M7350/kernel/drivers/net/fddi/skfp/pcmplc.c

2015 lines
48 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/******************************************************************************
*
* (C)Copyright 1998,1999 SysKonnect,
* a business unit of Schneider & Koch & Co. Datensysteme GmbH.
*
* See the file "skfddi.c" for further information.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The information in this file is provided "AS IS" without warranty.
*
******************************************************************************/
/*
PCM
Physical Connection Management
*/
/*
* Hardware independent state machine implemantation
* The following external SMT functions are referenced :
*
* queue_event()
* smt_timer_start()
* smt_timer_stop()
*
* The following external HW dependent functions are referenced :
* sm_pm_control()
* sm_ph_linestate()
* sm_pm_ls_latch()
*
* The following HW dependent events are required :
* PC_QLS
* PC_ILS
* PC_HLS
* PC_MLS
* PC_NSE
* PC_LEM
*
*/
#include "h/types.h"
#include "h/fddi.h"
#include "h/smc.h"
#include "h/supern_2.h"
#define KERNEL
#include "h/smtstate.h"
#ifndef lint
static const char ID_sccs[] = "@(#)pcmplc.c 2.55 99/08/05 (C) SK " ;
#endif
#ifdef FDDI_MIB
extern int snmp_fddi_trap(
#ifdef ANSIC
struct s_smc * smc, int type, int index
#endif
);
#endif
#ifdef CONCENTRATOR
extern int plc_is_installed(
#ifdef ANSIC
struct s_smc *smc ,
int p
#endif
) ;
#endif
/*
* FSM Macros
*/
#define AFLAG (0x20)
#define GO_STATE(x) (mib->fddiPORTPCMState = (x)|AFLAG)
#define ACTIONS_DONE() (mib->fddiPORTPCMState &= ~AFLAG)
#define ACTIONS(x) (x|AFLAG)
/*
* PCM states
*/
#define PC0_OFF 0
#define PC1_BREAK 1
#define PC2_TRACE 2
#define PC3_CONNECT 3
#define PC4_NEXT 4
#define PC5_SIGNAL 5
#define PC6_JOIN 6
#define PC7_VERIFY 7
#define PC8_ACTIVE 8
#define PC9_MAINT 9
#ifdef DEBUG
/*
* symbolic state names
*/
static const char * const pcm_states[] = {
"PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
"PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
} ;
/*
* symbolic event names
*/
static const char * const pcm_events[] = {
"NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
"PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
"PC_ENABLE","PC_DISABLE",
"PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
"PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
"PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
"PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
"PC_NSE","PC_LEM"
} ;
#endif
#ifdef MOT_ELM
/*
* PCL-S control register
* this register in the PLC-S controls the scrambling parameters
*/
#define PLCS_CONTROL_C_U 0
#define PLCS_CONTROL_C_S (PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
PL_C_CIPHER_ENABLE)
#define PLCS_FASSERT_U 0
#define PLCS_FASSERT_S 0xFd76 /* 52.0 us */
#define PLCS_FDEASSERT_U 0
#define PLCS_FDEASSERT_S 0
#else /* nMOT_ELM */
/*
* PCL-S control register
* this register in the PLC-S controls the scrambling parameters
* can be patched for ANSI compliance if standard changes
*/
static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
#define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
#define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
#endif /* nMOT_ELM */
/*
* external vars
*/
/* struct definition see 'cmtdef.h' (also used by CFM) */
#define PS_OFF 0
#define PS_BIT3 1
#define PS_BIT4 2
#define PS_BIT7 3
#define PS_LCT 4
#define PS_BIT8 5
#define PS_JOIN 6
#define PS_ACTIVE 7
#define LCT_LEM_MAX 255
/*
* PLC timing parameter
*/
#define PLC_MS(m) ((int)((0x10000L-(m*100000L/2048))))
#define SLOW_TL_MIN PLC_MS(6)
#define SLOW_C_MIN PLC_MS(10)
static const struct plt {
int timer ; /* relative plc timer address */
int para ; /* default timing parameters */
} pltm[] = {
{ PL_C_MIN, SLOW_C_MIN }, /* min t. to remain Connect State */
{ PL_TL_MIN, SLOW_TL_MIN }, /* min t. to transmit a Line State */
{ PL_TB_MIN, TP_TB_MIN }, /* min break time */
{ PL_T_OUT, TP_T_OUT }, /* Signaling timeout */
{ PL_LC_LENGTH, TP_LC_LENGTH }, /* Link Confidence Test Time */
{ PL_T_SCRUB, TP_T_SCRUB }, /* Scrub Time == MAC TVX time ! */
{ PL_NS_MAX, TP_NS_MAX }, /* max t. that noise is tolerated */
{ 0,0 }
} ;
/*
* interrupt mask
*/
#ifdef SUPERNET_3
/*
* Do we need the EBUF error during signaling, too, to detect SUPERNET_3
* PLL bug?
*/
static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
#else /* SUPERNET_3 */
/*
* We do NOT need the elasticity buffer error during signaling.
*/
static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
PL_PCM_ENABLED | PL_SELF_TEST ;
#endif /* SUPERNET_3 */
static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
/* internal functions */
static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
static void reset_lem_struct(struct s_phy *phy);
static void plc_init(struct s_smc *smc, int p);
static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
static void sm_ph_lem_stop(struct s_smc *smc, int np);
static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
static void real_init_plc(struct s_smc *smc);
/*
* SMT timer interface
* start PCM timer 0
*/
static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
struct s_phy *phy)
{
phy->timer0_exp = FALSE ; /* clear timer event flag */
smt_timer_start(smc,&phy->pcm_timer0,value,
EV_TOKEN(EVENT_PCM+phy->np,event)) ;
}
/*
* SMT timer interface
* stop PCM timer 0
*/
static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
{
if (phy->pcm_timer0.tm_active)
smt_timer_stop(smc,&phy->pcm_timer0) ;
}
/*
init PCM state machine (called by driver)
clear all PCM vars and flags
*/
void pcm_init(struct s_smc *smc)
{
int i ;
int np ;
struct s_phy *phy ;
struct fddi_mib_p *mib ;
for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
/* Indicates the type of PHY being used */
mib = phy->mib ;
mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
phy->np = np ;
switch (smc->s.sas) {
#ifdef CONCENTRATOR
case SMT_SAS :
mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
break ;
case SMT_DAS :
mib->fddiPORTMy_Type = (np == PA) ? TA :
(np == PB) ? TB : TM ;
break ;
case SMT_NAC :
mib->fddiPORTMy_Type = TM ;
break;
#else
case SMT_SAS :
mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
FALSE ;
#ifndef SUPERNET_3
smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
#else
smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
#endif
break ;
case SMT_DAS :
mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
break ;
#endif
}
/*
* set PMD-type
*/
phy->pmd_scramble = 0 ;
switch (phy->pmd_type[PMD_SK_PMD]) {
case 'P' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
break ;
case 'L' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
break ;
case 'D' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
break ;
case 'S' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
phy->pmd_scramble = TRUE ;
break ;
case 'U' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
phy->pmd_scramble = TRUE ;
break ;
case '1' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
break ;
case '2' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
break ;
case '3' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
break ;
case '4' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
break ;
case 'H' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
break ;
case 'I' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
break ;
case 'G' :
mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
break ;
default:
mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
break ;
}
/*
* A and B port can be on primary and secondary path
*/
switch (mib->fddiPORTMy_Type) {
case TA :
mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
mib->fddiPORTRequestedPaths[2] =
MIB_P_PATH_LOCAL |
MIB_P_PATH_CON_ALTER |
MIB_P_PATH_SEC_PREFER ;
mib->fddiPORTRequestedPaths[3] =
MIB_P_PATH_LOCAL |
MIB_P_PATH_CON_ALTER |
MIB_P_PATH_SEC_PREFER |
MIB_P_PATH_THRU ;
break ;
case TB :
mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
mib->fddiPORTRequestedPaths[2] =
MIB_P_PATH_LOCAL |
MIB_P_PATH_PRIM_PREFER ;
mib->fddiPORTRequestedPaths[3] =
MIB_P_PATH_LOCAL |
MIB_P_PATH_PRIM_PREFER |
MIB_P_PATH_CON_PREFER |
MIB_P_PATH_THRU ;
break ;
case TS :
mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
mib->fddiPORTRequestedPaths[2] =
MIB_P_PATH_LOCAL |
MIB_P_PATH_CON_ALTER |
MIB_P_PATH_PRIM_PREFER ;
mib->fddiPORTRequestedPaths[3] =
MIB_P_PATH_LOCAL |
MIB_P_PATH_CON_ALTER |
MIB_P_PATH_PRIM_PREFER ;
break ;
case TM :
mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
mib->fddiPORTRequestedPaths[2] =
MIB_P_PATH_LOCAL |
MIB_P_PATH_SEC_ALTER |
MIB_P_PATH_PRIM_ALTER ;
mib->fddiPORTRequestedPaths[3] = 0 ;
break ;
}
phy->pc_lem_fail = FALSE ;
mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
mib->fddiPORTLCTFail_Ct = 0 ;
mib->fddiPORTBS_Flag = 0 ;
mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
mib->fddiPORTNeighborType = TNONE ;
phy->ls_flag = 0 ;
phy->rc_flag = 0 ;
phy->tc_flag = 0 ;
phy->td_flag = 0 ;
if (np >= PM)
phy->phy_name = '0' + np - PM ;
else
phy->phy_name = 'A' + np ;
phy->wc_flag = FALSE ; /* set by SMT */
memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
reset_lem_struct(phy) ;
memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
phy->plc.p_state = PS_OFF ;
for (i = 0 ; i < NUMBITS ; i++) {
phy->t_next[i] = 0 ;
}
}
real_init_plc(smc) ;
}
void init_plc(struct s_smc *smc)
{
SK_UNUSED(smc) ;
/*
* dummy
* this is an obsolete public entry point that has to remain
* for compat. It is used by various drivers.
* the work is now done in real_init_plc()
* which is called from pcm_init() ;
*/
}
static void real_init_plc(struct s_smc *smc)
{
int p ;
for (p = 0 ; p < NUMPHYS ; p++)
plc_init(smc,p) ;
}
static void plc_init(struct s_smc *smc, int p)
{
int i ;
#ifndef MOT_ELM
int rev ; /* Revision of PLC-x */
#endif /* MOT_ELM */
/* transit PCM state machine to MAINT state */
outpw(PLC(p,PL_CNTRL_B),0) ;
outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
outpw(PLC(p,PL_CNTRL_A),0) ;
/*
* if PLC-S then set control register C
*/
#ifndef MOT_ELM
rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
if (rev != PLC_REVISION_A)
#endif /* MOT_ELM */
{
if (smc->y[p].pmd_scramble) {
outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
#ifdef MOT_ELM
outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
#endif /* MOT_ELM */
}
else {
outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
#ifdef MOT_ELM
outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
#endif /* MOT_ELM */
}
}
/*
* set timer register
*/
for ( i = 0 ; pltm[i].timer; i++) /* set timer parameter reg */
outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
(void)inpw(PLC(p,PL_INTR_EVENT)) ; /* clear interrupt event reg */
plc_clear_irq(smc,p) ;
outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
/*
* if PCM is configured for class s, it will NOT go to the
* REMOVE state if offline (page 3-36;)
* in the concentrator, all inactive PHYS always must be in
* the remove state
* there's no real need to use this feature at all ..
*/
#ifndef CONCENTRATOR
if ((smc->s.sas == SMT_SAS) && (p == PS)) {
outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
}
#endif
}
/*
* control PCM state machine
*/
static void plc_go_state(struct s_smc *smc, int p, int state)
{
HW_PTR port ;
int val ;
SK_UNUSED(smc) ;
port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
outpw(port,val) ;
outpw(port,val | state) ;
}
/*
* read current line state (called by ECM & PCM)
*/
int sm_pm_get_ls(struct s_smc *smc, int phy)
{
int state ;
#ifdef CONCENTRATOR
if (!plc_is_installed(smc,phy))
return PC_QLS;
#endif
state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
switch(state) {
case PL_L_QLS:
state = PC_QLS ;
break ;
case PL_L_MLS:
state = PC_MLS ;
break ;
case PL_L_HLS:
state = PC_HLS ;
break ;
case PL_L_ILS4:
case PL_L_ILS16:
state = PC_ILS ;
break ;
case PL_L_ALS:
state = PC_LS_PDR ;
break ;
default :
state = PC_LS_NONE ;
}
return state;
}
static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
{
int np = phy->np ; /* PHY index */
int n ;
int i ;
SK_UNUSED(smc) ;
/* create bit vector */
for (i = len-1,n = 0 ; i >= 0 ; i--) {
n = (n<<1) | phy->t_val[phy->bitn+i] ;
}
if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
#if 0
printf("PL_PCM_SIGNAL is set\n") ;
#endif
return 1;
}
/* write bit[n] & length = 1 to regs */
outpw(PLC(np,PL_VECTOR_LEN),len-1) ; /* len=nr-1 */
outpw(PLC(np,PL_XMIT_VECTOR),n) ;
#ifdef DEBUG
#if 1
#ifdef DEBUG_BRD
if (smc->debug.d_plc & 0x80)
#else
if (debug.d_plc & 0x80)
#endif
printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
#endif
#endif
return 0;
}
/*
* config plc muxes
*/
void plc_config_mux(struct s_smc *smc, int mux)
{
if (smc->s.sas != SMT_DAS)
return ;
if (mux == MUX_WRAPB) {
SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
}
else {
CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
}
CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
}
/*
PCM state machine
called by dispatcher & fddi_init() (driver)
do
display state change
process event
until SM is stable
*/
void pcm(struct s_smc *smc, const int np, int event)
{
int state ;
int oldstate ;
struct s_phy *phy ;
struct fddi_mib_p *mib ;
#ifndef CONCENTRATOR
/*
* ignore 2nd PHY if SAS
*/
if ((np != PS) && (smc->s.sas == SMT_SAS))
return ;
#endif
phy = &smc->y[np] ;
mib = phy->mib ;
oldstate = mib->fddiPORTPCMState ;
do {
DB_PCM("PCM %c: state %s",
phy->phy_name,
(mib->fddiPORTPCMState & AFLAG) ? "ACTIONS " : "") ;
DB_PCM("%s, event %s\n",
pcm_states[mib->fddiPORTPCMState & ~AFLAG],
pcm_events[event]) ;
state = mib->fddiPORTPCMState ;
pcm_fsm(smc,phy,event) ;
event = 0 ;
} while (state != mib->fddiPORTPCMState) ;
/*
* because the PLC does the bit signaling for us,
* we're always in SIGNAL state
* the MIB want's to see CONNECT
* we therefore fake an entry in the MIB
*/
if (state == PC5_SIGNAL)
mib->fddiPORTPCMStateX = PC3_CONNECT ;
else
mib->fddiPORTPCMStateX = state ;
#ifndef SLIM_SMT
/*
* path change
*/
if ( mib->fddiPORTPCMState != oldstate &&
((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
(int) (INDEX_PORT+ phy->np),0) ;
}
#endif
#ifdef FDDI_MIB
/* check whether a snmp-trap has to be sent */
if ( mib->fddiPORTPCMState != oldstate ) {
/* a real state change took place */
DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
if ( mib->fddiPORTPCMState == PC0_OFF ) {
/* send first trap */
snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
} else if ( oldstate == PC0_OFF ) {
/* send second trap */
snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
} else if ( mib->fddiPORTPCMState != PC2_TRACE &&
oldstate == PC8_ACTIVE ) {
/* send third trap */
snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
} else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
/* send fourth trap */
snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
}
}
#endif
pcm_state_change(smc,np,state) ;
}
/*
* PCM state machine
*/
static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
{
int i ;
int np = phy->np ; /* PHY index */
struct s_plc *plc ;
struct fddi_mib_p *mib ;
#ifndef MOT_ELM
u_short plc_rev ; /* Revision of the plc */
#endif /* nMOT_ELM */
plc = &phy->plc ;
mib = phy->mib ;
/*
* general transitions independent of state
*/
switch (cmd) {
case PC_STOP :
/*PC00-PC80*/
if (mib->fddiPORTPCMState != PC9_MAINT) {
GO_STATE(PC0_OFF) ;
AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
smt_get_port_event_word(smc));
}
return ;
case PC_START :
/*PC01-PC81*/
if (mib->fddiPORTPCMState != PC9_MAINT)
GO_STATE(PC1_BREAK) ;
return ;
case PC_DISABLE :
/* PC09-PC99 */
GO_STATE(PC9_MAINT) ;
AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
smt_get_port_event_word(smc));
return ;
case PC_TIMEOUT_LCT :
/* if long or extended LCT */
stop_pcm_timer0(smc,phy) ;
CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
/* end of LCT is indicate by PCM_CODE (initiate PCM event) */
return ;
}
switch(mib->fddiPORTPCMState) {
case ACTIONS(PC0_OFF) :
stop_pcm_timer0(smc,phy) ;
outpw(PLC(np,PL_CNTRL_A),0) ;
CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
sm_ph_lem_stop(smc,np) ; /* disable LEM */
phy->cf_loop = FALSE ;
phy->cf_join = FALSE ;
queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
plc_go_state(smc,np,PL_PCM_STOP) ;
mib->fddiPORTConnectState = PCM_DISABLED ;
ACTIONS_DONE() ;
break ;
case PC0_OFF:
/*PC09*/
if (cmd == PC_MAINT) {
GO_STATE(PC9_MAINT) ;
break ;
}
break ;
case ACTIONS(PC1_BREAK) :
/* Stop the LCT timer if we came from Signal state */
stop_pcm_timer0(smc,phy) ;
ACTIONS_DONE() ;
plc_go_state(smc,np,0) ;
CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
sm_ph_lem_stop(smc,np) ; /* disable LEM */
/*
* if vector is already loaded, go to OFF to clear PCM_SIGNAL
*/
#if 0
if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
plc_go_state(smc,np,PL_PCM_STOP) ;
/* TB_MIN ? */
}
#endif
/*
* Go to OFF state in any case.
*/
plc_go_state(smc,np,PL_PCM_STOP) ;
if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
mib->fddiPORTConnectState = PCM_CONNECTING ;
phy->cf_loop = FALSE ;
phy->cf_join = FALSE ;
queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
phy->ls_flag = FALSE ;
phy->pc_mode = PM_NONE ; /* needed by CFM */
phy->bitn = 0 ; /* bit signaling start bit */
for (i = 0 ; i < 3 ; i++)
pc_tcode_actions(smc,i,phy) ;
/* Set the non-active interrupt mask register */
outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
/*
* If the LCT was stopped. There might be a
* PCM_CODE interrupt event present.
* This must be cleared.
*/
(void)inpw(PLC(np,PL_INTR_EVENT)) ;
#ifndef MOT_ELM
/* Get the plc revision for revision dependent code */
plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
if (plc_rev != PLC_REV_SN3)
#endif /* MOT_ELM */
{
/*
* No supernet III PLC, so set Xmit verctor and
* length BEFORE starting the state machine.
*/
if (plc_send_bits(smc,phy,3)) {
return ;
}
}
/*
* Now give the Start command.
* - The start command shall be done before setting the bits
* to be signaled. (In PLC-S description and PLCS in SN3.
* - The start command shall be issued AFTER setting the
* XMIT vector and the XMIT length register.
*
* We do it exactly according this specs for the old PLC and
* the new PLCS inside the SN3.
* For the usual PLCS we try it the way it is done for the
* old PLC and set the XMIT registers again, if the PLC is
* not in SIGNAL state. This is done according to an PLCS
* errata workaround.
*/
plc_go_state(smc,np,PL_PCM_START) ;
/*
* workaround for PLC-S eng. sample errata
*/
#ifdef MOT_ELM
if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
#else /* nMOT_ELM */
if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
PLC_REVISION_A) &&
!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
#endif /* nMOT_ELM */
{
/*
* Set register again (PLCS errata) or the first time
* (new SN3 PLCS).
*/
(void) plc_send_bits(smc,phy,3) ;
}
/*
* end of workaround
*/
GO_STATE(PC5_SIGNAL) ;
plc->p_state = PS_BIT3 ;
plc->p_bits = 3 ;
plc->p_start = 0 ;
break ;
case PC1_BREAK :
break ;
case ACTIONS(PC2_TRACE) :
plc_go_state(smc,np,PL_PCM_TRACE) ;
ACTIONS_DONE() ;
break ;
case PC2_TRACE :
break ;
case PC3_CONNECT : /* these states are done by hardware */
case PC4_NEXT :
break ;
case ACTIONS(PC5_SIGNAL) :
ACTIONS_DONE() ;
case PC5_SIGNAL :
if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
break ;
switch (plc->p_state) {
case PS_BIT3 :
for (i = 0 ; i <= 2 ; i++)
pc_rcode_actions(smc,i,phy) ;
pc_tcode_actions(smc,3,phy) ;
plc->p_state = PS_BIT4 ;
plc->p_bits = 1 ;
plc->p_start = 3 ;
phy->bitn = 3 ;
if (plc_send_bits(smc,phy,1)) {
return ;
}
break ;
case PS_BIT4 :
pc_rcode_actions(smc,3,phy) ;
for (i = 4 ; i <= 6 ; i++)
pc_tcode_actions(smc,i,phy) ;
plc->p_state = PS_BIT7 ;
plc->p_bits = 3 ;
plc->p_start = 4 ;
phy->bitn = 4 ;
if (plc_send_bits(smc,phy,3)) {
return ;
}
break ;
case PS_BIT7 :
for (i = 3 ; i <= 6 ; i++)
pc_rcode_actions(smc,i,phy) ;
plc->p_state = PS_LCT ;
plc->p_bits = 0 ;
plc->p_start = 7 ;
phy->bitn = 7 ;
sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
/* start LCT */
i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
outpw(PLC(np,PL_CNTRL_B),i) ; /* must be cleared */
outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
break ;
case PS_LCT :
/* check for local LCT failure */
pc_tcode_actions(smc,7,phy) ;
/*
* set tval[7]
*/
plc->p_state = PS_BIT8 ;
plc->p_bits = 1 ;
plc->p_start = 7 ;
phy->bitn = 7 ;
if (plc_send_bits(smc,phy,1)) {
return ;
}
break ;
case PS_BIT8 :
/* check for remote LCT failure */
pc_rcode_actions(smc,7,phy) ;
if (phy->t_val[7] || phy->r_val[7]) {
plc_go_state(smc,np,PL_PCM_STOP) ;
GO_STATE(PC1_BREAK) ;
break ;
}
for (i = 8 ; i <= 9 ; i++)
pc_tcode_actions(smc,i,phy) ;
plc->p_state = PS_JOIN ;
plc->p_bits = 2 ;
plc->p_start = 8 ;
phy->bitn = 8 ;
if (plc_send_bits(smc,phy,2)) {
return ;
}
break ;
case PS_JOIN :
for (i = 8 ; i <= 9 ; i++)
pc_rcode_actions(smc,i,phy) ;
plc->p_state = PS_ACTIVE ;
GO_STATE(PC6_JOIN) ;
break ;
}
break ;
case ACTIONS(PC6_JOIN) :
/*
* prevent mux error when going from WRAP_A to WRAP_B
*/
if (smc->s.sas == SMT_DAS && np == PB &&
(smc->y[PA].pc_mode == PM_TREE ||
smc->y[PB].pc_mode == PM_TREE)) {
SETMASK(PLC(np,PL_CNTRL_A),
PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
SETMASK(PLC(np,PL_CNTRL_B),
PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
}
SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
ACTIONS_DONE() ;
cmd = 0 ;
/* fall thru */
case PC6_JOIN :
switch (plc->p_state) {
case PS_ACTIVE:
/*PC88b*/
if (!phy->cf_join) {
phy->cf_join = TRUE ;
queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
}
if (cmd == PC_JOIN)
GO_STATE(PC8_ACTIVE) ;
/*PC82*/
if (cmd == PC_TRACE) {
GO_STATE(PC2_TRACE) ;
break ;
}
break ;
}
break ;
case PC7_VERIFY :
break ;
case ACTIONS(PC8_ACTIVE) :
/*
* start LEM for SMT
*/
sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
phy->tr_flag = FALSE ;
mib->fddiPORTConnectState = PCM_ACTIVE ;
/* Set the active interrupt mask register */
outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
ACTIONS_DONE() ;
break ;
case PC8_ACTIVE :
/*PC81 is done by PL_TNE_EXPIRED irq */
/*PC82*/
if (cmd == PC_TRACE) {
GO_STATE(PC2_TRACE) ;
break ;
}
/*PC88c: is done by TRACE_PROP irq */
break ;
case ACTIONS(PC9_MAINT) :
stop_pcm_timer0(smc,phy) ;
CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ; /* disable LEM int. */
sm_ph_lem_stop(smc,np) ; /* disable LEM */
phy->cf_loop = FALSE ;
phy->cf_join = FALSE ;
queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
plc_go_state(smc,np,PL_PCM_STOP) ;
mib->fddiPORTConnectState = PCM_DISABLED ;
SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
ACTIONS_DONE() ;
break ;
case PC9_MAINT :
DB_PCMN(1,"PCM %c : MAINT\n",phy->phy_name,0) ;
/*PC90*/
if (cmd == PC_ENABLE) {
GO_STATE(PC0_OFF) ;
break ;
}
break ;
default:
SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
break ;
}
}
/*
* force line state on a PHY output (only in MAINT state)
*/
static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
{
int cntrl ;
SK_UNUSED(smc) ;
cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
PL_PCM_STOP | PL_MAINT ;
switch(ls) {
case PC_QLS: /* Force Quiet */
cntrl |= PL_M_QUI0 ;
break ;
case PC_MLS: /* Force Master */
cntrl |= PL_M_MASTR ;
break ;
case PC_HLS: /* Force Halt */
cntrl |= PL_M_HALT ;
break ;
default :
case PC_ILS: /* Force Idle */
cntrl |= PL_M_IDLE ;
break ;
case PC_LS_PDR: /* Enable repeat filter */
cntrl |= PL_M_TPDR ;
break ;
}
outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
}
static void reset_lem_struct(struct s_phy *phy)
{
struct lem_counter *lem = &phy->lem ;
phy->mib->fddiPORTLer_Estimate = 15 ;
lem->lem_float_ber = 15 * 100 ;
}
/*
* link error monitor
*/
static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
{
int ber ;
u_long errors ;
struct lem_counter *lem = &phy->lem ;
struct fddi_mib_p *mib ;
int cond ;
mib = phy->mib ;
if (!lem->lem_on)
return ;
errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
lem->lem_errors += errors ;
mib->fddiPORTLem_Ct += errors ;
errors = lem->lem_errors ;
/*
* calculation is called on a intervall of 8 seconds
* -> this means, that one error in 8 sec. is one of 8*125*10E6
* the same as BER = 10E-9
* Please note:
* -> 9 errors in 8 seconds mean:
* BER = 9 * 10E-9 and this is
* < 10E-8, so the limit of 10E-8 is not reached!
*/
if (!errors) ber = 15 ;
else if (errors <= 9) ber = 9 ;
else if (errors <= 99) ber = 8 ;
else if (errors <= 999) ber = 7 ;
else if (errors <= 9999) ber = 6 ;
else if (errors <= 99999) ber = 5 ;
else if (errors <= 999999) ber = 4 ;
else if (errors <= 9999999) ber = 3 ;
else if (errors <= 99999999) ber = 2 ;
else if (errors <= 999999999) ber = 1 ;
else ber = 0 ;
/*
* weighted average
*/
ber *= 100 ;
lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
lem->lem_float_ber /= 10 ;
mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
if (mib->fddiPORTLer_Estimate < 4) {
mib->fddiPORTLer_Estimate = 4 ;
}
if (lem->lem_errors) {
DB_PCMN(1,"LEM %c :\n",phy->np == PB? 'B' : 'A',0) ;
DB_PCMN(1,"errors : %ld\n",lem->lem_errors,0) ;
DB_PCMN(1,"sum_errors : %ld\n",mib->fddiPORTLem_Ct,0) ;
DB_PCMN(1,"current BER : 10E-%d\n",ber/100,0) ;
DB_PCMN(1,"float BER : 10E-(%d/100)\n",lem->lem_float_ber,0) ;
DB_PCMN(1,"avg. BER : 10E-%d\n",
mib->fddiPORTLer_Estimate,0) ;
}
lem->lem_errors = 0L ;
#ifndef SLIM_SMT
cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
TRUE : FALSE ;
#ifdef SMT_EXT_CUTOFF
smt_ler_alarm_check(smc,phy,cond) ;
#endif /* nSMT_EXT_CUTOFF */
if (cond != mib->fddiPORTLerFlag) {
smt_srf_event(smc,SMT_COND_PORT_LER,
(int) (INDEX_PORT+ phy->np) ,cond) ;
}
#endif
if ( mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
phy->pc_lem_fail = TRUE ; /* flag */
mib->fddiPORTLem_Reject_Ct++ ;
/*
* "forgive 10e-2" if we cutoff so we can come
* up again ..
*/
lem->lem_float_ber += 2*100 ;
/*PC81b*/
#ifdef CONCENTRATOR
DB_PCMN(1,"PCM: LER cutoff on port %d cutoff %d\n",
phy->np, mib->fddiPORTLer_Cutoff) ;
#endif
#ifdef SMT_EXT_CUTOFF
smt_port_off_event(smc,phy->np);
#else /* nSMT_EXT_CUTOFF */
queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
#endif /* nSMT_EXT_CUTOFF */
}
}
/*
* called by SMT to calculate LEM bit error rate
*/
void sm_lem_evaluate(struct s_smc *smc)
{
int np ;
for (np = 0 ; np < NUMPHYS ; np++)
lem_evaluate(smc,&smc->y[np]) ;
}
static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
{
struct lem_counter *lem = &phy->lem ;
struct fddi_mib_p *mib ;
int errors ;
mib = phy->mib ;
phy->pc_lem_fail = FALSE ; /* flag */
errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
lem->lem_errors += errors ;
mib->fddiPORTLem_Ct += errors ;
if (lem->lem_errors) {
switch(phy->lc_test) {
case LC_SHORT:
if (lem->lem_errors >= smc->s.lct_short)
phy->pc_lem_fail = TRUE ;
break ;
case LC_MEDIUM:
if (lem->lem_errors >= smc->s.lct_medium)
phy->pc_lem_fail = TRUE ;
break ;
case LC_LONG:
if (lem->lem_errors >= smc->s.lct_long)
phy->pc_lem_fail = TRUE ;
break ;
case LC_EXTENDED:
if (lem->lem_errors >= smc->s.lct_extended)
phy->pc_lem_fail = TRUE ;
break ;
}
DB_PCMN(1," >>errors : %d\n",lem->lem_errors,0) ;
}
if (phy->pc_lem_fail) {
mib->fddiPORTLCTFail_Ct++ ;
mib->fddiPORTLem_Reject_Ct++ ;
}
else
mib->fddiPORTLCTFail_Ct = 0 ;
}
/*
* LEM functions
*/
static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
{
struct lem_counter *lem = &smc->y[np].lem ;
lem->lem_on = 1 ;
lem->lem_errors = 0L ;
/* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
* often.
*/
outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
(void)inpw(PLC(np,PL_LINK_ERR_CTR)) ; /* clear error counter */
/* enable LE INT */
SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
}
static void sm_ph_lem_stop(struct s_smc *smc, int np)
{
struct lem_counter *lem = &smc->y[np].lem ;
lem->lem_on = 0 ;
CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
}
/* ARGSUSED */
void sm_pm_ls_latch(struct s_smc *smc, int phy, int on_off)
/* int on_off; en- or disable ident. ls */
{
SK_UNUSED(smc) ;
phy = phy ; on_off = on_off ;
}
/*
* PCM pseudo code
* receive actions are called AFTER the bit n is received,
* i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
*/
/*
* PCM pseudo code 5.1 .. 6.1
*/
static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
{
struct fddi_mib_p *mib ;
mib = phy->mib ;
DB_PCMN(1,"SIG rec %x %x:\n", bit,phy->r_val[bit] ) ;
bit++ ;
switch(bit) {
case 0:
case 1:
case 2:
break ;
case 3 :
if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
mib->fddiPORTNeighborType = TA ;
else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
mib->fddiPORTNeighborType = TB ;
else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
mib->fddiPORTNeighborType = TS ;
else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
mib->fddiPORTNeighborType = TM ;
break ;
case 4:
if (mib->fddiPORTMy_Type == TM &&
mib->fddiPORTNeighborType == TM) {
DB_PCMN(1,"PCM %c : E100 withhold M-M\n",
phy->phy_name,0) ;
mib->fddiPORTPC_Withhold = PC_WH_M_M ;
RS_SET(smc,RS_EVENT) ;
}
else if (phy->t_val[3] || phy->r_val[3]) {
mib->fddiPORTPC_Withhold = PC_WH_NONE ;
if (mib->fddiPORTMy_Type == TM ||
mib->fddiPORTNeighborType == TM)
phy->pc_mode = PM_TREE ;
else
phy->pc_mode = PM_PEER ;
/* reevaluate the selection criteria (wc_flag) */
all_selection_criteria (smc);
if (phy->wc_flag) {
mib->fddiPORTPC_Withhold = PC_WH_PATH ;
}
}
else {
mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
RS_SET(smc,RS_EVENT) ;
DB_PCMN(1,"PCM %c : E101 withhold other\n",
phy->phy_name,0) ;
}
phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
(mib->fddiPORTMy_Type != TM) &&
(mib->fddiPORTNeighborType ==
mib->fddiPORTMy_Type)) ;
if (phy->twisted) {
DB_PCMN(1,"PCM %c : E102 !!! TWISTED !!!\n",
phy->phy_name,0) ;
}
break ;
case 5 :
break ;
case 6:
if (phy->t_val[4] || phy->r_val[4]) {
if ((phy->t_val[4] && phy->t_val[5]) ||
(phy->r_val[4] && phy->r_val[5]) )
phy->lc_test = LC_EXTENDED ;
else
phy->lc_test = LC_LONG ;
}
else if (phy->t_val[5] || phy->r_val[5])
phy->lc_test = LC_MEDIUM ;
else
phy->lc_test = LC_SHORT ;
switch (phy->lc_test) {
case LC_SHORT : /* 50ms */
outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
phy->t_next[7] = smc->s.pcm_lc_short ;
break ;
case LC_MEDIUM : /* 500ms */
outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
phy->t_next[7] = smc->s.pcm_lc_medium ;
break ;
case LC_LONG :
SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
phy->t_next[7] = smc->s.pcm_lc_long ;
break ;
case LC_EXTENDED :
SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
phy->t_next[7] = smc->s.pcm_lc_extended ;
break ;
}
if (phy->t_next[7] > smc->s.pcm_lc_medium) {
start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
}
DB_PCMN(1,"LCT timer = %ld us\n", phy->t_next[7], 0) ;
phy->t_next[9] = smc->s.pcm_t_next_9 ;
break ;
case 7:
if (phy->t_val[6]) {
phy->cf_loop = TRUE ;
}
phy->td_flag = TRUE ;
break ;
case 8:
if (phy->t_val[7] || phy->r_val[7]) {
DB_PCMN(1,"PCM %c : E103 LCT fail %s\n",
phy->phy_name,phy->t_val[7]? "local":"remote") ;
queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
}
break ;
case 9:
if (phy->t_val[8] || phy->r_val[8]) {
if (phy->t_val[8])
phy->cf_loop = TRUE ;
phy->td_flag = TRUE ;
}
break ;
case 10:
if (phy->r_val[9]) {
/* neighbor intends to have MAC on output */ ;
mib->fddiPORTMacIndicated.R_val = TRUE ;
}
else {
/* neighbor does not intend to have MAC on output */ ;
mib->fddiPORTMacIndicated.R_val = FALSE ;
}
break ;
}
}
/*
* PCM pseudo code 5.1 .. 6.1
*/
static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
{
int np = phy->np ;
struct fddi_mib_p *mib ;
mib = phy->mib ;
switch(bit) {
case 0:
phy->t_val[0] = 0 ; /* no escape used */
break ;
case 1:
if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
phy->t_val[1] = 1 ;
else
phy->t_val[1] = 0 ;
break ;
case 2 :
if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
phy->t_val[2] = 1 ;
else
phy->t_val[2] = 0 ;
break ;
case 3:
{
int type,ne ;
int policy ;
type = mib->fddiPORTMy_Type ;
ne = mib->fddiPORTNeighborType ;
policy = smc->mib.fddiSMTConnectionPolicy ;
phy->t_val[3] = 1 ; /* Accept connection */
switch (type) {
case TA :
if (
((policy & POLICY_AA) && ne == TA) ||
((policy & POLICY_AB) && ne == TB) ||
((policy & POLICY_AS) && ne == TS) ||
((policy & POLICY_AM) && ne == TM) )
phy->t_val[3] = 0 ; /* Reject */
break ;
case TB :
if (
((policy & POLICY_BA) && ne == TA) ||
((policy & POLICY_BB) && ne == TB) ||
((policy & POLICY_BS) && ne == TS) ||
((policy & POLICY_BM) && ne == TM) )
phy->t_val[3] = 0 ; /* Reject */
break ;
case TS :
if (
((policy & POLICY_SA) && ne == TA) ||
((policy & POLICY_SB) && ne == TB) ||
((policy & POLICY_SS) && ne == TS) ||
((policy & POLICY_SM) && ne == TM) )
phy->t_val[3] = 0 ; /* Reject */
break ;
case TM :
if ( ne == TM ||
((policy & POLICY_MA) && ne == TA) ||
((policy & POLICY_MB) && ne == TB) ||
((policy & POLICY_MS) && ne == TS) ||
((policy & POLICY_MM) && ne == TM) )
phy->t_val[3] = 0 ; /* Reject */
break ;
}
#ifndef SLIM_SMT
/*
* detect undesirable connection attempt event
*/
if ( (type == TA && ne == TA ) ||
(type == TA && ne == TS ) ||
(type == TB && ne == TB ) ||
(type == TB && ne == TS ) ||
(type == TS && ne == TA ) ||
(type == TS && ne == TB ) ) {
smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
(int) (INDEX_PORT+ phy->np) ,0) ;
}
#endif
}
break ;
case 4:
if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
if (phy->pc_lem_fail) {
phy->t_val[4] = 1 ; /* long */
phy->t_val[5] = 0 ;
}
else {
phy->t_val[4] = 0 ;
if (mib->fddiPORTLCTFail_Ct > 0)
phy->t_val[5] = 1 ; /* medium */
else
phy->t_val[5] = 0 ; /* short */
/*
* Implementers choice: use medium
* instead of short when undesired
* connection attempt is made.
*/
if (phy->wc_flag)
phy->t_val[5] = 1 ; /* medium */
}
mib->fddiPORTConnectState = PCM_CONNECTING ;
}
else {
mib->fddiPORTConnectState = PCM_STANDBY ;
phy->t_val[4] = 1 ; /* extended */
phy->t_val[5] = 1 ;
}
break ;
case 5:
break ;
case 6:
/* we do NOT have a MAC for LCT */
phy->t_val[6] = 0 ;
break ;
case 7:
phy->cf_loop = FALSE ;
lem_check_lct(smc,phy) ;
if (phy->pc_lem_fail) {
DB_PCMN(1,"PCM %c : E104 LCT failed\n",
phy->phy_name,0) ;
phy->t_val[7] = 1 ;
}
else
phy->t_val[7] = 0 ;
break ;
case 8:
phy->t_val[8] = 0 ; /* Don't request MAC loopback */
break ;
case 9:
phy->cf_loop = 0 ;
if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
queue_event(smc,EVENT_PCM+np,PC_START) ;
break ;
}
phy->t_val[9] = FALSE ;
switch (smc->s.sas) {
case SMT_DAS :
/*
* MAC intended on output
*/
if (phy->pc_mode == PM_TREE) {
if ((np == PB) || ((np == PA) &&
(smc->y[PB].mib->fddiPORTConnectState !=
PCM_ACTIVE)))
phy->t_val[9] = TRUE ;
}
else {
if (np == PB)
phy->t_val[9] = TRUE ;
}
break ;
case SMT_SAS :
if (np == PS)
phy->t_val[9] = TRUE ;
break ;
#ifdef CONCENTRATOR
case SMT_NAC :
/*
* MAC intended on output
*/
if (np == PB)
phy->t_val[9] = TRUE ;
break ;
#endif
}
mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
break ;
}
DB_PCMN(1,"SIG snd %x %x:\n", bit,phy->t_val[bit] ) ;
}
/*
* return status twisted (called by SMT)
*/
int pcm_status_twisted(struct s_smc *smc)
{
int twist = 0 ;
if (smc->s.sas != SMT_DAS)
return 0;
if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
twist |= 1 ;
if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
twist |= 2 ;
return twist;
}
/*
* return status (called by SMT)
* type
* state
* remote phy type
* remote mac yes/no
*/
void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
int *remote, int *mac)
{
struct s_phy *phy = &smc->y[np] ;
struct fddi_mib_p *mib ;
mib = phy->mib ;
/* remote PHY type and MAC - set only if active */
*mac = 0 ;
*type = mib->fddiPORTMy_Type ; /* our PHY type */
*state = mib->fddiPORTConnectState ;
*remote = mib->fddiPORTNeighborType ;
switch(mib->fddiPORTPCMState) {
case PC8_ACTIVE :
*mac = mib->fddiPORTMacIndicated.R_val ;
break ;
}
}
/*
* return rooted station status (called by SMT)
*/
int pcm_rooted_station(struct s_smc *smc)
{
int n ;
for (n = 0 ; n < NUMPHYS ; n++) {
if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
smc->y[n].mib->fddiPORTNeighborType == TM)
return 0;
}
return 1;
}
/*
* Interrupt actions for PLC & PCM events
*/
void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
/* int np; PHY index */
{
struct s_phy *phy = &smc->y[np] ;
struct s_plc *plc = &phy->plc ;
int n ;
#ifdef SUPERNET_3
int corr_mask ;
#endif /* SUPERNET_3 */
int i ;
if (np >= smc->s.numphys) {
plc->soft_err++ ;
return ;
}
if (cmd & PL_EBUF_ERR) { /* elastic buff. det. over-|underflow*/
/*
* Check whether the SRF Condition occurred.
*/
if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
/*
* This is the real Elasticity Error.
* More than one in a row are treated as a
* single one.
* Only count this in the active state.
*/
phy->mib->fddiPORTEBError_Ct ++ ;
}
plc->ebuf_err++ ;
if (plc->ebuf_cont <= 1000) {
/*
* Prevent counter from being wrapped after
* hanging years in that interrupt.
*/
plc->ebuf_cont++ ; /* Ebuf continuous error */
}
#ifdef SUPERNET_3
if (plc->ebuf_cont == 1000 &&
((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
PLC_REV_SN3)) {
/*
* This interrupt remeained high for at least
* 1000 consecutive interrupt calls.
*
* This is caused by a hardware error of the
* ORION part of the Supernet III chipset.
*
* Disable this bit from the mask.
*/
corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
outpw(PLC(np,PL_INTR_MASK),corr_mask);
/*
* Disconnect from the ring.
* Call the driver with the reset indication.
*/
queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
/*
* Make an error log entry.
*/
SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
/*
* Indicate the Reset.
*/
drv_reset_indication(smc) ;
}
#endif /* SUPERNET_3 */
} else {
/* Reset the continuous error variable */
plc->ebuf_cont = 0 ; /* reset Ebuf continuous error */
}
if (cmd & PL_PHYINV) { /* physical layer invalid signal */
plc->phyinv++ ;
}
if (cmd & PL_VSYM_CTR) { /* violation symbol counter has incr.*/
plc->vsym_ctr++ ;
}
if (cmd & PL_MINI_CTR) { /* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
plc->mini_ctr++ ;
}
if (cmd & PL_LE_CTR) { /* link error event counter */
int j ;
/*
* note: PL_LINK_ERR_CTR MUST be read to clear it
*/
j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
if (i < j) {
/* wrapped around */
i += 256 ;
}
if (phy->lem.lem_on) {
/* Note: Lem errors shall only be counted when
* link is ACTIVE or LCT is active.
*/
phy->lem.lem_errors += i ;
phy->mib->fddiPORTLem_Ct += i ;
}
}
if (cmd & PL_TPC_EXPIRED) { /* TPC timer reached zero */
if (plc->p_state == PS_LCT) {
/*
* end of LCT
*/
;
}
plc->tpc_exp++ ;
}
if (cmd & PL_LS_MATCH) { /* LS == LS in PLC_CNTRL_B's MATCH_LS*/
switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
case PL_I_IDLE : phy->curr_ls = PC_ILS ; break ;
case PL_I_HALT : phy->curr_ls = PC_HLS ; break ;
case PL_I_MASTR : phy->curr_ls = PC_MLS ; break ;
case PL_I_QUIET : phy->curr_ls = PC_QLS ; break ;
}
}
if (cmd & PL_PCM_BREAK) { /* PCM has entered the BREAK state */
int reason;
reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
switch (reason) {
case PL_B_PCS : plc->b_pcs++ ; break ;
case PL_B_TPC : plc->b_tpc++ ; break ;
case PL_B_TNE : plc->b_tne++ ; break ;
case PL_B_QLS : plc->b_qls++ ; break ;
case PL_B_ILS : plc->b_ils++ ; break ;
case PL_B_HLS : plc->b_hls++ ; break ;
}
/*jd 05-Aug-1999 changed: Bug #10419 */
DB_PCMN(1,"PLC %d: MDcF = %x\n", np, smc->e.DisconnectFlag);
if (smc->e.DisconnectFlag == FALSE) {
DB_PCMN(1,"PLC %d: restart (reason %x)\n", np, reason);
queue_event(smc,EVENT_PCM+np,PC_START) ;
}
else {
DB_PCMN(1,"PLC %d: NO!! restart (reason %x)\n", np, reason);
}
return ;
}
/*
* If both CODE & ENABLE are set ignore enable
*/
if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
n = inpw(PLC(np,PL_RCV_VECTOR)) ;
for (i = 0 ; i < plc->p_bits ; i++) {
phy->r_val[plc->p_start+i] = n & 1 ;
n >>= 1 ;
}
}
else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
}
if (cmd & PL_TRACE_PROP) { /* MLS while PC8_ACTIV || PC2_TRACE */
/*PC22b*/
if (!phy->tr_flag) {
DB_PCMN(1,"PCM : irq TRACE_PROP %d %d\n",
np,smc->mib.fddiSMTECMState) ;
phy->tr_flag = TRUE ;
smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
}
}
/*
* filter PLC glitch ???
* QLS || HLS only while in PC2_TRACE state
*/
if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
/*PC22a*/
if (smc->e.path_test == PT_PASSED) {
DB_PCMN(1,"PCM : state = %s %d\n", get_pcmstate(smc,np),
phy->mib->fddiPORTPCMState) ;
smc->e.path_test = PT_PENDING ;
queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
}
}
if (cmd & PL_TNE_EXPIRED) { /* TNE: length of noise events */
/* break_required (TNE > NS_Max) */
if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
if (!phy->tr_flag) {
DB_PCMN(1,"PCM %c : PC81 %s\n",phy->phy_name,"NSE");
queue_event(smc,EVENT_PCM+np,PC_START) ;
return ;
}
}
}
#if 0
if (cmd & PL_NP_ERR) { /* NP has requested to r/w an inv reg*/
/*
* It's a bug by AMD
*/
plc->np_err++ ;
}
/* pin inactiv (GND) */
if (cmd & PL_PARITY_ERR) { /* p. error dedected on TX9-0 inp */
plc->parity_err++ ;
}
if (cmd & PL_LSDO) { /* carrier detected */
;
}
#endif
}
#ifdef DEBUG
/*
* fill state struct
*/
void pcm_get_state(struct s_smc *smc, struct smt_state *state)
{
struct s_phy *phy ;
struct pcm_state *pcs ;
int i ;
int ii ;
short rbits ;
short tbits ;
struct fddi_mib_p *mib ;
for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
i++ , phy++, pcs++ ) {
mib = phy->mib ;
pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
pcs->pcm_mode = phy->pc_mode ;
pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
pcs->pcm_lsf = phy->ls_flag ;
pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
rbits <<= 1 ;
tbits <<= 1 ;
if (phy->r_val[NUMBITS-1-ii])
rbits |= 1 ;
if (phy->t_val[NUMBITS-1-ii])
tbits |= 1 ;
}
pcs->pcm_r_val = rbits ;
pcs->pcm_t_val = tbits ;
}
}
int get_pcm_state(struct s_smc *smc, int np)
{
int pcs ;
SK_UNUSED(smc) ;
switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
case PL_PC0 : pcs = PC_STOP ; break ;
case PL_PC1 : pcs = PC_START ; break ;
case PL_PC2 : pcs = PC_TRACE ; break ;
case PL_PC3 : pcs = PC_SIGNAL ; break ;
case PL_PC4 : pcs = PC_SIGNAL ; break ;
case PL_PC5 : pcs = PC_SIGNAL ; break ;
case PL_PC6 : pcs = PC_JOIN ; break ;
case PL_PC7 : pcs = PC_JOIN ; break ;
case PL_PC8 : pcs = PC_ENABLE ; break ;
case PL_PC9 : pcs = PC_MAINT ; break ;
default : pcs = PC_DISABLE ; break ;
}
return pcs;
}
char *get_linestate(struct s_smc *smc, int np)
{
char *ls = "" ;
SK_UNUSED(smc) ;
switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
case PL_L_NLS : ls = "NOISE" ; break ;
case PL_L_ALS : ls = "ACTIV" ; break ;
case PL_L_UND : ls = "UNDEF" ; break ;
case PL_L_ILS4: ls = "ILS 4" ; break ;
case PL_L_QLS : ls = "QLS" ; break ;
case PL_L_MLS : ls = "MLS" ; break ;
case PL_L_HLS : ls = "HLS" ; break ;
case PL_L_ILS16:ls = "ILS16" ; break ;
#ifdef lint
default: ls = "unknown" ; break ;
#endif
}
return ls;
}
char *get_pcmstate(struct s_smc *smc, int np)
{
char *pcs ;
SK_UNUSED(smc) ;
switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
case PL_PC0 : pcs = "OFF" ; break ;
case PL_PC1 : pcs = "BREAK" ; break ;
case PL_PC2 : pcs = "TRACE" ; break ;
case PL_PC3 : pcs = "CONNECT"; break ;
case PL_PC4 : pcs = "NEXT" ; break ;
case PL_PC5 : pcs = "SIGNAL" ; break ;
case PL_PC6 : pcs = "JOIN" ; break ;
case PL_PC7 : pcs = "VERIFY" ; break ;
case PL_PC8 : pcs = "ACTIV" ; break ;
case PL_PC9 : pcs = "MAINT" ; break ;
default : pcs = "UNKNOWN" ; break ;
}
return pcs;
}
void list_phy(struct s_smc *smc)
{
struct s_plc *plc ;
int np ;
for (np = 0 ; np < NUMPHYS ; np++) {
plc = &smc->y[np].plc ;
printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
plc->soft_err,plc->b_pcs);
printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
plc->ebuf_err,plc->b_tne) ;
printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
plc->vsym_ctr,plc->b_ils) ;
printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
plc->mini_ctr,plc->b_hls) ;
printf("\tnodepr_err: %ld\n",plc->np_err) ;
printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
}
}
#ifdef CONCENTRATOR
void pcm_lem_dump(struct s_smc *smc)
{
int i ;
struct s_phy *phy ;
struct fddi_mib_p *mib ;
char *entostring() ;
printf("PHY errors BER\n") ;
printf("----------------------\n") ;
for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
if (!plc_is_installed(smc,i))
continue ;
mib = phy->mib ;
printf("%s\t%ld\t10E-%d\n",
entostring(smc,ENTITY_PHY(i)),
mib->fddiPORTLem_Ct,
mib->fddiPORTLer_Estimate) ;
}
}
#endif
#endif