M7350/base/services/surfaceflinger/LayerBase.cpp

966 lines
27 KiB
C++
Raw Normal View History

2024-09-09 08:52:07 +00:00
/*
* Copyright (C) 2007 The Android Open Source Project
* Copyright (C) 2010, The Linux Foundation. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <utils/Errors.h>
#include <utils/Log.h>
#include <binder/IPCThreadState.h>
#include <binder/IServiceManager.h>
#include <GLES/gl.h>
#include <GLES/glext.h>
#include <hardware/hardware.h>
#include "clz.h"
#include "LayerBase.h"
#include "SurfaceFlinger.h"
#include "DisplayHardware/DisplayHardware.h"
#include "TextureManager.h"
namespace android {
// ---------------------------------------------------------------------------
int32_t LayerBase::sSequence = 1;
LayerBase::LayerBase(SurfaceFlinger* flinger, DisplayID display)
: dpy(display), contentDirty(false),
sequence(uint32_t(android_atomic_inc(&sSequence))),
mFlinger(flinger),
mNeedsFiltering(false),
mOrientation(0),
mLeft(0), mTop(0),
mTransactionFlags(0),
mPremultipliedAlpha(true), mName("unnamed"), mDebug(false),
mInvalidate(0),
mOverlayUsed(false)
#ifdef AVOID_DRAW_TEXTURE
,mTransformed(false)
#endif
{
const DisplayHardware& hw(flinger->graphicPlane(0).displayHardware());
mFlags = hw.getFlags();
mBufferCrop.makeInvalid();
mBufferTransform = 0;
}
LayerBase::~LayerBase()
{
}
void LayerBase::setName(const String8& name) {
mName = name;
}
String8 LayerBase::getName() const {
return mName;
}
const GraphicPlane& LayerBase::graphicPlane(int dpy) const
{
return mFlinger->graphicPlane(dpy);
}
GraphicPlane& LayerBase::graphicPlane(int dpy)
{
return mFlinger->graphicPlane(dpy);
}
void LayerBase::initStates(uint32_t w, uint32_t h, uint32_t flags)
{
mLayerInitFlags = flags;
mS3DFormat = 0;
mUseOrigSurfRes = false;
uint32_t layerFlags = 0;
if (flags & ISurfaceComposer::eHidden)
layerFlags = ISurfaceComposer::eLayerHidden;
if (flags & ISurfaceComposer::eNonPremultiplied)
mPremultipliedAlpha = false;
mCurrentState.z = 0;
mCurrentState.w = w;
mCurrentState.h = h;
mCurrentState.requested_w = w;
mCurrentState.requested_h = h;
mCurrentState.alpha = 0xFF;
mCurrentState.flags = layerFlags;
mCurrentState.sequence = 0;
mCurrentState.transform.set(0, 0);
// drawing state & current state are identical
mDrawingState = mCurrentState;
}
void LayerBase::commitTransaction() {
mDrawingState = mCurrentState;
}
void LayerBase::forceVisibilityTransaction() {
// this can be called without SurfaceFlinger.mStateLock, but if we
// can atomically increment the sequence number, it doesn't matter.
android_atomic_inc(&mCurrentState.sequence);
requestTransaction();
}
bool LayerBase::requestTransaction() {
int32_t old = setTransactionFlags(eTransactionNeeded);
return ((old & eTransactionNeeded) == 0);
}
uint32_t LayerBase::getTransactionFlags(uint32_t flags) {
return android_atomic_and(~flags, &mTransactionFlags) & flags;
}
uint32_t LayerBase::setTransactionFlags(uint32_t flags) {
return android_atomic_or(flags, &mTransactionFlags);
}
bool LayerBase::setPosition(int32_t x, int32_t y) {
if (mCurrentState.transform.tx() == x && mCurrentState.transform.ty() == y)
return false;
mCurrentState.sequence++;
mCurrentState.transform.set(x, y);
requestTransaction();
return true;
}
bool LayerBase::setLayer(uint32_t z) {
if (mCurrentState.z == z)
return false;
mCurrentState.sequence++;
mCurrentState.z = z;
requestTransaction();
return true;
}
bool LayerBase::setSize(uint32_t w, uint32_t h) {
if (mCurrentState.requested_w == w && mCurrentState.requested_h == h)
return false;
mCurrentState.requested_w = w;
mCurrentState.requested_h = h;
requestTransaction();
return true;
}
bool LayerBase::setAlpha(uint8_t alpha) {
if (mCurrentState.alpha == alpha)
return false;
mCurrentState.sequence++;
mCurrentState.alpha = alpha;
requestTransaction();
return true;
}
bool LayerBase::setMatrix(const layer_state_t::matrix22_t& matrix) {
mCurrentState.sequence++;
mCurrentState.transform.set(
matrix.dsdx, matrix.dsdy, matrix.dtdx, matrix.dtdy);
requestTransaction();
return true;
}
bool LayerBase::setTransparentRegionHint(const Region& transparent) {
mCurrentState.sequence++;
mCurrentState.transparentRegion = transparent;
requestTransaction();
return true;
}
bool LayerBase::setFlags(uint8_t flags, uint8_t mask) {
const uint32_t newFlags = (mCurrentState.flags & ~mask) | (flags & mask);
if (mCurrentState.flags == newFlags)
return false;
mCurrentState.sequence++;
mCurrentState.flags = newFlags;
requestTransaction();
return true;
}
Rect LayerBase::visibleBounds() const
{
return mTransformedBounds;
}
void LayerBase::setVisibleRegion(const Region& visibleRegion) {
// always called from main thread
visibleRegionScreen = visibleRegion;
}
void LayerBase::setCoveredRegion(const Region& coveredRegion) {
// always called from main thread
coveredRegionScreen = coveredRegion;
}
uint32_t LayerBase::doTransaction(uint32_t flags)
{
const Layer::State& front(drawingState());
const Layer::State& temp(currentState());
if ((front.requested_w != temp.requested_w) ||
(front.requested_h != temp.requested_h)) {
// resize the layer, set the physical size to the requested size
Layer::State& editTemp(currentState());
editTemp.w = temp.requested_w;
editTemp.h = temp.requested_h;
}
if ((front.w != temp.w) || (front.h != temp.h)) {
// invalidate and recompute the visible regions if needed
flags |= Layer::eVisibleRegion;
}
if (temp.sequence != front.sequence) {
// invalidate and recompute the visible regions if needed
flags |= eVisibleRegion;
this->contentDirty = true;
// we may use linear filtering, if the matrix scales us
const uint8_t type = temp.transform.getType();
mNeedsFiltering = (!temp.transform.preserveRects() ||
(type >= Transform::SCALE));
}
// Commit the transaction
commitTransaction();
return flags;
}
void LayerBase::validateVisibility(const Transform& planeTransform)
{
const Layer::State& s(drawingState());
const Transform tr(planeTransform * s.transform);
const bool transformed = tr.transformed();
uint32_t w = s.w;
uint32_t h = s.h;
tr.transform(mVertices[0], 0, 0);
tr.transform(mVertices[1], 0, h);
tr.transform(mVertices[2], w, h);
tr.transform(mVertices[3], w, 0);
if (UNLIKELY(transformed)) {
// NOTE: here we could also punt if we have too many rectangles
// in the transparent region
if (tr.preserveRects()) {
// transform the transparent region
transparentRegionScreen = tr.transform(s.transparentRegion);
} else {
// transformation too complex, can't do the transparent region
// optimization.
transparentRegionScreen.clear();
}
} else {
transparentRegionScreen = s.transparentRegion;
}
// cache a few things...
mOrientation = tr.getOrientation();
mTransformedBounds = tr.makeBounds(w, h);
#ifdef AVOID_DRAW_TEXTURE
mTransformed = transformed;
#endif
mLeft = tr.tx();
mTop = tr.ty();
}
void LayerBase::lockPageFlip(bool& recomputeVisibleRegions)
{
}
void LayerBase::unlockPageFlip(
const Transform& planeTransform, Region& outDirtyRegion)
{
if ((android_atomic_and(~1, &mInvalidate)&1) == 1) {
outDirtyRegion.orSelf(visibleRegionScreen);
}
}
void LayerBase::invalidate()
{
if ((android_atomic_or(1, &mInvalidate)&1) == 0) {
mFlinger->signalEvent();
}
}
void LayerBase::drawRegion(const Region& reg) const
{
Region::const_iterator it = reg.begin();
Region::const_iterator const end = reg.end();
if (it != end) {
Rect r;
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const int32_t fbWidth = hw.getWidth();
const int32_t fbHeight = hw.getHeight();
const GLshort vertices[][2] = { { 0, 0 }, { fbWidth, 0 },
{ fbWidth, fbHeight }, { 0, fbHeight } };
glVertexPointer(2, GL_SHORT, 0, vertices);
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
}
void LayerBase::draw(const Region& clip) const
{
// reset GL state
glEnable(GL_SCISSOR_TEST);
onDraw(clip);
}
void LayerBase::drawForSreenShot() const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
onDraw( Region(hw.bounds()) );
}
void LayerBase::clearWithOpenGL(const Region& clip, GLclampf red,
GLclampf green, GLclampf blue,
GLclampf alpha) const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t fbHeight = hw.getHeight();
glColor4f(red,green,blue,alpha);
TextureManager::deactivateTextures();
glDisable(GL_BLEND);
glDisable(GL_DITHER);
Region::const_iterator it = clip.begin();
Region::const_iterator const end = clip.end();
glEnable(GL_SCISSOR_TEST);
glVertexPointer(2, GL_FLOAT, 0, mVertices);
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
void LayerBase::clearWithOpenGL(const Region& clip) const
{
clearWithOpenGL(clip,0,0,0,0);
}
template <typename T>
static inline
void swap(T& a, T& b) {
T t(a);
a = b;
b = t;
}
void LayerBase::drawWithOpenGL(const Region& clip, const Texture& texture) const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t fbHeight = hw.getHeight();
const State& s(drawingState());
// bind our texture
TextureManager::activateTexture(texture, needsFiltering());
uint32_t width = texture.width;
uint32_t height = texture.height;
GLenum src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
if (UNLIKELY(s.alpha < 0xFF)) {
const GLfloat alpha = s.alpha * (1.0f/255.0f);
if (mPremultipliedAlpha) {
glColor4f(alpha, alpha, alpha, alpha);
} else {
glColor4f(1, 1, 1, alpha);
}
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
} else {
glColor4f(1, 1, 1, 1);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
if (needsBlending()) {
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
} else {
glDisable(GL_BLEND);
}
}
/*
* compute texture coordinates
* here, we handle NPOT, cropping and buffer transformations
*/
GLfloat cl, ct, cr, cb;
if (!mBufferCrop.isEmpty()) {
// source is cropped
const GLfloat us = (texture.NPOTAdjust ? texture.wScale : 1.0f) / width;
const GLfloat vs = (texture.NPOTAdjust ? texture.hScale : 1.0f) / height;
cl = mBufferCrop.left * us;
ct = mBufferCrop.top * vs;
cr = mBufferCrop.right * us;
cb = mBufferCrop.bottom * vs;
} else {
cl = 0;
ct = 0;
cr = (texture.NPOTAdjust ? texture.wScale : 1.0f);
cb = (texture.NPOTAdjust ? texture.hScale : 1.0f);
}
/*
* For the buffer transformation, we apply the rotation last.
* Since we're transforming the texture-coordinates, we need
* to apply the inverse of the buffer transformation:
* inverse( FLIP_V -> FLIP_H -> ROT_90 )
* <=> inverse( ROT_90 * FLIP_H * FLIP_V )
* = inverse(FLIP_V) * inverse(FLIP_H) * inverse(ROT_90)
* = FLIP_V * FLIP_H * ROT_270
* <=> ROT_270 -> FLIP_H -> FLIP_V
*
* The rotation is performed first, in the texture coordinate space.
*
*/
struct TexCoords {
GLfloat u;
GLfloat v;
};
enum {
// name of the corners in the texture map
LB = 0, // left-bottom
LT = 1, // left-top
RT = 2, // right-top
RB = 3 // right-bottom
};
// vertices in screen space
int vLT = LB;
int vLB = LT;
int vRB = RT;
int vRT = RB;
// the texture's source is rotated
uint32_t transform = mBufferTransform;
if (transform & HAL_TRANSFORM_ROT_90) {
vLT = RB;
vLB = LB;
vRB = LT;
vRT = RT;
}
if (transform & HAL_TRANSFORM_FLIP_V) {
swap(vLT, vLB);
swap(vRT, vRB);
}
if (transform & HAL_TRANSFORM_FLIP_H) {
swap(vLT, vRT);
swap(vLB, vRB);
}
TexCoords texCoords[4];
texCoords[vLT].u = cl;
texCoords[vLT].v = ct;
texCoords[vLB].u = cl;
texCoords[vLB].v = cb;
texCoords[vRB].u = cr;
texCoords[vRB].v = cb;
texCoords[vRT].u = cr;
texCoords[vRT].v = ct;
if (needsDithering()) {
glEnable(GL_DITHER);
} else {
glDisable(GL_DITHER);
}
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, mVertices);
glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
Region::const_iterator it = clip.begin();
Region::const_iterator const end = clip.end();
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
void LayerBase::drawWithOpenGLOptimized(const Region& clip, const Texture& texture) const
{
const DisplayHardware& hw(graphicPlane(0).displayHardware());
const uint32_t fbHeight = hw.getHeight();
const State& s(drawingState());
// bind our texture
TextureManager::activateTexture(texture, needsFiltering());
uint32_t width = texture.width;
uint32_t height = texture.height;
GLenum src = mPremultipliedAlpha ? GL_ONE : GL_SRC_ALPHA;
if (UNLIKELY(s.alpha < 0xFF)) {
const GLfloat alpha = s.alpha * (1.0f/255.0f);
if (mPremultipliedAlpha) {
glColor4f(alpha, alpha, alpha, alpha);
} else {
glColor4f(1, 1, 1, alpha);
}
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
} else {
glColor4f(1, 1, 1, 1);
glTexEnvx(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
if (needsBlending()) {
glEnable(GL_BLEND);
glBlendFunc(src, GL_ONE_MINUS_SRC_ALPHA);
} else {
glDisable(GL_BLEND);
}
}
/*
* compute texture coordinates
* here, we handle NPOT, cropping and buffer transformations
*/
GLfloat cl, ct, cr, cb;
if (!mBufferCrop.isEmpty()) {
// source is cropped
const GLfloat us = (texture.NPOTAdjust ? texture.wScale : 1.0f) / width;
const GLfloat vs = (texture.NPOTAdjust ? texture.hScale : 1.0f) / height;
cl = mBufferCrop.left * us;
ct = mBufferCrop.top * vs;
cr = mBufferCrop.right * us;
cb = mBufferCrop.bottom * vs;
} else {
cl = 0;
ct = 0;
cr = (texture.NPOTAdjust ? texture.wScale : 1.0f);
cb = (texture.NPOTAdjust ? texture.hScale : 1.0f);
}
/*
* For the buffer transformation, we apply the rotation last.
* Since we're transforming the texture-coordinates, we need
* to apply the inverse of the buffer transformation:
* inverse( FLIP_V -> FLIP_H -> ROT_90 )
* <=> inverse( ROT_90 * FLIP_H * FLIP_V )
* = inverse(FLIP_V) * inverse(FLIP_H) * inverse(ROT_90)
* = FLIP_V * FLIP_H * ROT_270
* <=> ROT_270 -> FLIP_H -> FLIP_V
*
* The rotation is performed first, in the texture coordinate space.
*
*/
struct TexCoords {
GLfloat u;
GLfloat v;
};
enum {
// name of the corners in the texture map
LB = 0, // left-bottom
LT = 1, // left-top
RT = 2, // right-top
RB = 3 // right-bottom
};
// vertices in screen space
int vLT = LB;
int vLB = LT;
int vRB = RT;
int vRT = RB;
// the texture's source is rotated
uint32_t transform = mBufferTransform;
if (transform & HAL_TRANSFORM_ROT_90) {
vLT = RB;
vLB = LB;
vRB = LT;
vRT = RT;
}
if (transform & HAL_TRANSFORM_FLIP_V) {
swap(vLT, vLB);
swap(vRT, vRB);
}
if (transform & HAL_TRANSFORM_FLIP_H) {
swap(vLT, vRT);
swap(vLB, vRB);
}
TexCoords texCoords[4];
texCoords[vLT].u = cl;
texCoords[vLT].v = ct;
texCoords[vLB].u = cl;
texCoords[vLB].v = cb;
texCoords[vRB].u = cr;
texCoords[vRB].v = cb;
texCoords[vRT].u = cr;
texCoords[vRT].v = ct;
if (needsDithering()) {
glEnable(GL_DITHER);
} else {
glDisable(GL_DITHER);
}
/*
* We are using glDrawElements
* - setup variables for the same
*/
GLfloat *pvertices = (GLfloat*) mVertices;
GLfloat *ptexCoords = (GLfloat*) texCoords;
GLubyte indices[] = { LT, LB, RT, RB };
int numElements = sizeof(indices);
GLubyte *pindices = indices;
/*
* For Orientation 270/90 use vertical quads to draw
* width limit 16
*/
GLubyte *rotIndices = 0;
GLfloat *rotVertices = 0, *rotTexCoords = 0;
int tWidth = mTransformedBounds.right - mTransformedBounds.left;
if (((mOrientation == HAL_TRANSFORM_ROT_90)
|| (mOrientation == HAL_TRANSFORM_ROT_270))
&& !(tWidth % getQuadWidth())
&& (tWidth > getTexMinWidth()) && !transform) {
/*
* We divide the texture in vertical quads
* The quads are of width 16
*/
int quad_width = getQuadWidth();
int numQuads = tWidth / quad_width;
if (tWidth % quad_width)
numQuads++;
numElements = (numQuads + 1) * 2;
/*
* new vertices and texcoords
*/
rotVertices = new GLfloat[numElements * 2];
rotTexCoords = new GLfloat[numElements * 2];
/*
* Indices for GL_TRIANGLE_STRIP
*/
rotIndices = new GLubyte[numElements];
for (int i = 0; i < numElements; i++)
rotIndices[i] = i;
/*
* Calculate vertex/texture coords increments
* From left to right
*/
float vIncrement = (float) quad_width;
float tIncrement = 1.0f / (float) numQuads;
/*
* 90 - (vLB, vLT, vRT, vRB) ==> (LT, RT, LB, RB)
* 270 - (vLB, vLT, vRT, vRB) ==> (RB, LB, RT, LT)
* texture increment is negative for 90
*/
int vLB = LB;
int vLT = LT;
int vRB = RB;
int vRT = RT;
switch (mOrientation) {
case HAL_TRANSFORM_ROT_90:
{
tIncrement *= -1;
vLB = LT;
vLT = RT;
vRT = LB;
vRB = RB;
break;
}
case HAL_TRANSFORM_ROT_270:
{
vLB = RB;
vLT = LB;
vRT = RT;
vRB = LT;
break;
}
default:
LOGE("DrawWithOpenGL will fail");
break;
}
// leftmost vertices
rotVertices[0] = mVertices[vLB][0];
rotVertices[1] = mVertices[vLB][1];
rotVertices[2] = mVertices[vLT][0];
rotVertices[3] = mVertices[vLT][1];
// texcoords corresponding to vertices
rotTexCoords[0] = texCoords[vLB].u;
rotTexCoords[1] = texCoords[vLB].v;
rotTexCoords[2] = texCoords[vLT].u;
rotTexCoords[3] = texCoords[vLT].v;
int vertexIndex = 4;
// Even numbered vertices
for (int i = 0; i < (numQuads -1); i++) {
rotVertices[vertexIndex] = rotVertices[vertexIndex - 4] + vIncrement;
rotVertices[vertexIndex + 1] = rotVertices[vertexIndex - 4 + 1];
rotTexCoords[vertexIndex] = rotTexCoords[vertexIndex - 4];
rotTexCoords[vertexIndex + 1] = rotTexCoords[vertexIndex + 1 - 4] + tIncrement;
vertexIndex += 4;
}
/*
* last vertices/texcoords, (use RT/RB)
*/
rotVertices[vertexIndex] = mVertices[vRT][0];
rotVertices[vertexIndex + 1] = mVertices[vRT][1];
rotTexCoords[vertexIndex] = texCoords[vRT].u;
rotTexCoords[vertexIndex + 1] = texCoords[vRT].v;
// odd numbered vertices
vertexIndex = 6;
for (int i = 0; i < (numQuads -1); i++) {
rotVertices[vertexIndex] = rotVertices[vertexIndex - 4] + vIncrement;
rotVertices[vertexIndex + 1] = rotVertices[vertexIndex - 4 + 1];
rotTexCoords[vertexIndex] = rotTexCoords[vertexIndex - 4];
rotTexCoords[vertexIndex + 1] = rotTexCoords[vertexIndex + 1 - 4] + tIncrement;
vertexIndex += 4;
}
/*
* last vertices/texcoords, (use RT/RB)
*/
rotVertices[vertexIndex] = mVertices[vRB][0];
rotVertices[vertexIndex + 1] = mVertices[vRB][1];
rotTexCoords[vertexIndex] = texCoords[vRB].u;
rotTexCoords[vertexIndex + 1] = texCoords[vRB].v;
/*
* change vertex/texcoords/indices pointer
*/
pvertices = rotVertices;
ptexCoords = rotTexCoords;
pindices = rotIndices;
}
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glVertexPointer(2, GL_FLOAT, 0, pvertices);
glTexCoordPointer(2, GL_FLOAT, 0, ptexCoords);
Region::const_iterator it = clip.begin();
Region::const_iterator const end = clip.end();
while (it != end) {
const Rect& r = *it++;
const GLint sy = fbHeight - (r.top + r.height());
glScissor(r.left, sy, r.width(), r.height());
glDrawElements(GL_TRIANGLE_STRIP, numElements, GL_UNSIGNED_BYTE, pindices);
}
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
delete[] rotVertices;
delete[] rotTexCoords;
delete[] rotIndices;
}
void LayerBase::setBufferCrop(const Rect& crop) {
if (!crop.isEmpty()) {
mBufferCrop = crop;
}
}
void LayerBase::setBufferTransform(uint32_t transform) {
mBufferTransform = transform;
}
void LayerBase::dump(String8& result, char* buffer, size_t SIZE) const
{
const Layer::State& s(drawingState());
snprintf(buffer, SIZE,
"+ %s %p\n"
" "
"z=%9d, pos=(%4d,%4d), size=(%4d,%4d), "
"needsBlending=%1d, needsDithering=%1d, invalidate=%1d, "
"alpha=0x%02x, flags=0x%08x, tr=[%.2f, %.2f][%.2f, %.2f]\n",
getTypeId(), this, s.z, tx(), ty(), s.w, s.h,
needsBlending(), needsDithering(), contentDirty,
s.alpha, s.flags,
s.transform[0][0], s.transform[0][1],
s.transform[1][0], s.transform[1][1]);
result.append(buffer);
}
// ---------------------------------------------------------------------------
int32_t LayerBaseClient::sIdentity = 1;
LayerBaseClient::LayerBaseClient(SurfaceFlinger* flinger, DisplayID display,
const sp<Client>& client)
: LayerBase(flinger, display), mClientRef(client),
mIdentity(uint32_t(android_atomic_inc(&sIdentity)))
{
}
LayerBaseClient::~LayerBaseClient()
{
sp<Client> c(mClientRef.promote());
if (c != 0) {
c->detachLayer(this);
}
}
bool LayerBaseClient::isSurface() const {
return (mClientSurface.promote() != 0);
}
sp<LayerBaseClient::Surface> LayerBaseClient::getSurface()
{
sp<Surface> s;
Mutex::Autolock _l(mLock);
s = mClientSurface.promote();
if (s == 0) {
s = createSurface();
mClientSurface = s;
}
return s;
}
sp<LayerBaseClient::Surface> LayerBaseClient::createSurface() const
{
return new Surface(mFlinger, mIdentity,
const_cast<LayerBaseClient *>(this));
}
void LayerBaseClient::dump(String8& result, char* buffer, size_t SIZE) const
{
LayerBase::dump(result, buffer, SIZE);
sp<Client> client(mClientRef.promote());
snprintf(buffer, SIZE,
" name=%s\n"
" client=%p, identity=%u\n",
getName().string(),
client.get(), getIdentity());
result.append(buffer);
}
void LayerBaseClient::setVisualParam(int8_t paramType, float paramValue) {
}
// ---------------------------------------------------------------------------
LayerBaseClient::Surface::Surface(
const sp<SurfaceFlinger>& flinger,
int identity,
const sp<LayerBaseClient>& owner)
: mFlinger(flinger), mIdentity(identity), mOwner(owner)
{
}
LayerBaseClient::Surface::~Surface()
{
/*
* This is a good place to clean-up all client resources
*/
// destroy client resources
mFlinger->destroySurface(mOwner);
}
sp<LayerBaseClient> LayerBaseClient::Surface::getOwner() const {
sp<LayerBaseClient> owner(mOwner.promote());
return owner;
}
status_t LayerBaseClient::Surface::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch (code) {
case REGISTER_BUFFERS:
case UNREGISTER_BUFFERS:
case CREATE_OVERLAY:
{
if (!mFlinger->mAccessSurfaceFlinger.checkCalling()) {
IPCThreadState* ipc = IPCThreadState::self();
const int pid = ipc->getCallingPid();
const int uid = ipc->getCallingUid();
LOGE("Permission Denial: "
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
return PERMISSION_DENIED;
}
}
}
return BnSurface::onTransact(code, data, reply, flags);
}
sp<GraphicBuffer> LayerBaseClient::Surface::requestBuffer(int bufferIdx,
uint32_t w, uint32_t h, uint32_t format, uint32_t usage)
{
return NULL;
}
status_t LayerBaseClient::Surface::setStereoscopic3DFormat(int format)
{
return INVALID_OPERATION;
}
status_t LayerBaseClient::Surface::useOriginalSurfaceResolution(bool flag)
{
return INVALID_OPERATION;
}
status_t LayerBaseClient::Surface::setBufferCount(int bufferCount)
{
return INVALID_OPERATION;
}
status_t LayerBaseClient::Surface::registerBuffers(
const ISurface::BufferHeap& buffers)
{
return INVALID_OPERATION;
}
void LayerBaseClient::Surface::reconfigureBuffers()
{
}
void LayerBaseClient::Surface::postBuffer(ssize_t offset)
{
}
void LayerBaseClient::Surface::unregisterBuffers()
{
}
sp<OverlayRef> LayerBaseClient::Surface::createOverlay(
uint32_t w, uint32_t h, int32_t format, int32_t orientation)
{
return NULL;
};
// ---------------------------------------------------------------------------
}; // namespace android