M7350v1_en_gpl

This commit is contained in:
T
2024-09-09 08:52:07 +00:00
commit f9cc65cfda
65988 changed files with 26357421 additions and 0 deletions

View File

@ -0,0 +1,11 @@
# kbuild trick to avoid linker error. Can be omitted if a module is built.
obj- := dummy.o
# List of programs to build
hostprogs-y := spidev_test spidev_fdx
# Tell kbuild to always build the programs
always := $(hostprogs-y)
HOSTCFLAGS_spidev_test.o += -I$(objtree)/usr/include
HOSTCFLAGS_spidev_fdx.o += -I$(objtree)/usr/include

View File

@ -0,0 +1,68 @@
spi_butterfly - parport-to-butterfly adapter driver
===================================================
This is a hardware and software project that includes building and using
a parallel port adapter cable, together with an "AVR Butterfly" to run
firmware for user interfacing and/or sensors. A Butterfly is a $US20
battery powered card with an AVR microcontroller and lots of goodies:
sensors, LCD, flash, toggle stick, and more. You can use AVR-GCC to
develop firmware for this, and flash it using this adapter cable.
You can make this adapter from an old printer cable and solder things
directly to the Butterfly. Or (if you have the parts and skills) you
can come up with something fancier, providing ciruit protection to the
Butterfly and the printer port, or with a better power supply than two
signal pins from the printer port. Or for that matter, you can use
similar cables to talk to many AVR boards, even a breadboard.
This is more powerful than "ISP programming" cables since it lets kernel
SPI protocol drivers interact with the AVR, and could even let the AVR
issue interrupts to them. Later, your protocol driver should work
easily with a "real SPI controller", instead of this bitbanger.
The first cable connections will hook Linux up to one SPI bus, with the
AVR and a DataFlash chip; and to the AVR reset line. This is all you
need to reflash the firmware, and the pins are the standard Atmel "ISP"
connector pins (used also on non-Butterfly AVR boards). On the parport
side this is like "sp12" programming cables.
Signal Butterfly Parport (DB-25)
------ --------- ---------------
SCK = J403.PB1/SCK = pin 2/D0
RESET = J403.nRST = pin 3/D1
VCC = J403.VCC_EXT = pin 8/D6
MOSI = J403.PB2/MOSI = pin 9/D7
MISO = J403.PB3/MISO = pin 11/S7,nBUSY
GND = J403.GND = pin 23/GND
Then to let Linux master that bus to talk to the DataFlash chip, you must
(a) flash new firmware that disables SPI (set PRR.2, and disable pullups
by clearing PORTB.[0-3]); (b) configure the mtd_dataflash driver; and
(c) cable in the chipselect.
Signal Butterfly Parport (DB-25)
------ --------- ---------------
VCC = J400.VCC_EXT = pin 7/D5
SELECT = J400.PB0/nSS = pin 17/C3,nSELECT
GND = J400.GND = pin 24/GND
Or you could flash firmware making the AVR into an SPI slave (keeping the
DataFlash in reset) and tweak the spi_butterfly driver to make it bind to
the driver for your custom SPI-based protocol.
The "USI" controller, using J405, can also be used for a second SPI bus.
That would let you talk to the AVR using custom SPI-with-USI firmware,
while letting either Linux or the AVR use the DataFlash. There are plenty
of spare parport pins to wire this one up, such as:
Signal Butterfly Parport (DB-25)
------ --------- ---------------
SCK = J403.PE4/USCK = pin 5/D3
MOSI = J403.PE5/DI = pin 6/D4
MISO = J403.PE6/DO = pin 12/S5,nPAPEROUT
GND = J403.GND = pin 22/GND
IRQ = J402.PF4 = pin 10/S6,ACK
GND = J402.GND(P2) = pin 25/GND

View File

@ -0,0 +1,105 @@
Cirrus EP93xx SPI controller driver HOWTO
=========================================
ep93xx_spi driver brings SPI master support for EP93xx SPI controller. Chip
selects are implemented with GPIO lines.
NOTE: If possible, don't use SFRMOUT (SFRM1) signal as a chip select. It will
not work correctly (it cannot be controlled by software). Use GPIO lines
instead.
Sample configuration
====================
Typically driver configuration is done in platform board files (the files under
arch/arm/mach-ep93xx/*.c). In this example we configure MMC over SPI through
this driver on TS-7260 board. You can adapt the code to suit your needs.
This example uses EGPIO9 as SD/MMC card chip select (this is wired in DIO1
header on the board).
You need to select CONFIG_MMC_SPI to use mmc_spi driver.
arch/arm/mach-ep93xx/ts72xx.c:
...
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <mach/ep93xx_spi.h>
/* this is our GPIO line used for chip select */
#define MMC_CHIP_SELECT_GPIO EP93XX_GPIO_LINE_EGPIO9
static int ts72xx_mmc_spi_setup(struct spi_device *spi)
{
int err;
err = gpio_request(MMC_CHIP_SELECT_GPIO, spi->modalias);
if (err)
return err;
gpio_direction_output(MMC_CHIP_SELECT_GPIO, 1);
return 0;
}
static void ts72xx_mmc_spi_cleanup(struct spi_device *spi)
{
gpio_set_value(MMC_CHIP_SELECT_GPIO, 1);
gpio_direction_input(MMC_CHIP_SELECT_GPIO);
gpio_free(MMC_CHIP_SELECT_GPIO);
}
static void ts72xx_mmc_spi_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(MMC_CHIP_SELECT_GPIO, value);
}
static struct ep93xx_spi_chip_ops ts72xx_mmc_spi_ops = {
.setup = ts72xx_mmc_spi_setup,
.cleanup = ts72xx_mmc_spi_cleanup,
.cs_control = ts72xx_mmc_spi_cs_control,
};
static struct spi_board_info ts72xx_spi_devices[] __initdata = {
{
.modalias = "mmc_spi",
.controller_data = &ts72xx_mmc_spi_ops,
/*
* We use 10 MHz even though the maximum is 7.4 MHz. The driver
* will limit it automatically to max. frequency.
*/
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 0,
.chip_select = 0,
.mode = SPI_MODE_0,
},
};
static struct ep93xx_spi_info ts72xx_spi_info = {
.num_chipselect = ARRAY_SIZE(ts72xx_spi_devices),
};
static void __init ts72xx_init_machine(void)
{
...
ep93xx_register_spi(&ts72xx_spi_info, ts72xx_spi_devices,
ARRAY_SIZE(ts72xx_spi_devices));
}
The driver can use DMA for the transfers also. In this case ts72xx_spi_info
becomes:
static struct ep93xx_spi_info ts72xx_spi_info = {
.num_chipselect = ARRAY_SIZE(ts72xx_spi_devices),
.use_dma = true;
};
Note that CONFIG_EP93XX_DMA should be enabled as well.
Thanks to
=========
Martin Guy, H. Hartley Sweeten and others who helped me during development of
the driver. Simplemachines.it donated me a Sim.One board which I used testing
the driver on EP9307.

View File

@ -0,0 +1,241 @@
PXA2xx SPI on SSP driver HOWTO
===================================================
This a mini howto on the pxa2xx_spi driver. The driver turns a PXA2xx
synchronous serial port into a SPI master controller
(see Documentation/spi/spi-summary). The driver has the following features
- Support for any PXA2xx SSP
- SSP PIO and SSP DMA data transfers.
- External and Internal (SSPFRM) chip selects.
- Per slave device (chip) configuration.
- Full suspend, freeze, resume support.
The driver is built around a "spi_message" fifo serviced by workqueue and a
tasklet. The workqueue, "pump_messages", drives message fifo and the tasklet
(pump_transfer) is responsible for queuing SPI transactions and setting up and
launching the dma/interrupt driven transfers.
Declaring PXA2xx Master Controllers
-----------------------------------
Typically a SPI master is defined in the arch/.../mach-*/board-*.c as a
"platform device". The master configuration is passed to the driver via a table
found in include/linux/spi/pxa2xx_spi.h:
struct pxa2xx_spi_master {
u32 clock_enable;
u16 num_chipselect;
u8 enable_dma;
};
The "pxa2xx_spi_master.clock_enable" field is used to enable/disable the
corresponding SSP peripheral block in the "Clock Enable Register (CKEN"). See
the "PXA2xx Developer Manual" section "Clocks and Power Management".
The "pxa2xx_spi_master.num_chipselect" field is used to determine the number of
slave device (chips) attached to this SPI master.
The "pxa2xx_spi_master.enable_dma" field informs the driver that SSP DMA should
be used. This caused the driver to acquire two DMA channels: rx_channel and
tx_channel. The rx_channel has a higher DMA service priority the tx_channel.
See the "PXA2xx Developer Manual" section "DMA Controller".
NSSP MASTER SAMPLE
------------------
Below is a sample configuration using the PXA255 NSSP.
static struct resource pxa_spi_nssp_resources[] = {
[0] = {
.start = __PREG(SSCR0_P(2)), /* Start address of NSSP */
.end = __PREG(SSCR0_P(2)) + 0x2c, /* Range of registers */
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_NSSP, /* NSSP IRQ */
.end = IRQ_NSSP,
.flags = IORESOURCE_IRQ,
},
};
static struct pxa2xx_spi_master pxa_nssp_master_info = {
.clock_enable = CKEN_NSSP, /* NSSP Peripheral clock */
.num_chipselect = 1, /* Matches the number of chips attached to NSSP */
.enable_dma = 1, /* Enables NSSP DMA */
};
static struct platform_device pxa_spi_nssp = {
.name = "pxa2xx-spi", /* MUST BE THIS VALUE, so device match driver */
.id = 2, /* Bus number, MUST MATCH SSP number 1..n */
.resource = pxa_spi_nssp_resources,
.num_resources = ARRAY_SIZE(pxa_spi_nssp_resources),
.dev = {
.platform_data = &pxa_nssp_master_info, /* Passed to driver */
},
};
static struct platform_device *devices[] __initdata = {
&pxa_spi_nssp,
};
static void __init board_init(void)
{
(void)platform_add_device(devices, ARRAY_SIZE(devices));
}
Declaring Slave Devices
-----------------------
Typically each SPI slave (chip) is defined in the arch/.../mach-*/board-*.c
using the "spi_board_info" structure found in "linux/spi/spi.h". See
"Documentation/spi/spi-summary" for additional information.
Each slave device attached to the PXA must provide slave specific configuration
information via the structure "pxa2xx_spi_chip" found in
"include/linux/spi/pxa2xx_spi.h". The pxa2xx_spi master controller driver
will uses the configuration whenever the driver communicates with the slave
device. All fields are optional.
struct pxa2xx_spi_chip {
u8 tx_threshold;
u8 rx_threshold;
u8 dma_burst_size;
u32 timeout;
u8 enable_loopback;
void (*cs_control)(u32 command);
};
The "pxa2xx_spi_chip.tx_threshold" and "pxa2xx_spi_chip.rx_threshold" fields are
used to configure the SSP hardware fifo. These fields are critical to the
performance of pxa2xx_spi driver and misconfiguration will result in rx
fifo overruns (especially in PIO mode transfers). Good default values are
.tx_threshold = 8,
.rx_threshold = 8,
The range is 1 to 16 where zero indicates "use default".
The "pxa2xx_spi_chip.dma_burst_size" field is used to configure PXA2xx DMA
engine and is related the "spi_device.bits_per_word" field. Read and understand
the PXA2xx "Developer Manual" sections on the DMA controller and SSP Controllers
to determine the correct value. An SSP configured for byte-wide transfers would
use a value of 8. The driver will determine a reasonable default if
dma_burst_size == 0.
The "pxa2xx_spi_chip.timeout" fields is used to efficiently handle
trailing bytes in the SSP receiver fifo. The correct value for this field is
dependent on the SPI bus speed ("spi_board_info.max_speed_hz") and the specific
slave device. Please note that the PXA2xx SSP 1 does not support trailing byte
timeouts and must busy-wait any trailing bytes.
The "pxa2xx_spi_chip.enable_loopback" field is used to place the SSP porting
into internal loopback mode. In this mode the SSP controller internally
connects the SSPTX pin to the SSPRX pin. This is useful for initial setup
testing.
The "pxa2xx_spi_chip.cs_control" field is used to point to a board specific
function for asserting/deasserting a slave device chip select. If the field is
NULL, the pxa2xx_spi master controller driver assumes that the SSP port is
configured to use SSPFRM instead.
NOTE: the SPI driver cannot control the chip select if SSPFRM is used, so the
chipselect is dropped after each spi_transfer. Most devices need chip select
asserted around the complete message. Use SSPFRM as a GPIO (through cs_control)
to accommodate these chips.
NSSP SLAVE SAMPLE
-----------------
The pxa2xx_spi_chip structure is passed to the pxa2xx_spi driver in the
"spi_board_info.controller_data" field. Below is a sample configuration using
the PXA255 NSSP.
/* Chip Select control for the CS8415A SPI slave device */
static void cs8415a_cs_control(u32 command)
{
if (command & PXA2XX_CS_ASSERT)
GPCR(2) = GPIO_bit(2);
else
GPSR(2) = GPIO_bit(2);
}
/* Chip Select control for the CS8405A SPI slave device */
static void cs8405a_cs_control(u32 command)
{
if (command & PXA2XX_CS_ASSERT)
GPCR(3) = GPIO_bit(3);
else
GPSR(3) = GPIO_bit(3);
}
static struct pxa2xx_spi_chip cs8415a_chip_info = {
.tx_threshold = 8, /* SSP hardward FIFO threshold */
.rx_threshold = 8, /* SSP hardward FIFO threshold */
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
.timeout = 235, /* See Intel documentation */
.cs_control = cs8415a_cs_control, /* Use external chip select */
};
static struct pxa2xx_spi_chip cs8405a_chip_info = {
.tx_threshold = 8, /* SSP hardward FIFO threshold */
.rx_threshold = 8, /* SSP hardward FIFO threshold */
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
.timeout = 235, /* See Intel documentation */
.cs_control = cs8405a_cs_control, /* Use external chip select */
};
static struct spi_board_info streetracer_spi_board_info[] __initdata = {
{
.modalias = "cs8415a", /* Name of spi_driver for this device */
.max_speed_hz = 3686400, /* Run SSP as fast a possbile */
.bus_num = 2, /* Framework bus number */
.chip_select = 0, /* Framework chip select */
.platform_data = NULL; /* No spi_driver specific config */
.controller_data = &cs8415a_chip_info, /* Master chip config */
.irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */
},
{
.modalias = "cs8405a", /* Name of spi_driver for this device */
.max_speed_hz = 3686400, /* Run SSP as fast a possbile */
.bus_num = 2, /* Framework bus number */
.chip_select = 1, /* Framework chip select */
.controller_data = &cs8405a_chip_info, /* Master chip config */
.irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */
},
};
static void __init streetracer_init(void)
{
spi_register_board_info(streetracer_spi_board_info,
ARRAY_SIZE(streetracer_spi_board_info));
}
DMA and PIO I/O Support
-----------------------
The pxa2xx_spi driver supports both DMA and interrupt driven PIO message
transfers. The driver defaults to PIO mode and DMA transfers must be enabled
by setting the "enable_dma" flag in the "pxa2xx_spi_master" structure. The DMA
mode supports both coherent and stream based DMA mappings.
The following logic is used to determine the type of I/O to be used on
a per "spi_transfer" basis:
if !enable_dma then
always use PIO transfers
if spi_message.len > 8191 then
print "rate limited" warning
use PIO transfers
if spi_message.is_dma_mapped and rx_dma_buf != 0 and tx_dma_buf != 0 then
use coherent DMA mode
if rx_buf and tx_buf are aligned on 8 byte boundary then
use streaming DMA mode
otherwise
use PIO transfer
THANKS TO
---------
David Brownell and others for mentoring the development of this driver.

View File

@ -0,0 +1,79 @@
spi_lm70llp : LM70-LLP parport-to-SPI adapter
==============================================
Supported board/chip:
* National Semiconductor LM70 LLP evaluation board
Datasheet: http://www.national.com/pf/LM/LM70.html
Author:
Kaiwan N Billimoria <kaiwan@designergraphix.com>
Description
-----------
This driver provides glue code connecting a National Semiconductor LM70 LLP
temperature sensor evaluation board to the kernel's SPI core subsystem.
This is a SPI master controller driver. It can be used in conjunction with
(layered under) the LM70 logical driver (a "SPI protocol driver").
In effect, this driver turns the parallel port interface on the eval board
into a SPI bus with a single device, which will be driven by the generic
LM70 driver (drivers/hwmon/lm70.c).
Hardware Interfacing
--------------------
The schematic for this particular board (the LM70EVAL-LLP) is
available (on page 4) here:
http://www.national.com/appinfo/tempsensors/files/LM70LLPEVALmanual.pdf
The hardware interfacing on the LM70 LLP eval board is as follows:
Parallel LM70 LLP
Port Direction JP2 Header
----------- --------- ----------------
D0 2 - -
D1 3 --> V+ 5
D2 4 --> V+ 5
D3 5 --> V+ 5
D4 6 --> V+ 5
D5 7 --> nCS 8
D6 8 --> SCLK 3
D7 9 --> SI/O 5
GND 25 - GND 7
Select 13 <-- SI/O 1
----------- --------- ----------------
Note that since the LM70 uses a "3-wire" variant of SPI, the SI/SO pin
is connected to both pin D7 (as Master Out) and Select (as Master In)
using an arrangement that lets either the parport or the LM70 pull the
pin low. This can't be shared with true SPI devices, but other 3-wire
devices might share the same SI/SO pin.
The bitbanger routine in this driver (lm70_txrx) is called back from
the bound "hwmon/lm70" protocol driver through its sysfs hook, using a
spi_write_then_read() call. It performs Mode 0 (SPI/Microwire) bitbanging.
The lm70 driver then inteprets the resulting digital temperature value
and exports it through sysfs.
A "gotcha": National Semiconductor's LM70 LLP eval board circuit schematic
shows that the SI/O line from the LM70 chip is connected to the base of a
transistor Q1 (and also a pullup, and a zener diode to D7); while the
collector is tied to VCC.
Interpreting this circuit, when the LM70 SI/O line is High (or tristate
and not grounded by the host via D7), the transistor conducts and switches
the collector to zero, which is reflected on pin 13 of the DB25 parport
connector. When SI/O is Low (driven by the LM70 or the host) on the other
hand, the transistor is cut off and the voltage tied to it's collector is
reflected on pin 13 as a High level.
So: the getmiso inline routine in this driver takes this fact into account,
inverting the value read at pin 13.
Thanks to
---------
o David Brownell for mentoring the SPI-side driver development.
o Dr.Craig Hollabaugh for the (early) "manual" bitbanging driver version.
o Nadir Billimoria for help interpreting the circuit schematic.

View File

@ -0,0 +1,598 @@
Overview of Linux kernel SPI support
====================================
02-Feb-2012
What is SPI?
------------
The "Serial Peripheral Interface" (SPI) is a synchronous four wire serial
link used to connect microcontrollers to sensors, memory, and peripherals.
It's a simple "de facto" standard, not complicated enough to acquire a
standardization body. SPI uses a master/slave configuration.
The three signal wires hold a clock (SCK, often on the order of 10 MHz),
and parallel data lines with "Master Out, Slave In" (MOSI) or "Master In,
Slave Out" (MISO) signals. (Other names are also used.) There are four
clocking modes through which data is exchanged; mode-0 and mode-3 are most
commonly used. Each clock cycle shifts data out and data in; the clock
doesn't cycle except when there is a data bit to shift. Not all data bits
are used though; not every protocol uses those full duplex capabilities.
SPI masters use a fourth "chip select" line to activate a given SPI slave
device, so those three signal wires may be connected to several chips
in parallel. All SPI slaves support chipselects; they are usually active
low signals, labeled nCSx for slave 'x' (e.g. nCS0). Some devices have
other signals, often including an interrupt to the master.
Unlike serial busses like USB or SMBus, even low level protocols for
SPI slave functions are usually not interoperable between vendors
(except for commodities like SPI memory chips).
- SPI may be used for request/response style device protocols, as with
touchscreen sensors and memory chips.
- It may also be used to stream data in either direction (half duplex),
or both of them at the same time (full duplex).
- Some devices may use eight bit words. Others may different word
lengths, such as streams of 12-bit or 20-bit digital samples.
- Words are usually sent with their most significant bit (MSB) first,
but sometimes the least significant bit (LSB) goes first instead.
- Sometimes SPI is used to daisy-chain devices, like shift registers.
In the same way, SPI slaves will only rarely support any kind of automatic
discovery/enumeration protocol. The tree of slave devices accessible from
a given SPI master will normally be set up manually, with configuration
tables.
SPI is only one of the names used by such four-wire protocols, and
most controllers have no problem handling "MicroWire" (think of it as
half-duplex SPI, for request/response protocols), SSP ("Synchronous
Serial Protocol"), PSP ("Programmable Serial Protocol"), and other
related protocols.
Some chips eliminate a signal line by combining MOSI and MISO, and
limiting themselves to half-duplex at the hardware level. In fact
some SPI chips have this signal mode as a strapping option. These
can be accessed using the same programming interface as SPI, but of
course they won't handle full duplex transfers. You may find such
chips described as using "three wire" signaling: SCK, data, nCSx.
(That data line is sometimes called MOMI or SISO.)
Microcontrollers often support both master and slave sides of the SPI
protocol. This document (and Linux) currently only supports the master
side of SPI interactions.
Who uses it? On what kinds of systems?
---------------------------------------
Linux developers using SPI are probably writing device drivers for embedded
systems boards. SPI is used to control external chips, and it is also a
protocol supported by every MMC or SD memory card. (The older "DataFlash"
cards, predating MMC cards but using the same connectors and card shape,
support only SPI.) Some PC hardware uses SPI flash for BIOS code.
SPI slave chips range from digital/analog converters used for analog
sensors and codecs, to memory, to peripherals like USB controllers
or Ethernet adapters; and more.
Most systems using SPI will integrate a few devices on a mainboard.
Some provide SPI links on expansion connectors; in cases where no
dedicated SPI controller exists, GPIO pins can be used to create a
low speed "bitbanging" adapter. Very few systems will "hotplug" an SPI
controller; the reasons to use SPI focus on low cost and simple operation,
and if dynamic reconfiguration is important, USB will often be a more
appropriate low-pincount peripheral bus.
Many microcontrollers that can run Linux integrate one or more I/O
interfaces with SPI modes. Given SPI support, they could use MMC or SD
cards without needing a special purpose MMC/SD/SDIO controller.
I'm confused. What are these four SPI "clock modes"?
-----------------------------------------------------
It's easy to be confused here, and the vendor documentation you'll
find isn't necessarily helpful. The four modes combine two mode bits:
- CPOL indicates the initial clock polarity. CPOL=0 means the
clock starts low, so the first (leading) edge is rising, and
the second (trailing) edge is falling. CPOL=1 means the clock
starts high, so the first (leading) edge is falling.
- CPHA indicates the clock phase used to sample data; CPHA=0 says
sample on the leading edge, CPHA=1 means the trailing edge.
Since the signal needs to stablize before it's sampled, CPHA=0
implies that its data is written half a clock before the first
clock edge. The chipselect may have made it become available.
Chip specs won't always say "uses SPI mode X" in as many words,
but their timing diagrams will make the CPOL and CPHA modes clear.
In the SPI mode number, CPOL is the high order bit and CPHA is the
low order bit. So when a chip's timing diagram shows the clock
starting low (CPOL=0) and data stabilized for sampling during the
trailing clock edge (CPHA=1), that's SPI mode 1.
Note that the clock mode is relevant as soon as the chipselect goes
active. So the master must set the clock to inactive before selecting
a slave, and the slave can tell the chosen polarity by sampling the
clock level when its select line goes active. That's why many devices
support for example both modes 0 and 3: they don't care about polarity,
and alway clock data in/out on rising clock edges.
How do these driver programming interfaces work?
------------------------------------------------
The <linux/spi/spi.h> header file includes kerneldoc, as does the
main source code, and you should certainly read that chapter of the
kernel API document. This is just an overview, so you get the big
picture before those details.
SPI requests always go into I/O queues. Requests for a given SPI device
are always executed in FIFO order, and complete asynchronously through
completion callbacks. There are also some simple synchronous wrappers
for those calls, including ones for common transaction types like writing
a command and then reading its response.
There are two types of SPI driver, here called:
Controller drivers ... controllers may be built in to System-On-Chip
processors, and often support both Master and Slave roles.
These drivers touch hardware registers and may use DMA.
Or they can be PIO bitbangers, needing just GPIO pins.
Protocol drivers ... these pass messages through the controller
driver to communicate with a Slave or Master device on the
other side of an SPI link.
So for example one protocol driver might talk to the MTD layer to export
data to filesystems stored on SPI flash like DataFlash; and others might
control audio interfaces, present touchscreen sensors as input interfaces,
or monitor temperature and voltage levels during industrial processing.
And those might all be sharing the same controller driver.
A "struct spi_device" encapsulates the master-side interface between
those two types of driver. At this writing, Linux has no slave side
programming interface.
There is a minimal core of SPI programming interfaces, focussing on
using the driver model to connect controller and protocol drivers using
device tables provided by board specific initialization code. SPI
shows up in sysfs in several locations:
/sys/devices/.../CTLR ... physical node for a given SPI controller
/sys/devices/.../CTLR/spiB.C ... spi_device on bus "B",
chipselect C, accessed through CTLR.
/sys/bus/spi/devices/spiB.C ... symlink to that physical
.../CTLR/spiB.C device
/sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver
that should be used with this device (for hotplug/coldplug)
/sys/bus/spi/drivers/D ... driver for one or more spi*.* devices
/sys/class/spi_master/spiB ... symlink (or actual device node) to
a logical node which could hold class related state for the
controller managing bus "B". All spiB.* devices share one
physical SPI bus segment, with SCLK, MOSI, and MISO.
Note that the actual location of the controller's class state depends
on whether you enabled CONFIG_SYSFS_DEPRECATED or not. At this time,
the only class-specific state is the bus number ("B" in "spiB"), so
those /sys/class entries are only useful to quickly identify busses.
How does board-specific init code declare SPI devices?
------------------------------------------------------
Linux needs several kinds of information to properly configure SPI devices.
That information is normally provided by board-specific code, even for
chips that do support some of automated discovery/enumeration.
DECLARE CONTROLLERS
The first kind of information is a list of what SPI controllers exist.
For System-on-Chip (SOC) based boards, these will usually be platform
devices, and the controller may need some platform_data in order to
operate properly. The "struct platform_device" will include resources
like the physical address of the controller's first register and its IRQ.
Platforms will often abstract the "register SPI controller" operation,
maybe coupling it with code to initialize pin configurations, so that
the arch/.../mach-*/board-*.c files for several boards can all share the
same basic controller setup code. This is because most SOCs have several
SPI-capable controllers, and only the ones actually usable on a given
board should normally be set up and registered.
So for example arch/.../mach-*/board-*.c files might have code like:
#include <mach/spi.h> /* for mysoc_spi_data */
/* if your mach-* infrastructure doesn't support kernels that can
* run on multiple boards, pdata wouldn't benefit from "__init".
*/
static struct mysoc_spi_data __initdata pdata = { ... };
static __init board_init(void)
{
...
/* this board only uses SPI controller #2 */
mysoc_register_spi(2, &pdata);
...
}
And SOC-specific utility code might look something like:
#include <mach/spi.h>
static struct platform_device spi2 = { ... };
void mysoc_register_spi(unsigned n, struct mysoc_spi_data *pdata)
{
struct mysoc_spi_data *pdata2;
pdata2 = kmalloc(sizeof *pdata2, GFP_KERNEL);
*pdata2 = pdata;
...
if (n == 2) {
spi2->dev.platform_data = pdata2;
register_platform_device(&spi2);
/* also: set up pin modes so the spi2 signals are
* visible on the relevant pins ... bootloaders on
* production boards may already have done this, but
* developer boards will often need Linux to do it.
*/
}
...
}
Notice how the platform_data for boards may be different, even if the
same SOC controller is used. For example, on one board SPI might use
an external clock, where another derives the SPI clock from current
settings of some master clock.
DECLARE SLAVE DEVICES
The second kind of information is a list of what SPI slave devices exist
on the target board, often with some board-specific data needed for the
driver to work correctly.
Normally your arch/.../mach-*/board-*.c files would provide a small table
listing the SPI devices on each board. (This would typically be only a
small handful.) That might look like:
static struct ads7846_platform_data ads_info = {
.vref_delay_usecs = 100,
.x_plate_ohms = 580,
.y_plate_ohms = 410,
};
static struct spi_board_info spi_board_info[] __initdata = {
{
.modalias = "ads7846",
.platform_data = &ads_info,
.mode = SPI_MODE_0,
.irq = GPIO_IRQ(31),
.max_speed_hz = 120000 /* max sample rate at 3V */ * 16,
.bus_num = 1,
.chip_select = 0,
},
};
Again, notice how board-specific information is provided; each chip may need
several types. This example shows generic constraints like the fastest SPI
clock to allow (a function of board voltage in this case) or how an IRQ pin
is wired, plus chip-specific constraints like an important delay that's
changed by the capacitance at one pin.
(There's also "controller_data", information that may be useful to the
controller driver. An example would be peripheral-specific DMA tuning
data or chipselect callbacks. This is stored in spi_device later.)
The board_info should provide enough information to let the system work
without the chip's driver being loaded. The most troublesome aspect of
that is likely the SPI_CS_HIGH bit in the spi_device.mode field, since
sharing a bus with a device that interprets chipselect "backwards" is
not possible until the infrastructure knows how to deselect it.
Then your board initialization code would register that table with the SPI
infrastructure, so that it's available later when the SPI master controller
driver is registered:
spi_register_board_info(spi_board_info, ARRAY_SIZE(spi_board_info));
Like with other static board-specific setup, you won't unregister those.
The widely used "card" style computers bundle memory, cpu, and little else
onto a card that's maybe just thirty square centimeters. On such systems,
your arch/.../mach-.../board-*.c file would primarily provide information
about the devices on the mainboard into which such a card is plugged. That
certainly includes SPI devices hooked up through the card connectors!
NON-STATIC CONFIGURATIONS
Developer boards often play by different rules than product boards, and one
example is the potential need to hotplug SPI devices and/or controllers.
For those cases you might need to use spi_busnum_to_master() to look
up the spi bus master, and will likely need spi_new_device() to provide the
board info based on the board that was hotplugged. Of course, you'd later
call at least spi_unregister_device() when that board is removed.
When Linux includes support for MMC/SD/SDIO/DataFlash cards through SPI, those
configurations will also be dynamic. Fortunately, such devices all support
basic device identification probes, so they should hotplug normally.
How do I write an "SPI Protocol Driver"?
----------------------------------------
Most SPI drivers are currently kernel drivers, but there's also support
for userspace drivers. Here we talk only about kernel drivers.
SPI protocol drivers somewhat resemble platform device drivers:
static struct spi_driver CHIP_driver = {
.driver = {
.name = "CHIP",
.owner = THIS_MODULE,
},
.probe = CHIP_probe,
.remove = __devexit_p(CHIP_remove),
.suspend = CHIP_suspend,
.resume = CHIP_resume,
};
The driver core will automatically attempt to bind this driver to any SPI
device whose board_info gave a modalias of "CHIP". Your probe() code
might look like this unless you're creating a device which is managing
a bus (appearing under /sys/class/spi_master).
static int __devinit CHIP_probe(struct spi_device *spi)
{
struct CHIP *chip;
struct CHIP_platform_data *pdata;
/* assuming the driver requires board-specific data: */
pdata = &spi->dev.platform_data;
if (!pdata)
return -ENODEV;
/* get memory for driver's per-chip state */
chip = kzalloc(sizeof *chip, GFP_KERNEL);
if (!chip)
return -ENOMEM;
spi_set_drvdata(spi, chip);
... etc
return 0;
}
As soon as it enters probe(), the driver may issue I/O requests to
the SPI device using "struct spi_message". When remove() returns,
or after probe() fails, the driver guarantees that it won't submit
any more such messages.
- An spi_message is a sequence of protocol operations, executed
as one atomic sequence. SPI driver controls include:
+ when bidirectional reads and writes start ... by how its
sequence of spi_transfer requests is arranged;
+ which I/O buffers are used ... each spi_transfer wraps a
buffer for each transfer direction, supporting full duplex
(two pointers, maybe the same one in both cases) and half
duplex (one pointer is NULL) transfers;
+ optionally defining short delays after transfers ... using
the spi_transfer.delay_usecs setting (this delay can be the
only protocol effect, if the buffer length is zero);
+ whether the chipselect becomes inactive after a transfer and
any delay ... by using the spi_transfer.cs_change flag;
+ hinting whether the next message is likely to go to this same
device ... using the spi_transfer.cs_change flag on the last
transfer in that atomic group, and potentially saving costs
for chip deselect and select operations.
- Follow standard kernel rules, and provide DMA-safe buffers in
your messages. That way controller drivers using DMA aren't forced
to make extra copies unless the hardware requires it (e.g. working
around hardware errata that force the use of bounce buffering).
If standard dma_map_single() handling of these buffers is inappropriate,
you can use spi_message.is_dma_mapped to tell the controller driver
that you've already provided the relevant DMA addresses.
- The basic I/O primitive is spi_async(). Async requests may be
issued in any context (irq handler, task, etc) and completion
is reported using a callback provided with the message.
After any detected error, the chip is deselected and processing
of that spi_message is aborted.
- There are also synchronous wrappers like spi_sync(), and wrappers
like spi_read(), spi_write(), and spi_write_then_read(). These
may be issued only in contexts that may sleep, and they're all
clean (and small, and "optional") layers over spi_async().
- The spi_write_then_read() call, and convenience wrappers around
it, should only be used with small amounts of data where the
cost of an extra copy may be ignored. It's designed to support
common RPC-style requests, such as writing an eight bit command
and reading a sixteen bit response -- spi_w8r16() being one its
wrappers, doing exactly that.
Some drivers may need to modify spi_device characteristics like the
transfer mode, wordsize, or clock rate. This is done with spi_setup(),
which would normally be called from probe() before the first I/O is
done to the device. However, that can also be called at any time
that no message is pending for that device.
While "spi_device" would be the bottom boundary of the driver, the
upper boundaries might include sysfs (especially for sensor readings),
the input layer, ALSA, networking, MTD, the character device framework,
or other Linux subsystems.
Note that there are two types of memory your driver must manage as part
of interacting with SPI devices.
- I/O buffers use the usual Linux rules, and must be DMA-safe.
You'd normally allocate them from the heap or free page pool.
Don't use the stack, or anything that's declared "static".
- The spi_message and spi_transfer metadata used to glue those
I/O buffers into a group of protocol transactions. These can
be allocated anywhere it's convenient, including as part of
other allocate-once driver data structures. Zero-init these.
If you like, spi_message_alloc() and spi_message_free() convenience
routines are available to allocate and zero-initialize an spi_message
with several transfers.
How do I write an "SPI Master Controller Driver"?
-------------------------------------------------
An SPI controller will probably be registered on the platform_bus; write
a driver to bind to the device, whichever bus is involved.
The main task of this type of driver is to provide an "spi_master".
Use spi_alloc_master() to allocate the master, and spi_master_get_devdata()
to get the driver-private data allocated for that device.
struct spi_master *master;
struct CONTROLLER *c;
master = spi_alloc_master(dev, sizeof *c);
if (!master)
return -ENODEV;
c = spi_master_get_devdata(master);
The driver will initialize the fields of that spi_master, including the
bus number (maybe the same as the platform device ID) and three methods
used to interact with the SPI core and SPI protocol drivers. It will
also initialize its own internal state. (See below about bus numbering
and those methods.)
After you initialize the spi_master, then use spi_register_master() to
publish it to the rest of the system. At that time, device nodes for the
controller and any predeclared spi devices will be made available, and
the driver model core will take care of binding them to drivers.
If you need to remove your SPI controller driver, spi_unregister_master()
will reverse the effect of spi_register_master().
BUS NUMBERING
Bus numbering is important, since that's how Linux identifies a given
SPI bus (shared SCK, MOSI, MISO). Valid bus numbers start at zero. On
SOC systems, the bus numbers should match the numbers defined by the chip
manufacturer. For example, hardware controller SPI2 would be bus number 2,
and spi_board_info for devices connected to it would use that number.
If you don't have such hardware-assigned bus number, and for some reason
you can't just assign them, then provide a negative bus number. That will
then be replaced by a dynamically assigned number. You'd then need to treat
this as a non-static configuration (see above).
SPI MASTER METHODS
master->setup(struct spi_device *spi)
This sets up the device clock rate, SPI mode, and word sizes.
Drivers may change the defaults provided by board_info, and then
call spi_setup(spi) to invoke this routine. It may sleep.
Unless each SPI slave has its own configuration registers, don't
change them right away ... otherwise drivers could corrupt I/O
that's in progress for other SPI devices.
** BUG ALERT: for some reason the first version of
** many spi_master drivers seems to get this wrong.
** When you code setup(), ASSUME that the controller
** is actively processing transfers for another device.
master->cleanup(struct spi_device *spi)
Your controller driver may use spi_device.controller_state to hold
state it dynamically associates with that device. If you do that,
be sure to provide the cleanup() method to free that state.
master->prepare_transfer_hardware(struct spi_master *master)
This will be called by the queue mechanism to signal to the driver
that a message is coming in soon, so the subsystem requests the
driver to prepare the transfer hardware by issuing this call.
This may sleep.
master->unprepare_transfer_hardware(struct spi_master *master)
This will be called by the queue mechanism to signal to the driver
that there are no more messages pending in the queue and it may
relax the hardware (e.g. by power management calls). This may sleep.
master->transfer_one_message(struct spi_master *master,
struct spi_message *mesg)
The subsystem calls the driver to transfer a single message while
queuing transfers that arrive in the meantime. When the driver is
finished with this message, it must call
spi_finalize_current_message() so the subsystem can issue the next
transfer. This may sleep.
DEPRECATED METHODS
master->transfer(struct spi_device *spi, struct spi_message *message)
This must not sleep. Its responsibility is arrange that the
transfer happens and its complete() callback is issued. The two
will normally happen later, after other transfers complete, and
if the controller is idle it will need to be kickstarted. This
method is not used on queued controllers and must be NULL if
transfer_one_message() and (un)prepare_transfer_hardware() are
implemented.
SPI MESSAGE QUEUE
If you are happy with the standard queueing mechanism provided by the
SPI subsystem, just implement the queued methods specified above. Using
the message queue has the upside of centralizing a lot of code and
providing pure process-context execution of methods. The message queue
can also be elevated to realtime priority on high-priority SPI traffic.
Unless the queueing mechanism in the SPI subsystem is selected, the bulk
of the driver will be managing the I/O queue fed by the now deprecated
function transfer().
That queue could be purely conceptual. For example, a driver used only
for low-frequency sensor access might be fine using synchronous PIO.
But the queue will probably be very real, using message->queue, PIO,
often DMA (especially if the root filesystem is in SPI flash), and
execution contexts like IRQ handlers, tasklets, or workqueues (such
as keventd). Your driver can be as fancy, or as simple, as you need.
Such a transfer() method would normally just add the message to a
queue, and then start some asynchronous transfer engine (unless it's
already running).
THANKS TO
---------
Contributors to Linux-SPI discussions include (in alphabetical order,
by last name):
David Brownell
Russell King
Dmitry Pervushin
Stephen Street
Mark Underwood
Andrew Victor
Vitaly Wool
Grant Likely
Mark Brown
Linus Walleij

View File

@ -0,0 +1,143 @@
SPI devices have a limited userspace API, supporting basic half-duplex
read() and write() access to SPI slave devices. Using ioctl() requests,
full duplex transfers and device I/O configuration are also available.
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
Some reasons you might want to use this programming interface include:
* Prototyping in an environment that's not crash-prone; stray pointers
in userspace won't normally bring down any Linux system.
* Developing simple protocols used to talk to microcontrollers acting
as SPI slaves, which you may need to change quite often.
Of course there are drivers that can never be written in userspace, because
they need to access kernel interfaces (such as IRQ handlers or other layers
of the driver stack) that are not accessible to userspace.
DEVICE CREATION, DRIVER BINDING
===============================
The simplest way to arrange to use this driver is to just list it in the
spi_board_info for a device as the driver it should use: the "modalias"
entry is "spidev", matching the name of the driver exposing this API.
Set up the other device characteristics (bits per word, SPI clocking,
chipselect polarity, etc) as usual, so you won't always need to override
them later.
(Sysfs also supports userspace driven binding/unbinding of drivers to
devices. That mechanism might be supported here in the future.)
When you do that, the sysfs node for the SPI device will include a child
device node with a "dev" attribute that will be understood by udev or mdev.
(Larger systems will have "udev". Smaller ones may configure "mdev" into
busybox; it's less featureful, but often enough.) For a SPI device with
chipselect C on bus B, you should see:
/dev/spidevB.C ... character special device, major number 153 with
a dynamically chosen minor device number. This is the node
that userspace programs will open, created by "udev" or "mdev".
/sys/devices/.../spiB.C ... as usual, the SPI device node will
be a child of its SPI master controller.
/sys/class/spidev/spidevB.C ... created when the "spidev" driver
binds to that device. (Directory or symlink, based on whether
or not you enabled the "deprecated sysfs files" Kconfig option.)
Do not try to manage the /dev character device special file nodes by hand.
That's error prone, and you'd need to pay careful attention to system
security issues; udev/mdev should already be configured securely.
If you unbind the "spidev" driver from that device, those two "spidev" nodes
(in sysfs and in /dev) should automatically be removed (respectively by the
kernel and by udev/mdev). You can unbind by removing the "spidev" driver
module, which will affect all devices using this driver. You can also unbind
by having kernel code remove the SPI device, probably by removing the driver
for its SPI controller (so its spi_master vanishes).
Since this is a standard Linux device driver -- even though it just happens
to expose a low level API to userspace -- it can be associated with any number
of devices at a time. Just provide one spi_board_info record for each such
SPI device, and you'll get a /dev device node for each device.
BASIC CHARACTER DEVICE API
==========================
Normal open() and close() operations on /dev/spidevB.D files work as you
would expect.
Standard read() and write() operations are obviously only half-duplex, and
the chipselect is deactivated between those operations. Full-duplex access,
and composite operation without chipselect de-activation, is available using
the SPI_IOC_MESSAGE(N) request.
Several ioctl() requests let your driver read or override the device's current
settings for data transfer parameters:
SPI_IOC_RD_MODE, SPI_IOC_WR_MODE ... pass a pointer to a byte which will
return (RD) or assign (WR) the SPI transfer mode. Use the constants
SPI_MODE_0..SPI_MODE_3; or if you prefer you can combine SPI_CPOL
(clock polarity, idle high iff this is set) or SPI_CPHA (clock phase,
sample on trailing edge iff this is set) flags.
SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ... pass a pointer to a byte
which will return (RD) or assign (WR) the bit justification used to
transfer SPI words. Zero indicates MSB-first; other values indicate
the less common LSB-first encoding. In both cases the specified value
is right-justified in each word, so that unused (TX) or undefined (RX)
bits are in the MSBs.
SPI_IOC_RD_BITS_PER_WORD, SPI_IOC_WR_BITS_PER_WORD ... pass a pointer to
a byte which will return (RD) or assign (WR) the number of bits in
each SPI transfer word. The value zero signifies eight bits.
SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ ... pass a pointer to a
u32 which will return (RD) or assign (WR) the maximum SPI transfer
speed, in Hz. The controller can't necessarily assign that specific
clock speed.
NOTES:
- At this time there is no async I/O support; everything is purely
synchronous.
- There's currently no way to report the actual bit rate used to
shift data to/from a given device.
- From userspace, you can't currently change the chip select polarity;
that could corrupt transfers to other devices sharing the SPI bus.
Each SPI device is deselected when it's not in active use, allowing
other drivers to talk to other devices.
- There's a limit on the number of bytes each I/O request can transfer
to the SPI device. It defaults to one page, but that can be changed
using a module parameter.
- Because SPI has no low-level transfer acknowledgement, you usually
won't see any I/O errors when talking to a non-existent device.
FULL DUPLEX CHARACTER DEVICE API
================================
See the spidev_fdx.c sample program for one example showing the use of the
full duplex programming interface. (Although it doesn't perform a full duplex
transfer.) The model is the same as that used in the kernel spi_sync()
request; the individual transfers offer the same capabilities as are
available to kernel drivers (except that it's not asynchronous).
The example shows one half-duplex RPC-style request and response message.
These requests commonly require that the chip not be deselected between
the request and response. Several such requests could be chained into
a single kernel request, even allowing the chip to be deselected after
each response. (Other protocol options include changing the word size
and bitrate for each transfer segment.)
To make a full duplex request, provide both rx_buf and tx_buf for the
same transfer. It's even OK if those are the same buffer.

View File

@ -0,0 +1,158 @@
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
static int verbose;
static void do_read(int fd, int len)
{
unsigned char buf[32], *bp;
int status;
/* read at least 2 bytes, no more than 32 */
if (len < 2)
len = 2;
else if (len > sizeof(buf))
len = sizeof(buf);
memset(buf, 0, sizeof buf);
status = read(fd, buf, len);
if (status < 0) {
perror("read");
return;
}
if (status != len) {
fprintf(stderr, "short read\n");
return;
}
printf("read(%2d, %2d): %02x %02x,", len, status,
buf[0], buf[1]);
status -= 2;
bp = buf + 2;
while (status-- > 0)
printf(" %02x", *bp++);
printf("\n");
}
static void do_msg(int fd, int len)
{
struct spi_ioc_transfer xfer[2];
unsigned char buf[32], *bp;
int status;
memset(xfer, 0, sizeof xfer);
memset(buf, 0, sizeof buf);
if (len > sizeof buf)
len = sizeof buf;
buf[0] = 0xaa;
xfer[0].tx_buf = (unsigned long)buf;
xfer[0].len = 1;
xfer[1].rx_buf = (unsigned long) buf;
xfer[1].len = len;
status = ioctl(fd, SPI_IOC_MESSAGE(2), xfer);
if (status < 0) {
perror("SPI_IOC_MESSAGE");
return;
}
printf("response(%2d, %2d): ", len, status);
for (bp = buf; len; len--)
printf(" %02x", *bp++);
printf("\n");
}
static void dumpstat(const char *name, int fd)
{
__u8 mode, lsb, bits;
__u32 speed;
if (ioctl(fd, SPI_IOC_RD_MODE, &mode) < 0) {
perror("SPI rd_mode");
return;
}
if (ioctl(fd, SPI_IOC_RD_LSB_FIRST, &lsb) < 0) {
perror("SPI rd_lsb_fist");
return;
}
if (ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0) {
perror("SPI bits_per_word");
return;
}
if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0) {
perror("SPI max_speed_hz");
return;
}
printf("%s: spi mode %d, %d bits %sper word, %d Hz max\n",
name, mode, bits, lsb ? "(lsb first) " : "", speed);
}
int main(int argc, char **argv)
{
int c;
int readcount = 0;
int msglen = 0;
int fd;
const char *name;
while ((c = getopt(argc, argv, "hm:r:v")) != EOF) {
switch (c) {
case 'm':
msglen = atoi(optarg);
if (msglen < 0)
goto usage;
continue;
case 'r':
readcount = atoi(optarg);
if (readcount < 0)
goto usage;
continue;
case 'v':
verbose++;
continue;
case 'h':
case '?':
usage:
fprintf(stderr,
"usage: %s [-h] [-m N] [-r N] /dev/spidevB.D\n",
argv[0]);
return 1;
}
}
if ((optind + 1) != argc)
goto usage;
name = argv[optind];
fd = open(name, O_RDWR);
if (fd < 0) {
perror("open");
return 1;
}
dumpstat(name, fd);
if (msglen)
do_msg(fd, msglen);
if (readcount)
do_read(fd, readcount);
close(fd);
return 0;
}

View File

@ -0,0 +1,210 @@
/*
* SPI testing utility (using spidev driver)
*
* Copyright (c) 2007 MontaVista Software, Inc.
* Copyright (c) 2007 Anton Vorontsov <avorontsov@ru.mvista.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* Cross-compile with cross-gcc -I/path/to/cross-kernel/include
*/
#include <stdint.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/types.h>
#include <linux/spi/spidev.h>
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
static void pabort(const char *s)
{
perror(s);
abort();
}
static const char *device = "/dev/spidev1.1";
static uint8_t mode;
static uint8_t bits = 8;
static uint32_t speed = 500000;
static uint16_t delay;
static void transfer(int fd)
{
int ret;
uint8_t tx[] = {
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0x40, 0x00, 0x00, 0x00, 0x00, 0x95,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xAD,
0xF0, 0x0D,
};
uint8_t rx[ARRAY_SIZE(tx)] = {0, };
struct spi_ioc_transfer tr = {
.tx_buf = (unsigned long)tx,
.rx_buf = (unsigned long)rx,
.len = ARRAY_SIZE(tx),
.delay_usecs = delay,
.speed_hz = speed,
.bits_per_word = bits,
};
ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
if (ret < 1)
pabort("can't send spi message");
for (ret = 0; ret < ARRAY_SIZE(tx); ret++) {
if (!(ret % 6))
puts("");
printf("%.2X ", rx[ret]);
}
puts("");
}
static void print_usage(const char *prog)
{
printf("Usage: %s [-DsbdlHOLC3]\n", prog);
puts(" -D --device device to use (default /dev/spidev1.1)\n"
" -s --speed max speed (Hz)\n"
" -d --delay delay (usec)\n"
" -b --bpw bits per word \n"
" -l --loop loopback\n"
" -H --cpha clock phase\n"
" -O --cpol clock polarity\n"
" -L --lsb least significant bit first\n"
" -C --cs-high chip select active high\n"
" -3 --3wire SI/SO signals shared\n");
exit(1);
}
static void parse_opts(int argc, char *argv[])
{
while (1) {
static const struct option lopts[] = {
{ "device", 1, 0, 'D' },
{ "speed", 1, 0, 's' },
{ "delay", 1, 0, 'd' },
{ "bpw", 1, 0, 'b' },
{ "loop", 0, 0, 'l' },
{ "cpha", 0, 0, 'H' },
{ "cpol", 0, 0, 'O' },
{ "lsb", 0, 0, 'L' },
{ "cs-high", 0, 0, 'C' },
{ "3wire", 0, 0, '3' },
{ "no-cs", 0, 0, 'N' },
{ "ready", 0, 0, 'R' },
{ NULL, 0, 0, 0 },
};
int c;
c = getopt_long(argc, argv, "D:s:d:b:lHOLC3NR", lopts, NULL);
if (c == -1)
break;
switch (c) {
case 'D':
device = optarg;
break;
case 's':
speed = atoi(optarg);
break;
case 'd':
delay = atoi(optarg);
break;
case 'b':
bits = atoi(optarg);
break;
case 'l':
mode |= SPI_LOOP;
break;
case 'H':
mode |= SPI_CPHA;
break;
case 'O':
mode |= SPI_CPOL;
break;
case 'L':
mode |= SPI_LSB_FIRST;
break;
case 'C':
mode |= SPI_CS_HIGH;
break;
case '3':
mode |= SPI_3WIRE;
break;
case 'N':
mode |= SPI_NO_CS;
break;
case 'R':
mode |= SPI_READY;
break;
default:
print_usage(argv[0]);
break;
}
}
}
int main(int argc, char *argv[])
{
int ret = 0;
int fd;
parse_opts(argc, argv);
fd = open(device, O_RDWR);
if (fd < 0)
pabort("can't open device");
/*
* spi mode
*/
ret = ioctl(fd, SPI_IOC_WR_MODE, &mode);
if (ret == -1)
pabort("can't set spi mode");
ret = ioctl(fd, SPI_IOC_RD_MODE, &mode);
if (ret == -1)
pabort("can't get spi mode");
/*
* bits per word
*/
ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits);
if (ret == -1)
pabort("can't set bits per word");
ret = ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits);
if (ret == -1)
pabort("can't get bits per word");
/*
* max speed hz
*/
ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
if (ret == -1)
pabort("can't set max speed hz");
ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed);
if (ret == -1)
pabort("can't get max speed hz");
printf("spi mode: %d\n", mode);
printf("bits per word: %d\n", bits);
printf("max speed: %d Hz (%d KHz)\n", speed, speed/1000);
transfer(fd);
close(fd);
return ret;
}