1362 lines
38 KiB
C
1362 lines
38 KiB
C
|
/*
|
||
|
* ispvideo.c
|
||
|
*
|
||
|
* TI OMAP3 ISP - Generic video node
|
||
|
*
|
||
|
* Copyright (C) 2009-2010 Nokia Corporation
|
||
|
*
|
||
|
* Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
|
||
|
* Sakari Ailus <sakari.ailus@iki.fi>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
|
||
|
* 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/pagemap.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
#include <media/v4l2-dev.h>
|
||
|
#include <media/v4l2-ioctl.h>
|
||
|
#include <plat/iommu.h>
|
||
|
#include <plat/iovmm.h>
|
||
|
#include <plat/omap-pm.h>
|
||
|
|
||
|
#include "ispvideo.h"
|
||
|
#include "isp.h"
|
||
|
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* Helper functions
|
||
|
*/
|
||
|
|
||
|
static struct isp_format_info formats[] = {
|
||
|
{ V4L2_MBUS_FMT_Y8_1X8, V4L2_MBUS_FMT_Y8_1X8,
|
||
|
V4L2_MBUS_FMT_Y8_1X8, V4L2_MBUS_FMT_Y8_1X8,
|
||
|
V4L2_PIX_FMT_GREY, 8, },
|
||
|
{ V4L2_MBUS_FMT_Y10_1X10, V4L2_MBUS_FMT_Y10_1X10,
|
||
|
V4L2_MBUS_FMT_Y10_1X10, V4L2_MBUS_FMT_Y8_1X8,
|
||
|
V4L2_PIX_FMT_Y10, 10, },
|
||
|
{ V4L2_MBUS_FMT_Y12_1X12, V4L2_MBUS_FMT_Y10_1X10,
|
||
|
V4L2_MBUS_FMT_Y12_1X12, V4L2_MBUS_FMT_Y8_1X8,
|
||
|
V4L2_PIX_FMT_Y12, 12, },
|
||
|
{ V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_MBUS_FMT_SBGGR8_1X8,
|
||
|
V4L2_MBUS_FMT_SBGGR8_1X8, V4L2_MBUS_FMT_SBGGR8_1X8,
|
||
|
V4L2_PIX_FMT_SBGGR8, 8, },
|
||
|
{ V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_MBUS_FMT_SGBRG8_1X8,
|
||
|
V4L2_MBUS_FMT_SGBRG8_1X8, V4L2_MBUS_FMT_SGBRG8_1X8,
|
||
|
V4L2_PIX_FMT_SGBRG8, 8, },
|
||
|
{ V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_MBUS_FMT_SGRBG8_1X8,
|
||
|
V4L2_MBUS_FMT_SGRBG8_1X8, V4L2_MBUS_FMT_SGRBG8_1X8,
|
||
|
V4L2_PIX_FMT_SGRBG8, 8, },
|
||
|
{ V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_MBUS_FMT_SRGGB8_1X8,
|
||
|
V4L2_MBUS_FMT_SRGGB8_1X8, V4L2_MBUS_FMT_SRGGB8_1X8,
|
||
|
V4L2_PIX_FMT_SRGGB8, 8, },
|
||
|
{ V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8,
|
||
|
V4L2_MBUS_FMT_SGRBG10_1X10, 0,
|
||
|
V4L2_PIX_FMT_SGRBG10DPCM8, 8, },
|
||
|
{ V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_MBUS_FMT_SBGGR10_1X10,
|
||
|
V4L2_MBUS_FMT_SBGGR10_1X10, V4L2_MBUS_FMT_SBGGR8_1X8,
|
||
|
V4L2_PIX_FMT_SBGGR10, 10, },
|
||
|
{ V4L2_MBUS_FMT_SGBRG10_1X10, V4L2_MBUS_FMT_SGBRG10_1X10,
|
||
|
V4L2_MBUS_FMT_SGBRG10_1X10, V4L2_MBUS_FMT_SGBRG8_1X8,
|
||
|
V4L2_PIX_FMT_SGBRG10, 10, },
|
||
|
{ V4L2_MBUS_FMT_SGRBG10_1X10, V4L2_MBUS_FMT_SGRBG10_1X10,
|
||
|
V4L2_MBUS_FMT_SGRBG10_1X10, V4L2_MBUS_FMT_SGRBG8_1X8,
|
||
|
V4L2_PIX_FMT_SGRBG10, 10, },
|
||
|
{ V4L2_MBUS_FMT_SRGGB10_1X10, V4L2_MBUS_FMT_SRGGB10_1X10,
|
||
|
V4L2_MBUS_FMT_SRGGB10_1X10, V4L2_MBUS_FMT_SRGGB8_1X8,
|
||
|
V4L2_PIX_FMT_SRGGB10, 10, },
|
||
|
{ V4L2_MBUS_FMT_SBGGR12_1X12, V4L2_MBUS_FMT_SBGGR10_1X10,
|
||
|
V4L2_MBUS_FMT_SBGGR12_1X12, V4L2_MBUS_FMT_SBGGR8_1X8,
|
||
|
V4L2_PIX_FMT_SBGGR12, 12, },
|
||
|
{ V4L2_MBUS_FMT_SGBRG12_1X12, V4L2_MBUS_FMT_SGBRG10_1X10,
|
||
|
V4L2_MBUS_FMT_SGBRG12_1X12, V4L2_MBUS_FMT_SGBRG8_1X8,
|
||
|
V4L2_PIX_FMT_SGBRG12, 12, },
|
||
|
{ V4L2_MBUS_FMT_SGRBG12_1X12, V4L2_MBUS_FMT_SGRBG10_1X10,
|
||
|
V4L2_MBUS_FMT_SGRBG12_1X12, V4L2_MBUS_FMT_SGRBG8_1X8,
|
||
|
V4L2_PIX_FMT_SGRBG12, 12, },
|
||
|
{ V4L2_MBUS_FMT_SRGGB12_1X12, V4L2_MBUS_FMT_SRGGB10_1X10,
|
||
|
V4L2_MBUS_FMT_SRGGB12_1X12, V4L2_MBUS_FMT_SRGGB8_1X8,
|
||
|
V4L2_PIX_FMT_SRGGB12, 12, },
|
||
|
{ V4L2_MBUS_FMT_UYVY8_1X16, V4L2_MBUS_FMT_UYVY8_1X16,
|
||
|
V4L2_MBUS_FMT_UYVY8_1X16, 0,
|
||
|
V4L2_PIX_FMT_UYVY, 16, },
|
||
|
{ V4L2_MBUS_FMT_YUYV8_1X16, V4L2_MBUS_FMT_YUYV8_1X16,
|
||
|
V4L2_MBUS_FMT_YUYV8_1X16, 0,
|
||
|
V4L2_PIX_FMT_YUYV, 16, },
|
||
|
};
|
||
|
|
||
|
const struct isp_format_info *
|
||
|
omap3isp_video_format_info(enum v4l2_mbus_pixelcode code)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(formats); ++i) {
|
||
|
if (formats[i].code == code)
|
||
|
return &formats[i];
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Decide whether desired output pixel code can be obtained with
|
||
|
* the lane shifter by shifting the input pixel code.
|
||
|
* @in: input pixelcode to shifter
|
||
|
* @out: output pixelcode from shifter
|
||
|
* @additional_shift: # of bits the sensor's LSB is offset from CAMEXT[0]
|
||
|
*
|
||
|
* return true if the combination is possible
|
||
|
* return false otherwise
|
||
|
*/
|
||
|
static bool isp_video_is_shiftable(enum v4l2_mbus_pixelcode in,
|
||
|
enum v4l2_mbus_pixelcode out,
|
||
|
unsigned int additional_shift)
|
||
|
{
|
||
|
const struct isp_format_info *in_info, *out_info;
|
||
|
|
||
|
if (in == out)
|
||
|
return true;
|
||
|
|
||
|
in_info = omap3isp_video_format_info(in);
|
||
|
out_info = omap3isp_video_format_info(out);
|
||
|
|
||
|
if ((in_info->flavor == 0) || (out_info->flavor == 0))
|
||
|
return false;
|
||
|
|
||
|
if (in_info->flavor != out_info->flavor)
|
||
|
return false;
|
||
|
|
||
|
return in_info->bpp - out_info->bpp + additional_shift <= 6;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* isp_video_mbus_to_pix - Convert v4l2_mbus_framefmt to v4l2_pix_format
|
||
|
* @video: ISP video instance
|
||
|
* @mbus: v4l2_mbus_framefmt format (input)
|
||
|
* @pix: v4l2_pix_format format (output)
|
||
|
*
|
||
|
* Fill the output pix structure with information from the input mbus format.
|
||
|
* The bytesperline and sizeimage fields are computed from the requested bytes
|
||
|
* per line value in the pix format and information from the video instance.
|
||
|
*
|
||
|
* Return the number of padding bytes at end of line.
|
||
|
*/
|
||
|
static unsigned int isp_video_mbus_to_pix(const struct isp_video *video,
|
||
|
const struct v4l2_mbus_framefmt *mbus,
|
||
|
struct v4l2_pix_format *pix)
|
||
|
{
|
||
|
unsigned int bpl = pix->bytesperline;
|
||
|
unsigned int min_bpl;
|
||
|
unsigned int i;
|
||
|
|
||
|
memset(pix, 0, sizeof(*pix));
|
||
|
pix->width = mbus->width;
|
||
|
pix->height = mbus->height;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(formats); ++i) {
|
||
|
if (formats[i].code == mbus->code)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (WARN_ON(i == ARRAY_SIZE(formats)))
|
||
|
return 0;
|
||
|
|
||
|
min_bpl = pix->width * ALIGN(formats[i].bpp, 8) / 8;
|
||
|
|
||
|
/* Clamp the requested bytes per line value. If the maximum bytes per
|
||
|
* line value is zero, the module doesn't support user configurable line
|
||
|
* sizes. Override the requested value with the minimum in that case.
|
||
|
*/
|
||
|
if (video->bpl_max)
|
||
|
bpl = clamp(bpl, min_bpl, video->bpl_max);
|
||
|
else
|
||
|
bpl = min_bpl;
|
||
|
|
||
|
if (!video->bpl_zero_padding || bpl != min_bpl)
|
||
|
bpl = ALIGN(bpl, video->bpl_alignment);
|
||
|
|
||
|
pix->pixelformat = formats[i].pixelformat;
|
||
|
pix->bytesperline = bpl;
|
||
|
pix->sizeimage = pix->bytesperline * pix->height;
|
||
|
pix->colorspace = mbus->colorspace;
|
||
|
pix->field = mbus->field;
|
||
|
|
||
|
return bpl - min_bpl;
|
||
|
}
|
||
|
|
||
|
static void isp_video_pix_to_mbus(const struct v4l2_pix_format *pix,
|
||
|
struct v4l2_mbus_framefmt *mbus)
|
||
|
{
|
||
|
unsigned int i;
|
||
|
|
||
|
memset(mbus, 0, sizeof(*mbus));
|
||
|
mbus->width = pix->width;
|
||
|
mbus->height = pix->height;
|
||
|
|
||
|
/* Skip the last format in the loop so that it will be selected if no
|
||
|
* match is found.
|
||
|
*/
|
||
|
for (i = 0; i < ARRAY_SIZE(formats) - 1; ++i) {
|
||
|
if (formats[i].pixelformat == pix->pixelformat)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
mbus->code = formats[i].code;
|
||
|
mbus->colorspace = pix->colorspace;
|
||
|
mbus->field = pix->field;
|
||
|
}
|
||
|
|
||
|
static struct v4l2_subdev *
|
||
|
isp_video_remote_subdev(struct isp_video *video, u32 *pad)
|
||
|
{
|
||
|
struct media_pad *remote;
|
||
|
|
||
|
remote = media_entity_remote_source(&video->pad);
|
||
|
|
||
|
if (remote == NULL ||
|
||
|
media_entity_type(remote->entity) != MEDIA_ENT_T_V4L2_SUBDEV)
|
||
|
return NULL;
|
||
|
|
||
|
if (pad)
|
||
|
*pad = remote->index;
|
||
|
|
||
|
return media_entity_to_v4l2_subdev(remote->entity);
|
||
|
}
|
||
|
|
||
|
/* Return a pointer to the ISP video instance at the far end of the pipeline. */
|
||
|
static struct isp_video *
|
||
|
isp_video_far_end(struct isp_video *video)
|
||
|
{
|
||
|
struct media_entity_graph graph;
|
||
|
struct media_entity *entity = &video->video.entity;
|
||
|
struct media_device *mdev = entity->parent;
|
||
|
struct isp_video *far_end = NULL;
|
||
|
|
||
|
mutex_lock(&mdev->graph_mutex);
|
||
|
media_entity_graph_walk_start(&graph, entity);
|
||
|
|
||
|
while ((entity = media_entity_graph_walk_next(&graph))) {
|
||
|
if (entity == &video->video.entity)
|
||
|
continue;
|
||
|
|
||
|
if (media_entity_type(entity) != MEDIA_ENT_T_DEVNODE)
|
||
|
continue;
|
||
|
|
||
|
far_end = to_isp_video(media_entity_to_video_device(entity));
|
||
|
if (far_end->type != video->type)
|
||
|
break;
|
||
|
|
||
|
far_end = NULL;
|
||
|
}
|
||
|
|
||
|
mutex_unlock(&mdev->graph_mutex);
|
||
|
return far_end;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Validate a pipeline by checking both ends of all links for format
|
||
|
* discrepancies.
|
||
|
*
|
||
|
* Compute the minimum time per frame value as the maximum of time per frame
|
||
|
* limits reported by every block in the pipeline.
|
||
|
*
|
||
|
* Return 0 if all formats match, or -EPIPE if at least one link is found with
|
||
|
* different formats on its two ends or if the pipeline doesn't start with a
|
||
|
* video source (either a subdev with no input pad, or a non-subdev entity).
|
||
|
*/
|
||
|
static int isp_video_validate_pipeline(struct isp_pipeline *pipe)
|
||
|
{
|
||
|
struct isp_device *isp = pipe->output->isp;
|
||
|
struct v4l2_subdev_format fmt_source;
|
||
|
struct v4l2_subdev_format fmt_sink;
|
||
|
struct media_pad *pad;
|
||
|
struct v4l2_subdev *subdev;
|
||
|
int ret;
|
||
|
|
||
|
pipe->max_rate = pipe->l3_ick;
|
||
|
|
||
|
subdev = isp_video_remote_subdev(pipe->output, NULL);
|
||
|
if (subdev == NULL)
|
||
|
return -EPIPE;
|
||
|
|
||
|
while (1) {
|
||
|
unsigned int shifter_link;
|
||
|
/* Retrieve the sink format */
|
||
|
pad = &subdev->entity.pads[0];
|
||
|
if (!(pad->flags & MEDIA_PAD_FL_SINK))
|
||
|
break;
|
||
|
|
||
|
fmt_sink.pad = pad->index;
|
||
|
fmt_sink.which = V4L2_SUBDEV_FORMAT_ACTIVE;
|
||
|
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt_sink);
|
||
|
if (ret < 0 && ret != -ENOIOCTLCMD)
|
||
|
return -EPIPE;
|
||
|
|
||
|
/* Update the maximum frame rate */
|
||
|
if (subdev == &isp->isp_res.subdev)
|
||
|
omap3isp_resizer_max_rate(&isp->isp_res,
|
||
|
&pipe->max_rate);
|
||
|
|
||
|
/* Check ccdc maximum data rate when data comes from sensor
|
||
|
* TODO: Include ccdc rate in pipe->max_rate and compare the
|
||
|
* total pipe rate with the input data rate from sensor.
|
||
|
*/
|
||
|
if (subdev == &isp->isp_ccdc.subdev && pipe->input == NULL) {
|
||
|
unsigned int rate = UINT_MAX;
|
||
|
|
||
|
omap3isp_ccdc_max_rate(&isp->isp_ccdc, &rate);
|
||
|
if (isp->isp_ccdc.vpcfg.pixelclk > rate)
|
||
|
return -ENOSPC;
|
||
|
}
|
||
|
|
||
|
/* If sink pad is on CCDC, the link has the lane shifter
|
||
|
* in the middle of it. */
|
||
|
shifter_link = subdev == &isp->isp_ccdc.subdev;
|
||
|
|
||
|
/* Retrieve the source format. Return an error if no source
|
||
|
* entity can be found, and stop checking the pipeline if the
|
||
|
* source entity isn't a subdev.
|
||
|
*/
|
||
|
pad = media_entity_remote_source(pad);
|
||
|
if (pad == NULL)
|
||
|
return -EPIPE;
|
||
|
|
||
|
if (media_entity_type(pad->entity) != MEDIA_ENT_T_V4L2_SUBDEV)
|
||
|
break;
|
||
|
|
||
|
subdev = media_entity_to_v4l2_subdev(pad->entity);
|
||
|
|
||
|
fmt_source.pad = pad->index;
|
||
|
fmt_source.which = V4L2_SUBDEV_FORMAT_ACTIVE;
|
||
|
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt_source);
|
||
|
if (ret < 0 && ret != -ENOIOCTLCMD)
|
||
|
return -EPIPE;
|
||
|
|
||
|
/* Check if the two ends match */
|
||
|
if (fmt_source.format.width != fmt_sink.format.width ||
|
||
|
fmt_source.format.height != fmt_sink.format.height)
|
||
|
return -EPIPE;
|
||
|
|
||
|
if (shifter_link) {
|
||
|
unsigned int parallel_shift = 0;
|
||
|
if (isp->isp_ccdc.input == CCDC_INPUT_PARALLEL) {
|
||
|
struct isp_parallel_platform_data *pdata =
|
||
|
&((struct isp_v4l2_subdevs_group *)
|
||
|
subdev->host_priv)->bus.parallel;
|
||
|
parallel_shift = pdata->data_lane_shift * 2;
|
||
|
}
|
||
|
if (!isp_video_is_shiftable(fmt_source.format.code,
|
||
|
fmt_sink.format.code,
|
||
|
parallel_shift))
|
||
|
return -EPIPE;
|
||
|
} else if (fmt_source.format.code != fmt_sink.format.code)
|
||
|
return -EPIPE;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
__isp_video_get_format(struct isp_video *video, struct v4l2_format *format)
|
||
|
{
|
||
|
struct v4l2_subdev_format fmt;
|
||
|
struct v4l2_subdev *subdev;
|
||
|
u32 pad;
|
||
|
int ret;
|
||
|
|
||
|
subdev = isp_video_remote_subdev(video, &pad);
|
||
|
if (subdev == NULL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&video->mutex);
|
||
|
|
||
|
fmt.pad = pad;
|
||
|
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
|
||
|
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
|
||
|
if (ret == -ENOIOCTLCMD)
|
||
|
ret = -EINVAL;
|
||
|
|
||
|
mutex_unlock(&video->mutex);
|
||
|
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
format->type = video->type;
|
||
|
return isp_video_mbus_to_pix(video, &fmt.format, &format->fmt.pix);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_check_format(struct isp_video *video, struct isp_video_fh *vfh)
|
||
|
{
|
||
|
struct v4l2_format format;
|
||
|
int ret;
|
||
|
|
||
|
memcpy(&format, &vfh->format, sizeof(format));
|
||
|
ret = __isp_video_get_format(video, &format);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
if (vfh->format.fmt.pix.pixelformat != format.fmt.pix.pixelformat ||
|
||
|
vfh->format.fmt.pix.height != format.fmt.pix.height ||
|
||
|
vfh->format.fmt.pix.width != format.fmt.pix.width ||
|
||
|
vfh->format.fmt.pix.bytesperline != format.fmt.pix.bytesperline ||
|
||
|
vfh->format.fmt.pix.sizeimage != format.fmt.pix.sizeimage)
|
||
|
return -EINVAL;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* IOMMU management
|
||
|
*/
|
||
|
|
||
|
#define IOMMU_FLAG (IOVMF_ENDIAN_LITTLE | IOVMF_ELSZ_8)
|
||
|
|
||
|
/*
|
||
|
* ispmmu_vmap - Wrapper for Virtual memory mapping of a scatter gather list
|
||
|
* @dev: Device pointer specific to the OMAP3 ISP.
|
||
|
* @sglist: Pointer to source Scatter gather list to allocate.
|
||
|
* @sglen: Number of elements of the scatter-gatter list.
|
||
|
*
|
||
|
* Returns a resulting mapped device address by the ISP MMU, or -ENOMEM if
|
||
|
* we ran out of memory.
|
||
|
*/
|
||
|
static dma_addr_t
|
||
|
ispmmu_vmap(struct isp_device *isp, const struct scatterlist *sglist, int sglen)
|
||
|
{
|
||
|
struct sg_table *sgt;
|
||
|
u32 da;
|
||
|
|
||
|
sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
|
||
|
if (sgt == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
sgt->sgl = (struct scatterlist *)sglist;
|
||
|
sgt->nents = sglen;
|
||
|
sgt->orig_nents = sglen;
|
||
|
|
||
|
da = omap_iommu_vmap(isp->domain, isp->dev, 0, sgt, IOMMU_FLAG);
|
||
|
if (IS_ERR_VALUE(da))
|
||
|
kfree(sgt);
|
||
|
|
||
|
return da;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ispmmu_vunmap - Unmap a device address from the ISP MMU
|
||
|
* @dev: Device pointer specific to the OMAP3 ISP.
|
||
|
* @da: Device address generated from a ispmmu_vmap call.
|
||
|
*/
|
||
|
static void ispmmu_vunmap(struct isp_device *isp, dma_addr_t da)
|
||
|
{
|
||
|
struct sg_table *sgt;
|
||
|
|
||
|
sgt = omap_iommu_vunmap(isp->domain, isp->dev, (u32)da);
|
||
|
kfree(sgt);
|
||
|
}
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* Video queue operations
|
||
|
*/
|
||
|
|
||
|
static void isp_video_queue_prepare(struct isp_video_queue *queue,
|
||
|
unsigned int *nbuffers, unsigned int *size)
|
||
|
{
|
||
|
struct isp_video_fh *vfh =
|
||
|
container_of(queue, struct isp_video_fh, queue);
|
||
|
struct isp_video *video = vfh->video;
|
||
|
|
||
|
*size = vfh->format.fmt.pix.sizeimage;
|
||
|
if (*size == 0)
|
||
|
return;
|
||
|
|
||
|
*nbuffers = min(*nbuffers, video->capture_mem / PAGE_ALIGN(*size));
|
||
|
}
|
||
|
|
||
|
static void isp_video_buffer_cleanup(struct isp_video_buffer *buf)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = isp_video_queue_to_isp_video_fh(buf->queue);
|
||
|
struct isp_buffer *buffer = to_isp_buffer(buf);
|
||
|
struct isp_video *video = vfh->video;
|
||
|
|
||
|
if (buffer->isp_addr) {
|
||
|
ispmmu_vunmap(video->isp, buffer->isp_addr);
|
||
|
buffer->isp_addr = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int isp_video_buffer_prepare(struct isp_video_buffer *buf)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = isp_video_queue_to_isp_video_fh(buf->queue);
|
||
|
struct isp_buffer *buffer = to_isp_buffer(buf);
|
||
|
struct isp_video *video = vfh->video;
|
||
|
unsigned long addr;
|
||
|
|
||
|
addr = ispmmu_vmap(video->isp, buf->sglist, buf->sglen);
|
||
|
if (IS_ERR_VALUE(addr))
|
||
|
return -EIO;
|
||
|
|
||
|
if (!IS_ALIGNED(addr, 32)) {
|
||
|
dev_dbg(video->isp->dev, "Buffer address must be "
|
||
|
"aligned to 32 bytes boundary.\n");
|
||
|
ispmmu_vunmap(video->isp, buffer->isp_addr);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
buf->vbuf.bytesused = vfh->format.fmt.pix.sizeimage;
|
||
|
buffer->isp_addr = addr;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* isp_video_buffer_queue - Add buffer to streaming queue
|
||
|
* @buf: Video buffer
|
||
|
*
|
||
|
* In memory-to-memory mode, start streaming on the pipeline if buffers are
|
||
|
* queued on both the input and the output, if the pipeline isn't already busy.
|
||
|
* If the pipeline is busy, it will be restarted in the output module interrupt
|
||
|
* handler.
|
||
|
*/
|
||
|
static void isp_video_buffer_queue(struct isp_video_buffer *buf)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = isp_video_queue_to_isp_video_fh(buf->queue);
|
||
|
struct isp_buffer *buffer = to_isp_buffer(buf);
|
||
|
struct isp_video *video = vfh->video;
|
||
|
struct isp_pipeline *pipe = to_isp_pipeline(&video->video.entity);
|
||
|
enum isp_pipeline_state state;
|
||
|
unsigned long flags;
|
||
|
unsigned int empty;
|
||
|
unsigned int start;
|
||
|
|
||
|
empty = list_empty(&video->dmaqueue);
|
||
|
list_add_tail(&buffer->buffer.irqlist, &video->dmaqueue);
|
||
|
|
||
|
if (empty) {
|
||
|
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
|
||
|
state = ISP_PIPELINE_QUEUE_OUTPUT;
|
||
|
else
|
||
|
state = ISP_PIPELINE_QUEUE_INPUT;
|
||
|
|
||
|
spin_lock_irqsave(&pipe->lock, flags);
|
||
|
pipe->state |= state;
|
||
|
video->ops->queue(video, buffer);
|
||
|
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_QUEUED;
|
||
|
|
||
|
start = isp_pipeline_ready(pipe);
|
||
|
if (start)
|
||
|
pipe->state |= ISP_PIPELINE_STREAM;
|
||
|
spin_unlock_irqrestore(&pipe->lock, flags);
|
||
|
|
||
|
if (start)
|
||
|
omap3isp_pipeline_set_stream(pipe,
|
||
|
ISP_PIPELINE_STREAM_SINGLESHOT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const struct isp_video_queue_operations isp_video_queue_ops = {
|
||
|
.queue_prepare = &isp_video_queue_prepare,
|
||
|
.buffer_prepare = &isp_video_buffer_prepare,
|
||
|
.buffer_queue = &isp_video_buffer_queue,
|
||
|
.buffer_cleanup = &isp_video_buffer_cleanup,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* omap3isp_video_buffer_next - Complete the current buffer and return the next
|
||
|
* @video: ISP video object
|
||
|
*
|
||
|
* Remove the current video buffer from the DMA queue and fill its timestamp,
|
||
|
* field count and state fields before waking up its completion handler.
|
||
|
*
|
||
|
* For capture video nodes the buffer state is set to ISP_BUF_STATE_DONE if no
|
||
|
* error has been flagged in the pipeline, or to ISP_BUF_STATE_ERROR otherwise.
|
||
|
* For video output nodes the buffer state is always set to ISP_BUF_STATE_DONE.
|
||
|
*
|
||
|
* The DMA queue is expected to contain at least one buffer.
|
||
|
*
|
||
|
* Return a pointer to the next buffer in the DMA queue, or NULL if the queue is
|
||
|
* empty.
|
||
|
*/
|
||
|
struct isp_buffer *omap3isp_video_buffer_next(struct isp_video *video)
|
||
|
{
|
||
|
struct isp_pipeline *pipe = to_isp_pipeline(&video->video.entity);
|
||
|
struct isp_video_queue *queue = video->queue;
|
||
|
enum isp_pipeline_state state;
|
||
|
struct isp_video_buffer *buf;
|
||
|
unsigned long flags;
|
||
|
struct timespec ts;
|
||
|
|
||
|
spin_lock_irqsave(&queue->irqlock, flags);
|
||
|
if (WARN_ON(list_empty(&video->dmaqueue))) {
|
||
|
spin_unlock_irqrestore(&queue->irqlock, flags);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
buf = list_first_entry(&video->dmaqueue, struct isp_video_buffer,
|
||
|
irqlist);
|
||
|
list_del(&buf->irqlist);
|
||
|
spin_unlock_irqrestore(&queue->irqlock, flags);
|
||
|
|
||
|
ktime_get_ts(&ts);
|
||
|
buf->vbuf.timestamp.tv_sec = ts.tv_sec;
|
||
|
buf->vbuf.timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
|
||
|
|
||
|
/* Do frame number propagation only if this is the output video node.
|
||
|
* Frame number either comes from the CSI receivers or it gets
|
||
|
* incremented here if H3A is not active.
|
||
|
* Note: There is no guarantee that the output buffer will finish
|
||
|
* first, so the input number might lag behind by 1 in some cases.
|
||
|
*/
|
||
|
if (video == pipe->output && !pipe->do_propagation)
|
||
|
buf->vbuf.sequence = atomic_inc_return(&pipe->frame_number);
|
||
|
else
|
||
|
buf->vbuf.sequence = atomic_read(&pipe->frame_number);
|
||
|
|
||
|
/* Report pipeline errors to userspace on the capture device side. */
|
||
|
if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE && pipe->error) {
|
||
|
buf->state = ISP_BUF_STATE_ERROR;
|
||
|
pipe->error = false;
|
||
|
} else {
|
||
|
buf->state = ISP_BUF_STATE_DONE;
|
||
|
}
|
||
|
|
||
|
wake_up(&buf->wait);
|
||
|
|
||
|
if (list_empty(&video->dmaqueue)) {
|
||
|
if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
|
||
|
state = ISP_PIPELINE_QUEUE_OUTPUT
|
||
|
| ISP_PIPELINE_STREAM;
|
||
|
else
|
||
|
state = ISP_PIPELINE_QUEUE_INPUT
|
||
|
| ISP_PIPELINE_STREAM;
|
||
|
|
||
|
spin_lock_irqsave(&pipe->lock, flags);
|
||
|
pipe->state &= ~state;
|
||
|
if (video->pipe.stream_state == ISP_PIPELINE_STREAM_CONTINUOUS)
|
||
|
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_UNDERRUN;
|
||
|
spin_unlock_irqrestore(&pipe->lock, flags);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (queue->type == V4L2_BUF_TYPE_VIDEO_CAPTURE && pipe->input != NULL) {
|
||
|
spin_lock_irqsave(&pipe->lock, flags);
|
||
|
pipe->state &= ~ISP_PIPELINE_STREAM;
|
||
|
spin_unlock_irqrestore(&pipe->lock, flags);
|
||
|
}
|
||
|
|
||
|
buf = list_first_entry(&video->dmaqueue, struct isp_video_buffer,
|
||
|
irqlist);
|
||
|
buf->state = ISP_BUF_STATE_ACTIVE;
|
||
|
return to_isp_buffer(buf);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* omap3isp_video_resume - Perform resume operation on the buffers
|
||
|
* @video: ISP video object
|
||
|
* @continuous: Pipeline is in single shot mode if 0 or continuous mode otherwise
|
||
|
*
|
||
|
* This function is intended to be used on suspend/resume scenario. It
|
||
|
* requests video queue layer to discard buffers marked as DONE if it's in
|
||
|
* continuous mode and requests ISP modules to queue again the ACTIVE buffer
|
||
|
* if there's any.
|
||
|
*/
|
||
|
void omap3isp_video_resume(struct isp_video *video, int continuous)
|
||
|
{
|
||
|
struct isp_buffer *buf = NULL;
|
||
|
|
||
|
if (continuous && video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
|
||
|
omap3isp_video_queue_discard_done(video->queue);
|
||
|
|
||
|
if (!list_empty(&video->dmaqueue)) {
|
||
|
buf = list_first_entry(&video->dmaqueue,
|
||
|
struct isp_buffer, buffer.irqlist);
|
||
|
video->ops->queue(video, buf);
|
||
|
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_QUEUED;
|
||
|
} else {
|
||
|
if (continuous)
|
||
|
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_UNDERRUN;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* V4L2 ioctls
|
||
|
*/
|
||
|
|
||
|
static int
|
||
|
isp_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
|
||
|
{
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
|
||
|
strlcpy(cap->driver, ISP_VIDEO_DRIVER_NAME, sizeof(cap->driver));
|
||
|
strlcpy(cap->card, video->video.name, sizeof(cap->card));
|
||
|
strlcpy(cap->bus_info, "media", sizeof(cap->bus_info));
|
||
|
|
||
|
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
|
||
|
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING;
|
||
|
else
|
||
|
cap->capabilities = V4L2_CAP_VIDEO_OUTPUT | V4L2_CAP_STREAMING;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
|
||
|
if (format->type != video->type)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&video->mutex);
|
||
|
*format = vfh->format;
|
||
|
mutex_unlock(&video->mutex);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
struct v4l2_mbus_framefmt fmt;
|
||
|
|
||
|
if (format->type != video->type)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&video->mutex);
|
||
|
|
||
|
/* Fill the bytesperline and sizeimage fields by converting to media bus
|
||
|
* format and back to pixel format.
|
||
|
*/
|
||
|
isp_video_pix_to_mbus(&format->fmt.pix, &fmt);
|
||
|
isp_video_mbus_to_pix(video, &fmt, &format->fmt.pix);
|
||
|
|
||
|
vfh->format = *format;
|
||
|
|
||
|
mutex_unlock(&video->mutex);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
|
||
|
{
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
struct v4l2_subdev_format fmt;
|
||
|
struct v4l2_subdev *subdev;
|
||
|
u32 pad;
|
||
|
int ret;
|
||
|
|
||
|
if (format->type != video->type)
|
||
|
return -EINVAL;
|
||
|
|
||
|
subdev = isp_video_remote_subdev(video, &pad);
|
||
|
if (subdev == NULL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
isp_video_pix_to_mbus(&format->fmt.pix, &fmt.format);
|
||
|
|
||
|
fmt.pad = pad;
|
||
|
fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
|
||
|
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
|
||
|
if (ret)
|
||
|
return ret == -ENOIOCTLCMD ? -EINVAL : ret;
|
||
|
|
||
|
isp_video_mbus_to_pix(video, &fmt.format, &format->fmt.pix);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_cropcap(struct file *file, void *fh, struct v4l2_cropcap *cropcap)
|
||
|
{
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
struct v4l2_subdev *subdev;
|
||
|
int ret;
|
||
|
|
||
|
subdev = isp_video_remote_subdev(video, NULL);
|
||
|
if (subdev == NULL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&video->mutex);
|
||
|
ret = v4l2_subdev_call(subdev, video, cropcap, cropcap);
|
||
|
mutex_unlock(&video->mutex);
|
||
|
|
||
|
return ret == -ENOIOCTLCMD ? -EINVAL : ret;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_get_crop(struct file *file, void *fh, struct v4l2_crop *crop)
|
||
|
{
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
struct v4l2_subdev_format format;
|
||
|
struct v4l2_subdev *subdev;
|
||
|
u32 pad;
|
||
|
int ret;
|
||
|
|
||
|
subdev = isp_video_remote_subdev(video, &pad);
|
||
|
if (subdev == NULL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Try the get crop operation first and fallback to get format if not
|
||
|
* implemented.
|
||
|
*/
|
||
|
ret = v4l2_subdev_call(subdev, video, g_crop, crop);
|
||
|
if (ret != -ENOIOCTLCMD)
|
||
|
return ret;
|
||
|
|
||
|
format.pad = pad;
|
||
|
format.which = V4L2_SUBDEV_FORMAT_ACTIVE;
|
||
|
ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &format);
|
||
|
if (ret < 0)
|
||
|
return ret == -ENOIOCTLCMD ? -EINVAL : ret;
|
||
|
|
||
|
crop->c.left = 0;
|
||
|
crop->c.top = 0;
|
||
|
crop->c.width = format.format.width;
|
||
|
crop->c.height = format.format.height;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_set_crop(struct file *file, void *fh, struct v4l2_crop *crop)
|
||
|
{
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
struct v4l2_subdev *subdev;
|
||
|
int ret;
|
||
|
|
||
|
subdev = isp_video_remote_subdev(video, NULL);
|
||
|
if (subdev == NULL)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&video->mutex);
|
||
|
ret = v4l2_subdev_call(subdev, video, s_crop, crop);
|
||
|
mutex_unlock(&video->mutex);
|
||
|
|
||
|
return ret == -ENOIOCTLCMD ? -EINVAL : ret;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_get_param(struct file *file, void *fh, struct v4l2_streamparm *a)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
|
||
|
if (video->type != V4L2_BUF_TYPE_VIDEO_OUTPUT ||
|
||
|
video->type != a->type)
|
||
|
return -EINVAL;
|
||
|
|
||
|
memset(a, 0, sizeof(*a));
|
||
|
a->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
|
||
|
a->parm.output.capability = V4L2_CAP_TIMEPERFRAME;
|
||
|
a->parm.output.timeperframe = vfh->timeperframe;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_set_param(struct file *file, void *fh, struct v4l2_streamparm *a)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
|
||
|
if (video->type != V4L2_BUF_TYPE_VIDEO_OUTPUT ||
|
||
|
video->type != a->type)
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (a->parm.output.timeperframe.denominator == 0)
|
||
|
a->parm.output.timeperframe.denominator = 1;
|
||
|
|
||
|
vfh->timeperframe = a->parm.output.timeperframe;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_reqbufs(struct file *file, void *fh, struct v4l2_requestbuffers *rb)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
|
||
|
return omap3isp_video_queue_reqbufs(&vfh->queue, rb);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_querybuf(struct file *file, void *fh, struct v4l2_buffer *b)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
|
||
|
return omap3isp_video_queue_querybuf(&vfh->queue, b);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_qbuf(struct file *file, void *fh, struct v4l2_buffer *b)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
|
||
|
return omap3isp_video_queue_qbuf(&vfh->queue, b);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
|
||
|
return omap3isp_video_queue_dqbuf(&vfh->queue, b,
|
||
|
file->f_flags & O_NONBLOCK);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Stream management
|
||
|
*
|
||
|
* Every ISP pipeline has a single input and a single output. The input can be
|
||
|
* either a sensor or a video node. The output is always a video node.
|
||
|
*
|
||
|
* As every pipeline has an output video node, the ISP video objects at the
|
||
|
* pipeline output stores the pipeline state. It tracks the streaming state of
|
||
|
* both the input and output, as well as the availability of buffers.
|
||
|
*
|
||
|
* In sensor-to-memory mode, frames are always available at the pipeline input.
|
||
|
* Starting the sensor usually requires I2C transfers and must be done in
|
||
|
* interruptible context. The pipeline is started and stopped synchronously
|
||
|
* to the stream on/off commands. All modules in the pipeline will get their
|
||
|
* subdev set stream handler called. The module at the end of the pipeline must
|
||
|
* delay starting the hardware until buffers are available at its output.
|
||
|
*
|
||
|
* In memory-to-memory mode, starting/stopping the stream requires
|
||
|
* synchronization between the input and output. ISP modules can't be stopped
|
||
|
* in the middle of a frame, and at least some of the modules seem to become
|
||
|
* busy as soon as they're started, even if they don't receive a frame start
|
||
|
* event. For that reason frames need to be processed in single-shot mode. The
|
||
|
* driver needs to wait until a frame is completely processed and written to
|
||
|
* memory before restarting the pipeline for the next frame. Pipelined
|
||
|
* processing might be possible but requires more testing.
|
||
|
*
|
||
|
* Stream start must be delayed until buffers are available at both the input
|
||
|
* and output. The pipeline must be started in the videobuf queue callback with
|
||
|
* the buffers queue spinlock held. The modules subdev set stream operation must
|
||
|
* not sleep.
|
||
|
*/
|
||
|
static int
|
||
|
isp_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
enum isp_pipeline_state state;
|
||
|
struct isp_pipeline *pipe;
|
||
|
struct isp_video *far_end;
|
||
|
unsigned long flags;
|
||
|
int ret;
|
||
|
|
||
|
if (type != video->type)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&video->stream_lock);
|
||
|
|
||
|
if (video->streaming) {
|
||
|
mutex_unlock(&video->stream_lock);
|
||
|
return -EBUSY;
|
||
|
}
|
||
|
|
||
|
/* Start streaming on the pipeline. No link touching an entity in the
|
||
|
* pipeline can be activated or deactivated once streaming is started.
|
||
|
*/
|
||
|
pipe = video->video.entity.pipe
|
||
|
? to_isp_pipeline(&video->video.entity) : &video->pipe;
|
||
|
media_entity_pipeline_start(&video->video.entity, &pipe->pipe);
|
||
|
|
||
|
/* Verify that the currently configured format matches the output of
|
||
|
* the connected subdev.
|
||
|
*/
|
||
|
ret = isp_video_check_format(video, vfh);
|
||
|
if (ret < 0)
|
||
|
goto error;
|
||
|
|
||
|
video->bpl_padding = ret;
|
||
|
video->bpl_value = vfh->format.fmt.pix.bytesperline;
|
||
|
|
||
|
/* Find the ISP video node connected at the far end of the pipeline and
|
||
|
* update the pipeline.
|
||
|
*/
|
||
|
far_end = isp_video_far_end(video);
|
||
|
|
||
|
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
|
||
|
state = ISP_PIPELINE_STREAM_OUTPUT | ISP_PIPELINE_IDLE_OUTPUT;
|
||
|
pipe->input = far_end;
|
||
|
pipe->output = video;
|
||
|
} else {
|
||
|
if (far_end == NULL) {
|
||
|
ret = -EPIPE;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
state = ISP_PIPELINE_STREAM_INPUT | ISP_PIPELINE_IDLE_INPUT;
|
||
|
pipe->input = video;
|
||
|
pipe->output = far_end;
|
||
|
}
|
||
|
|
||
|
if (video->isp->pdata->set_constraints)
|
||
|
video->isp->pdata->set_constraints(video->isp, true);
|
||
|
pipe->l3_ick = clk_get_rate(video->isp->clock[ISP_CLK_L3_ICK]);
|
||
|
|
||
|
/* Validate the pipeline and update its state. */
|
||
|
ret = isp_video_validate_pipeline(pipe);
|
||
|
if (ret < 0)
|
||
|
goto error;
|
||
|
|
||
|
pipe->error = false;
|
||
|
|
||
|
spin_lock_irqsave(&pipe->lock, flags);
|
||
|
pipe->state &= ~ISP_PIPELINE_STREAM;
|
||
|
pipe->state |= state;
|
||
|
spin_unlock_irqrestore(&pipe->lock, flags);
|
||
|
|
||
|
/* Set the maximum time per frame as the value requested by userspace.
|
||
|
* This is a soft limit that can be overridden if the hardware doesn't
|
||
|
* support the request limit.
|
||
|
*/
|
||
|
if (video->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
|
||
|
pipe->max_timeperframe = vfh->timeperframe;
|
||
|
|
||
|
video->queue = &vfh->queue;
|
||
|
INIT_LIST_HEAD(&video->dmaqueue);
|
||
|
atomic_set(&pipe->frame_number, -1);
|
||
|
|
||
|
ret = omap3isp_video_queue_streamon(&vfh->queue);
|
||
|
if (ret < 0)
|
||
|
goto error;
|
||
|
|
||
|
/* In sensor-to-memory mode, the stream can be started synchronously
|
||
|
* to the stream on command. In memory-to-memory mode, it will be
|
||
|
* started when buffers are queued on both the input and output.
|
||
|
*/
|
||
|
if (pipe->input == NULL) {
|
||
|
ret = omap3isp_pipeline_set_stream(pipe,
|
||
|
ISP_PIPELINE_STREAM_CONTINUOUS);
|
||
|
if (ret < 0)
|
||
|
goto error;
|
||
|
spin_lock_irqsave(&video->queue->irqlock, flags);
|
||
|
if (list_empty(&video->dmaqueue))
|
||
|
video->dmaqueue_flags |= ISP_VIDEO_DMAQUEUE_UNDERRUN;
|
||
|
spin_unlock_irqrestore(&video->queue->irqlock, flags);
|
||
|
}
|
||
|
|
||
|
error:
|
||
|
if (ret < 0) {
|
||
|
omap3isp_video_queue_streamoff(&vfh->queue);
|
||
|
if (video->isp->pdata->set_constraints)
|
||
|
video->isp->pdata->set_constraints(video->isp, false);
|
||
|
media_entity_pipeline_stop(&video->video.entity);
|
||
|
/* The DMA queue must be emptied here, otherwise CCDC interrupts
|
||
|
* that will get triggered the next time the CCDC is powered up
|
||
|
* will try to access buffers that might have been freed but
|
||
|
* still present in the DMA queue. This can easily get triggered
|
||
|
* if the above omap3isp_pipeline_set_stream() call fails on a
|
||
|
* system with a free-running sensor.
|
||
|
*/
|
||
|
INIT_LIST_HEAD(&video->dmaqueue);
|
||
|
video->queue = NULL;
|
||
|
}
|
||
|
|
||
|
if (!ret)
|
||
|
video->streaming = 1;
|
||
|
|
||
|
mutex_unlock(&video->stream_lock);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_streamoff(struct file *file, void *fh, enum v4l2_buf_type type)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(fh);
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
struct isp_pipeline *pipe = to_isp_pipeline(&video->video.entity);
|
||
|
enum isp_pipeline_state state;
|
||
|
unsigned int streaming;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (type != video->type)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&video->stream_lock);
|
||
|
|
||
|
/* Make sure we're not streaming yet. */
|
||
|
mutex_lock(&vfh->queue.lock);
|
||
|
streaming = vfh->queue.streaming;
|
||
|
mutex_unlock(&vfh->queue.lock);
|
||
|
|
||
|
if (!streaming)
|
||
|
goto done;
|
||
|
|
||
|
/* Update the pipeline state. */
|
||
|
if (video->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
|
||
|
state = ISP_PIPELINE_STREAM_OUTPUT
|
||
|
| ISP_PIPELINE_QUEUE_OUTPUT;
|
||
|
else
|
||
|
state = ISP_PIPELINE_STREAM_INPUT
|
||
|
| ISP_PIPELINE_QUEUE_INPUT;
|
||
|
|
||
|
spin_lock_irqsave(&pipe->lock, flags);
|
||
|
pipe->state &= ~state;
|
||
|
spin_unlock_irqrestore(&pipe->lock, flags);
|
||
|
|
||
|
/* Stop the stream. */
|
||
|
omap3isp_pipeline_set_stream(pipe, ISP_PIPELINE_STREAM_STOPPED);
|
||
|
omap3isp_video_queue_streamoff(&vfh->queue);
|
||
|
video->queue = NULL;
|
||
|
video->streaming = 0;
|
||
|
|
||
|
if (video->isp->pdata->set_constraints)
|
||
|
video->isp->pdata->set_constraints(video->isp, false);
|
||
|
media_entity_pipeline_stop(&video->video.entity);
|
||
|
|
||
|
done:
|
||
|
mutex_unlock(&video->stream_lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_enum_input(struct file *file, void *fh, struct v4l2_input *input)
|
||
|
{
|
||
|
if (input->index > 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
strlcpy(input->name, "camera", sizeof(input->name));
|
||
|
input->type = V4L2_INPUT_TYPE_CAMERA;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_g_input(struct file *file, void *fh, unsigned int *input)
|
||
|
{
|
||
|
*input = 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
isp_video_s_input(struct file *file, void *fh, unsigned int input)
|
||
|
{
|
||
|
return input == 0 ? 0 : -EINVAL;
|
||
|
}
|
||
|
|
||
|
static const struct v4l2_ioctl_ops isp_video_ioctl_ops = {
|
||
|
.vidioc_querycap = isp_video_querycap,
|
||
|
.vidioc_g_fmt_vid_cap = isp_video_get_format,
|
||
|
.vidioc_s_fmt_vid_cap = isp_video_set_format,
|
||
|
.vidioc_try_fmt_vid_cap = isp_video_try_format,
|
||
|
.vidioc_g_fmt_vid_out = isp_video_get_format,
|
||
|
.vidioc_s_fmt_vid_out = isp_video_set_format,
|
||
|
.vidioc_try_fmt_vid_out = isp_video_try_format,
|
||
|
.vidioc_cropcap = isp_video_cropcap,
|
||
|
.vidioc_g_crop = isp_video_get_crop,
|
||
|
.vidioc_s_crop = isp_video_set_crop,
|
||
|
.vidioc_g_parm = isp_video_get_param,
|
||
|
.vidioc_s_parm = isp_video_set_param,
|
||
|
.vidioc_reqbufs = isp_video_reqbufs,
|
||
|
.vidioc_querybuf = isp_video_querybuf,
|
||
|
.vidioc_qbuf = isp_video_qbuf,
|
||
|
.vidioc_dqbuf = isp_video_dqbuf,
|
||
|
.vidioc_streamon = isp_video_streamon,
|
||
|
.vidioc_streamoff = isp_video_streamoff,
|
||
|
.vidioc_enum_input = isp_video_enum_input,
|
||
|
.vidioc_g_input = isp_video_g_input,
|
||
|
.vidioc_s_input = isp_video_s_input,
|
||
|
};
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* V4L2 file operations
|
||
|
*/
|
||
|
|
||
|
static int isp_video_open(struct file *file)
|
||
|
{
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
struct isp_video_fh *handle;
|
||
|
int ret = 0;
|
||
|
|
||
|
handle = kzalloc(sizeof(*handle), GFP_KERNEL);
|
||
|
if (handle == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
v4l2_fh_init(&handle->vfh, &video->video);
|
||
|
v4l2_fh_add(&handle->vfh);
|
||
|
|
||
|
/* If this is the first user, initialise the pipeline. */
|
||
|
if (omap3isp_get(video->isp) == NULL) {
|
||
|
ret = -EBUSY;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
ret = omap3isp_pipeline_pm_use(&video->video.entity, 1);
|
||
|
if (ret < 0) {
|
||
|
omap3isp_put(video->isp);
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
omap3isp_video_queue_init(&handle->queue, video->type,
|
||
|
&isp_video_queue_ops, video->isp->dev,
|
||
|
sizeof(struct isp_buffer));
|
||
|
|
||
|
memset(&handle->format, 0, sizeof(handle->format));
|
||
|
handle->format.type = video->type;
|
||
|
handle->timeperframe.denominator = 1;
|
||
|
|
||
|
handle->video = video;
|
||
|
file->private_data = &handle->vfh;
|
||
|
|
||
|
done:
|
||
|
if (ret < 0) {
|
||
|
v4l2_fh_del(&handle->vfh);
|
||
|
kfree(handle);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int isp_video_release(struct file *file)
|
||
|
{
|
||
|
struct isp_video *video = video_drvdata(file);
|
||
|
struct v4l2_fh *vfh = file->private_data;
|
||
|
struct isp_video_fh *handle = to_isp_video_fh(vfh);
|
||
|
|
||
|
/* Disable streaming and free the buffers queue resources. */
|
||
|
isp_video_streamoff(file, vfh, video->type);
|
||
|
|
||
|
mutex_lock(&handle->queue.lock);
|
||
|
omap3isp_video_queue_cleanup(&handle->queue);
|
||
|
mutex_unlock(&handle->queue.lock);
|
||
|
|
||
|
omap3isp_pipeline_pm_use(&video->video.entity, 0);
|
||
|
|
||
|
/* Release the file handle. */
|
||
|
v4l2_fh_del(vfh);
|
||
|
kfree(handle);
|
||
|
file->private_data = NULL;
|
||
|
|
||
|
omap3isp_put(video->isp);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static unsigned int isp_video_poll(struct file *file, poll_table *wait)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(file->private_data);
|
||
|
struct isp_video_queue *queue = &vfh->queue;
|
||
|
|
||
|
return omap3isp_video_queue_poll(queue, file, wait);
|
||
|
}
|
||
|
|
||
|
static int isp_video_mmap(struct file *file, struct vm_area_struct *vma)
|
||
|
{
|
||
|
struct isp_video_fh *vfh = to_isp_video_fh(file->private_data);
|
||
|
|
||
|
return omap3isp_video_queue_mmap(&vfh->queue, vma);
|
||
|
}
|
||
|
|
||
|
static struct v4l2_file_operations isp_video_fops = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.unlocked_ioctl = video_ioctl2,
|
||
|
.open = isp_video_open,
|
||
|
.release = isp_video_release,
|
||
|
.poll = isp_video_poll,
|
||
|
.mmap = isp_video_mmap,
|
||
|
};
|
||
|
|
||
|
/* -----------------------------------------------------------------------------
|
||
|
* ISP video core
|
||
|
*/
|
||
|
|
||
|
static const struct isp_video_operations isp_video_dummy_ops = {
|
||
|
};
|
||
|
|
||
|
int omap3isp_video_init(struct isp_video *video, const char *name)
|
||
|
{
|
||
|
const char *direction;
|
||
|
int ret;
|
||
|
|
||
|
switch (video->type) {
|
||
|
case V4L2_BUF_TYPE_VIDEO_CAPTURE:
|
||
|
direction = "output";
|
||
|
video->pad.flags = MEDIA_PAD_FL_SINK;
|
||
|
break;
|
||
|
case V4L2_BUF_TYPE_VIDEO_OUTPUT:
|
||
|
direction = "input";
|
||
|
video->pad.flags = MEDIA_PAD_FL_SOURCE;
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
ret = media_entity_init(&video->video.entity, 1, &video->pad, 0);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
mutex_init(&video->mutex);
|
||
|
atomic_set(&video->active, 0);
|
||
|
|
||
|
spin_lock_init(&video->pipe.lock);
|
||
|
mutex_init(&video->stream_lock);
|
||
|
|
||
|
/* Initialize the video device. */
|
||
|
if (video->ops == NULL)
|
||
|
video->ops = &isp_video_dummy_ops;
|
||
|
|
||
|
video->video.fops = &isp_video_fops;
|
||
|
snprintf(video->video.name, sizeof(video->video.name),
|
||
|
"OMAP3 ISP %s %s", name, direction);
|
||
|
video->video.vfl_type = VFL_TYPE_GRABBER;
|
||
|
video->video.release = video_device_release_empty;
|
||
|
video->video.ioctl_ops = &isp_video_ioctl_ops;
|
||
|
video->pipe.stream_state = ISP_PIPELINE_STREAM_STOPPED;
|
||
|
|
||
|
video_set_drvdata(&video->video, video);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void omap3isp_video_cleanup(struct isp_video *video)
|
||
|
{
|
||
|
media_entity_cleanup(&video->video.entity);
|
||
|
mutex_destroy(&video->stream_lock);
|
||
|
mutex_destroy(&video->mutex);
|
||
|
}
|
||
|
|
||
|
int omap3isp_video_register(struct isp_video *video, struct v4l2_device *vdev)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
video->video.v4l2_dev = vdev;
|
||
|
|
||
|
ret = video_register_device(&video->video, VFL_TYPE_GRABBER, -1);
|
||
|
if (ret < 0)
|
||
|
printk(KERN_ERR "%s: could not register video device (%d)\n",
|
||
|
__func__, ret);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void omap3isp_video_unregister(struct isp_video *video)
|
||
|
{
|
||
|
if (video_is_registered(&video->video))
|
||
|
video_unregister_device(&video->video);
|
||
|
}
|