EAP_SAKE=y
# EAP-GPSK
#CONFIG_EAP_GPSK=y
# Include support for optional SHA256 cipher suite in EAP-GPSK
#CONFIG_EAP_GPSK_SHA256=y
# EAP-TNC and related Trusted Network Connect support (experimental)
#CONFIG_EAP_TNC=y
# Wi-Fi Protected Setup (WPS)
#CONFIG_WPS=y
# EAP-IKEv2
#CONFIG_EAP_IKEV2=y
# PKCS#12 (PFX) support (used to read private key and certificate file from
# a file that usually has extension .p12 or .pfx)
CONFIG_PKCS12=y
# Smartcard support (i.e., private key on a smartcard), e.g., with openssl
# engine.
CONFIG_SMARTCARD=y
# PC/SC interface for smartcards (USIM, GSM SIM)
# Enable this if EAP-SIM or EAP-AKA is included
#CONFIG_PCSC=y
# Development testing
#CONFIG_EAPOL_TEST=y
# Select control interface backend for external programs, e.g, wpa_cli:
# unix = UNIX domain sockets (default for Linux/*BSD)
# udp = UDP sockets using localhost (127.0.0.1)
# named_pipe = Windows Named Pipe (default for Windows)
# y = use default (backwards compatibility)
# If this option is commented out, control interface is not included in the
# build.
CONFIG_CTRL_IFACE=y
# Include support for GNU Readline and History Libraries in wpa_cli.
# When building a wpa_cli binary for distribution, please note that these
# libraries are licensed under GPL and as such, BSD license may not apply for
# the resulting binary.
#CONFIG_READLINE=y
# Remove debugging code that is printing out debug message to stdout.
# This can be used to reduce the size of the wpa_supplicant considerably
# if debugging code is not needed. The size reduction can be around 35%
# (e.g., 90 kB).
#CONFIG_NO_STDOUT_DEBUG=y
# Remove WPA support, e.g., for wired-only IEEE 802.1X supplicant, to save
# 35-50 kB in code size.
#CONFIG_NO_WPA=y
# Remove WPA2 support. This allows WPA to be used, but removes WPA2 code to
# save about 1 kB in code size when building only WPA-Personal (no EAP support)
# or 6 kB if building for WPA-Enterprise.
#CONFIG_NO_WPA2=y
# Remove IEEE 802.11i/WPA-Personal ASCII passphrase support
# This option can be used to reduce code size by removing support for
# converting ASCII passphrases into PSK. If this functionality is removed, the
# PSK can only be configured as the 64-octet hexstring (e.g., from
# wpa_passphrase). This saves about 0.5 kB in code size.
#CONFIG_NO_WPA_PASSPHRASE=y
# Disable scan result processing (ap_mode=1) to save code size by about 1 kB.
# This can be used if ap_scan=1 mode is never enabled.
#CONFIG_NO_SCAN_PROCESSING=y
# Select configuration backend:
# file = text file (e.g., wpa_supplicant.conf; note: the configuration file
# path is given on command line, not here; this option is just used to
# select the backend that allows configuration files to be used)
# winreg = Windows registry (see win_example.reg for an example)
CONFIG_BACKEND=file
# Remove configuration write functionality (i.e., to allow the configuration
# file to be updated based on runtime configuration changes). The runtime
# configuration can still be changed, the changes are just not going to be
# persistent over restarts. This option can be used to reduce code size by
# about 3.5 kB.
#CONFIG_NO_CONFIG_WRITE=y
# Remove support for configuration blobs to reduce code size by about 1.5 kB.
#CONFIG_NO_CONFIG_BLOBS=y
# Select program entry point implementation:
# main = UNIX/POSIX like main() function (default)
# main_winsvc = Windows service (read parameters from registry)
# main_none = Very basic example (development use only)
#CONFIG_MAIN=main
# Select wrapper for operatins system and C library specific functions
# unix = UNIX/POSIX like systems (default)
# win32 = Windows systems
# none = Empty template
#CONFIG_OS=unix
# Select event loop implementation
# eloop = select() loop (default)
# eloop_win = Windows events and WaitForMultipleObject() loop
# eloop_none = Empty template
#CONFIG_ELOOP=eloop
# Select layer 2 packet implementation
# linux = Linux packet socket (default)
# pcap = libpcap/libdnet/WinPcap
# freebsd = FreeBSD libpcap
# winpcap = WinPcap with receive thread
# ndis = Windows NDISUIO (note: requires CONFIG_USE_NDISUIO=y)
# none = Empty template
#CONFIG_L2_PACKET=linux
# PeerKey handshake for Station to Station Link (IEEE 802.11e DLS)
CONFIG_PEERKEY=y
# IEEE 802.11w (management frame protection)
# This version is an experimental implementation based on IEEE 802.11w/D1.0
# draft and is subject to change since the standard has not yet been finalized.
# Driver support is also needed for IEEE 802.11w.
#CONFIG_IEEE80211W=y
# Select TLS implementation
# openssl = OpenSSL (default)
# gnutls = GnuTLS (needed for TLS/IA, see also CONFIG_GNUTLS_EXTRA)
# internal = Internal TLSv1 implementation (experimental)
# none = Empty template
#CONFIG_TLS=openssl
# Whether to enable TLS/IA support, which is required for EAP-TTLSv1.
# You need CONFIG_TLS=gnutls for this to have any effect. Please note that
# even though the core GnuTLS library is released under LGPL, this extra
# library uses GPL and as such, the terms of GPL apply to the combination
# of wpa_supplicant and GnuTLS if this option is enabled. BSD license may not
# apply for distribution of the resulting binary.
#CONFIG_GNUTLS_EXTRA=y
# If CONFIG_TLS=internal is used, additional library and include paths are
# needed for LibTomMath. Alternatively, an integrated, minimal version of
# LibTomMath can be used. See beginning of libtommath.c for details on benefits
# and drawbacks of this option.
#CONFIG_INTERNAL_LIBTOMMATH=y
#ifndef CONFIG_INTERNAL_LIBTOMMATH
#LTM_PATH=/usr/src/libtommath-0.39
#CFLAGS += -I$(LTM_PATH)
#LIBS += -L$(LTM_PATH)
#LIBS_p += -L$(LTM_PATH)
#endif
# At the cost of about 4 kB of additional binary size, the internal LibTomMath
# can be configured to include faster routines for exptmod, sqr, and div to
# speed up DH and RSA calculation considerably
#CONFIG_INTERNAL_LIBTOMMATH_FAST=y
# Include NDIS event processing through WMI into wpa_supplicant/wpasvc.
# This is only for Windows builds and requires WMI-related header files and
# WbemUuid.Lib from Platform SDK even when building with MinGW.
#CONFIG_NDIS_EVENTS_INTEGRATED=y
#PLATFORMSDKLIB="/opt/Program Files/Microsoft Platform SDK/Lib"
# Add support for old DBus control interface
# (fi.epitest.hostap.WPASupplicant)
#CONFIG_CTRL_IFACE_DBUS=y
# Add support for new DBus control interface
# (fi.w1.hostap.wpa_supplicant1)
#CONFIG_CTRL_IFACE_DBUS_NEW=y
# Add introspection support for new DBus control interface
#CONFIG_CTRL_IFACE_DBUS_INTRO=y
# Add support for loading EAP methods dynamically as shared libraries.
# When this option is enabled, each EAP method can be either included
# statically (CONFIG_EAP_<method>=y) or dynamically (CONFIG_EAP_<method>=dyn).
# Dynamic EAP methods are build as shared objects (eap_*.so) and they need to
# be loaded in the beginning of the wpa_supplicant configuration file
# (see load_dynamic_eap parameter in the example file) before being used in
# the network blocks.
#
# Note that some shared parts of EAP methods are included in the main program
# and in order to be able to use dynamic EAP methods using these parts, the
# main program must have been build with the EAP method enabled (=y or =dyn).
# This means that EAP-TLS/PEAP/TTLS/FAST cannot be added as dynamic libraries
# unless at least one of them was included in the main build to force inclusion
# of the shared code. Similarly, at least one of EAP-SIM/AKA must be included
# in the main build to be able to load these methods dynamically.
#
# Please also note that using dynamic libraries will increase the total binary
# size. Thus, it may not be the best option for targets that have limited
# amount of memory/flash.
#CONFIG_DYNAMIC_EAP_METHODS=y
# IEEE Std 802.11r-2008 (Fast BSS Transition)
#CONFIG_IEEE80211R=y
# Add support for writing debug log to a file (/tmp/wpa_supplicant-log-#.txt)
#CONFIG_DEBUG_FILE=y
# Enable privilege separation (see README 'Privilege separation' for details)
#CONFIG_PRIVSEP=y
# Enable mitigation against certain attacks against TKIP by delaying Michael
# MIC error reports by a random amount of time between 0 and 60 seconds
#CONFIG_DELAYED_MIC_ERROR_REPORT=y
# Enable tracing code for developer debugging
# This tracks use of memory allocations and other registrations and reports
# incorrect use with a backtrace of call (or allocation) location.
#CONFIG_WPA_TRACE=y
# For BSD, comment out these.
#LIBS += -lexecinfo
#LIBS_p += -lexecinfo
#LIBS_c += -lexecinfo
# Use libbfd to get more details for developer debugging
# This enables use of libbfd to get more detailed symbols for the backtraces
# generated by CONFIG_WPA_TRACE=y.
#CONFIG_WPA_TRACE_BFD=y
# For BSD, comment out these.
#LIBS += -lbfd -liberty -lz
#LIBS_p += -lbfd -liberty -lz
#LIBS_c += -lbfd -liberty -lz
CONFIG_TLS = gnutls
#CONFIG_GNUTLS_EXTRA=y
CONFIG_CTRL_IFACE_DBUS=y
CONFIG_CTRL_IFACE_DBUS_NEW=y

View File

@ -0,0 +1,50 @@
#!/bin/sh
PATH=/sbin:/bin:/usr/sbin:/usr/bin
DAEMON=/usr/sbin/wpa_supplicant
CONFIG="/etc/wpa_supplicant.conf"
PNAME="wpa_supplicant"
# insane defaults
OPTIONS=""
test -f /etc/default/wpa && . /etc/default/wpa
if [ ! -f $CONFIG ]; then
echo "No configuration file found, not starting."
exit 1
fi
test -f $DAEMON || exit 0
case "$1" in
start)
echo -n "Starting wpa_supplicant: "
start-stop-daemon -S -b -x $DAEMON -- -Bw -c $CONFIG $OPTIONS >/dev/null
echo "done."
;;
stop)
echo -n "Stopping wpa_supplicant: "
start-stop-daemon -K -n $PNAME >/dev/null
echo "done."
;;
reload|force-reload)
echo -n "Reloading wpa_supplicant: "
killall -HUP $PNAME
echo "done."
;;
restart)
echo -n "Restarting wpa_supplicant: "
start-stop-daemon -K -n $PNAME >/dev/null
sleep 1
start-stop-daemon -S -b -x $DAEMON -- -Bw -c $CONFIG $OPTIONS >/dev/null
echo "done."
;;
*)
echo "Usage: $0 {start|stop|restart|reload|force-reload}" >&2
exit 1
;;
esac
exit 0

View File

@ -0,0 +1,85 @@
#!/bin/sh
WPA_SUP_BIN="/usr/sbin/wpa_supplicant"
WPA_SUP_PNAME="wpa_supplicant"
WPA_SUP_PIDFILE="/var/run/wpa_supplicant.$IFACE.pid"
WPA_SUP_OPTIONS="-B -P $WPA_SUP_PIDFILE -i $IFACE"
VERBOSITY=0
if [ -s "$IF_WPA_CONF" ]; then
WPA_SUP_CONF="-c $IF_WPA_CONF"
else
exit 0
fi
if [ ! -x "$WPA_SUP_BIN" ]; then
if [ "$VERBOSITY" = "1" ]; then
echo "$WPA_SUP_PNAME: binaries not executable or missing from $WPA_SUP_BIN"
fi
exit 1
fi
if [ "$MODE" = "start" ] ; then
# driver type of interface, defaults to wext when undefined
if [ -s "/etc/wpa_supplicant/driver.$IFACE" ]; then
IF_WPA_DRIVER=$(cat "/etc/wpa_supplicant/driver.$IFACE")
elif [ -z "$IF_WPA_DRIVER" ]; then
if [ "$VERBOSITY" = "1" ]; then
echo "$WPA_SUP_PNAME: wpa-driver not provided, using \"wext\""
fi
IF_WPA_DRIVER="wext"
fi
# if we have passed the criteria, start wpa_supplicant
if [ -n "$WPA_SUP_CONF" ]; then
if [ "$VERBOSITY" = "1" ]; then
echo "$WPA_SUP_PNAME: $WPA_SUP_BIN $WPA_SUP_OPTIONS $WPA_SUP_CONF -D $IF_WPA_DRIVER"
fi
start-stop-daemon --start --quiet \
--name $WPA_SUP_PNAME --startas $WPA_SUP_BIN --pidfile $WPA_SUP_PIDFILE \
-- $WPA_SUP_OPTIONS $WPA_SUP_CONF -D $IF_WPA_DRIVER
fi
# if the interface socket exists, then wpa_supplicant was invoked successfully
if [ -S "$WPA_COMMON_CTRL_IFACE/$IFACE" ]; then
if [ "$VERBOSITY" = "1" ]; then
echo "$WPA_SUP_PNAME: ctrl_interface socket located at $WPA_COMMON_CTRL_IFACE/$IFACE"
fi
exit 0
fi
elif [ "$MODE" = "stop" ]; then
if [ -f "$WPA_SUP_PIDFILE" ]; then
if [ "$VERBOSITY" = "1" ]; then
echo "$WPA_SUP_PNAME: terminating $WPA_SUP_PNAME daemon"
fi
start-stop-daemon --stop --quiet \
--name $WPA_SUP_PNAME --pidfile $WPA_SUP_PIDFILE
if [ -S "$WPA_COMMON_CTRL_IFACE/$IFACE" ]; then
rm -f $WPA_COMMON_CTRL_IFACE/$IFACE
fi
if [ -f "$WPA_SUP_PIDFILE" ]; then
rm -f $WPA_SUP_PIDFILE
fi
fi
fi
exit 0

View File

@ -0,0 +1,14 @@
Upstream-Status: Inappropriate [embedded specific]
diff -up wpa_supplicant-0.5.7/wpa_supplicant.c.always-scan wpa_supplicant-0.5.7/wpa_supplicant.c
--- wpa_supplicant-0.5.7/wpa_supplicant.c.always-scan 2007-09-25 15:51:35.000000000 -0400
+++ wpa_supplicant-0.5.7/wpa_supplicant.c 2007-09-25 16:31:27.000000000 -0400
@@ -972,7 +972,7 @@ static void wpa_supplicant_scan(void *el
struct wpa_ssid *ssid;
int enabled, scan_req = 0, ret;
- if (wpa_s->disconnected)
+ if (wpa_s->disconnected && !wpa_s->scan_req)
return;
enabled = 0;

View File

@ -0,0 +1,189 @@
Upstream-Status: Inappropriate [not used]
--- dbus_dict_helpers.c.array-fix 2006-12-18 12:31:11.000000000 -0500
+++ dbus_dict_helpers.c 2006-12-20 03:17:08.000000000 -0500
@@ -629,36 +629,55 @@ dbus_bool_t wpa_dbus_dict_open_read(DBus
}
+#define BYTE_ARRAY_CHUNK_SIZE 34
+#define BYTE_ARRAY_ITEM_SIZE (sizeof (char))
+
static dbus_bool_t _wpa_dbus_dict_entry_get_byte_array(
- DBusMessageIter *iter, int array_len, int array_type,
+ DBusMessageIter *iter, int array_type,
struct wpa_dbus_dict_entry *entry)
{
- dbus_uint32_t i = 0;
+ dbus_uint32_t count = 0;
dbus_bool_t success = FALSE;
- char byte;
+ char * buffer;
- /* Zero-length arrays are valid. */
- if (array_len == 0) {
- entry->bytearray_value = NULL;
- entry->array_type = DBUS_TYPE_BYTE;
- success = TRUE;
- goto done;
- }
+ entry->bytearray_value = NULL;
+ entry->array_type = DBUS_TYPE_BYTE;
- entry->bytearray_value = wpa_zalloc(array_len * sizeof(char));
- if (!entry->bytearray_value) {
+ buffer = wpa_zalloc(BYTE_ARRAY_ITEM_SIZE * BYTE_ARRAY_CHUNK_SIZE);
+ if (!buffer) {
perror("_wpa_dbus_dict_entry_get_byte_array[dbus]: out of "
"memory");
goto done;
}
- entry->array_type = DBUS_TYPE_BYTE;
- entry->array_len = array_len;
+ entry->bytearray_value = buffer;
+ entry->array_len = 0;
while (dbus_message_iter_get_arg_type(iter) == DBUS_TYPE_BYTE) {
+ char byte;
+
+ if ((count % BYTE_ARRAY_CHUNK_SIZE) == 0 && count != 0) {
+ buffer = realloc(buffer, BYTE_ARRAY_ITEM_SIZE * (count + BYTE_ARRAY_CHUNK_SIZE));
+ if (buffer == NULL) {
+ perror("_wpa_dbus_dict_entry_get_byte_array["
+ "dbus] out of memory trying to "
+ "retrieve the string array");
+ goto done;
+ }
+ }
+ entry->bytearray_value = buffer;
+
dbus_message_iter_get_basic(iter, &byte);
- entry->bytearray_value[i++] = byte;
+ entry->bytearray_value[count] = byte;
+ entry->array_len = ++count;
dbus_message_iter_next(iter);
}
+
+ /* Zero-length arrays are valid. */
+ if (entry->array_len == 0) {
+ free(entry->bytearray_value);
+ entry->strarray_value = NULL;
+ }
+
success = TRUE;
done:
@@ -666,8 +685,11 @@ done:
}
+#define STR_ARRAY_CHUNK_SIZE 8
+#define STR_ARRAY_ITEM_SIZE (sizeof (char *))
+
static dbus_bool_t _wpa_dbus_dict_entry_get_string_array(
- DBusMessageIter *iter, int array_len, int array_type,
+ DBusMessageIter *iter, int array_type,
struct wpa_dbus_dict_entry *entry)
{
dbus_uint32_t count = 0;
@@ -677,13 +699,7 @@ static dbus_bool_t _wpa_dbus_dict_entry_
entry->strarray_value = NULL;
entry->array_type = DBUS_TYPE_STRING;
- /* Zero-length arrays are valid. */
- if (array_len == 0) {
- success = TRUE;
- goto done;
- }
-
- buffer = wpa_zalloc(sizeof (char *) * 8);
+ buffer = wpa_zalloc(STR_ARRAY_ITEM_SIZE * STR_ARRAY_CHUNK_SIZE);
if (buffer == NULL) {
perror("_wpa_dbus_dict_entry_get_string_array[dbus] out of "
"memory trying to retrieve a string array");
@@ -696,18 +712,14 @@ static dbus_bool_t _wpa_dbus_dict_entry_
const char *value;
char *str;
- if ((count % 8) == 0 && count != 0) {
- char **tmp;
- tmp = realloc(buffer, sizeof(char *) * (count + 8));
- if (tmp == NULL) {
+ if ((count % STR_ARRAY_CHUNK_SIZE) == 0 && count != 0) {
+ buffer = realloc(buffer, STR_ARRAY_ITEM_SIZE * (count + STR_ARRAY_CHUNK_SIZE));
+ if (buffer == NULL) {
perror("_wpa_dbus_dict_entry_get_string_array["
"dbus] out of memory trying to "
"retrieve the string array");
- free(buffer);
- buffer = NULL;
goto done;
}
- buffer = tmp;
}
entry->strarray_value = buffer;
@@ -723,6 +735,13 @@ static dbus_bool_t _wpa_dbus_dict_entry_
entry->array_len = ++count;
dbus_message_iter_next(iter);
}
+
+ /* Zero-length arrays are valid. */
+ if (entry->array_len == 0) {
+ free(entry->strarray_value);
+ entry->strarray_value = NULL;
+ }
+
success = TRUE;
done:
@@ -734,7 +753,6 @@ static dbus_bool_t _wpa_dbus_dict_entry_
DBusMessageIter *iter_dict_val, struct wpa_dbus_dict_entry *entry)
{
int array_type = dbus_message_iter_get_element_type(iter_dict_val);
- int array_len;
dbus_bool_t success = FALSE;
DBusMessageIter iter_array;
@@ -743,20 +761,14 @@ static dbus_bool_t _wpa_dbus_dict_entry_
dbus_message_iter_recurse(iter_dict_val, &iter_array);
- array_len = dbus_message_iter_get_array_len(&iter_array);
- if (array_len < 0)
- return FALSE;
-
switch (array_type) {
case DBUS_TYPE_BYTE:
success = _wpa_dbus_dict_entry_get_byte_array(&iter_array,
- array_len,
array_type,
entry);
break;
case DBUS_TYPE_STRING:
success = _wpa_dbus_dict_entry_get_string_array(&iter_array,
- array_len,
array_type,
entry);
break;
@@ -943,9 +955,17 @@ void wpa_dbus_dict_entry_clear(struct wp
break;
case DBUS_TYPE_ARRAY:
switch (entry->array_type) {
- case DBUS_TYPE_BYTE:
- free(entry->bytearray_value);
- break;
+ case DBUS_TYPE_BYTE: {
+ free(entry->bytearray_value);
+ break;
+ }
+ case DBUS_TYPE_STRING: {
+ int i;
+ for (i = 0; i < entry->array_len; i++)
+ free (entry->strarray_value[i]);
+ free (entry->strarray_value);
+ break;
+ }
}
break;
}

View File

@ -0,0 +1,690 @@
##### Example wpa_supplicant configuration file ###############################
#
# This file describes configuration file format and lists all available option.
# Please also take a look at simpler configuration examples in 'examples'
# subdirectory.
#
# Empty lines and lines starting with # are ignored
# NOTE! This file may contain password information and should probably be made
# readable only by root user on multiuser systems.
# Note: All file paths in this configuration file should use full (absolute,
# not relative to working directory) path in order to allow working directory
# to be changed. This can happen if wpa_supplicant is run in the background.
# Whether to allow wpa_supplicant to update (overwrite) configuration
#
# This option can be used to allow wpa_supplicant to overwrite configuration
# file whenever configuration is changed (e.g., new network block is added with
# wpa_cli or wpa_gui, or a password is changed). This is required for
# wpa_cli/wpa_gui to be able to store the configuration changes permanently.
# Please note that overwriting configuration file will remove the comments from
# it.
#update_config=1
# global configuration (shared by all network blocks)
#
# Parameters for the control interface. If this is specified, wpa_supplicant
# will open a control interface that is available for external programs to
# manage wpa_supplicant. The meaning of this string depends on which control
# interface mechanism is used. For all cases, the existance of this parameter
# in configuration is used to determine whether the control interface is
# enabled.
#
# For UNIX domain sockets (default on Linux and BSD): This is a directory that
# will be created for UNIX domain sockets for listening to requests from
# external programs (CLI/GUI, etc.) for status information and configuration.
# The socket file will be named based on the interface name, so multiple
# wpa_supplicant processes can be run at the same time if more than one
# interface is used.
# /var/run/wpa_supplicant is the recommended directory for sockets and by
# default, wpa_cli will use it when trying to connect with wpa_supplicant.
#
# Access control for the control interface can be configured by setting the
# directory to allow only members of a group to use sockets. This way, it is
# possible to run wpa_supplicant as root (since it needs to change network
# configuration and open raw sockets) and still allow GUI/CLI components to be
# run as non-root users. However, since the control interface can be used to
# change the network configuration, this access needs to be protected in many
# cases. By default, wpa_supplicant is configured to use gid 0 (root). If you
# want to allow non-root users to use the control interface, add a new group
# and change this value to match with that group. Add users that should have
# control interface access to this group. If this variable is commented out or
# not included in the configuration file, group will not be changed from the
# value it got by default when the directory or socket was created.
#
# When configuring both the directory and group, use following format:
# DIR=/var/run/wpa_supplicant GROUP=wheel
# DIR=/var/run/wpa_supplicant GROUP=0
# (group can be either group name or gid)
#
# For UDP connections (default on Windows): The value will be ignored. This
# variable is just used to select that the control interface is to be created.
# The value can be set to, e.g., udp (ctrl_interface=udp)
#
# For Windows Named Pipe: This value can be used to set the security descriptor
# for controlling access to the control interface. Security descriptor can be
# set using Security Descriptor String Format (see http://msdn.microsoft.com/
# library/default.asp?url=/library/en-us/secauthz/security/
# security_descriptor_string_format.asp). The descriptor string needs to be
# prefixed with SDDL=. For example, ctrl_interface=SDDL=D: would set an empty
# DACL (which will reject all connections). See README-Windows.txt for more
# information about SDDL string format.
#
ctrl_interface=/var/run/wpa_supplicant
# IEEE 802.1X/EAPOL version
# wpa_supplicant is implemented based on IEEE Std 802.1X-2004 which defines
# EAPOL version 2. However, there are many APs that do not handle the new
# version number correctly (they seem to drop the frames completely). In order
# to make wpa_supplicant interoperate with these APs, the version number is set
# to 1 by default. This configuration value can be used to set it to the new
# version (2).
eapol_version=1
# AP scanning/selection
# By default, wpa_supplicant requests driver to perform AP scanning and then
# uses the scan results to select a suitable AP. Another alternative is to
# allow the driver to take care of AP scanning and selection and use
# wpa_supplicant just to process EAPOL frames based on IEEE 802.11 association
# information from the driver.
# 1: wpa_supplicant initiates scanning and AP selection
# 0: driver takes care of scanning, AP selection, and IEEE 802.11 association
# parameters (e.g., WPA IE generation); this mode can also be used with
# non-WPA drivers when using IEEE 802.1X mode; do not try to associate with
# APs (i.e., external program needs to control association). This mode must
# also be used when using wired Ethernet drivers.
# 2: like 0, but associate with APs using security policy and SSID (but not
# BSSID); this can be used, e.g., with ndiswrapper and NDIS drivers to
# enable operation with hidden SSIDs and optimized roaming; in this mode,
# the network blocks in the configuration file are tried one by one until
# the driver reports successful association; each network block should have
# explicit security policy (i.e., only one option in the lists) for
# key_mgmt, pairwise, group, proto variables
ap_scan=1
# EAP fast re-authentication
# By default, fast re-authentication is enabled for all EAP methods that
# support it. This variable can be used to disable fast re-authentication.
# Normally, there is no need to disable this.
fast_reauth=1
# OpenSSL Engine support
# These options can be used to load OpenSSL engines.
# The two engines that are supported currently are shown below:
# They are both from the opensc project (http://www.opensc.org/)
# By default no engines are loaded.
# make the opensc engine available
#opensc_engine_path=/usr/lib/opensc/engine_opensc.so
# make the pkcs11 engine available
#pkcs11_engine_path=/usr/lib/opensc/engine_pkcs11.so
# configure the path to the pkcs11 module required by the pkcs11 engine
#pkcs11_module_path=/usr/lib/pkcs11/opensc-pkcs11.so
# Dynamic EAP methods
# If EAP methods were built dynamically as shared object files, they need to be
# loaded here before being used in the network blocks. By default, EAP methods
# are included statically in the build, so these lines are not needed
#load_dynamic_eap=/usr/lib/wpa_supplicant/eap_tls.so
#load_dynamic_eap=/usr/lib/wpa_supplicant/eap_md5.so
# Driver interface parameters
# This field can be used to configure arbitrary driver interace parameters. The
# format is specific to the selected driver interface. This field is not used
# in most cases.
#driver_param="field=value"
# Maximum lifetime for PMKSA in seconds; default 43200
#dot11RSNAConfigPMKLifetime=43200
# Threshold for reauthentication (percentage of PMK lifetime); default 70
#dot11RSNAConfigPMKReauthThreshold=70
# Timeout for security association negotiation in seconds; default 60
#dot11RSNAConfigSATimeout=60
# network block
#
# Each network (usually AP's sharing the same SSID) is configured as a separate
# block in this configuration file. The network blocks are in preference order
# (the first match is used).
#
# network block fields:
#
# disabled:
# 0 = this network can be used (default)
# 1 = this network block is disabled (can be enabled through ctrl_iface,
# e.g., with wpa_cli or wpa_gui)
#
# id_str: Network identifier string for external scripts. This value is passed
# to external action script through wpa_cli as WPA_ID_STR environment
# variable to make it easier to do network specific configuration.
#
# ssid: SSID (mandatory); either as an ASCII string with double quotation or
# as hex string; network name
#
# scan_ssid:
# 0 = do not scan this SSID with specific Probe Request frames (default)
# 1 = scan with SSID-specific Probe Request frames (this can be used to
# find APs that do not accept broadcast SSID or use multiple SSIDs;
# this will add latency to scanning, so enable this only when needed)
#
# bssid: BSSID (optional); if set, this network block is used only when
# associating with the AP using the configured BSSID
#
# priority: priority group (integer)
# By default, all networks will get same priority group (0). If some of the
# networks are more desirable, this field can be used to change the order in
# which wpa_supplicant goes through the networks when selecting a BSS. The
# priority groups will be iterated in decreasing priority (i.e., the larger the
# priority value, the sooner the network is matched against the scan results).
# Within each priority group, networks will be selected based on security
# policy, signal strength, etc.
# Please note that AP scanning with scan_ssid=1 and ap_scan=2 mode are not
# using this priority to select the order for scanning. Instead, they try the
# networks in the order that used in the configuration file.
#
# mode: IEEE 802.11 operation mode
# 0 = infrastructure (Managed) mode, i.e., associate with an AP (default)
# 1 = IBSS (ad-hoc, peer-to-peer)
# Note: IBSS can only be used with key_mgmt NONE (plaintext and static WEP)
# and key_mgmt=WPA-NONE (fixed group key TKIP/CCMP). In addition, ap_scan has
# to be set to 2 for IBSS. WPA-None requires following network block options:
# proto=WPA, key_mgmt=WPA-NONE, pairwise=NONE, group=TKIP (or CCMP, but not
# both), and psk must also be set.
#
# proto: list of accepted protocols
# WPA = WPA/IEEE 802.11i/D3.0
# RSN = WPA2/IEEE 802.11i (also WPA2 can be used as an alias for RSN)
# If not set, this defaults to: WPA RSN
#
# key_mgmt: list of accepted authenticated key management protocols
# WPA-PSK = WPA pre-shared key (this requires 'psk' field)
# WPA-EAP = WPA using EAP authentication (this can use an external
# program, e.g., Xsupplicant, for IEEE 802.1X EAP Authentication
# IEEE8021X = IEEE 802.1X using EAP authentication and (optionally) dynamically
# generated WEP keys
# NONE = WPA is not used; plaintext or static WEP could be used
# If not set, this defaults to: WPA-PSK WPA-EAP
#
# auth_alg: list of allowed IEEE 802.11 authentication algorithms
# OPEN = Open System authentication (required for WPA/WPA2)
# SHARED = Shared Key authentication (requires static WEP keys)
# LEAP = LEAP/Network EAP (only used with LEAP)
# If not set, automatic selection is used (Open System with LEAP enabled if
# LEAP is allowed as one of the EAP methods).
#
# pairwise: list of accepted pairwise (unicast) ciphers for WPA
# CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
# TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
# NONE = Use only Group Keys (deprecated, should not be included if APs support
# pairwise keys)
# If not set, this defaults to: CCMP TKIP
#
# group: list of accepted group (broadcast/multicast) ciphers for WPA
# CCMP = AES in Counter mode with CBC-MAC [RFC 3610, IEEE 802.11i/D7.0]
# TKIP = Temporal Key Integrity Protocol [IEEE 802.11i/D7.0]
# WEP104 = WEP (Wired Equivalent Privacy) with 104-bit key
# WEP40 = WEP (Wired Equivalent Privacy) with 40-bit key [IEEE 802.11]
# If not set, this defaults to: CCMP TKIP WEP104 WEP40
#
# psk: WPA preshared key; 256-bit pre-shared key
# The key used in WPA-PSK mode can be entered either as 64 hex-digits, i.e.,
# 32 bytes or as an ASCII passphrase (in which case, the real PSK will be
# generated using the passphrase and SSID). ASCII passphrase must be between
# 8 and 63 characters (inclusive).
# This field is not needed, if WPA-EAP is used.
# Note: Separate tool, wpa_passphrase, can be used to generate 256-bit keys
# from ASCII passphrase. This process uses lot of CPU and wpa_supplicant
# startup and reconfiguration time can be optimized by generating the PSK only
# only when the passphrase or SSID has actually changed.
#
# eapol_flags: IEEE 802.1X/EAPOL options (bit field)
# Dynamic WEP key required for non-WPA mode
# bit0 (1): require dynamically generated unicast WEP key
# bit1 (2): require dynamically generated broadcast WEP key
# (3 = require both keys; default)
# Note: When using wired authentication, eapol_flags must be set to 0 for the
# authentication to be completed successfully.
#
# proactive_key_caching:
# Enable/disable opportunistic PMKSA caching for WPA2.
# 0 = disabled (default)
# 1 = enabled
#
# wep_key0..3: Static WEP key (ASCII in double quotation, e.g. "abcde" or
# hex without quotation, e.g., 0102030405)
# wep_tx_keyidx: Default WEP key index (TX) (0..3)
#
# peerkey: Whether PeerKey negotiation for direct links (IEEE 802.11e DLS) is
# allowed. This is only used with RSN/WPA2.
# 0 = disabled (default)
# 1 = enabled
#peerkey=1
#
# Following fields are only used with internal EAP implementation.
# eap: space-separated list of accepted EAP methods
# MD5 = EAP-MD5 (unsecure and does not generate keying material ->
# cannot be used with WPA; to be used as a Phase 2 method
# with EAP-PEAP or EAP-TTLS)
# MSCHAPV2 = EAP-MSCHAPv2 (cannot be used separately with WPA; to be used
# as a Phase 2 method with EAP-PEAP or EAP-TTLS)
# OTP = EAP-OTP (cannot be used separately with WPA; to be used
# as a Phase 2 method with EAP-PEAP or EAP-TTLS)
# GTC = EAP-GTC (cannot be used separately with WPA; to be used
# as a Phase 2 method with EAP-PEAP or EAP-TTLS)
# TLS = EAP-TLS (client and server certificate)
# PEAP = EAP-PEAP (with tunnelled EAP authentication)
# TTLS = EAP-TTLS (with tunnelled EAP or PAP/CHAP/MSCHAP/MSCHAPV2
# authentication)
# If not set, all compiled in methods are allowed.
#
# identity: Identity string for EAP
# anonymous_identity: Anonymous identity string for EAP (to be used as the
# unencrypted identity with EAP types that support different tunnelled
# identity, e.g., EAP-TTLS)
# password: Password string for EAP
# ca_cert: File path to CA certificate file (PEM/DER). This file can have one
# or more trusted CA certificates. If ca_cert and ca_path are not
# included, server certificate will not be verified. This is insecure and
# a trusted CA certificate should always be configured when using
# EAP-TLS/TTLS/PEAP. Full path should be used since working directory may
# change when wpa_supplicant is run in the background.
# On Windows, trusted CA certificates can be loaded from the system
# certificate store by setting this to cert_store://<name>, e.g.,
# ca_cert="cert_store://CA" or ca_cert="cert_store://ROOT".
# Note that when running wpa_supplicant as an application, the user
# certificate store (My user account) is used, whereas computer store
# (Computer account) is used when running wpasvc as a service.
# ca_path: Directory path for CA certificate files (PEM). This path may
# contain multiple CA certificates in OpenSSL format. Common use for this
# is to point to system trusted CA list which is often installed into
# directory like /etc/ssl/certs. If configured, these certificates are
# added to the list of trusted CAs. ca_cert may also be included in that
# case, but it is not required.
# client_cert: File path to client certificate file (PEM/DER)
# Full path should be used since working directory may change when
# wpa_supplicant is run in the background.
# Alternatively, a named configuration blob can be used by setting this
# to blob://<blob name>.
# private_key: File path to client private key file (PEM/DER/PFX)
# When PKCS#12/PFX file (.p12/.pfx) is used, client_cert should be
# commented out. Both the private key and certificate will be read from
# the PKCS#12 file in this case. Full path should be used since working
# directory may change when wpa_supplicant is run in the background.
# Windows certificate store can be used by leaving client_cert out and
# configuring private_key in one of the following formats:
# cert://substring_to_match
# hash://certificate_thumbprint_in_hex
# for example: private_key="hash://63093aa9c47f56ae88334c7b65a4"
# Note that when running wpa_supplicant as an application, the user
# certificate store (My user account) is used, whereas computer store
# (Computer account) is used when running wpasvc as a service.
# Alternatively, a named configuration blob can be used by setting this
# to blob://<blob name>.
# private_key_passwd: Password for private key file (if left out, this will be
# asked through control interface)
# dh_file: File path to DH/DSA parameters file (in PEM format)
# This is an optional configuration file for setting parameters for an
# ephemeral DH key exchange. In most cases, the default RSA
# authentication does not use this configuration. However, it is possible
# setup RSA to use ephemeral DH key exchange. In addition, ciphers with
# DSA keys always use ephemeral DH keys. This can be used to achieve
# forward secrecy. If the file is in DSA parameters format, it will be
# automatically converted into DH params.
# subject_match: Substring to be matched against the subject of the
# authentication server certificate. If this string is set, the server
# sertificate is only accepted if it contains this string in the subject.
# The subject string is in following format:
# /C=US/ST=CA/L=San Francisco/CN=Test AS/emailAddress=as@example.com
# altsubject_match: Semicolon separated string of entries to be matched against
# the alternative subject name of the authentication server certificate.
# If this string is set, the server sertificate is only accepted if it
# contains one of the entries in an alternative subject name extension.
# altSubjectName string is in following format: TYPE:VALUE
# Example: EMAIL:server@example.com
# Example: DNS:server.example.com;DNS:server2.example.com
# Following types are supported: EMAIL, DNS, URI
# phase1: Phase1 (outer authentication, i.e., TLS tunnel) parameters
# (string with field-value pairs, e.g., "peapver=0" or
# "peapver=1 peaplabel=1")
# 'peapver' can be used to force which PEAP version (0 or 1) is used.
# 'peaplabel=1' can be used to force new label, "client PEAP encryption",
# to be used during key derivation when PEAPv1 or newer. Most existing
# PEAPv1 implementation seem to be using the old label, "client EAP
# encryption", and wpa_supplicant is now using that as the default value.
# Some servers, e.g., Radiator, may require peaplabel=1 configuration to
# interoperate with PEAPv1; see eap_testing.txt for more details.
# 'peap_outer_success=0' can be used to terminate PEAP authentication on
# tunneled EAP-Success. This is required with some RADIUS servers that
# implement draft-josefsson-pppext-eap-tls-eap-05.txt (e.g.,
# Lucent NavisRadius v4.4.0 with PEAP in "IETF Draft 5" mode)
# include_tls_length=1 can be used to force wpa_supplicant to include
# TLS Message Length field in all TLS messages even if they are not
# fragmented.
# sim_min_num_chal=3 can be used to configure EAP-SIM to require three
# challenges (by default, it accepts 2 or 3)
# phase2: Phase2 (inner authentication with TLS tunnel) parameters
# (string with field-value pairs, e.g., "auth=MSCHAPV2" for EAP-PEAP or
# "autheap=MSCHAPV2 autheap=MD5" for EAP-TTLS)
# Following certificate/private key fields are used in inner Phase2
# authentication when using EAP-TTLS or EAP-PEAP.
# ca_cert2: File path to CA certificate file. This file can have one or more
# trusted CA certificates. If ca_cert2 and ca_path2 are not included,
# server certificate will not be verified. This is insecure and a trusted
# CA certificate should always be configured.
# ca_path2: Directory path for CA certificate files (PEM)
# client_cert2: File path to client certificate file
# private_key2: File path to client private key file
# private_key2_passwd: Password for private key file
# dh_file2: File path to DH/DSA parameters file (in PEM format)
# subject_match2: Substring to be matched against the subject of the
# authentication server certificate.
# altsubject_match2: Substring to be matched against the alternative subject
# name of the authentication server certificate.
#
# fragment_size: Maximum EAP fragment size in bytes (default 1398).
# This value limits the fragment size for EAP methods that support
# fragmentation (e.g., EAP-TLS and EAP-PEAP). This value should be set
# small enough to make the EAP messages fit in MTU of the network
# interface used for EAPOL. The default value is suitable for most
# cases.
#
# EAP-PSK variables:
# eappsk: 16-byte (128-bit, 32 hex digits) pre-shared key in hex format
# nai: user NAI
#
# EAP-PAX variables:
# eappsk: 16-byte (128-bit, 32 hex digits) pre-shared key in hex format
#
# EAP-SAKE variables:
# eappsk: 32-byte (256-bit, 64 hex digits) pre-shared key in hex format
# (this is concatenation of Root-Secret-A and Root-Secret-B)
# nai: user NAI (PEERID)
#
# EAP-GPSK variables:
# eappsk: Pre-shared key in hex format (at least 128 bits, i.e., 32 hex digits)
# nai: user NAI (ID_Client)
#
# EAP-FAST variables:
# pac_file: File path for the PAC entries. wpa_supplicant will need to be able
# to create this file and write updates to it when PAC is being
# provisioned or refreshed. Full path to the file should be used since
# working directory may change when wpa_supplicant is run in the
# background. Alternatively, a named configuration blob can be used by
# setting this to blob://<blob name>
# phase1: fast_provisioning=1 option enables in-line provisioning of EAP-FAST
# credentials (PAC)
#
# wpa_supplicant supports number of "EAP workarounds" to work around
# interoperability issues with incorrectly behaving authentication servers.
# These are enabled by default because some of the issues are present in large
# number of authentication servers. Strict EAP conformance mode can be
# configured by disabling workarounds with eap_workaround=0.
# Example blocks:
# Simple case: WPA-PSK, PSK as an ASCII passphrase, allow all valid ciphers
network={
ssid="simple"
psk="very secret passphrase"
priority=5
}
# Same as previous, but request SSID-specific scanning (for APs that reject
# broadcast SSID)
network={
ssid="second ssid"
scan_ssid=1
psk="very secret passphrase"
priority=2
}
# Only WPA-PSK is used. Any valid cipher combination is accepted.
network={
ssid="example"
proto=WPA
key_mgmt=WPA-PSK
pairwise=CCMP TKIP
group=CCMP TKIP WEP104 WEP40
psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb
priority=2
}
# Only WPA-EAP is used. Both CCMP and TKIP is accepted. An AP that used WEP104
# or WEP40 as the group cipher will not be accepted.
network={
ssid="example"
proto=RSN
key_mgmt=WPA-EAP
pairwise=CCMP TKIP
group=CCMP TKIP
eap=TLS
identity="user@example.com"
ca_cert="/etc/cert/ca.pem"
client_cert="/etc/cert/user.pem"
private_key="/etc/cert/user.prv"
private_key_passwd="password"
priority=1
}
# EAP-PEAP/MSCHAPv2 configuration for RADIUS servers that use the new peaplabel
# (e.g., Radiator)
network={
ssid="example"
key_mgmt=WPA-EAP
eap=PEAP
identity="user@example.com"
password="foobar"
ca_cert="/etc/cert/ca.pem"
phase1="peaplabel=1"
phase2="auth=MSCHAPV2"
priority=10
}
# EAP-TTLS/EAP-MD5-Challenge configuration with anonymous identity for the
# unencrypted use. Real identity is sent only within an encrypted TLS tunnel.
network={
ssid="example"
key_mgmt=WPA-EAP
eap=TTLS
identity="user@example.com"
anonymous_identity="anonymous@example.com"
password="foobar"
ca_cert="/etc/cert/ca.pem"
priority=2
}
# EAP-TTLS/MSCHAPv2 configuration with anonymous identity for the unencrypted
# use. Real identity is sent only within an encrypted TLS tunnel.
network={
ssid="example"
key_mgmt=WPA-EAP
eap=TTLS
identity="user@example.com"
anonymous_identity="anonymous@example.com"
password="foobar"
ca_cert="/etc/cert/ca.pem"
phase2="auth=MSCHAPV2"
}
# WPA-EAP, EAP-TTLS with different CA certificate used for outer and inner
# authentication.
network={
ssid="example"
key_mgmt=WPA-EAP
eap=TTLS
# Phase1 / outer authentication
anonymous_identity="anonymous@example.com"
ca_cert="/etc/cert/ca.pem"
# Phase 2 / inner authentication
phase2="autheap=TLS"
ca_cert2="/etc/cert/ca2.pem"
client_cert2="/etc/cer/user.pem"
private_key2="/etc/cer/user.prv"
private_key2_passwd="password"
priority=2
}
# Both WPA-PSK and WPA-EAP is accepted. Only CCMP is accepted as pairwise and
# group cipher.
network={
ssid="example"
bssid=00:11:22:33:44:55
proto=WPA RSN
key_mgmt=WPA-PSK WPA-EAP
pairwise=CCMP
group=CCMP
psk=06b4be19da289f475aa46a33cb793029d4ab3db7a23ee92382eb0106c72ac7bb
}
# Special characters in SSID, so use hex string. Default to WPA-PSK, WPA-EAP
# and all valid ciphers.
network={
ssid=00010203
psk=000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
}
# IEEE 802.1X/EAPOL with dynamically generated WEP keys (i.e., no WPA) using
# EAP-TLS for authentication and key generation; require both unicast and
# broadcast WEP keys.
network={
ssid="1x-test"
key_mgmt=IEEE8021X
eap=TLS
identity="user@example.com"
ca_cert="/etc/cert/ca.pem"
client_cert="/etc/cert/user.pem"
private_key="/etc/cert/user.prv"
private_key_passwd="password"
eapol_flags=3
}
# LEAP with dynamic WEP keys
network={
ssid="leap-example"
key_mgmt=IEEE8021X
eap=LEAP
identity="user"
password="foobar"
}
# Plaintext connection (no WPA, no IEEE 802.1X)
network={
ssid="plaintext-test"
key_mgmt=NONE
}
# Shared WEP key connection (no WPA, no IEEE 802.1X)
network={
ssid="static-wep-test"
key_mgmt=NONE
wep_key0="abcde"
wep_key1=0102030405
wep_key2="1234567890123"
wep_tx_keyidx=0
priority=5
}
# Shared WEP key connection (no WPA, no IEEE 802.1X) using Shared Key
# IEEE 802.11 authentication
network={
ssid="static-wep-test2"
key_mgmt=NONE
wep_key0="abcde"
wep_key1=0102030405
wep_key2="1234567890123"
wep_tx_keyidx=0
priority=5
auth_alg=SHARED
}
# IBSS/ad-hoc network with WPA-None/TKIP.
network={
ssid="test adhoc"
mode=1
proto=WPA
key_mgmt=WPA-NONE
pairwise=NONE
group=TKIP
psk="secret passphrase"
}
# Catch all example that allows more or less all configuration modes
network={
ssid="example"
scan_ssid=1
key_mgmt=WPA-EAP WPA-PSK IEEE8021X NONE
pairwise=CCMP TKIP
group=CCMP TKIP WEP104 WEP40
psk="very secret passphrase"
eap=TTLS PEAP TLS
identity="user@example.com"
password="foobar"
ca_cert="/etc/cert/ca.pem"
client_cert="/etc/cert/user.pem"
private_key="/etc/cert/user.prv"
private_key_passwd="password"
phase1="peaplabel=0"
}
# Example of EAP-TLS with smartcard (openssl engine)
network={
ssid="example"
key_mgmt=WPA-EAP
eap=TLS
proto=RSN
pairwise=CCMP TKIP
group=CCMP TKIP
identity="user@example.com"
ca_cert="/etc/cert/ca.pem"
client_cert="/etc/cert/user.pem"
engine=1
# The engine configured here must be available. Look at
# OpenSSL engine support in the global section.
# The key available through the engine must be the private key
# matching the client certificate configured above.
# use the opensc engine
#engine_id="opensc"
#key_id="45"
# use the pkcs11 engine
engine_id="pkcs11"
key_id="id_45"
# Optional PIN configuration; this can be left out and PIN will be
# asked through the control interface
pin="1234"
}
# Example configuration showing how to use an inlined blob as a CA certificate
# data instead of using external file
network={
ssid="example"
key_mgmt=WPA-EAP
eap=TTLS
identity="user@example.com"
anonymous_identity="anonymous@example.com"
password="foobar"
ca_cert="blob://exampleblob"
priority=20
}
blob-base64-exampleblob={
SGVsbG8gV29ybGQhCg==
}
# Wildcard match for SSID (plaintext APs only). This example select any
# open AP regardless of its SSID.
network={
key_mgmt=NONE
}

View File

@ -0,0 +1,7 @@
ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1
network={
key_mgmt=NONE
}

View File

@ -0,0 +1,13 @@
# This is a basic configuration for WPA with pre-shared keys (WPA-PSK)
ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
eapol_version=1
ap_scan=1
network={
ssid="YOUR_SSID"
psk="YOUR WPA PASSWORD IN HEX OR ASCII"
key_mgmt=WPA-PSK
pairwise=CCMP
priority=5
}

View File

@ -0,0 +1,79 @@
DESCRIPTION = "A Client for Wi-Fi Protected Access (WPA)."
HOMEPAGE = "http://hostap.epitest.fi/wpa_supplicant/"
BUGTRACKER = "http://hostap.epitest.fi/bugz/"
SECTION = "network"
LICENSE = "GPLv2 | BSD"
LIC_FILES_CHKSUM = "file://../COPYING;md5=c54ce9345727175ff66d17b67ff51f58 \
file://../README;md5=54cfc88015d3ce83f7156e63c6bb1738 \
file://wpa_supplicant.c;beginline=1;endline=17;md5=acdc5a4b0d6345f21f136eace747260e"
DEPENDS = "gnutls dbus libnl"
RRECOMMENDS_${PN} = "wpa-supplicant-passphrase wpa-supplicant-cli"
SRC_URI = "http://hostap.epitest.fi/releases/wpa_supplicant-${PV}.tar.gz \
file://defconfig-gnutls \
file://defaults-sane \
file://wpa-supplicant.sh \
file://wpa_supplicant.conf \
file://wpa_supplicant.conf-sane \
file://99_wpa_supplicant"
S = "${WORKDIR}/wpa_supplicant-${PV}/wpa_supplicant"
PACKAGES_prepend = "wpa-supplicant-passphrase wpa-supplicant-cli "
FILES_wpa-supplicant-passphrase = "${sbindir}/wpa_passphrase"
FILES_wpa-supplicant-cli = "${sbindir}/wpa_cli"
FILES_${PN} += " ${datadir}/dbus-1/system-services/*
do_configure () {
install -m 0755 ${WORKDIR}/defconfig-gnutls .config
}
export EXTRA_CFLAGS = "${CFLAGS}"
do_compile () {
unset CFLAGS CPPFLAGS CXXFLAGS
oe_runmake
}
do_install () {
install -d ${D}${sbindir}
install -m 755 wpa_supplicant ${D}${sbindir}
install -m 755 wpa_passphrase ${D}${sbindir}
install -m 755 wpa_cli ${D}${sbindir}
install -d ${D}${docdir}/wpa_supplicant
install -m 644 README ${WORKDIR}/wpa_supplicant.conf ${D}${docdir}/wpa_supplicant
install -d ${D}${sysconfdir}/default
install -m 600 ${WORKDIR}/defaults-sane ${D}${sysconfdir}/default/wpa
install -m 600 ${WORKDIR}/wpa_supplicant.conf-sane ${D}${sysconfdir}/wpa_supplicant.conf
install -d ${D}${sysconfdir}/network/if-pre-up.d/
install -d ${D}${sysconfdir}/network/if-post-down.d/
install -d ${D}${sysconfdir}/network/if-down.d/
install -m 644 ${WORKDIR}/wpa_supplicant.conf ${D}${sysconfdir}
install -m 755 ${WORKDIR}/wpa-supplicant.sh ${D}${sysconfdir}/network/if-pre-up.d/wpa-supplicant
cd ${D}${sysconfdir}/network/ && \
ln -sf ../if-pre-up.d/wpa-supplicant if-post-down.d/wpa-supplicant
install -d ${D}/${sysconfdir}/dbus-1/system.d
install -m 644 ${S}/dbus/dbus-wpa_supplicant.conf ${D}/${sysconfdir}/dbus-1/system.d
install -d ${D}/${datadir}/dbus-1/system-services
sed -i -e s:${base_sbindir}:${sbindir}:g ${S}/dbus/*.service
install -m 644 ${S}/dbus/*.service ${D}/${datadir}/dbus-1/system-services
install -d ${D}/etc/default/volatiles
install -m 0644 ${WORKDIR}/99_wpa_supplicant ${D}/etc/default/volatiles
}
pkg_postinst_wpa-supplicant () {
# If we're offline, we don't need to do this.
if [ "x$D" != "x" ]; then
exit 0
fi
DBUSPID=`pidof dbus-daemon`
if [ "x$DBUSPID" != "x" ]; then
/etc/init.d/dbus-1 reload
fi
}

View File

@ -0,0 +1,6 @@
require wpa-supplicant-0.7.inc
PR = "r6"
SRC_URI[md5sum] = "f516f191384a9a546e3f5145c08addda"
SRC_URI[sha256sum] = "d0cd50caa85346ccc376dcda5ed3c258eef19a93b3cade39d25760118ad59443"