M7350/kernel/drivers/hwmon/msm_adc.c

1534 lines
38 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/* Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/miscdevice.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/uaccess.h>
#include <linux/msm_adc.h>
#include <linux/pmic8058-xoadc.h>
#include <linux/slab.h>
#include <linux/semaphore.h>
#include <linux/module.h>
#include <mach/dal.h>
#define MSM_ADC_DRIVER_NAME "msm_adc"
#define MSM_ADC_MAX_FNAME 15
#define MSM_ADC_DALRPC_DEVICEID 0x02000067
#define MSM_ADC_DALRPC_PORT_NAME "DAL00"
#define MSM_ADC_DALRPC_CPU SMD_APPS_MODEM
#define MSM_ADC_DALRPC_CMD_REQ_CONV 9
#define MSM_ADC_DALRPC_CMD_INPUT_PROP 11
#define MSM_ADC_DALRC_CONV_TIMEOUT (5 * HZ) /* 5 seconds */
#define MSM_8x25_ADC_DEV_ID 0
#define MSM_8x25_CHAN_ID 16
enum dal_error {
DAL_ERROR_INVALID_DEVICE_IDX = 1,
DAL_ERROR_INVALID_CHANNEL_IDX,
DAL_ERROR_NULL_POINTER,
DAL_ERROR_DEVICE_QUEUE_FULL,
DAL_ERROR_INVALID_PROPERTY_LENGTH,
DAL_ERROR_REMOTE_EVENT_POOL_FULL
};
enum dal_result_status {
DAL_RESULT_STATUS_INVALID,
DAL_RESULT_STATUS_VALID
};
struct dal_conv_state {
struct dal_conv_slot context[MSM_ADC_DEV_MAX_INFLIGHT];
struct list_head slots;
struct mutex list_lock;
struct semaphore slot_count;
};
struct adc_dev {
char *name;
uint32_t nchans;
struct dal_conv_state conv;
struct dal_translation transl;
struct sensor_device_attribute *sens_attr;
char **fnames;
};
struct msm_adc_drv {
/* Common to both XOADC and EPM */
struct platform_device *pdev;
struct device *hwmon;
struct miscdevice misc;
/* XOADC variables */
struct sensor_device_attribute *sens_attr;
struct workqueue_struct *wq;
atomic_t online;
atomic_t total_outst;
wait_queue_head_t total_outst_wait;
/* EPM variables */
void *dev_h;
struct adc_dev *devs[MSM_ADC_MAX_NUM_DEVS];
struct mutex prop_lock;
atomic_t rpc_online;
atomic_t rpc_total_outst;
wait_queue_head_t rpc_total_outst_wait;
};
static bool epm_init;
static bool epm_fluid_enabled;
/* Needed to support file_op interfaces */
static struct msm_adc_drv *msm_adc_drv;
static bool conv_first_request;
static ssize_t msm_adc_show_curr(struct device *dev,
struct device_attribute *devattr, char *buf);
static int msm_rpc_adc_blocking_conversion(struct msm_adc_drv *msm_adc,
uint32_t chan, struct adc_chan_result *result);
static int msm_adc_blocking_conversion(struct msm_adc_drv *msm_adc,
uint32_t chan, struct adc_chan_result *result);
static int msm_adc_open(struct inode *inode, struct file *file)
{
struct msm_client_data *client;
struct msm_adc_drv *msm_adc = msm_adc_drv;
struct platform_device *pdev = msm_adc->pdev;
client = kzalloc(sizeof(struct msm_client_data), GFP_KERNEL);
if (!client) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
if (!try_module_get(THIS_MODULE)) {
kfree(client);
return -EACCES;
}
mutex_init(&client->lock);
INIT_LIST_HEAD(&client->complete_list);
init_waitqueue_head(&client->data_wait);
init_waitqueue_head(&client->outst_wait);
client->online = 1;
file->private_data = client;
return nonseekable_open(inode, file);
}
static inline void msm_adc_restore_slot(struct dal_conv_state *conv_s,
struct dal_conv_slot *slot)
{
mutex_lock(&conv_s->list_lock);
list_add(&slot->list, &conv_s->slots);
mutex_unlock(&conv_s->list_lock);
up(&conv_s->slot_count);
}
static int no_pending_client_requests(struct msm_client_data *client)
{
mutex_lock(&client->lock);
if (client->num_outstanding == 0) {
mutex_unlock(&client->lock);
return 1;
}
mutex_unlock(&client->lock);
return 0;
}
static int data_avail(struct msm_client_data *client, uint32_t *pending)
{
uint32_t completed;
mutex_lock(&client->lock);
completed = client->num_complete;
mutex_unlock(&client->lock);
if (completed > 0) {
if (pending != NULL)
*pending = completed;
return 1;
}
return 0;
}
static int msm_adc_release(struct inode *inode, struct file *file)
{
struct msm_client_data *client = file->private_data;
struct adc_conv_slot *slot, *tmp;
int rc;
struct msm_adc_platform_data *pdata =
msm_adc_drv->pdev->dev.platform_data;
struct msm_adc_channels *channel = pdata->channel;
module_put(THIS_MODULE);
mutex_lock(&client->lock);
/* prevent any further requests while we teardown the client */
client->online = 0;
mutex_unlock(&client->lock);
/*
* We may still have outstanding transactions in flight from this
* client that have not completed. Make sure they're completed
* before removing the client.
*/
rc = wait_event_interruptible(client->outst_wait,
no_pending_client_requests(client));
if (rc) {
pr_err("%s: wait_event_interruptible failed rc = %d\n",
__func__, rc);
return rc;
}
/*
* All transactions have completed. Add slot resources back to the
* appropriate devices.
*/
list_for_each_entry_safe(slot, tmp, &client->complete_list, list) {
slot->client = NULL;
list_del(&slot->list);
channel[slot->conv.result.chan].adc_access_fn->adc_restore_slot(
channel[slot->conv.result.chan].adc_dev_instance, slot);
}
kfree(client);
return 0;
}
static int msm_adc_translate_dal_to_hwmon(struct msm_adc_drv *msm_adc,
uint32_t chan,
struct adc_dev_spec *dest)
{
struct dal_translation *transl;
struct msm_adc_platform_data *pdata = msm_adc->pdev->dev.platform_data;
int i;
for (i = 0; i < pdata->num_adc; i++) {
transl = &msm_adc->devs[i]->transl;
if (chan >= transl->hwmon_start &&
chan <= transl->hwmon_end) {
dest->dal.dev_idx = transl->dal_dev_idx;
dest->hwmon_dev_idx = transl->hwmon_dev_idx;
dest->dal.chan_idx = chan - transl->hwmon_start;
return 0;
}
}
return -EINVAL;
}
static int msm_adc_translate_hwmon_to_dal(struct msm_adc_drv *msm_adc,
struct adc_dev_spec *source,
uint32_t *chan)
{
struct msm_adc_platform_data *pdata = msm_adc->pdev->dev.platform_data;
struct dal_translation *transl;
int i;
for (i = 0; i < pdata->num_adc; i++) {
transl = &msm_adc->devs[i]->transl;
if (source->dal.dev_idx != transl->dal_dev_idx)
continue;
*chan = transl->hwmon_start + source->dal.chan_idx;
return 0;
}
return -EINVAL;
}
static int msm_adc_getinputproperties(struct msm_adc_drv *msm_adc,
const char *lookup_name,
struct adc_dev_spec *result)
{
struct device *dev = &msm_adc->pdev->dev;
int rc;
mutex_lock(&msm_adc->prop_lock);
rc = dalrpc_fcn_8(MSM_ADC_DALRPC_CMD_INPUT_PROP, msm_adc->dev_h,
lookup_name, strlen(lookup_name) + 1,
&result->dal, sizeof(struct dal_dev_spec));
if (rc) {
dev_err(dev, "DAL getprop request failed: rc = %d\n", rc);
mutex_unlock(&msm_adc->prop_lock);
return -EIO;
}
mutex_unlock(&msm_adc->prop_lock);
return rc;
}
static int msm_adc_lookup(struct msm_adc_drv *msm_adc,
struct msm_adc_lookup *lookup)
{
struct msm_adc_platform_data *pdata = msm_adc->pdev->dev.platform_data;
struct adc_dev_spec target;
int rc = 0, i = 0;
uint32_t len = 0;
len = strnlen(lookup->name, MSM_ADC_MAX_CHAN_STR);
while (i < pdata->num_chan_supported) {
if (strncmp(lookup->name, pdata->channel[i].name, len))
i++;
else
break;
}
if (pdata->num_chan_supported > 0 && i < pdata->num_chan_supported) {
lookup->chan_idx = i;
} else if (msm_adc->dev_h) {
rc = msm_adc_getinputproperties(msm_adc, lookup->name, &target);
if (rc) {
pr_err("%s: Lookup failed for %s\n", __func__,
lookup->name);
return rc;
}
rc = msm_adc_translate_hwmon_to_dal(msm_adc, &target,
&lookup->chan_idx);
if (rc)
pr_err("%s: Translation failed for %s\n", __func__,
lookup->name);
} else {
pr_err("%s: Lookup failed for %s\n", __func__, lookup->name);
rc = -EINVAL;
}
return rc;
}
static int msm_adc_aio_conversion(struct msm_adc_drv *msm_adc,
struct adc_chan_result *request,
struct msm_client_data *client)
{
struct msm_adc_platform_data *pdata =
msm_adc_drv->pdev->dev.platform_data;
struct msm_adc_channels *channel = &pdata->channel[request->chan];
struct adc_conv_slot *slot;
/* we could block here, but only for a bounded time */
channel->adc_access_fn->adc_slot_request(channel->adc_dev_instance,
&slot);
if (slot) {
atomic_inc(&msm_adc->total_outst);
mutex_lock(&client->lock);
client->num_outstanding++;
mutex_unlock(&client->lock);
/* indicates non blocking request to callback handler */
slot->blocking = 0;
slot->compk = NULL;/*For kernel space usage; n/a for usr space*/
slot->conv.result.chan = client->adc_chan = request->chan;
slot->client = client;
slot->adc_request = START_OF_CONV;
slot->chan_path = channel->chan_path_type;
slot->chan_adc_config = channel->adc_config_type;
slot->chan_adc_calib = channel->adc_calib_type;
queue_work(msm_adc->wq, &slot->work);
return 0;
}
return -EBUSY;
}
static int msm_adc_fluid_hw_deinit(struct msm_adc_drv *msm_adc)
{
struct msm_adc_platform_data *pdata = msm_adc->pdev->dev.platform_data;
if (!epm_init)
return -EINVAL;
if (pdata->gpio_config == APROC_CONFIG &&
epm_fluid_enabled && pdata->adc_fluid_disable != NULL) {
pdata->adc_fluid_disable();
epm_fluid_enabled = false;
}
return 0;
}
static int msm_adc_fluid_hw_init(struct msm_adc_drv *msm_adc)
{
struct msm_adc_platform_data *pdata = msm_adc->pdev->dev.platform_data;
if (!epm_init)
return -EINVAL;
if (!pdata->adc_fluid_enable)
return -ENODEV;
printk(KERN_DEBUG "msm_adc_fluid_hw_init: Calling adc_fluid_enable.\n");
if (pdata->gpio_config == APROC_CONFIG && !epm_fluid_enabled) {
pdata->adc_fluid_enable();
epm_fluid_enabled = true;
}
/* return success for now but check for errors from hw init configuration */
return 0;
}
static int msm_adc_poll_complete(struct msm_adc_drv *msm_adc,
struct msm_client_data *client, uint32_t *pending)
{
int rc;
/*
* Don't proceed if there there's nothing queued on this client.
* We could deadlock otherwise in a single threaded scenario.
*/
if (no_pending_client_requests(client) && !data_avail(client, pending))
return -EDEADLK;
rc = wait_event_interruptible(client->data_wait,
data_avail(client, pending));
if (rc)
return rc;
return 0;
}
static int msm_adc_read_result(struct msm_adc_drv *msm_adc,
struct msm_client_data *client,
struct adc_chan_result *result)
{
struct msm_adc_platform_data *pdata = msm_adc->pdev->dev.platform_data;
struct msm_adc_channels *channel = pdata->channel;
struct adc_conv_slot *slot;
int rc = 0;
mutex_lock(&client->lock);
slot = list_first_entry(&client->complete_list,
struct adc_conv_slot, list);
if (!slot) {
mutex_unlock(&client->lock);
return -ENOMSG;
}
slot->client = NULL;
list_del(&slot->list);
client->num_complete--;
mutex_unlock(&client->lock);
*result = slot->conv.result;
/* restore this slot to reserve */
channel[slot->conv.result.chan].adc_access_fn->adc_restore_slot(
channel[slot->conv.result.chan].adc_dev_instance, slot);
return rc;
}
static long msm_adc_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct msm_client_data *client = file->private_data;
struct msm_adc_drv *msm_adc = msm_adc_drv;
struct platform_device *pdev = msm_adc->pdev;
struct msm_adc_platform_data *pdata = pdev->dev.platform_data;
uint32_t block_res = 0;
int rc;
switch (cmd) {
case MSM_ADC_REQUEST:
{
struct adc_chan_result conv;
if (copy_from_user(&conv, (void __user *)arg,
sizeof(struct adc_chan_result)))
return -EFAULT;
if (conv.chan < pdata->num_chan_supported) {
rc = msm_adc_blocking_conversion(msm_adc,
conv.chan, &conv);
} else {
if (!msm_adc->dev_h)
return -EAGAIN;
rc = msm_rpc_adc_blocking_conversion(msm_adc,
conv.chan, &conv);
}
if (rc) {
dev_dbg(&pdev->dev, "BLK conversion failed\n");
return rc;
}
if (copy_to_user((void __user *)arg, &conv,
sizeof(struct adc_chan_result)))
return -EFAULT;
break;
}
case MSM_ADC_AIO_REQUEST_BLOCK_RES:
block_res = 1;
case MSM_ADC_AIO_REQUEST:
{
struct adc_chan_result conv;
if (copy_from_user(&conv, (void __user *)arg,
sizeof(struct adc_chan_result)))
return -EFAULT;
if (conv.chan >= pdata->num_chan_supported)
return -EINVAL;
rc = msm_adc_aio_conversion(msm_adc, &conv, client);
if (rc) {
dev_dbg(&pdev->dev, "AIO conversion failed\n");
return rc;
}
if (copy_to_user((void __user *)arg, &conv,
sizeof(struct adc_chan_result)))
return -EFAULT;
break;
}
case MSM_ADC_AIO_POLL:
{
uint32_t completed;
rc = msm_adc_poll_complete(msm_adc, client, &completed);
if (rc) {
dev_dbg(&pdev->dev, "poll request failed\n");
return rc;
}
if (copy_to_user((void __user *)arg, &completed,
sizeof(uint32_t)))
return -EFAULT;
break;
}
case MSM_ADC_AIO_READ:
{
struct adc_chan_result result;
rc = msm_adc_read_result(msm_adc, client, &result);
if (rc) {
dev_dbg(&pdev->dev, "read result failed\n");
return rc;
}
if (copy_to_user((void __user *)arg, &result,
sizeof(struct adc_chan_result)))
return -EFAULT;
break;
}
case MSM_ADC_LOOKUP:
{
struct msm_adc_lookup lookup;
if (copy_from_user(&lookup, (void __user *)arg,
sizeof(struct msm_adc_lookup)))
return -EFAULT;
rc = msm_adc_lookup(msm_adc, &lookup);
if (rc) {
dev_dbg(&pdev->dev, "No such channel: %s\n",
lookup.name);
return rc;
}
if (copy_to_user((void __user *)arg, &lookup,
sizeof(struct msm_adc_lookup)))
return -EFAULT;
break;
}
case MSM_ADC_FLUID_INIT:
{
uint32_t result;
result = msm_adc_fluid_hw_init(msm_adc);
if (copy_to_user((void __user *)arg, &result,
sizeof(uint32_t))) {
printk(KERN_ERR "MSM_ADC_FLUID_INIT: "
"copy_to_user returned an error.\n");
return -EFAULT;
}
printk(KERN_DEBUG "MSM_ADC_FLUID_INIT: Success.\n");
break;
}
case MSM_ADC_FLUID_DEINIT:
{
uint32_t result;
result = msm_adc_fluid_hw_deinit(msm_adc);
if (copy_to_user((void __user *)arg, &result,
sizeof(uint32_t)))
return -EFAULT;
break;
}
default:
return -EINVAL;
}
return 0;
}
const struct file_operations msm_adc_fops = {
.open = msm_adc_open,
.release = msm_adc_release,
.unlocked_ioctl = msm_adc_ioctl,
};
static ssize_t msm_adc_show_curr(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct msm_adc_drv *msm_adc = dev_get_drvdata(dev);
struct msm_adc_platform_data *pdata = msm_adc->pdev->dev.platform_data;
struct adc_chan_result result;
int rc;
#ifdef CONFIG_PMIC8058_XOADC
rc = pm8058_xoadc_registered();
if (rc <= 0)
return -ENODEV;
#endif
if (attr->index < pdata->num_chan_supported) {
rc = msm_adc_blocking_conversion(msm_adc,
attr->index, &result);
} else {
if (pdata->gpio_config == APROC_CONFIG && !epm_fluid_enabled
&& pdata->adc_fluid_enable != NULL) {
printk(KERN_DEBUG "This is to read ADC value for "
"Fluid EPM and init. Do it only once.\n");
pdata->adc_fluid_enable();
epm_fluid_enabled = true;
}
rc = msm_rpc_adc_blocking_conversion(msm_adc,
attr->index, &result);
}
if (rc)
return 0;
return sprintf(buf, "Result: %lld Raw: %d\n", result.physical,
result.adc_code);
}
static int msm_rpc_adc_blocking_conversion(struct msm_adc_drv *msm_adc,
uint32_t hwmon_chan, struct adc_chan_result *result)
{
struct msm_adc_platform_data *pdata = msm_adc->pdev->dev.platform_data;
struct dal_conv_request params;
struct device *dev = &msm_adc->pdev->dev;
struct adc_dev *adc_dev;
struct dal_conv_state *conv_s;
struct dal_conv_slot *slot;
struct adc_dev_spec dest;
int timeout, rc = 0;
if (pdata->gpio_config == APROC_CONFIG &&
pdata->adc_gpio_enable != NULL)
pdata->adc_gpio_enable(hwmon_chan-pdata->num_chan_supported);
rc = msm_adc_translate_dal_to_hwmon(msm_adc, hwmon_chan, &dest);
if (rc) {
dev_err(dev, "%s: translation from chan %u failed\n",
__func__, hwmon_chan);
if (pdata->gpio_config == APROC_CONFIG &&
pdata->adc_gpio_disable != NULL)
pdata->adc_gpio_disable(hwmon_chan
-pdata->num_chan_supported);
return -EINVAL;
}
adc_dev = msm_adc->devs[dest.hwmon_dev_idx];
conv_s = &adc_dev->conv;
down(&conv_s->slot_count);
mutex_lock(&conv_s->list_lock);
slot = list_first_entry(&conv_s->slots, struct dal_conv_slot, list);
list_del(&slot->list);
BUG_ON(!slot);
mutex_unlock(&conv_s->list_lock);
/* indicates blocking request to callback handler */
slot->blocking = 1;
params.target.dev_idx = dest.dal.dev_idx;
params.target.chan_idx = dest.dal.chan_idx;
params.cb_h = slot->cb_h;
rc = dalrpc_fcn_8(MSM_ADC_DALRPC_CMD_REQ_CONV, msm_adc->dev_h,
&params, sizeof(params), NULL, 0);
if (rc) {
dev_err(dev, "%s: Conversion for device = %u channel = %u"
" failed\n", __func__, params.target.dev_idx,
params.target.chan_idx);
rc = -EIO;
goto blk_conv_err;
}
timeout = wait_for_completion_interruptible_timeout(&slot->comp,
MSM_ADC_DALRC_CONV_TIMEOUT);
if (timeout == 0) {
dev_err(dev, "read for device = %u channel = %u timed out\n",
params.target.dev_idx, params.target.chan_idx);
rc = -ETIMEDOUT;
goto blk_conv_err;
} else if (timeout < 0) {
rc = -EINTR;
goto blk_conv_err;
}
result->physical = (int64_t)slot->result.physical;
if (slot->result.status == DAL_RESULT_STATUS_INVALID)
rc = -ENODATA;
blk_conv_err:
if (pdata->gpio_config == APROC_CONFIG &&
pdata->adc_gpio_disable != NULL)
pdata->adc_gpio_disable(hwmon_chan-pdata->num_chan_supported);
msm_adc_restore_slot(conv_s, slot);
return rc;
}
static int msm_adc_blocking_conversion(struct msm_adc_drv *msm_adc,
uint32_t hwmon_chan, struct adc_chan_result *result)
{
struct adc_conv_slot *slot;
struct msm_adc_platform_data *pdata =
msm_adc_drv->pdev->dev.platform_data;
struct msm_adc_channels *channel = &pdata->channel[hwmon_chan];
int ret = 0;
if (conv_first_request) {
ret = pm8058_xoadc_calib_device(channel->adc_dev_instance);
if (ret) {
pr_err("pmic8058 xoadc calibration failed, retry\n");
return ret;
}
conv_first_request = false;
}
channel->adc_access_fn->adc_slot_request(channel->adc_dev_instance,
&slot);
if (slot) {
slot->conv.result.chan = hwmon_chan;
/* indicates blocking request to callback handler */
slot->blocking = 1;
slot->adc_request = START_OF_CONV;
slot->chan_path = channel->chan_path_type;
slot->chan_adc_config = channel->adc_config_type;
slot->chan_adc_calib = channel->adc_calib_type;
queue_work(msm_adc_drv->wq, &slot->work);
wait_for_completion_interruptible(&slot->comp);
*result = slot->conv.result;
channel->adc_access_fn->adc_restore_slot(
channel->adc_dev_instance, slot);
return 0;
}
return -EBUSY;
}
int32_t adc_channel_open(uint32_t channel, void **h)
{
struct msm_client_data *client;
struct msm_adc_drv *msm_adc = msm_adc_drv;
struct msm_adc_platform_data *pdata;
struct platform_device *pdev;
int i = 0;
if (!msm_adc_drv)
return -EFAULT;
#ifdef CONFIG_PMIC8058_XOADC
if (pm8058_xoadc_registered() <= 0)
return -ENODEV;
#endif
pdata = msm_adc->pdev->dev.platform_data;
pdev = msm_adc->pdev;
while (i < pdata->num_chan_supported) {
if (channel == pdata->channel[i].channel_name)
break;
else
i++;
}
if (i == pdata->num_chan_supported)
return -EBADF; /* unknown channel */
client = kzalloc(sizeof(struct msm_client_data), GFP_KERNEL);
if (!client) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
if (!try_module_get(THIS_MODULE)) {
kfree(client);
return -EACCES;
}
mutex_init(&client->lock);
INIT_LIST_HEAD(&client->complete_list);
init_waitqueue_head(&client->data_wait);
init_waitqueue_head(&client->outst_wait);
client->online = 1;
client->adc_chan = i;
*h = (void *)client;
return 0;
}
int32_t adc_channel_close(void *h)
{
struct msm_client_data *client = (struct msm_client_data *)h;
kfree(client);
return 0;
}
int32_t adc_channel_request_conv(void *h, struct completion *conv_complete_evt)
{
struct msm_client_data *client = (struct msm_client_data *)h;
struct msm_adc_platform_data *pdata =
msm_adc_drv->pdev->dev.platform_data;
struct msm_adc_channels *channel = &pdata->channel[client->adc_chan];
struct adc_conv_slot *slot;
int ret;
if (conv_first_request) {
ret = pm8058_xoadc_calib_device(channel->adc_dev_instance);
if (ret) {
pr_err("pmic8058 xoadc calibration failed, retry\n");
return ret;
}
conv_first_request = false;
}
channel->adc_access_fn->adc_slot_request(channel->adc_dev_instance,
&slot);
if (slot) {
atomic_inc(&msm_adc_drv->total_outst);
mutex_lock(&client->lock);
client->num_outstanding++;
mutex_unlock(&client->lock);
slot->conv.result.chan = client->adc_chan;
slot->blocking = 0;
slot->compk = conv_complete_evt;
slot->client = client;
slot->adc_request = START_OF_CONV;
slot->chan_path = channel->chan_path_type;
slot->chan_adc_config = channel->adc_config_type;
slot->chan_adc_calib = channel->adc_calib_type;
queue_work(msm_adc_drv->wq, &slot->work);
return 0;
}
return -EBUSY;
}
int32_t adc_channel_read_result(void *h, struct adc_chan_result *chan_result)
{
struct msm_client_data *client = (struct msm_client_data *)h;
struct msm_adc_platform_data *pdata =
msm_adc_drv->pdev->dev.platform_data;
struct msm_adc_channels *channel = pdata->channel;
struct adc_conv_slot *slot;
int rc = 0;
mutex_lock(&client->lock);
slot = list_first_entry(&client->complete_list,
struct adc_conv_slot, list);
if (!slot) {
mutex_unlock(&client->lock);
return -ENOMSG;
}
slot->client = NULL;
list_del(&slot->list);
client->num_complete--;
mutex_unlock(&client->lock);
*chan_result = slot->conv.result;
/* restore this slot to reserve */
channel[slot->conv.result.chan].adc_access_fn->adc_restore_slot(
channel[slot->conv.result.chan].adc_dev_instance, slot);
return rc;
}
static void msm_rpc_adc_conv_cb(void *context, u32 param,
void *evt_buf, u32 len)
{
struct dal_adc_result *result = evt_buf;
struct dal_conv_slot *slot = context;
struct msm_adc_drv *msm_adc = msm_adc_drv;
memcpy(&slot->result, result, sizeof(slot->result));
/* for blocking requests, signal complete */
if (slot->blocking)
complete(&slot->comp);
/* for non-blocking requests, add slot to the client completed list */
else {
struct msm_client_data *client = slot->client;
mutex_lock(&client->lock);
list_add(&slot->list, &client->complete_list);
client->num_complete++;
client->num_outstanding--;
/*
* if the client release has been invoked and this is call
* corresponds to the last request, then signal release
* to complete.
*/
if (slot->client->online == 0 && client->num_outstanding == 0)
wake_up_interruptible_all(&client->outst_wait);
mutex_unlock(&client->lock);
wake_up_interruptible_all(&client->data_wait);
atomic_dec(&msm_adc->total_outst);
/* verify driver remove has not been invoked */
if (atomic_read(&msm_adc->online) == 0 &&
atomic_read(&msm_adc->total_outst) == 0)
wake_up_interruptible_all(&msm_adc->total_outst_wait);
}
}
void msm_adc_conv_cb(void *context, u32 param,
void *evt_buf, u32 len)
{
struct adc_conv_slot *slot = context;
struct msm_adc_drv *msm_adc = msm_adc_drv;
switch (slot->adc_request) {
case START_OF_CONV:
slot->adc_request = END_OF_CONV;
break;
case START_OF_CALIBRATION:
slot->adc_request = END_OF_CALIBRATION;
break;
case END_OF_CALIBRATION:
case END_OF_CONV:
break;
}
queue_work(msm_adc->wq, &slot->work);
}
static void msm_adc_teardown_device_conv(struct platform_device *pdev,
struct adc_dev *adc_dev)
{
struct dal_conv_state *conv_s = &adc_dev->conv;
struct msm_adc_drv *msm_adc = platform_get_drvdata(pdev);
struct dal_conv_slot *slot;
int i;
for (i = 0; i < MSM_ADC_DEV_MAX_INFLIGHT; i++) {
slot = &conv_s->context[i];
if (slot->cb_h) {
dalrpc_dealloc_cb(msm_adc->dev_h, slot->cb_h);
slot->cb_h = NULL;
}
}
}
static void msm_rpc_adc_teardown_device(struct platform_device *pdev,
struct adc_dev *adc_dev)
{
struct dal_translation *transl = &adc_dev->transl;
int i, num_chans = transl->hwmon_end - transl->hwmon_start + 1;
if (adc_dev->sens_attr)
for (i = 0; i < num_chans; i++)
device_remove_file(&pdev->dev,
&adc_dev->sens_attr[i].dev_attr);
msm_adc_teardown_device_conv(pdev, adc_dev);
kfree(adc_dev->fnames);
kfree(adc_dev->sens_attr);
kfree(adc_dev);
}
static void msm_rpc_adc_teardown_devices(struct platform_device *pdev)
{
struct msm_adc_platform_data *pdata = pdev->dev.platform_data;
struct msm_adc_drv *msm_adc = platform_get_drvdata(pdev);
int i, rc = 0;
for (i = 0; i < pdata->num_adc; i++) {
if (msm_adc->devs[i]) {
msm_rpc_adc_teardown_device(pdev, msm_adc->devs[i]);
msm_adc->devs[i] = NULL;
} else
break;
}
if (msm_adc->dev_h) {
rc = daldevice_detach(msm_adc->dev_h);
if (rc)
dev_err(&pdev->dev, "Cannot detach from dal device\n");
msm_adc->dev_h = NULL;
}
}
static void msm_adc_teardown_device(struct platform_device *pdev,
struct msm_adc_drv *msm_adc)
{
struct msm_adc_platform_data *pdata = pdev->dev.platform_data;
int i, num_chans = pdata->num_chan_supported;
if (pdata->num_chan_supported > 0) {
if (msm_adc->sens_attr)
for (i = 0; i < num_chans; i++)
device_remove_file(&pdev->dev,
&msm_adc->sens_attr[i].dev_attr);
kfree(msm_adc->sens_attr);
}
}
static void msm_adc_teardown(struct platform_device *pdev)
{
struct msm_adc_drv *msm_adc = platform_get_drvdata(pdev);
if (!msm_adc)
return;
misc_deregister(&msm_adc->misc);
if (msm_adc->hwmon)
hwmon_device_unregister(msm_adc->hwmon);
msm_rpc_adc_teardown_devices(pdev);
msm_adc_teardown_device(pdev, msm_adc);
kfree(msm_adc);
platform_set_drvdata(pdev, NULL);
}
static int __devinit msm_adc_device_conv_init(struct msm_adc_drv *msm_adc,
struct adc_dev *adc_dev)
{
struct platform_device *pdev = msm_adc->pdev;
struct dal_conv_state *conv_s = &adc_dev->conv;
struct dal_conv_slot *slot = conv_s->context;
int rc, i;
sema_init(&conv_s->slot_count, MSM_ADC_DEV_MAX_INFLIGHT);
mutex_init(&conv_s->list_lock);
INIT_LIST_HEAD(&conv_s->slots);
for (i = 0; i < MSM_ADC_DEV_MAX_INFLIGHT; i++) {
list_add(&slot->list, &conv_s->slots);
slot->cb_h = dalrpc_alloc_cb(msm_adc->dev_h,
msm_rpc_adc_conv_cb, slot);
if (!slot->cb_h) {
dev_err(&pdev->dev, "Unable to allocate DAL callback"
" for slot %d\n", i);
rc = -ENOMEM;
goto dal_err_cb;
}
init_completion(&slot->comp);
slot->idx = i;
slot++;
}
return 0;
dal_err_cb:
msm_adc_teardown_device_conv(pdev, adc_dev);
return rc;
}
static struct sensor_device_attribute msm_rpc_adc_curr_in_attr =
SENSOR_ATTR(NULL, S_IRUGO, msm_adc_show_curr, NULL, 0);
static int __devinit msm_rpc_adc_device_init_hwmon(struct platform_device *pdev,
struct adc_dev *adc_dev)
{
struct dal_translation *transl = &adc_dev->transl;
int i, rc, num_chans = transl->hwmon_end - transl->hwmon_start + 1;
const char prefix[] = "curr", postfix[] = "_input";
char tmpbuf[5];
adc_dev->fnames = kzalloc(num_chans * MSM_ADC_MAX_FNAME +
num_chans * sizeof(char *), GFP_KERNEL);
if (!adc_dev->fnames) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
adc_dev->sens_attr = kzalloc(num_chans *
sizeof(struct sensor_device_attribute), GFP_KERNEL);
if (!adc_dev->sens_attr) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
rc = -ENOMEM;
goto hwmon_err_fnames;
}
for (i = 0; i < num_chans; i++) {
adc_dev->fnames[i] = (char *)adc_dev->fnames +
i * MSM_ADC_MAX_FNAME + num_chans * sizeof(char *);
strcpy(adc_dev->fnames[i], prefix);
sprintf(tmpbuf, "%d", transl->hwmon_start + i);
strcat(adc_dev->fnames[i], tmpbuf);
strcat(adc_dev->fnames[i], postfix);
msm_rpc_adc_curr_in_attr.index = transl->hwmon_start + i;
msm_rpc_adc_curr_in_attr.dev_attr.attr.name =
adc_dev->fnames[i];
memcpy(&adc_dev->sens_attr[i], &msm_rpc_adc_curr_in_attr,
sizeof(msm_rpc_adc_curr_in_attr));
rc = device_create_file(&pdev->dev,
&adc_dev->sens_attr[i].dev_attr);
if (rc) {
dev_err(&pdev->dev, "device_create_file failed for "
"dal dev %u chan %d\n",
adc_dev->transl.dal_dev_idx, i);
goto hwmon_err_sens;
}
}
return 0;
hwmon_err_sens:
kfree(adc_dev->sens_attr);
hwmon_err_fnames:
kfree(adc_dev->fnames);
return rc;
}
static int __devinit msm_rpc_adc_device_init(struct platform_device *pdev)
{
struct msm_adc_platform_data *pdata = pdev->dev.platform_data;
struct msm_adc_drv *msm_adc = platform_get_drvdata(pdev);
struct adc_dev *adc_dev;
struct adc_dev_spec target;
int i, rc;
int hwmon_cntr = pdata->num_chan_supported;
for (i = 0; i < pdata->num_adc; i++) {
adc_dev = kzalloc(sizeof(struct adc_dev), GFP_KERNEL);
if (!adc_dev) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
rc = -ENOMEM;
goto dev_init_err;
}
msm_adc->devs[i] = adc_dev;
adc_dev->name = pdata->dev_names[i];
rc = msm_adc_device_conv_init(msm_adc, adc_dev);
if (rc) {
dev_err(&pdev->dev, "DAL device[%s] failed conv init\n",
adc_dev->name);
goto dev_init_err;
}
if (!pdata->target_hw == MSM_8x25) {
/* DAL device lookup */
rc = msm_adc_getinputproperties(msm_adc, adc_dev->name,
&target);
if (rc) {
dev_err(&pdev->dev, "No such DAL device[%s]\n",
adc_dev->name);
goto dev_init_err;
}
adc_dev->transl.dal_dev_idx = target.dal.dev_idx;
adc_dev->nchans = target.dal.chan_idx;
} else {
/* On targets prior to MSM7x30 the remote driver has
only the channel list and no device id. */
adc_dev->transl.dal_dev_idx = MSM_8x25_ADC_DEV_ID;
adc_dev->nchans = MSM_8x25_CHAN_ID;
}
adc_dev->transl.hwmon_dev_idx = i;
adc_dev->transl.hwmon_start = hwmon_cntr;
adc_dev->transl.hwmon_end = hwmon_cntr + adc_dev->nchans - 1;
hwmon_cntr += adc_dev->nchans;
rc = msm_rpc_adc_device_init_hwmon(pdev, adc_dev);
if (rc)
goto dev_init_err;
}
return 0;
dev_init_err:
msm_rpc_adc_teardown_devices(pdev);
return rc;
}
static int __devinit msm_rpc_adc_init(struct platform_device *pdev1)
{
struct msm_adc_drv *msm_adc = msm_adc_drv;
struct platform_device *pdev = msm_adc->pdev;
struct msm_adc_platform_data *pdata = pdev->dev.platform_data;
int rc = 0;
dev_dbg(&pdev->dev, "msm_rpc_adc_init called\n");
if (!pdata) {
dev_err(&pdev->dev, "no platform data?\n");
return -EINVAL;
}
mutex_init(&msm_adc->prop_lock);
rc = daldevice_attach(MSM_ADC_DALRPC_DEVICEID,
MSM_ADC_DALRPC_PORT_NAME,
MSM_ADC_DALRPC_CPU,
&msm_adc->dev_h);
if (rc) {
dev_err(&pdev->dev, "Cannot attach to dal device\n");
return rc;
}
dev_dbg(&pdev->dev, "Attach to dal device Succeeded\n");
rc = msm_rpc_adc_device_init(pdev);
if (rc) {
dev_err(&pdev->dev, "msm_adc_dev_init failed\n");
goto err_cleanup;
}
init_waitqueue_head(&msm_adc->rpc_total_outst_wait);
atomic_set(&msm_adc->rpc_online, 1);
atomic_set(&msm_adc->rpc_total_outst, 0);
epm_init = true;
pr_info("msm_adc successfully registered\n");
return 0;
err_cleanup:
msm_rpc_adc_teardown_devices(pdev);
return rc;
}
/*
* Process the deferred job
*/
void msm_adc_wq_work(struct work_struct *work)
{
struct adc_properties *adc_properties;
struct adc_conv_slot *slot = container_of(work,
struct adc_conv_slot, work);
uint32_t idx = slot->conv.result.chan;
struct msm_adc_platform_data *pdata =
msm_adc_drv->pdev->dev.platform_data;
struct msm_adc_channels *channel = &pdata->channel[idx];
int32_t adc_code;
switch (slot->adc_request) {
case START_OF_CONV:
channel->adc_access_fn->adc_select_chan_and_start_conv(
channel->adc_dev_instance, slot);
break;
case END_OF_CONV:
adc_properties = channel->adc_access_fn->adc_get_properties(
channel->adc_dev_instance);
if (channel->adc_access_fn->adc_read_adc_code)
channel->adc_access_fn->adc_read_adc_code(
channel->adc_dev_instance, &adc_code);
if (channel->chan_processor)
channel->chan_processor(adc_code, adc_properties,
&slot->chan_properties, &slot->conv.result);
/* Intentionally a fall thru here. Calibraton does not need
to perform channel processing, etc. However, both
end of conversion and end of calibration requires the below
fall thru code to be executed. */
case END_OF_CALIBRATION:
/* for blocking requests, signal complete */
if (slot->blocking)
complete(&slot->comp);
else {
struct msm_client_data *client = slot->client;
mutex_lock(&client->lock);
if (slot->adc_request == END_OF_CONV) {
list_add(&slot->list, &client->complete_list);
client->num_complete++;
}
client->num_outstanding--;
/*
* if the client release has been invoked and this is call
* corresponds to the last request, then signal release
* to complete.
*/
if (slot->client->online == 0 &&
client->num_outstanding == 0)
wake_up_interruptible_all(&client->outst_wait);
mutex_unlock(&client->lock);
wake_up_interruptible_all(&client->data_wait);
atomic_dec(&msm_adc_drv->total_outst);
/* verify driver remove has not been invoked */
if (atomic_read(&msm_adc_drv->online) == 0 &&
atomic_read(&msm_adc_drv->total_outst) == 0)
wake_up_interruptible_all(
&msm_adc_drv->total_outst_wait);
if (slot->compk) /* Kernel space request */
complete(slot->compk);
if (slot->adc_request == END_OF_CALIBRATION)
channel->adc_access_fn->adc_restore_slot(
channel->adc_dev_instance, slot);
}
break;
case START_OF_CALIBRATION: /* code here to please code reviewers
to satisfy silly compiler warnings */
break;
}
}
static struct sensor_device_attribute msm_adc_curr_in_attr =
SENSOR_ATTR(NULL, S_IRUGO, msm_adc_show_curr, NULL, 0);
static int __devinit msm_adc_init_hwmon(struct platform_device *pdev,
struct msm_adc_drv *msm_adc)
{
struct msm_adc_platform_data *pdata = pdev->dev.platform_data;
struct msm_adc_channels *channel = pdata->channel;
int i, rc, num_chans = pdata->num_chan_supported;
if (!channel)
return -EINVAL;
msm_adc->sens_attr = kzalloc(num_chans *
sizeof(struct sensor_device_attribute), GFP_KERNEL);
if (!msm_adc->sens_attr) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
rc = -ENOMEM;
goto hwmon_err_sens;
}
for (i = 0; i < num_chans; i++) {
msm_adc_curr_in_attr.index = i;
msm_adc_curr_in_attr.dev_attr.attr.name = channel[i].name;
memcpy(&msm_adc->sens_attr[i], &msm_adc_curr_in_attr,
sizeof(msm_adc_curr_in_attr));
rc = device_create_file(&pdev->dev,
&msm_adc->sens_attr[i].dev_attr);
if (rc) {
dev_err(&pdev->dev, "device_create_file failed for "
"dal dev %s\n",
channel[i].name);
goto hwmon_err_sens;
}
}
return 0;
hwmon_err_sens:
kfree(msm_adc->sens_attr);
return rc;
}
static struct platform_driver msm_adc_rpcrouter_remote_driver = {
.probe = msm_rpc_adc_init,
.driver = {
.name = MSM_ADC_DALRPC_PORT_NAME,
.owner = THIS_MODULE,
},
};
static int __devinit msm_adc_probe(struct platform_device *pdev)
{
struct msm_adc_platform_data *pdata = pdev->dev.platform_data;
struct msm_adc_drv *msm_adc;
int rc = 0;
if (!pdata) {
dev_err(&pdev->dev, "no platform data?\n");
return -EINVAL;
}
msm_adc = kzalloc(sizeof(struct msm_adc_drv), GFP_KERNEL);
if (!msm_adc) {
dev_err(&pdev->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, msm_adc);
msm_adc_drv = msm_adc;
msm_adc->pdev = pdev;
if (pdata->target_hw == MSM_8x60 || pdata->target_hw == FSM_9xxx) {
rc = msm_adc_init_hwmon(pdev, msm_adc);
if (rc) {
dev_err(&pdev->dev, "msm_adc_dev_init failed\n");
goto err_cleanup;
}
}
msm_adc->hwmon = hwmon_device_register(&pdev->dev);
if (IS_ERR(msm_adc->hwmon)) {
dev_err(&pdev->dev, "hwmon_device_register failed\n");
rc = PTR_ERR(msm_adc->hwmon);
goto err_cleanup;
}
msm_adc->misc.name = MSM_ADC_DRIVER_NAME;
msm_adc->misc.minor = MISC_DYNAMIC_MINOR;
msm_adc->misc.fops = &msm_adc_fops;
if (misc_register(&msm_adc->misc)) {
dev_err(&pdev->dev, "Unable to register misc device!\n");
goto err_cleanup;
}
init_waitqueue_head(&msm_adc->total_outst_wait);
atomic_set(&msm_adc->online, 1);
atomic_set(&msm_adc->total_outst, 0);
msm_adc->wq = create_singlethread_workqueue("msm_adc");
if (!msm_adc->wq)
goto err_cleanup;
if (pdata->num_adc > 0) {
if (pdata->target_hw == MSM_8x60)
platform_driver_register(
&msm_adc_rpcrouter_remote_driver);
else
msm_rpc_adc_init(pdev);
}
conv_first_request = true;
pr_info("msm_adc successfully registered\n");
return 0;
err_cleanup:
msm_adc_teardown(pdev);
return rc;
}
static int __devexit msm_adc_remove(struct platform_device *pdev)
{
int rc;
struct msm_adc_drv *msm_adc = platform_get_drvdata(pdev);
atomic_set(&msm_adc->online, 0);
atomic_set(&msm_adc->rpc_online, 0);
misc_deregister(&msm_adc->misc);
hwmon_device_unregister(msm_adc->hwmon);
msm_adc->hwmon = NULL;
/*
* We may still have outstanding transactions in flight that have not
* completed. Make sure they're completed before tearing down.
*/
rc = wait_event_interruptible(msm_adc->total_outst_wait,
atomic_read(&msm_adc->total_outst) == 0);
if (rc) {
pr_err("%s: wait_event_interruptible failed rc = %d\n",
__func__, rc);
return rc;
}
rc = wait_event_interruptible(msm_adc->rpc_total_outst_wait,
atomic_read(&msm_adc->rpc_total_outst) == 0);
if (rc) {
pr_err("%s: wait_event_interruptible failed rc = %d\n",
__func__, rc);
return rc;
}
msm_adc_teardown(pdev);
pr_info("msm_adc unregistered\n");
return 0;
}
static struct platform_driver msm_adc_driver = {
.probe = msm_adc_probe,
.remove = __devexit_p(msm_adc_remove),
.driver = {
.name = MSM_ADC_DRIVER_NAME,
.owner = THIS_MODULE,
},
};
static int __init msm_adc_init(void)
{
return platform_driver_register(&msm_adc_driver);
}
module_init(msm_adc_init);
static void __exit msm_adc_exit(void)
{
platform_driver_unregister(&msm_adc_driver);
}
module_exit(msm_adc_exit);
MODULE_DESCRIPTION("MSM ADC Driver");
MODULE_ALIAS("platform:msm_adc");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.1");