511 lines
14 KiB
C
511 lines
14 KiB
C
|
#ifndef _ASM_GENERIC_PGTABLE_H
|
||
|
#define _ASM_GENERIC_PGTABLE_H
|
||
|
|
||
|
#ifndef __ASSEMBLY__
|
||
|
#ifdef CONFIG_MMU
|
||
|
|
||
|
#include <linux/mm_types.h>
|
||
|
#include <linux/bug.h>
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
||
|
extern int ptep_set_access_flags(struct vm_area_struct *vma,
|
||
|
unsigned long address, pte_t *ptep,
|
||
|
pte_t entry, int dirty);
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
|
||
|
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
|
||
|
unsigned long address, pmd_t *pmdp,
|
||
|
pmd_t entry, int dirty);
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
||
|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
||
|
unsigned long address,
|
||
|
pte_t *ptep)
|
||
|
{
|
||
|
pte_t pte = *ptep;
|
||
|
int r = 1;
|
||
|
if (!pte_young(pte))
|
||
|
r = 0;
|
||
|
else
|
||
|
set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
|
||
|
return r;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
||
|
unsigned long address,
|
||
|
pmd_t *pmdp)
|
||
|
{
|
||
|
pmd_t pmd = *pmdp;
|
||
|
int r = 1;
|
||
|
if (!pmd_young(pmd))
|
||
|
r = 0;
|
||
|
else
|
||
|
set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
|
||
|
return r;
|
||
|
}
|
||
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
||
|
unsigned long address,
|
||
|
pmd_t *pmdp)
|
||
|
{
|
||
|
BUG();
|
||
|
return 0;
|
||
|
}
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
|
||
|
int ptep_clear_flush_young(struct vm_area_struct *vma,
|
||
|
unsigned long address, pte_t *ptep);
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
|
||
|
int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
||
|
unsigned long address, pmd_t *pmdp);
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
||
|
static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
|
||
|
unsigned long address,
|
||
|
pte_t *ptep)
|
||
|
{
|
||
|
pte_t pte = *ptep;
|
||
|
pte_clear(mm, address, ptep);
|
||
|
return pte;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
|
||
|
unsigned long address,
|
||
|
pmd_t *pmdp)
|
||
|
{
|
||
|
pmd_t pmd = *pmdp;
|
||
|
pmd_clear(mm, address, pmdp);
|
||
|
return pmd;
|
||
|
}
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
|
||
|
static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
|
||
|
unsigned long address, pte_t *ptep,
|
||
|
int full)
|
||
|
{
|
||
|
pte_t pte;
|
||
|
pte = ptep_get_and_clear(mm, address, ptep);
|
||
|
return pte;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Some architectures may be able to avoid expensive synchronization
|
||
|
* primitives when modifications are made to PTE's which are already
|
||
|
* not present, or in the process of an address space destruction.
|
||
|
*/
|
||
|
#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
|
||
|
static inline void pte_clear_not_present_full(struct mm_struct *mm,
|
||
|
unsigned long address,
|
||
|
pte_t *ptep,
|
||
|
int full)
|
||
|
{
|
||
|
pte_clear(mm, address, ptep);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
|
||
|
extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
|
||
|
unsigned long address,
|
||
|
pte_t *ptep);
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
|
||
|
extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
|
||
|
unsigned long address,
|
||
|
pmd_t *pmdp);
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
|
||
|
struct mm_struct;
|
||
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
|
||
|
{
|
||
|
pte_t old_pte = *ptep;
|
||
|
set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
||
|
unsigned long address, pmd_t *pmdp)
|
||
|
{
|
||
|
pmd_t old_pmd = *pmdp;
|
||
|
set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
|
||
|
}
|
||
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
static inline void pmdp_set_wrprotect(struct mm_struct *mm,
|
||
|
unsigned long address, pmd_t *pmdp)
|
||
|
{
|
||
|
BUG();
|
||
|
}
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
|
||
|
extern pmd_t pmdp_splitting_flush(struct vm_area_struct *vma,
|
||
|
unsigned long address,
|
||
|
pmd_t *pmdp);
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PTE_SAME
|
||
|
static inline int pte_same(pte_t pte_a, pte_t pte_b)
|
||
|
{
|
||
|
return pte_val(pte_a) == pte_val(pte_b);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PMD_SAME
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
||
|
{
|
||
|
return pmd_val(pmd_a) == pmd_val(pmd_b);
|
||
|
}
|
||
|
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
|
||
|
{
|
||
|
BUG();
|
||
|
return 0;
|
||
|
}
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
|
||
|
#define page_test_and_clear_dirty(pfn, mapped) (0)
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
|
||
|
#define pte_maybe_dirty(pte) pte_dirty(pte)
|
||
|
#else
|
||
|
#define pte_maybe_dirty(pte) (1)
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
|
||
|
#define page_test_and_clear_young(pfn) (0)
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
|
||
|
#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_ARCH_MOVE_PTE
|
||
|
#define move_pte(pte, prot, old_addr, new_addr) (pte)
|
||
|
#endif
|
||
|
|
||
|
#ifndef flush_tlb_fix_spurious_fault
|
||
|
#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
|
||
|
#endif
|
||
|
|
||
|
#ifndef pgprot_noncached
|
||
|
#define pgprot_noncached(prot) (prot)
|
||
|
#endif
|
||
|
|
||
|
#ifndef pgprot_writecombine
|
||
|
#define pgprot_writecombine pgprot_noncached
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* When walking page tables, get the address of the next boundary,
|
||
|
* or the end address of the range if that comes earlier. Although no
|
||
|
* vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
|
||
|
*/
|
||
|
|
||
|
#define pgd_addr_end(addr, end) \
|
||
|
({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
|
||
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
||
|
})
|
||
|
|
||
|
#ifndef pud_addr_end
|
||
|
#define pud_addr_end(addr, end) \
|
||
|
({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
|
||
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
||
|
})
|
||
|
#endif
|
||
|
|
||
|
#ifndef pmd_addr_end
|
||
|
#define pmd_addr_end(addr, end) \
|
||
|
({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
|
||
|
(__boundary - 1 < (end) - 1)? __boundary: (end); \
|
||
|
})
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* When walking page tables, we usually want to skip any p?d_none entries;
|
||
|
* and any p?d_bad entries - reporting the error before resetting to none.
|
||
|
* Do the tests inline, but report and clear the bad entry in mm/memory.c.
|
||
|
*/
|
||
|
void pgd_clear_bad(pgd_t *);
|
||
|
void pud_clear_bad(pud_t *);
|
||
|
void pmd_clear_bad(pmd_t *);
|
||
|
|
||
|
static inline int pgd_none_or_clear_bad(pgd_t *pgd)
|
||
|
{
|
||
|
if (pgd_none(*pgd))
|
||
|
return 1;
|
||
|
if (unlikely(pgd_bad(*pgd))) {
|
||
|
pgd_clear_bad(pgd);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int pud_none_or_clear_bad(pud_t *pud)
|
||
|
{
|
||
|
if (pud_none(*pud))
|
||
|
return 1;
|
||
|
if (unlikely(pud_bad(*pud))) {
|
||
|
pud_clear_bad(pud);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline int pmd_none_or_clear_bad(pmd_t *pmd)
|
||
|
{
|
||
|
if (pmd_none(*pmd))
|
||
|
return 1;
|
||
|
if (unlikely(pmd_bad(*pmd))) {
|
||
|
pmd_clear_bad(pmd);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
|
||
|
unsigned long addr,
|
||
|
pte_t *ptep)
|
||
|
{
|
||
|
/*
|
||
|
* Get the current pte state, but zero it out to make it
|
||
|
* non-present, preventing the hardware from asynchronously
|
||
|
* updating it.
|
||
|
*/
|
||
|
return ptep_get_and_clear(mm, addr, ptep);
|
||
|
}
|
||
|
|
||
|
static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
|
||
|
unsigned long addr,
|
||
|
pte_t *ptep, pte_t pte)
|
||
|
{
|
||
|
/*
|
||
|
* The pte is non-present, so there's no hardware state to
|
||
|
* preserve.
|
||
|
*/
|
||
|
set_pte_at(mm, addr, ptep, pte);
|
||
|
}
|
||
|
|
||
|
#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
|
||
|
/*
|
||
|
* Start a pte protection read-modify-write transaction, which
|
||
|
* protects against asynchronous hardware modifications to the pte.
|
||
|
* The intention is not to prevent the hardware from making pte
|
||
|
* updates, but to prevent any updates it may make from being lost.
|
||
|
*
|
||
|
* This does not protect against other software modifications of the
|
||
|
* pte; the appropriate pte lock must be held over the transation.
|
||
|
*
|
||
|
* Note that this interface is intended to be batchable, meaning that
|
||
|
* ptep_modify_prot_commit may not actually update the pte, but merely
|
||
|
* queue the update to be done at some later time. The update must be
|
||
|
* actually committed before the pte lock is released, however.
|
||
|
*/
|
||
|
static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
|
||
|
unsigned long addr,
|
||
|
pte_t *ptep)
|
||
|
{
|
||
|
return __ptep_modify_prot_start(mm, addr, ptep);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Commit an update to a pte, leaving any hardware-controlled bits in
|
||
|
* the PTE unmodified.
|
||
|
*/
|
||
|
static inline void ptep_modify_prot_commit(struct mm_struct *mm,
|
||
|
unsigned long addr,
|
||
|
pte_t *ptep, pte_t pte)
|
||
|
{
|
||
|
__ptep_modify_prot_commit(mm, addr, ptep, pte);
|
||
|
}
|
||
|
#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
|
||
|
#endif /* CONFIG_MMU */
|
||
|
|
||
|
/*
|
||
|
* A facility to provide lazy MMU batching. This allows PTE updates and
|
||
|
* page invalidations to be delayed until a call to leave lazy MMU mode
|
||
|
* is issued. Some architectures may benefit from doing this, and it is
|
||
|
* beneficial for both shadow and direct mode hypervisors, which may batch
|
||
|
* the PTE updates which happen during this window. Note that using this
|
||
|
* interface requires that read hazards be removed from the code. A read
|
||
|
* hazard could result in the direct mode hypervisor case, since the actual
|
||
|
* write to the page tables may not yet have taken place, so reads though
|
||
|
* a raw PTE pointer after it has been modified are not guaranteed to be
|
||
|
* up to date. This mode can only be entered and left under the protection of
|
||
|
* the page table locks for all page tables which may be modified. In the UP
|
||
|
* case, this is required so that preemption is disabled, and in the SMP case,
|
||
|
* it must synchronize the delayed page table writes properly on other CPUs.
|
||
|
*/
|
||
|
#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
|
||
|
#define arch_enter_lazy_mmu_mode() do {} while (0)
|
||
|
#define arch_leave_lazy_mmu_mode() do {} while (0)
|
||
|
#define arch_flush_lazy_mmu_mode() do {} while (0)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* A facility to provide batching of the reload of page tables and
|
||
|
* other process state with the actual context switch code for
|
||
|
* paravirtualized guests. By convention, only one of the batched
|
||
|
* update (lazy) modes (CPU, MMU) should be active at any given time,
|
||
|
* entry should never be nested, and entry and exits should always be
|
||
|
* paired. This is for sanity of maintaining and reasoning about the
|
||
|
* kernel code. In this case, the exit (end of the context switch) is
|
||
|
* in architecture-specific code, and so doesn't need a generic
|
||
|
* definition.
|
||
|
*/
|
||
|
#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
|
||
|
#define arch_start_context_switch(prev) do {} while (0)
|
||
|
#endif
|
||
|
|
||
|
#ifndef __HAVE_PFNMAP_TRACKING
|
||
|
/*
|
||
|
* Interface that can be used by architecture code to keep track of
|
||
|
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
|
||
|
*
|
||
|
* track_pfn_vma_new is called when a _new_ pfn mapping is being established
|
||
|
* for physical range indicated by pfn and size.
|
||
|
*/
|
||
|
static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
|
||
|
unsigned long pfn, unsigned long size)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Interface that can be used by architecture code to keep track of
|
||
|
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
|
||
|
*
|
||
|
* track_pfn_vma_copy is called when vma that is covering the pfnmap gets
|
||
|
* copied through copy_page_range().
|
||
|
*/
|
||
|
static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Interface that can be used by architecture code to keep track of
|
||
|
* memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
|
||
|
*
|
||
|
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
|
||
|
* untrack can be called for a specific region indicated by pfn and size or
|
||
|
* can be for the entire vma (in which case size can be zero).
|
||
|
*/
|
||
|
static inline void untrack_pfn_vma(struct vm_area_struct *vma,
|
||
|
unsigned long pfn, unsigned long size)
|
||
|
{
|
||
|
}
|
||
|
#else
|
||
|
extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
|
||
|
unsigned long pfn, unsigned long size);
|
||
|
extern int track_pfn_vma_copy(struct vm_area_struct *vma);
|
||
|
extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
|
||
|
unsigned long size);
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_MMU
|
||
|
|
||
|
#ifndef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
static inline int pmd_trans_huge(pmd_t pmd)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
static inline int pmd_trans_splitting(pmd_t pmd)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
#ifndef __HAVE_ARCH_PMD_WRITE
|
||
|
static inline int pmd_write(pmd_t pmd)
|
||
|
{
|
||
|
BUG();
|
||
|
return 0;
|
||
|
}
|
||
|
#endif /* __HAVE_ARCH_PMD_WRITE */
|
||
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
||
|
|
||
|
/*
|
||
|
* This function is meant to be used by sites walking pagetables with
|
||
|
* the mmap_sem hold in read mode to protect against MADV_DONTNEED and
|
||
|
* transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
|
||
|
* into a null pmd and the transhuge page fault can convert a null pmd
|
||
|
* into an hugepmd or into a regular pmd (if the hugepage allocation
|
||
|
* fails). While holding the mmap_sem in read mode the pmd becomes
|
||
|
* stable and stops changing under us only if it's not null and not a
|
||
|
* transhuge pmd. When those races occurs and this function makes a
|
||
|
* difference vs the standard pmd_none_or_clear_bad, the result is
|
||
|
* undefined so behaving like if the pmd was none is safe (because it
|
||
|
* can return none anyway). The compiler level barrier() is critically
|
||
|
* important to compute the two checks atomically on the same pmdval.
|
||
|
*/
|
||
|
static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
|
||
|
{
|
||
|
/* depend on compiler for an atomic pmd read */
|
||
|
pmd_t pmdval = *pmd;
|
||
|
/*
|
||
|
* The barrier will stabilize the pmdval in a register or on
|
||
|
* the stack so that it will stop changing under the code.
|
||
|
*/
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
barrier();
|
||
|
#endif
|
||
|
if (pmd_none(pmdval))
|
||
|
return 1;
|
||
|
if (unlikely(pmd_bad(pmdval))) {
|
||
|
if (!pmd_trans_huge(pmdval))
|
||
|
pmd_clear_bad(pmd);
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is a noop if Transparent Hugepage Support is not built into
|
||
|
* the kernel. Otherwise it is equivalent to
|
||
|
* pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
|
||
|
* places that already verified the pmd is not none and they want to
|
||
|
* walk ptes while holding the mmap sem in read mode (write mode don't
|
||
|
* need this). If THP is not enabled, the pmd can't go away under the
|
||
|
* code even if MADV_DONTNEED runs, but if THP is enabled we need to
|
||
|
* run a pmd_trans_unstable before walking the ptes after
|
||
|
* split_huge_page_pmd returns (because it may have run when the pmd
|
||
|
* become null, but then a page fault can map in a THP and not a
|
||
|
* regular page).
|
||
|
*/
|
||
|
static inline int pmd_trans_unstable(pmd_t *pmd)
|
||
|
{
|
||
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||
|
return pmd_none_or_trans_huge_or_clear_bad(pmd);
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
#endif /* CONFIG_MMU */
|
||
|
|
||
|
#endif /* !__ASSEMBLY__ */
|
||
|
|
||
|
#endif /* _ASM_GENERIC_PGTABLE_H */
|