1444 lines
39 KiB
C
1444 lines
39 KiB
C
|
/*
|
||
|
* Copyright (c) 2010 Broadcom Corporation
|
||
|
*
|
||
|
* Permission to use, copy, modify, and/or distribute this software for any
|
||
|
* purpose with or without fee is hereby granted, provided that the above
|
||
|
* copyright notice and this permission notice appear in all copies.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/pci.h>
|
||
|
|
||
|
#include <brcmu_utils.h>
|
||
|
#include <aiutils.h>
|
||
|
#include "types.h"
|
||
|
#include "dma.h"
|
||
|
#include "soc.h"
|
||
|
|
||
|
/*
|
||
|
* dma register field offset calculation
|
||
|
*/
|
||
|
#define DMA64REGOFFS(field) offsetof(struct dma64regs, field)
|
||
|
#define DMA64TXREGOFFS(di, field) (di->d64txregbase + DMA64REGOFFS(field))
|
||
|
#define DMA64RXREGOFFS(di, field) (di->d64rxregbase + DMA64REGOFFS(field))
|
||
|
|
||
|
/*
|
||
|
* DMA hardware requires each descriptor ring to be 8kB aligned, and fit within
|
||
|
* a contiguous 8kB physical address.
|
||
|
*/
|
||
|
#define D64RINGALIGN_BITS 13
|
||
|
#define D64MAXRINGSZ (1 << D64RINGALIGN_BITS)
|
||
|
#define D64RINGALIGN (1 << D64RINGALIGN_BITS)
|
||
|
|
||
|
#define D64MAXDD (D64MAXRINGSZ / sizeof(struct dma64desc))
|
||
|
|
||
|
/* transmit channel control */
|
||
|
#define D64_XC_XE 0x00000001 /* transmit enable */
|
||
|
#define D64_XC_SE 0x00000002 /* transmit suspend request */
|
||
|
#define D64_XC_LE 0x00000004 /* loopback enable */
|
||
|
#define D64_XC_FL 0x00000010 /* flush request */
|
||
|
#define D64_XC_PD 0x00000800 /* parity check disable */
|
||
|
#define D64_XC_AE 0x00030000 /* address extension bits */
|
||
|
#define D64_XC_AE_SHIFT 16
|
||
|
|
||
|
/* transmit descriptor table pointer */
|
||
|
#define D64_XP_LD_MASK 0x00000fff /* last valid descriptor */
|
||
|
|
||
|
/* transmit channel status */
|
||
|
#define D64_XS0_CD_MASK 0x00001fff /* current descriptor pointer */
|
||
|
#define D64_XS0_XS_MASK 0xf0000000 /* transmit state */
|
||
|
#define D64_XS0_XS_SHIFT 28
|
||
|
#define D64_XS0_XS_DISABLED 0x00000000 /* disabled */
|
||
|
#define D64_XS0_XS_ACTIVE 0x10000000 /* active */
|
||
|
#define D64_XS0_XS_IDLE 0x20000000 /* idle wait */
|
||
|
#define D64_XS0_XS_STOPPED 0x30000000 /* stopped */
|
||
|
#define D64_XS0_XS_SUSP 0x40000000 /* suspend pending */
|
||
|
|
||
|
#define D64_XS1_AD_MASK 0x00001fff /* active descriptor */
|
||
|
#define D64_XS1_XE_MASK 0xf0000000 /* transmit errors */
|
||
|
#define D64_XS1_XE_SHIFT 28
|
||
|
#define D64_XS1_XE_NOERR 0x00000000 /* no error */
|
||
|
#define D64_XS1_XE_DPE 0x10000000 /* descriptor protocol error */
|
||
|
#define D64_XS1_XE_DFU 0x20000000 /* data fifo underrun */
|
||
|
#define D64_XS1_XE_DTE 0x30000000 /* data transfer error */
|
||
|
#define D64_XS1_XE_DESRE 0x40000000 /* descriptor read error */
|
||
|
#define D64_XS1_XE_COREE 0x50000000 /* core error */
|
||
|
|
||
|
/* receive channel control */
|
||
|
/* receive enable */
|
||
|
#define D64_RC_RE 0x00000001
|
||
|
/* receive frame offset */
|
||
|
#define D64_RC_RO_MASK 0x000000fe
|
||
|
#define D64_RC_RO_SHIFT 1
|
||
|
/* direct fifo receive (pio) mode */
|
||
|
#define D64_RC_FM 0x00000100
|
||
|
/* separate rx header descriptor enable */
|
||
|
#define D64_RC_SH 0x00000200
|
||
|
/* overflow continue */
|
||
|
#define D64_RC_OC 0x00000400
|
||
|
/* parity check disable */
|
||
|
#define D64_RC_PD 0x00000800
|
||
|
/* address extension bits */
|
||
|
#define D64_RC_AE 0x00030000
|
||
|
#define D64_RC_AE_SHIFT 16
|
||
|
|
||
|
/* flags for dma controller */
|
||
|
/* partity enable */
|
||
|
#define DMA_CTRL_PEN (1 << 0)
|
||
|
/* rx overflow continue */
|
||
|
#define DMA_CTRL_ROC (1 << 1)
|
||
|
/* allow rx scatter to multiple descriptors */
|
||
|
#define DMA_CTRL_RXMULTI (1 << 2)
|
||
|
/* Unframed Rx/Tx data */
|
||
|
#define DMA_CTRL_UNFRAMED (1 << 3)
|
||
|
|
||
|
/* receive descriptor table pointer */
|
||
|
#define D64_RP_LD_MASK 0x00000fff /* last valid descriptor */
|
||
|
|
||
|
/* receive channel status */
|
||
|
#define D64_RS0_CD_MASK 0x00001fff /* current descriptor pointer */
|
||
|
#define D64_RS0_RS_MASK 0xf0000000 /* receive state */
|
||
|
#define D64_RS0_RS_SHIFT 28
|
||
|
#define D64_RS0_RS_DISABLED 0x00000000 /* disabled */
|
||
|
#define D64_RS0_RS_ACTIVE 0x10000000 /* active */
|
||
|
#define D64_RS0_RS_IDLE 0x20000000 /* idle wait */
|
||
|
#define D64_RS0_RS_STOPPED 0x30000000 /* stopped */
|
||
|
#define D64_RS0_RS_SUSP 0x40000000 /* suspend pending */
|
||
|
|
||
|
#define D64_RS1_AD_MASK 0x0001ffff /* active descriptor */
|
||
|
#define D64_RS1_RE_MASK 0xf0000000 /* receive errors */
|
||
|
#define D64_RS1_RE_SHIFT 28
|
||
|
#define D64_RS1_RE_NOERR 0x00000000 /* no error */
|
||
|
#define D64_RS1_RE_DPO 0x10000000 /* descriptor protocol error */
|
||
|
#define D64_RS1_RE_DFU 0x20000000 /* data fifo overflow */
|
||
|
#define D64_RS1_RE_DTE 0x30000000 /* data transfer error */
|
||
|
#define D64_RS1_RE_DESRE 0x40000000 /* descriptor read error */
|
||
|
#define D64_RS1_RE_COREE 0x50000000 /* core error */
|
||
|
|
||
|
/* fifoaddr */
|
||
|
#define D64_FA_OFF_MASK 0xffff /* offset */
|
||
|
#define D64_FA_SEL_MASK 0xf0000 /* select */
|
||
|
#define D64_FA_SEL_SHIFT 16
|
||
|
#define D64_FA_SEL_XDD 0x00000 /* transmit dma data */
|
||
|
#define D64_FA_SEL_XDP 0x10000 /* transmit dma pointers */
|
||
|
#define D64_FA_SEL_RDD 0x40000 /* receive dma data */
|
||
|
#define D64_FA_SEL_RDP 0x50000 /* receive dma pointers */
|
||
|
#define D64_FA_SEL_XFD 0x80000 /* transmit fifo data */
|
||
|
#define D64_FA_SEL_XFP 0x90000 /* transmit fifo pointers */
|
||
|
#define D64_FA_SEL_RFD 0xc0000 /* receive fifo data */
|
||
|
#define D64_FA_SEL_RFP 0xd0000 /* receive fifo pointers */
|
||
|
#define D64_FA_SEL_RSD 0xe0000 /* receive frame status data */
|
||
|
#define D64_FA_SEL_RSP 0xf0000 /* receive frame status pointers */
|
||
|
|
||
|
/* descriptor control flags 1 */
|
||
|
#define D64_CTRL_COREFLAGS 0x0ff00000 /* core specific flags */
|
||
|
#define D64_CTRL1_EOT ((u32)1 << 28) /* end of descriptor table */
|
||
|
#define D64_CTRL1_IOC ((u32)1 << 29) /* interrupt on completion */
|
||
|
#define D64_CTRL1_EOF ((u32)1 << 30) /* end of frame */
|
||
|
#define D64_CTRL1_SOF ((u32)1 << 31) /* start of frame */
|
||
|
|
||
|
/* descriptor control flags 2 */
|
||
|
/* buffer byte count. real data len must <= 16KB */
|
||
|
#define D64_CTRL2_BC_MASK 0x00007fff
|
||
|
/* address extension bits */
|
||
|
#define D64_CTRL2_AE 0x00030000
|
||
|
#define D64_CTRL2_AE_SHIFT 16
|
||
|
/* parity bit */
|
||
|
#define D64_CTRL2_PARITY 0x00040000
|
||
|
|
||
|
/* control flags in the range [27:20] are core-specific and not defined here */
|
||
|
#define D64_CTRL_CORE_MASK 0x0ff00000
|
||
|
|
||
|
#define D64_RX_FRM_STS_LEN 0x0000ffff /* frame length mask */
|
||
|
#define D64_RX_FRM_STS_OVFL 0x00800000 /* RxOverFlow */
|
||
|
#define D64_RX_FRM_STS_DSCRCNT 0x0f000000 /* no. of descriptors used - 1 */
|
||
|
#define D64_RX_FRM_STS_DATATYPE 0xf0000000 /* core-dependent data type */
|
||
|
|
||
|
/*
|
||
|
* packet headroom necessary to accommodate the largest header
|
||
|
* in the system, (i.e TXOFF). By doing, we avoid the need to
|
||
|
* allocate an extra buffer for the header when bridging to WL.
|
||
|
* There is a compile time check in wlc.c which ensure that this
|
||
|
* value is at least as big as TXOFF. This value is used in
|
||
|
* dma_rxfill().
|
||
|
*/
|
||
|
|
||
|
#define BCMEXTRAHDROOM 172
|
||
|
|
||
|
/* debug/trace */
|
||
|
#ifdef DEBUG
|
||
|
#define DMA_ERROR(fmt, ...) \
|
||
|
do { \
|
||
|
if (*di->msg_level & 1) \
|
||
|
pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
|
||
|
} while (0)
|
||
|
#define DMA_TRACE(fmt, ...) \
|
||
|
do { \
|
||
|
if (*di->msg_level & 2) \
|
||
|
pr_debug("%s: " fmt, __func__, ##__VA_ARGS__); \
|
||
|
} while (0)
|
||
|
#else
|
||
|
#define DMA_ERROR(fmt, ...) \
|
||
|
no_printk(fmt, ##__VA_ARGS__)
|
||
|
#define DMA_TRACE(fmt, ...) \
|
||
|
no_printk(fmt, ##__VA_ARGS__)
|
||
|
#endif /* DEBUG */
|
||
|
|
||
|
#define DMA_NONE(fmt, ...) \
|
||
|
no_printk(fmt, ##__VA_ARGS__)
|
||
|
|
||
|
#define MAXNAMEL 8 /* 8 char names */
|
||
|
|
||
|
/* macros to convert between byte offsets and indexes */
|
||
|
#define B2I(bytes, type) ((bytes) / sizeof(type))
|
||
|
#define I2B(index, type) ((index) * sizeof(type))
|
||
|
|
||
|
#define PCI32ADDR_HIGH 0xc0000000 /* address[31:30] */
|
||
|
#define PCI32ADDR_HIGH_SHIFT 30 /* address[31:30] */
|
||
|
|
||
|
#define PCI64ADDR_HIGH 0x80000000 /* address[63] */
|
||
|
#define PCI64ADDR_HIGH_SHIFT 31 /* address[63] */
|
||
|
|
||
|
/*
|
||
|
* DMA Descriptor
|
||
|
* Descriptors are only read by the hardware, never written back.
|
||
|
*/
|
||
|
struct dma64desc {
|
||
|
__le32 ctrl1; /* misc control bits & bufcount */
|
||
|
__le32 ctrl2; /* buffer count and address extension */
|
||
|
__le32 addrlow; /* memory address of the date buffer, bits 31:0 */
|
||
|
__le32 addrhigh; /* memory address of the date buffer, bits 63:32 */
|
||
|
};
|
||
|
|
||
|
/* dma engine software state */
|
||
|
struct dma_info {
|
||
|
struct dma_pub dma; /* exported structure */
|
||
|
uint *msg_level; /* message level pointer */
|
||
|
char name[MAXNAMEL]; /* callers name for diag msgs */
|
||
|
|
||
|
struct bcma_device *core;
|
||
|
struct device *dmadev;
|
||
|
|
||
|
bool dma64; /* this dma engine is operating in 64-bit mode */
|
||
|
bool addrext; /* this dma engine supports DmaExtendedAddrChanges */
|
||
|
|
||
|
/* 64-bit dma tx engine registers */
|
||
|
uint d64txregbase;
|
||
|
/* 64-bit dma rx engine registers */
|
||
|
uint d64rxregbase;
|
||
|
/* pointer to dma64 tx descriptor ring */
|
||
|
struct dma64desc *txd64;
|
||
|
/* pointer to dma64 rx descriptor ring */
|
||
|
struct dma64desc *rxd64;
|
||
|
|
||
|
u16 dmadesc_align; /* alignment requirement for dma descriptors */
|
||
|
|
||
|
u16 ntxd; /* # tx descriptors tunable */
|
||
|
u16 txin; /* index of next descriptor to reclaim */
|
||
|
u16 txout; /* index of next descriptor to post */
|
||
|
/* pointer to parallel array of pointers to packets */
|
||
|
struct sk_buff **txp;
|
||
|
/* Aligned physical address of descriptor ring */
|
||
|
dma_addr_t txdpa;
|
||
|
/* Original physical address of descriptor ring */
|
||
|
dma_addr_t txdpaorig;
|
||
|
u16 txdalign; /* #bytes added to alloc'd mem to align txd */
|
||
|
u32 txdalloc; /* #bytes allocated for the ring */
|
||
|
u32 xmtptrbase; /* When using unaligned descriptors, the ptr register
|
||
|
* is not just an index, it needs all 13 bits to be
|
||
|
* an offset from the addr register.
|
||
|
*/
|
||
|
|
||
|
u16 nrxd; /* # rx descriptors tunable */
|
||
|
u16 rxin; /* index of next descriptor to reclaim */
|
||
|
u16 rxout; /* index of next descriptor to post */
|
||
|
/* pointer to parallel array of pointers to packets */
|
||
|
struct sk_buff **rxp;
|
||
|
/* Aligned physical address of descriptor ring */
|
||
|
dma_addr_t rxdpa;
|
||
|
/* Original physical address of descriptor ring */
|
||
|
dma_addr_t rxdpaorig;
|
||
|
u16 rxdalign; /* #bytes added to alloc'd mem to align rxd */
|
||
|
u32 rxdalloc; /* #bytes allocated for the ring */
|
||
|
u32 rcvptrbase; /* Base for ptr reg when using unaligned descriptors */
|
||
|
|
||
|
/* tunables */
|
||
|
unsigned int rxbufsize; /* rx buffer size in bytes, not including
|
||
|
* the extra headroom
|
||
|
*/
|
||
|
uint rxextrahdrroom; /* extra rx headroom, reverseved to assist upper
|
||
|
* stack, e.g. some rx pkt buffers will be
|
||
|
* bridged to tx side without byte copying.
|
||
|
* The extra headroom needs to be large enough
|
||
|
* to fit txheader needs. Some dongle driver may
|
||
|
* not need it.
|
||
|
*/
|
||
|
uint nrxpost; /* # rx buffers to keep posted */
|
||
|
unsigned int rxoffset; /* rxcontrol offset */
|
||
|
/* add to get dma address of descriptor ring, low 32 bits */
|
||
|
uint ddoffsetlow;
|
||
|
/* high 32 bits */
|
||
|
uint ddoffsethigh;
|
||
|
/* add to get dma address of data buffer, low 32 bits */
|
||
|
uint dataoffsetlow;
|
||
|
/* high 32 bits */
|
||
|
uint dataoffsethigh;
|
||
|
/* descriptor base need to be aligned or not */
|
||
|
bool aligndesc_4k;
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* default dma message level (if input msg_level
|
||
|
* pointer is null in dma_attach())
|
||
|
*/
|
||
|
static uint dma_msg_level;
|
||
|
|
||
|
/* Check for odd number of 1's */
|
||
|
static u32 parity32(__le32 data)
|
||
|
{
|
||
|
/* no swap needed for counting 1's */
|
||
|
u32 par_data = *(u32 *)&data;
|
||
|
|
||
|
par_data ^= par_data >> 16;
|
||
|
par_data ^= par_data >> 8;
|
||
|
par_data ^= par_data >> 4;
|
||
|
par_data ^= par_data >> 2;
|
||
|
par_data ^= par_data >> 1;
|
||
|
|
||
|
return par_data & 1;
|
||
|
}
|
||
|
|
||
|
static bool dma64_dd_parity(struct dma64desc *dd)
|
||
|
{
|
||
|
return parity32(dd->addrlow ^ dd->addrhigh ^ dd->ctrl1 ^ dd->ctrl2);
|
||
|
}
|
||
|
|
||
|
/* descriptor bumping functions */
|
||
|
|
||
|
static uint xxd(uint x, uint n)
|
||
|
{
|
||
|
return x & (n - 1); /* faster than %, but n must be power of 2 */
|
||
|
}
|
||
|
|
||
|
static uint txd(struct dma_info *di, uint x)
|
||
|
{
|
||
|
return xxd(x, di->ntxd);
|
||
|
}
|
||
|
|
||
|
static uint rxd(struct dma_info *di, uint x)
|
||
|
{
|
||
|
return xxd(x, di->nrxd);
|
||
|
}
|
||
|
|
||
|
static uint nexttxd(struct dma_info *di, uint i)
|
||
|
{
|
||
|
return txd(di, i + 1);
|
||
|
}
|
||
|
|
||
|
static uint prevtxd(struct dma_info *di, uint i)
|
||
|
{
|
||
|
return txd(di, i - 1);
|
||
|
}
|
||
|
|
||
|
static uint nextrxd(struct dma_info *di, uint i)
|
||
|
{
|
||
|
return txd(di, i + 1);
|
||
|
}
|
||
|
|
||
|
static uint ntxdactive(struct dma_info *di, uint h, uint t)
|
||
|
{
|
||
|
return txd(di, t-h);
|
||
|
}
|
||
|
|
||
|
static uint nrxdactive(struct dma_info *di, uint h, uint t)
|
||
|
{
|
||
|
return rxd(di, t-h);
|
||
|
}
|
||
|
|
||
|
static uint _dma_ctrlflags(struct dma_info *di, uint mask, uint flags)
|
||
|
{
|
||
|
uint dmactrlflags;
|
||
|
|
||
|
if (di == NULL) {
|
||
|
DMA_ERROR("NULL dma handle\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
dmactrlflags = di->dma.dmactrlflags;
|
||
|
dmactrlflags &= ~mask;
|
||
|
dmactrlflags |= flags;
|
||
|
|
||
|
/* If trying to enable parity, check if parity is actually supported */
|
||
|
if (dmactrlflags & DMA_CTRL_PEN) {
|
||
|
u32 control;
|
||
|
|
||
|
control = bcma_read32(di->core, DMA64TXREGOFFS(di, control));
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, control),
|
||
|
control | D64_XC_PD);
|
||
|
if (bcma_read32(di->core, DMA64TXREGOFFS(di, control)) &
|
||
|
D64_XC_PD)
|
||
|
/* We *can* disable it so it is supported,
|
||
|
* restore control register
|
||
|
*/
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, control),
|
||
|
control);
|
||
|
else
|
||
|
/* Not supported, don't allow it to be enabled */
|
||
|
dmactrlflags &= ~DMA_CTRL_PEN;
|
||
|
}
|
||
|
|
||
|
di->dma.dmactrlflags = dmactrlflags;
|
||
|
|
||
|
return dmactrlflags;
|
||
|
}
|
||
|
|
||
|
static bool _dma64_addrext(struct dma_info *di, uint ctrl_offset)
|
||
|
{
|
||
|
u32 w;
|
||
|
bcma_set32(di->core, ctrl_offset, D64_XC_AE);
|
||
|
w = bcma_read32(di->core, ctrl_offset);
|
||
|
bcma_mask32(di->core, ctrl_offset, ~D64_XC_AE);
|
||
|
return (w & D64_XC_AE) == D64_XC_AE;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* return true if this dma engine supports DmaExtendedAddrChanges,
|
||
|
* otherwise false
|
||
|
*/
|
||
|
static bool _dma_isaddrext(struct dma_info *di)
|
||
|
{
|
||
|
/* DMA64 supports full 32- or 64-bit operation. AE is always valid */
|
||
|
|
||
|
/* not all tx or rx channel are available */
|
||
|
if (di->d64txregbase != 0) {
|
||
|
if (!_dma64_addrext(di, DMA64TXREGOFFS(di, control)))
|
||
|
DMA_ERROR("%s: DMA64 tx doesn't have AE set\n",
|
||
|
di->name);
|
||
|
return true;
|
||
|
} else if (di->d64rxregbase != 0) {
|
||
|
if (!_dma64_addrext(di, DMA64RXREGOFFS(di, control)))
|
||
|
DMA_ERROR("%s: DMA64 rx doesn't have AE set\n",
|
||
|
di->name);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool _dma_descriptor_align(struct dma_info *di)
|
||
|
{
|
||
|
u32 addrl;
|
||
|
|
||
|
/* Check to see if the descriptors need to be aligned on 4K/8K or not */
|
||
|
if (di->d64txregbase != 0) {
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow), 0xff0);
|
||
|
addrl = bcma_read32(di->core, DMA64TXREGOFFS(di, addrlow));
|
||
|
if (addrl != 0)
|
||
|
return false;
|
||
|
} else if (di->d64rxregbase != 0) {
|
||
|
bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow), 0xff0);
|
||
|
addrl = bcma_read32(di->core, DMA64RXREGOFFS(di, addrlow));
|
||
|
if (addrl != 0)
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Descriptor table must start at the DMA hardware dictated alignment, so
|
||
|
* allocated memory must be large enough to support this requirement.
|
||
|
*/
|
||
|
static void *dma_alloc_consistent(struct dma_info *di, uint size,
|
||
|
u16 align_bits, uint *alloced,
|
||
|
dma_addr_t *pap)
|
||
|
{
|
||
|
if (align_bits) {
|
||
|
u16 align = (1 << align_bits);
|
||
|
if (!IS_ALIGNED(PAGE_SIZE, align))
|
||
|
size += align;
|
||
|
*alloced = size;
|
||
|
}
|
||
|
return dma_alloc_coherent(di->dmadev, size, pap, GFP_ATOMIC);
|
||
|
}
|
||
|
|
||
|
static
|
||
|
u8 dma_align_sizetobits(uint size)
|
||
|
{
|
||
|
u8 bitpos = 0;
|
||
|
while (size >>= 1)
|
||
|
bitpos++;
|
||
|
return bitpos;
|
||
|
}
|
||
|
|
||
|
/* This function ensures that the DMA descriptor ring will not get allocated
|
||
|
* across Page boundary. If the allocation is done across the page boundary
|
||
|
* at the first time, then it is freed and the allocation is done at
|
||
|
* descriptor ring size aligned location. This will ensure that the ring will
|
||
|
* not cross page boundary
|
||
|
*/
|
||
|
static void *dma_ringalloc(struct dma_info *di, u32 boundary, uint size,
|
||
|
u16 *alignbits, uint *alloced,
|
||
|
dma_addr_t *descpa)
|
||
|
{
|
||
|
void *va;
|
||
|
u32 desc_strtaddr;
|
||
|
u32 alignbytes = 1 << *alignbits;
|
||
|
|
||
|
va = dma_alloc_consistent(di, size, *alignbits, alloced, descpa);
|
||
|
|
||
|
if (NULL == va)
|
||
|
return NULL;
|
||
|
|
||
|
desc_strtaddr = (u32) roundup((unsigned long)va, alignbytes);
|
||
|
if (((desc_strtaddr + size - 1) & boundary) != (desc_strtaddr
|
||
|
& boundary)) {
|
||
|
*alignbits = dma_align_sizetobits(size);
|
||
|
dma_free_coherent(di->dmadev, size, va, *descpa);
|
||
|
va = dma_alloc_consistent(di, size, *alignbits,
|
||
|
alloced, descpa);
|
||
|
}
|
||
|
return va;
|
||
|
}
|
||
|
|
||
|
static bool dma64_alloc(struct dma_info *di, uint direction)
|
||
|
{
|
||
|
u16 size;
|
||
|
uint ddlen;
|
||
|
void *va;
|
||
|
uint alloced = 0;
|
||
|
u16 align;
|
||
|
u16 align_bits;
|
||
|
|
||
|
ddlen = sizeof(struct dma64desc);
|
||
|
|
||
|
size = (direction == DMA_TX) ? (di->ntxd * ddlen) : (di->nrxd * ddlen);
|
||
|
align_bits = di->dmadesc_align;
|
||
|
align = (1 << align_bits);
|
||
|
|
||
|
if (direction == DMA_TX) {
|
||
|
va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
|
||
|
&alloced, &di->txdpaorig);
|
||
|
if (va == NULL) {
|
||
|
DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(ntxd) failed\n",
|
||
|
di->name);
|
||
|
return false;
|
||
|
}
|
||
|
align = (1 << align_bits);
|
||
|
di->txd64 = (struct dma64desc *)
|
||
|
roundup((unsigned long)va, align);
|
||
|
di->txdalign = (uint) ((s8 *)di->txd64 - (s8 *) va);
|
||
|
di->txdpa = di->txdpaorig + di->txdalign;
|
||
|
di->txdalloc = alloced;
|
||
|
} else {
|
||
|
va = dma_ringalloc(di, D64RINGALIGN, size, &align_bits,
|
||
|
&alloced, &di->rxdpaorig);
|
||
|
if (va == NULL) {
|
||
|
DMA_ERROR("%s: DMA_ALLOC_CONSISTENT(nrxd) failed\n",
|
||
|
di->name);
|
||
|
return false;
|
||
|
}
|
||
|
align = (1 << align_bits);
|
||
|
di->rxd64 = (struct dma64desc *)
|
||
|
roundup((unsigned long)va, align);
|
||
|
di->rxdalign = (uint) ((s8 *)di->rxd64 - (s8 *) va);
|
||
|
di->rxdpa = di->rxdpaorig + di->rxdalign;
|
||
|
di->rxdalloc = alloced;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool _dma_alloc(struct dma_info *di, uint direction)
|
||
|
{
|
||
|
return dma64_alloc(di, direction);
|
||
|
}
|
||
|
|
||
|
struct dma_pub *dma_attach(char *name, struct si_pub *sih,
|
||
|
struct bcma_device *core,
|
||
|
uint txregbase, uint rxregbase, uint ntxd, uint nrxd,
|
||
|
uint rxbufsize, int rxextheadroom,
|
||
|
uint nrxpost, uint rxoffset, uint *msg_level)
|
||
|
{
|
||
|
struct dma_info *di;
|
||
|
u8 rev = core->id.rev;
|
||
|
uint size;
|
||
|
|
||
|
/* allocate private info structure */
|
||
|
di = kzalloc(sizeof(struct dma_info), GFP_ATOMIC);
|
||
|
if (di == NULL)
|
||
|
return NULL;
|
||
|
|
||
|
di->msg_level = msg_level ? msg_level : &dma_msg_level;
|
||
|
|
||
|
|
||
|
di->dma64 =
|
||
|
((bcma_aread32(core, BCMA_IOST) & SISF_DMA64) == SISF_DMA64);
|
||
|
|
||
|
/* init dma reg info */
|
||
|
di->core = core;
|
||
|
di->d64txregbase = txregbase;
|
||
|
di->d64rxregbase = rxregbase;
|
||
|
|
||
|
/*
|
||
|
* Default flags (which can be changed by the driver calling
|
||
|
* dma_ctrlflags before enable): For backwards compatibility
|
||
|
* both Rx Overflow Continue and Parity are DISABLED.
|
||
|
*/
|
||
|
_dma_ctrlflags(di, DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
|
||
|
|
||
|
DMA_TRACE("%s: %s flags 0x%x ntxd %d nrxd %d "
|
||
|
"rxbufsize %d rxextheadroom %d nrxpost %d rxoffset %d "
|
||
|
"txregbase %u rxregbase %u\n", name, "DMA64",
|
||
|
di->dma.dmactrlflags, ntxd, nrxd, rxbufsize,
|
||
|
rxextheadroom, nrxpost, rxoffset, txregbase, rxregbase);
|
||
|
|
||
|
/* make a private copy of our callers name */
|
||
|
strncpy(di->name, name, MAXNAMEL);
|
||
|
di->name[MAXNAMEL - 1] = '\0';
|
||
|
|
||
|
di->dmadev = core->dma_dev;
|
||
|
|
||
|
/* save tunables */
|
||
|
di->ntxd = (u16) ntxd;
|
||
|
di->nrxd = (u16) nrxd;
|
||
|
|
||
|
/* the actual dma size doesn't include the extra headroom */
|
||
|
di->rxextrahdrroom =
|
||
|
(rxextheadroom == -1) ? BCMEXTRAHDROOM : rxextheadroom;
|
||
|
if (rxbufsize > BCMEXTRAHDROOM)
|
||
|
di->rxbufsize = (u16) (rxbufsize - di->rxextrahdrroom);
|
||
|
else
|
||
|
di->rxbufsize = (u16) rxbufsize;
|
||
|
|
||
|
di->nrxpost = (u16) nrxpost;
|
||
|
di->rxoffset = (u8) rxoffset;
|
||
|
|
||
|
/*
|
||
|
* figure out the DMA physical address offset for dd and data
|
||
|
* PCI/PCIE: they map silicon backplace address to zero
|
||
|
* based memory, need offset
|
||
|
* Other bus: use zero SI_BUS BIGENDIAN kludge: use sdram
|
||
|
* swapped region for data buffer, not descriptor
|
||
|
*/
|
||
|
di->ddoffsetlow = 0;
|
||
|
di->dataoffsetlow = 0;
|
||
|
/* add offset for pcie with DMA64 bus */
|
||
|
di->ddoffsetlow = 0;
|
||
|
di->ddoffsethigh = SI_PCIE_DMA_H32;
|
||
|
di->dataoffsetlow = di->ddoffsetlow;
|
||
|
di->dataoffsethigh = di->ddoffsethigh;
|
||
|
/* WAR64450 : DMACtl.Addr ext fields are not supported in SDIOD core. */
|
||
|
if ((core->id.id == SDIOD_CORE_ID)
|
||
|
&& ((rev > 0) && (rev <= 2)))
|
||
|
di->addrext = false;
|
||
|
else if ((core->id.id == I2S_CORE_ID) &&
|
||
|
((rev == 0) || (rev == 1)))
|
||
|
di->addrext = false;
|
||
|
else
|
||
|
di->addrext = _dma_isaddrext(di);
|
||
|
|
||
|
/* does the descriptor need to be aligned and if yes, on 4K/8K or not */
|
||
|
di->aligndesc_4k = _dma_descriptor_align(di);
|
||
|
if (di->aligndesc_4k) {
|
||
|
di->dmadesc_align = D64RINGALIGN_BITS;
|
||
|
if ((ntxd < D64MAXDD / 2) && (nrxd < D64MAXDD / 2))
|
||
|
/* for smaller dd table, HW relax alignment reqmnt */
|
||
|
di->dmadesc_align = D64RINGALIGN_BITS - 1;
|
||
|
} else {
|
||
|
di->dmadesc_align = 4; /* 16 byte alignment */
|
||
|
}
|
||
|
|
||
|
DMA_NONE("DMA descriptor align_needed %d, align %d\n",
|
||
|
di->aligndesc_4k, di->dmadesc_align);
|
||
|
|
||
|
/* allocate tx packet pointer vector */
|
||
|
if (ntxd) {
|
||
|
size = ntxd * sizeof(void *);
|
||
|
di->txp = kzalloc(size, GFP_ATOMIC);
|
||
|
if (di->txp == NULL)
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* allocate rx packet pointer vector */
|
||
|
if (nrxd) {
|
||
|
size = nrxd * sizeof(void *);
|
||
|
di->rxp = kzalloc(size, GFP_ATOMIC);
|
||
|
if (di->rxp == NULL)
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* allocate transmit descriptor ring, only need ntxd descriptors
|
||
|
* but it must be aligned
|
||
|
*/
|
||
|
if (ntxd) {
|
||
|
if (!_dma_alloc(di, DMA_TX))
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* allocate receive descriptor ring, only need nrxd descriptors
|
||
|
* but it must be aligned
|
||
|
*/
|
||
|
if (nrxd) {
|
||
|
if (!_dma_alloc(di, DMA_RX))
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
if ((di->ddoffsetlow != 0) && !di->addrext) {
|
||
|
if (di->txdpa > SI_PCI_DMA_SZ) {
|
||
|
DMA_ERROR("%s: txdpa 0x%x: addrext not supported\n",
|
||
|
di->name, (u32)di->txdpa);
|
||
|
goto fail;
|
||
|
}
|
||
|
if (di->rxdpa > SI_PCI_DMA_SZ) {
|
||
|
DMA_ERROR("%s: rxdpa 0x%x: addrext not supported\n",
|
||
|
di->name, (u32)di->rxdpa);
|
||
|
goto fail;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
DMA_TRACE("ddoffsetlow 0x%x ddoffsethigh 0x%x dataoffsetlow 0x%x dataoffsethigh 0x%x addrext %d\n",
|
||
|
di->ddoffsetlow, di->ddoffsethigh,
|
||
|
di->dataoffsetlow, di->dataoffsethigh,
|
||
|
di->addrext);
|
||
|
|
||
|
return (struct dma_pub *) di;
|
||
|
|
||
|
fail:
|
||
|
dma_detach((struct dma_pub *)di);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
dma64_dd_upd(struct dma_info *di, struct dma64desc *ddring,
|
||
|
dma_addr_t pa, uint outidx, u32 *flags, u32 bufcount)
|
||
|
{
|
||
|
u32 ctrl2 = bufcount & D64_CTRL2_BC_MASK;
|
||
|
|
||
|
/* PCI bus with big(>1G) physical address, use address extension */
|
||
|
if ((di->dataoffsetlow == 0) || !(pa & PCI32ADDR_HIGH)) {
|
||
|
ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
|
||
|
ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
|
||
|
ddring[outidx].ctrl1 = cpu_to_le32(*flags);
|
||
|
ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
|
||
|
} else {
|
||
|
/* address extension for 32-bit PCI */
|
||
|
u32 ae;
|
||
|
|
||
|
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
|
||
|
pa &= ~PCI32ADDR_HIGH;
|
||
|
|
||
|
ctrl2 |= (ae << D64_CTRL2_AE_SHIFT) & D64_CTRL2_AE;
|
||
|
ddring[outidx].addrlow = cpu_to_le32(pa + di->dataoffsetlow);
|
||
|
ddring[outidx].addrhigh = cpu_to_le32(di->dataoffsethigh);
|
||
|
ddring[outidx].ctrl1 = cpu_to_le32(*flags);
|
||
|
ddring[outidx].ctrl2 = cpu_to_le32(ctrl2);
|
||
|
}
|
||
|
if (di->dma.dmactrlflags & DMA_CTRL_PEN) {
|
||
|
if (dma64_dd_parity(&ddring[outidx]))
|
||
|
ddring[outidx].ctrl2 =
|
||
|
cpu_to_le32(ctrl2 | D64_CTRL2_PARITY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* !! may be called with core in reset */
|
||
|
void dma_detach(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
|
||
|
DMA_TRACE("%s:\n", di->name);
|
||
|
|
||
|
/* free dma descriptor rings */
|
||
|
if (di->txd64)
|
||
|
dma_free_coherent(di->dmadev, di->txdalloc,
|
||
|
((s8 *)di->txd64 - di->txdalign),
|
||
|
(di->txdpaorig));
|
||
|
if (di->rxd64)
|
||
|
dma_free_coherent(di->dmadev, di->rxdalloc,
|
||
|
((s8 *)di->rxd64 - di->rxdalign),
|
||
|
(di->rxdpaorig));
|
||
|
|
||
|
/* free packet pointer vectors */
|
||
|
kfree(di->txp);
|
||
|
kfree(di->rxp);
|
||
|
|
||
|
/* free our private info structure */
|
||
|
kfree(di);
|
||
|
|
||
|
}
|
||
|
|
||
|
/* initialize descriptor table base address */
|
||
|
static void
|
||
|
_dma_ddtable_init(struct dma_info *di, uint direction, dma_addr_t pa)
|
||
|
{
|
||
|
if (!di->aligndesc_4k) {
|
||
|
if (direction == DMA_TX)
|
||
|
di->xmtptrbase = pa;
|
||
|
else
|
||
|
di->rcvptrbase = pa;
|
||
|
}
|
||
|
|
||
|
if ((di->ddoffsetlow == 0)
|
||
|
|| !(pa & PCI32ADDR_HIGH)) {
|
||
|
if (direction == DMA_TX) {
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
|
||
|
pa + di->ddoffsetlow);
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
|
||
|
di->ddoffsethigh);
|
||
|
} else {
|
||
|
bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
|
||
|
pa + di->ddoffsetlow);
|
||
|
bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
|
||
|
di->ddoffsethigh);
|
||
|
}
|
||
|
} else {
|
||
|
/* DMA64 32bits address extension */
|
||
|
u32 ae;
|
||
|
|
||
|
/* shift the high bit(s) from pa to ae */
|
||
|
ae = (pa & PCI32ADDR_HIGH) >> PCI32ADDR_HIGH_SHIFT;
|
||
|
pa &= ~PCI32ADDR_HIGH;
|
||
|
|
||
|
if (direction == DMA_TX) {
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, addrlow),
|
||
|
pa + di->ddoffsetlow);
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, addrhigh),
|
||
|
di->ddoffsethigh);
|
||
|
bcma_maskset32(di->core, DMA64TXREGOFFS(di, control),
|
||
|
D64_XC_AE, (ae << D64_XC_AE_SHIFT));
|
||
|
} else {
|
||
|
bcma_write32(di->core, DMA64RXREGOFFS(di, addrlow),
|
||
|
pa + di->ddoffsetlow);
|
||
|
bcma_write32(di->core, DMA64RXREGOFFS(di, addrhigh),
|
||
|
di->ddoffsethigh);
|
||
|
bcma_maskset32(di->core, DMA64RXREGOFFS(di, control),
|
||
|
D64_RC_AE, (ae << D64_RC_AE_SHIFT));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void _dma_rxenable(struct dma_info *di)
|
||
|
{
|
||
|
uint dmactrlflags = di->dma.dmactrlflags;
|
||
|
u32 control;
|
||
|
|
||
|
DMA_TRACE("%s:\n", di->name);
|
||
|
|
||
|
control = D64_RC_RE | (bcma_read32(di->core,
|
||
|
DMA64RXREGOFFS(di, control)) &
|
||
|
D64_RC_AE);
|
||
|
|
||
|
if ((dmactrlflags & DMA_CTRL_PEN) == 0)
|
||
|
control |= D64_RC_PD;
|
||
|
|
||
|
if (dmactrlflags & DMA_CTRL_ROC)
|
||
|
control |= D64_RC_OC;
|
||
|
|
||
|
bcma_write32(di->core, DMA64RXREGOFFS(di, control),
|
||
|
((di->rxoffset << D64_RC_RO_SHIFT) | control));
|
||
|
}
|
||
|
|
||
|
void dma_rxinit(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
|
||
|
DMA_TRACE("%s:\n", di->name);
|
||
|
|
||
|
if (di->nrxd == 0)
|
||
|
return;
|
||
|
|
||
|
di->rxin = di->rxout = 0;
|
||
|
|
||
|
/* clear rx descriptor ring */
|
||
|
memset(di->rxd64, '\0', di->nrxd * sizeof(struct dma64desc));
|
||
|
|
||
|
/* DMA engine with out alignment requirement requires table to be inited
|
||
|
* before enabling the engine
|
||
|
*/
|
||
|
if (!di->aligndesc_4k)
|
||
|
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
|
||
|
|
||
|
_dma_rxenable(di);
|
||
|
|
||
|
if (di->aligndesc_4k)
|
||
|
_dma_ddtable_init(di, DMA_RX, di->rxdpa);
|
||
|
}
|
||
|
|
||
|
static struct sk_buff *dma64_getnextrxp(struct dma_info *di, bool forceall)
|
||
|
{
|
||
|
uint i, curr;
|
||
|
struct sk_buff *rxp;
|
||
|
dma_addr_t pa;
|
||
|
|
||
|
i = di->rxin;
|
||
|
|
||
|
/* return if no packets posted */
|
||
|
if (i == di->rxout)
|
||
|
return NULL;
|
||
|
|
||
|
curr =
|
||
|
B2I(((bcma_read32(di->core,
|
||
|
DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) -
|
||
|
di->rcvptrbase) & D64_RS0_CD_MASK, struct dma64desc);
|
||
|
|
||
|
/* ignore curr if forceall */
|
||
|
if (!forceall && (i == curr))
|
||
|
return NULL;
|
||
|
|
||
|
/* get the packet pointer that corresponds to the rx descriptor */
|
||
|
rxp = di->rxp[i];
|
||
|
di->rxp[i] = NULL;
|
||
|
|
||
|
pa = le32_to_cpu(di->rxd64[i].addrlow) - di->dataoffsetlow;
|
||
|
|
||
|
/* clear this packet from the descriptor ring */
|
||
|
dma_unmap_single(di->dmadev, pa, di->rxbufsize, DMA_FROM_DEVICE);
|
||
|
|
||
|
di->rxd64[i].addrlow = cpu_to_le32(0xdeadbeef);
|
||
|
di->rxd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
|
||
|
|
||
|
di->rxin = nextrxd(di, i);
|
||
|
|
||
|
return rxp;
|
||
|
}
|
||
|
|
||
|
static struct sk_buff *_dma_getnextrxp(struct dma_info *di, bool forceall)
|
||
|
{
|
||
|
if (di->nrxd == 0)
|
||
|
return NULL;
|
||
|
|
||
|
return dma64_getnextrxp(di, forceall);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* !! rx entry routine
|
||
|
* returns the number packages in the next frame, or 0 if there are no more
|
||
|
* if DMA_CTRL_RXMULTI is defined, DMA scattering(multiple buffers) is
|
||
|
* supported with pkts chain
|
||
|
* otherwise, it's treated as giant pkt and will be tossed.
|
||
|
* The DMA scattering starts with normal DMA header, followed by first
|
||
|
* buffer data. After it reaches the max size of buffer, the data continues
|
||
|
* in next DMA descriptor buffer WITHOUT DMA header
|
||
|
*/
|
||
|
int dma_rx(struct dma_pub *pub, struct sk_buff_head *skb_list)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
struct sk_buff_head dma_frames;
|
||
|
struct sk_buff *p, *next;
|
||
|
uint len;
|
||
|
uint pkt_len;
|
||
|
int resid = 0;
|
||
|
int pktcnt = 1;
|
||
|
|
||
|
skb_queue_head_init(&dma_frames);
|
||
|
next_frame:
|
||
|
p = _dma_getnextrxp(di, false);
|
||
|
if (p == NULL)
|
||
|
return 0;
|
||
|
|
||
|
len = le16_to_cpu(*(__le16 *) (p->data));
|
||
|
DMA_TRACE("%s: dma_rx len %d\n", di->name, len);
|
||
|
dma_spin_for_len(len, p);
|
||
|
|
||
|
/* set actual length */
|
||
|
pkt_len = min((di->rxoffset + len), di->rxbufsize);
|
||
|
__skb_trim(p, pkt_len);
|
||
|
skb_queue_tail(&dma_frames, p);
|
||
|
resid = len - (di->rxbufsize - di->rxoffset);
|
||
|
|
||
|
/* check for single or multi-buffer rx */
|
||
|
if (resid > 0) {
|
||
|
while ((resid > 0) && (p = _dma_getnextrxp(di, false))) {
|
||
|
pkt_len = min_t(uint, resid, di->rxbufsize);
|
||
|
__skb_trim(p, pkt_len);
|
||
|
skb_queue_tail(&dma_frames, p);
|
||
|
resid -= di->rxbufsize;
|
||
|
pktcnt++;
|
||
|
}
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
if (resid > 0) {
|
||
|
uint cur;
|
||
|
cur =
|
||
|
B2I(((bcma_read32(di->core,
|
||
|
DMA64RXREGOFFS(di, status0)) &
|
||
|
D64_RS0_CD_MASK) - di->rcvptrbase) &
|
||
|
D64_RS0_CD_MASK, struct dma64desc);
|
||
|
DMA_ERROR("rxin %d rxout %d, hw_curr %d\n",
|
||
|
di->rxin, di->rxout, cur);
|
||
|
}
|
||
|
#endif /* DEBUG */
|
||
|
|
||
|
if ((di->dma.dmactrlflags & DMA_CTRL_RXMULTI) == 0) {
|
||
|
DMA_ERROR("%s: bad frame length (%d)\n",
|
||
|
di->name, len);
|
||
|
skb_queue_walk_safe(&dma_frames, p, next) {
|
||
|
skb_unlink(p, &dma_frames);
|
||
|
brcmu_pkt_buf_free_skb(p);
|
||
|
}
|
||
|
di->dma.rxgiants++;
|
||
|
pktcnt = 1;
|
||
|
goto next_frame;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
skb_queue_splice_tail(&dma_frames, skb_list);
|
||
|
return pktcnt;
|
||
|
}
|
||
|
|
||
|
static bool dma64_rxidle(struct dma_info *di)
|
||
|
{
|
||
|
DMA_TRACE("%s:\n", di->name);
|
||
|
|
||
|
if (di->nrxd == 0)
|
||
|
return true;
|
||
|
|
||
|
return ((bcma_read32(di->core,
|
||
|
DMA64RXREGOFFS(di, status0)) & D64_RS0_CD_MASK) ==
|
||
|
(bcma_read32(di->core, DMA64RXREGOFFS(di, ptr)) &
|
||
|
D64_RS0_CD_MASK));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* post receive buffers
|
||
|
* return false is refill failed completely and ring is empty this will stall
|
||
|
* the rx dma and user might want to call rxfill again asap. This unlikely
|
||
|
* happens on memory-rich NIC, but often on memory-constrained dongle
|
||
|
*/
|
||
|
bool dma_rxfill(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
struct sk_buff *p;
|
||
|
u16 rxin, rxout;
|
||
|
u32 flags = 0;
|
||
|
uint n;
|
||
|
uint i;
|
||
|
dma_addr_t pa;
|
||
|
uint extra_offset = 0;
|
||
|
bool ring_empty;
|
||
|
|
||
|
ring_empty = false;
|
||
|
|
||
|
/*
|
||
|
* Determine how many receive buffers we're lacking
|
||
|
* from the full complement, allocate, initialize,
|
||
|
* and post them, then update the chip rx lastdscr.
|
||
|
*/
|
||
|
|
||
|
rxin = di->rxin;
|
||
|
rxout = di->rxout;
|
||
|
|
||
|
n = di->nrxpost - nrxdactive(di, rxin, rxout);
|
||
|
|
||
|
DMA_TRACE("%s: post %d\n", di->name, n);
|
||
|
|
||
|
if (di->rxbufsize > BCMEXTRAHDROOM)
|
||
|
extra_offset = di->rxextrahdrroom;
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
/*
|
||
|
* the di->rxbufsize doesn't include the extra headroom,
|
||
|
* we need to add it to the size to be allocated
|
||
|
*/
|
||
|
p = brcmu_pkt_buf_get_skb(di->rxbufsize + extra_offset);
|
||
|
|
||
|
if (p == NULL) {
|
||
|
DMA_ERROR("%s: out of rxbufs\n", di->name);
|
||
|
if (i == 0 && dma64_rxidle(di)) {
|
||
|
DMA_ERROR("%s: ring is empty !\n", di->name);
|
||
|
ring_empty = true;
|
||
|
}
|
||
|
di->dma.rxnobuf++;
|
||
|
break;
|
||
|
}
|
||
|
/* reserve an extra headroom, if applicable */
|
||
|
if (extra_offset)
|
||
|
skb_pull(p, extra_offset);
|
||
|
|
||
|
/* Do a cached write instead of uncached write since DMA_MAP
|
||
|
* will flush the cache.
|
||
|
*/
|
||
|
*(u32 *) (p->data) = 0;
|
||
|
|
||
|
pa = dma_map_single(di->dmadev, p->data, di->rxbufsize,
|
||
|
DMA_FROM_DEVICE);
|
||
|
|
||
|
/* save the free packet pointer */
|
||
|
di->rxp[rxout] = p;
|
||
|
|
||
|
/* reset flags for each descriptor */
|
||
|
flags = 0;
|
||
|
if (rxout == (di->nrxd - 1))
|
||
|
flags = D64_CTRL1_EOT;
|
||
|
|
||
|
dma64_dd_upd(di, di->rxd64, pa, rxout, &flags,
|
||
|
di->rxbufsize);
|
||
|
rxout = nextrxd(di, rxout);
|
||
|
}
|
||
|
|
||
|
di->rxout = rxout;
|
||
|
|
||
|
/* update the chip lastdscr pointer */
|
||
|
bcma_write32(di->core, DMA64RXREGOFFS(di, ptr),
|
||
|
di->rcvptrbase + I2B(rxout, struct dma64desc));
|
||
|
|
||
|
return ring_empty;
|
||
|
}
|
||
|
|
||
|
void dma_rxreclaim(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
struct sk_buff *p;
|
||
|
|
||
|
DMA_TRACE("%s:\n", di->name);
|
||
|
|
||
|
while ((p = _dma_getnextrxp(di, true)))
|
||
|
brcmu_pkt_buf_free_skb(p);
|
||
|
}
|
||
|
|
||
|
void dma_counterreset(struct dma_pub *pub)
|
||
|
{
|
||
|
/* reset all software counters */
|
||
|
pub->rxgiants = 0;
|
||
|
pub->rxnobuf = 0;
|
||
|
pub->txnobuf = 0;
|
||
|
}
|
||
|
|
||
|
/* get the address of the var in order to change later */
|
||
|
unsigned long dma_getvar(struct dma_pub *pub, const char *name)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
|
||
|
if (!strcmp(name, "&txavail"))
|
||
|
return (unsigned long)&(di->dma.txavail);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* 64-bit DMA functions */
|
||
|
|
||
|
void dma_txinit(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
u32 control = D64_XC_XE;
|
||
|
|
||
|
DMA_TRACE("%s:\n", di->name);
|
||
|
|
||
|
if (di->ntxd == 0)
|
||
|
return;
|
||
|
|
||
|
di->txin = di->txout = 0;
|
||
|
di->dma.txavail = di->ntxd - 1;
|
||
|
|
||
|
/* clear tx descriptor ring */
|
||
|
memset(di->txd64, '\0', (di->ntxd * sizeof(struct dma64desc)));
|
||
|
|
||
|
/* DMA engine with out alignment requirement requires table to be inited
|
||
|
* before enabling the engine
|
||
|
*/
|
||
|
if (!di->aligndesc_4k)
|
||
|
_dma_ddtable_init(di, DMA_TX, di->txdpa);
|
||
|
|
||
|
if ((di->dma.dmactrlflags & DMA_CTRL_PEN) == 0)
|
||
|
control |= D64_XC_PD;
|
||
|
bcma_set32(di->core, DMA64TXREGOFFS(di, control), control);
|
||
|
|
||
|
/* DMA engine with alignment requirement requires table to be inited
|
||
|
* before enabling the engine
|
||
|
*/
|
||
|
if (di->aligndesc_4k)
|
||
|
_dma_ddtable_init(di, DMA_TX, di->txdpa);
|
||
|
}
|
||
|
|
||
|
void dma_txsuspend(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
|
||
|
DMA_TRACE("%s:\n", di->name);
|
||
|
|
||
|
if (di->ntxd == 0)
|
||
|
return;
|
||
|
|
||
|
bcma_set32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
|
||
|
}
|
||
|
|
||
|
void dma_txresume(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
|
||
|
DMA_TRACE("%s:\n", di->name);
|
||
|
|
||
|
if (di->ntxd == 0)
|
||
|
return;
|
||
|
|
||
|
bcma_mask32(di->core, DMA64TXREGOFFS(di, control), ~D64_XC_SE);
|
||
|
}
|
||
|
|
||
|
bool dma_txsuspended(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
|
||
|
return (di->ntxd == 0) ||
|
||
|
((bcma_read32(di->core,
|
||
|
DMA64TXREGOFFS(di, control)) & D64_XC_SE) ==
|
||
|
D64_XC_SE);
|
||
|
}
|
||
|
|
||
|
void dma_txreclaim(struct dma_pub *pub, enum txd_range range)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
struct sk_buff *p;
|
||
|
|
||
|
DMA_TRACE("%s: %s\n",
|
||
|
di->name,
|
||
|
range == DMA_RANGE_ALL ? "all" :
|
||
|
range == DMA_RANGE_TRANSMITTED ? "transmitted" :
|
||
|
"transferred");
|
||
|
|
||
|
if (di->txin == di->txout)
|
||
|
return;
|
||
|
|
||
|
while ((p = dma_getnexttxp(pub, range))) {
|
||
|
/* For unframed data, we don't have any packets to free */
|
||
|
if (!(di->dma.dmactrlflags & DMA_CTRL_UNFRAMED))
|
||
|
brcmu_pkt_buf_free_skb(p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool dma_txreset(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
u32 status;
|
||
|
|
||
|
if (di->ntxd == 0)
|
||
|
return true;
|
||
|
|
||
|
/* suspend tx DMA first */
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, control), D64_XC_SE);
|
||
|
SPINWAIT(((status =
|
||
|
(bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
|
||
|
D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED) &&
|
||
|
(status != D64_XS0_XS_IDLE) && (status != D64_XS0_XS_STOPPED),
|
||
|
10000);
|
||
|
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, control), 0);
|
||
|
SPINWAIT(((status =
|
||
|
(bcma_read32(di->core, DMA64TXREGOFFS(di, status0)) &
|
||
|
D64_XS0_XS_MASK)) != D64_XS0_XS_DISABLED), 10000);
|
||
|
|
||
|
/* wait for the last transaction to complete */
|
||
|
udelay(300);
|
||
|
|
||
|
return status == D64_XS0_XS_DISABLED;
|
||
|
}
|
||
|
|
||
|
bool dma_rxreset(struct dma_pub *pub)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
u32 status;
|
||
|
|
||
|
if (di->nrxd == 0)
|
||
|
return true;
|
||
|
|
||
|
bcma_write32(di->core, DMA64RXREGOFFS(di, control), 0);
|
||
|
SPINWAIT(((status =
|
||
|
(bcma_read32(di->core, DMA64RXREGOFFS(di, status0)) &
|
||
|
D64_RS0_RS_MASK)) != D64_RS0_RS_DISABLED), 10000);
|
||
|
|
||
|
return status == D64_RS0_RS_DISABLED;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* !! tx entry routine
|
||
|
* WARNING: call must check the return value for error.
|
||
|
* the error(toss frames) could be fatal and cause many subsequent hard
|
||
|
* to debug problems
|
||
|
*/
|
||
|
int dma_txfast(struct dma_pub *pub, struct sk_buff *p, bool commit)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
unsigned char *data;
|
||
|
uint len;
|
||
|
u16 txout;
|
||
|
u32 flags = 0;
|
||
|
dma_addr_t pa;
|
||
|
|
||
|
DMA_TRACE("%s:\n", di->name);
|
||
|
|
||
|
txout = di->txout;
|
||
|
|
||
|
/*
|
||
|
* obtain and initialize transmit descriptor entry.
|
||
|
*/
|
||
|
data = p->data;
|
||
|
len = p->len;
|
||
|
|
||
|
/* no use to transmit a zero length packet */
|
||
|
if (len == 0)
|
||
|
return 0;
|
||
|
|
||
|
/* return nonzero if out of tx descriptors */
|
||
|
if (nexttxd(di, txout) == di->txin)
|
||
|
goto outoftxd;
|
||
|
|
||
|
/* get physical address of buffer start */
|
||
|
pa = dma_map_single(di->dmadev, data, len, DMA_TO_DEVICE);
|
||
|
|
||
|
/* With a DMA segment list, Descriptor table is filled
|
||
|
* using the segment list instead of looping over
|
||
|
* buffers in multi-chain DMA. Therefore, EOF for SGLIST
|
||
|
* is when end of segment list is reached.
|
||
|
*/
|
||
|
flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
|
||
|
if (txout == (di->ntxd - 1))
|
||
|
flags |= D64_CTRL1_EOT;
|
||
|
|
||
|
dma64_dd_upd(di, di->txd64, pa, txout, &flags, len);
|
||
|
|
||
|
txout = nexttxd(di, txout);
|
||
|
|
||
|
/* save the packet */
|
||
|
di->txp[prevtxd(di, txout)] = p;
|
||
|
|
||
|
/* bump the tx descriptor index */
|
||
|
di->txout = txout;
|
||
|
|
||
|
/* kick the chip */
|
||
|
if (commit)
|
||
|
bcma_write32(di->core, DMA64TXREGOFFS(di, ptr),
|
||
|
di->xmtptrbase + I2B(txout, struct dma64desc));
|
||
|
|
||
|
/* tx flow control */
|
||
|
di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
outoftxd:
|
||
|
DMA_ERROR("%s: out of txds !!!\n", di->name);
|
||
|
brcmu_pkt_buf_free_skb(p);
|
||
|
di->dma.txavail = 0;
|
||
|
di->dma.txnobuf++;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reclaim next completed txd (txds if using chained buffers) in the range
|
||
|
* specified and return associated packet.
|
||
|
* If range is DMA_RANGE_TRANSMITTED, reclaim descriptors that have be
|
||
|
* transmitted as noted by the hardware "CurrDescr" pointer.
|
||
|
* If range is DMA_RANGE_TRANSFERED, reclaim descriptors that have be
|
||
|
* transferred by the DMA as noted by the hardware "ActiveDescr" pointer.
|
||
|
* If range is DMA_RANGE_ALL, reclaim all txd(s) posted to the ring and
|
||
|
* return associated packet regardless of the value of hardware pointers.
|
||
|
*/
|
||
|
struct sk_buff *dma_getnexttxp(struct dma_pub *pub, enum txd_range range)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *)pub;
|
||
|
u16 start, end, i;
|
||
|
u16 active_desc;
|
||
|
struct sk_buff *txp;
|
||
|
|
||
|
DMA_TRACE("%s: %s\n",
|
||
|
di->name,
|
||
|
range == DMA_RANGE_ALL ? "all" :
|
||
|
range == DMA_RANGE_TRANSMITTED ? "transmitted" :
|
||
|
"transferred");
|
||
|
|
||
|
if (di->ntxd == 0)
|
||
|
return NULL;
|
||
|
|
||
|
txp = NULL;
|
||
|
|
||
|
start = di->txin;
|
||
|
if (range == DMA_RANGE_ALL)
|
||
|
end = di->txout;
|
||
|
else {
|
||
|
end = (u16) (B2I(((bcma_read32(di->core,
|
||
|
DMA64TXREGOFFS(di, status0)) &
|
||
|
D64_XS0_CD_MASK) - di->xmtptrbase) &
|
||
|
D64_XS0_CD_MASK, struct dma64desc));
|
||
|
|
||
|
if (range == DMA_RANGE_TRANSFERED) {
|
||
|
active_desc =
|
||
|
(u16)(bcma_read32(di->core,
|
||
|
DMA64TXREGOFFS(di, status1)) &
|
||
|
D64_XS1_AD_MASK);
|
||
|
active_desc =
|
||
|
(active_desc - di->xmtptrbase) & D64_XS0_CD_MASK;
|
||
|
active_desc = B2I(active_desc, struct dma64desc);
|
||
|
if (end != active_desc)
|
||
|
end = prevtxd(di, active_desc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ((start == 0) && (end > di->txout))
|
||
|
goto bogus;
|
||
|
|
||
|
for (i = start; i != end && !txp; i = nexttxd(di, i)) {
|
||
|
dma_addr_t pa;
|
||
|
uint size;
|
||
|
|
||
|
pa = le32_to_cpu(di->txd64[i].addrlow) - di->dataoffsetlow;
|
||
|
|
||
|
size =
|
||
|
(le32_to_cpu(di->txd64[i].ctrl2) &
|
||
|
D64_CTRL2_BC_MASK);
|
||
|
|
||
|
di->txd64[i].addrlow = cpu_to_le32(0xdeadbeef);
|
||
|
di->txd64[i].addrhigh = cpu_to_le32(0xdeadbeef);
|
||
|
|
||
|
txp = di->txp[i];
|
||
|
di->txp[i] = NULL;
|
||
|
|
||
|
dma_unmap_single(di->dmadev, pa, size, DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
di->txin = i;
|
||
|
|
||
|
/* tx flow control */
|
||
|
di->dma.txavail = di->ntxd - ntxdactive(di, di->txin, di->txout) - 1;
|
||
|
|
||
|
return txp;
|
||
|
|
||
|
bogus:
|
||
|
DMA_NONE("bogus curr: start %d end %d txout %d\n",
|
||
|
start, end, di->txout);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Mac80211 initiated actions sometimes require packets in the DMA queue to be
|
||
|
* modified. The modified portion of the packet is not under control of the DMA
|
||
|
* engine. This function calls a caller-supplied function for each packet in
|
||
|
* the caller specified dma chain.
|
||
|
*/
|
||
|
void dma_walk_packets(struct dma_pub *dmah, void (*callback_fnc)
|
||
|
(void *pkt, void *arg_a), void *arg_a)
|
||
|
{
|
||
|
struct dma_info *di = (struct dma_info *) dmah;
|
||
|
uint i = di->txin;
|
||
|
uint end = di->txout;
|
||
|
struct sk_buff *skb;
|
||
|
struct ieee80211_tx_info *tx_info;
|
||
|
|
||
|
while (i != end) {
|
||
|
skb = (struct sk_buff *)di->txp[i];
|
||
|
if (skb != NULL) {
|
||
|
tx_info = (struct ieee80211_tx_info *)skb->cb;
|
||
|
(callback_fnc)(tx_info, arg_a);
|
||
|
}
|
||
|
i = nexttxd(di, i);
|
||
|
}
|
||
|
}
|