409 lines
18 KiB
Java
409 lines
18 KiB
Java
|
/*
|
||
|
* Copyright (C) 2009 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
package android.hardware;
|
||
|
|
||
|
import java.util.GregorianCalendar;
|
||
|
|
||
|
/**
|
||
|
* This class is used to estimated estimate magnetic field at a given point on
|
||
|
* Earth, and in particular, to compute the magnetic declination from true
|
||
|
* north.
|
||
|
*
|
||
|
* <p>This uses the World Magnetic Model produced by the United States National
|
||
|
* Geospatial-Intelligence Agency. More details about the model can be found at
|
||
|
* <a href="http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml">http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml</a>.
|
||
|
* This class currently uses WMM-2010 which is valid until 2015, but should
|
||
|
* produce acceptable results for several years after that. Future versions of
|
||
|
* Android may use a newer version of the model.
|
||
|
*/
|
||
|
public class GeomagneticField {
|
||
|
// The magnetic field at a given point, in nonoteslas in geodetic
|
||
|
// coordinates.
|
||
|
private float mX;
|
||
|
private float mY;
|
||
|
private float mZ;
|
||
|
|
||
|
// Geocentric coordinates -- set by computeGeocentricCoordinates.
|
||
|
private float mGcLatitudeRad;
|
||
|
private float mGcLongitudeRad;
|
||
|
private float mGcRadiusKm;
|
||
|
|
||
|
// Constants from WGS84 (the coordinate system used by GPS)
|
||
|
static private final float EARTH_SEMI_MAJOR_AXIS_KM = 6378.137f;
|
||
|
static private final float EARTH_SEMI_MINOR_AXIS_KM = 6356.7523142f;
|
||
|
static private final float EARTH_REFERENCE_RADIUS_KM = 6371.2f;
|
||
|
|
||
|
// These coefficients and the formulae used below are from:
|
||
|
// NOAA Technical Report: The US/UK World Magnetic Model for 2010-2015
|
||
|
static private final float[][] G_COEFF = new float[][] {
|
||
|
{ 0.0f },
|
||
|
{ -29496.6f, -1586.3f },
|
||
|
{ -2396.6f, 3026.1f, 1668.6f },
|
||
|
{ 1340.1f, -2326.2f, 1231.9f, 634.0f },
|
||
|
{ 912.6f, 808.9f, 166.7f, -357.1f, 89.4f },
|
||
|
{ -230.9f, 357.2f, 200.3f, -141.1f, -163.0f, -7.8f },
|
||
|
{ 72.8f, 68.6f, 76.0f, -141.4f, -22.8f, 13.2f, -77.9f },
|
||
|
{ 80.5f, -75.1f, -4.7f, 45.3f, 13.9f, 10.4f, 1.7f, 4.9f },
|
||
|
{ 24.4f, 8.1f, -14.5f, -5.6f, -19.3f, 11.5f, 10.9f, -14.1f, -3.7f },
|
||
|
{ 5.4f, 9.4f, 3.4f, -5.2f, 3.1f, -12.4f, -0.7f, 8.4f, -8.5f, -10.1f },
|
||
|
{ -2.0f, -6.3f, 0.9f, -1.1f, -0.2f, 2.5f, -0.3f, 2.2f, 3.1f, -1.0f, -2.8f },
|
||
|
{ 3.0f, -1.5f, -2.1f, 1.7f, -0.5f, 0.5f, -0.8f, 0.4f, 1.8f, 0.1f, 0.7f, 3.8f },
|
||
|
{ -2.2f, -0.2f, 0.3f, 1.0f, -0.6f, 0.9f, -0.1f, 0.5f, -0.4f, -0.4f, 0.2f, -0.8f, 0.0f } };
|
||
|
|
||
|
static private final float[][] H_COEFF = new float[][] {
|
||
|
{ 0.0f },
|
||
|
{ 0.0f, 4944.4f },
|
||
|
{ 0.0f, -2707.7f, -576.1f },
|
||
|
{ 0.0f, -160.2f, 251.9f, -536.6f },
|
||
|
{ 0.0f, 286.4f, -211.2f, 164.3f, -309.1f },
|
||
|
{ 0.0f, 44.6f, 188.9f, -118.2f, 0.0f, 100.9f },
|
||
|
{ 0.0f, -20.8f, 44.1f, 61.5f, -66.3f, 3.1f, 55.0f },
|
||
|
{ 0.0f, -57.9f, -21.1f, 6.5f, 24.9f, 7.0f, -27.7f, -3.3f },
|
||
|
{ 0.0f, 11.0f, -20.0f, 11.9f, -17.4f, 16.7f, 7.0f, -10.8f, 1.7f },
|
||
|
{ 0.0f, -20.5f, 11.5f, 12.8f, -7.2f, -7.4f, 8.0f, 2.1f, -6.1f, 7.0f },
|
||
|
{ 0.0f, 2.8f, -0.1f, 4.7f, 4.4f, -7.2f, -1.0f, -3.9f, -2.0f, -2.0f, -8.3f },
|
||
|
{ 0.0f, 0.2f, 1.7f, -0.6f, -1.8f, 0.9f, -0.4f, -2.5f, -1.3f, -2.1f, -1.9f, -1.8f },
|
||
|
{ 0.0f, -0.9f, 0.3f, 2.1f, -2.5f, 0.5f, 0.6f, 0.0f, 0.1f, 0.3f, -0.9f, -0.2f, 0.9f } };
|
||
|
|
||
|
static private final float[][] DELTA_G = new float[][] {
|
||
|
{ 0.0f },
|
||
|
{ 11.6f, 16.5f },
|
||
|
{ -12.1f, -4.4f, 1.9f },
|
||
|
{ 0.4f, -4.1f, -2.9f, -7.7f },
|
||
|
{ -1.8f, 2.3f, -8.7f, 4.6f, -2.1f },
|
||
|
{ -1.0f, 0.6f, -1.8f, -1.0f, 0.9f, 1.0f },
|
||
|
{ -0.2f, -0.2f, -0.1f, 2.0f, -1.7f, -0.3f, 1.7f },
|
||
|
{ 0.1f, -0.1f, -0.6f, 1.3f, 0.4f, 0.3f, -0.7f, 0.6f },
|
||
|
{ -0.1f, 0.1f, -0.6f, 0.2f, -0.2f, 0.3f, 0.3f, -0.6f, 0.2f },
|
||
|
{ 0.0f, -0.1f, 0.0f, 0.3f, -0.4f, -0.3f, 0.1f, -0.1f, -0.4f, -0.2f },
|
||
|
{ 0.0f, 0.0f, -0.1f, 0.2f, 0.0f, -0.1f, -0.2f, 0.0f, -0.1f, -0.2f, -0.2f },
|
||
|
{ 0.0f, 0.0f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f, 0.0f },
|
||
|
{ 0.0f, 0.0f, 0.1f, 0.1f, -0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f, 0.1f } };
|
||
|
|
||
|
static private final float[][] DELTA_H = new float[][] {
|
||
|
{ 0.0f },
|
||
|
{ 0.0f, -25.9f },
|
||
|
{ 0.0f, -22.5f, -11.8f },
|
||
|
{ 0.0f, 7.3f, -3.9f, -2.6f },
|
||
|
{ 0.0f, 1.1f, 2.7f, 3.9f, -0.8f },
|
||
|
{ 0.0f, 0.4f, 1.8f, 1.2f, 4.0f, -0.6f },
|
||
|
{ 0.0f, -0.2f, -2.1f, -0.4f, -0.6f, 0.5f, 0.9f },
|
||
|
{ 0.0f, 0.7f, 0.3f, -0.1f, -0.1f, -0.8f, -0.3f, 0.3f },
|
||
|
{ 0.0f, -0.1f, 0.2f, 0.4f, 0.4f, 0.1f, -0.1f, 0.4f, 0.3f },
|
||
|
{ 0.0f, 0.0f, -0.2f, 0.0f, -0.1f, 0.1f, 0.0f, -0.2f, 0.3f, 0.2f },
|
||
|
{ 0.0f, 0.1f, -0.1f, 0.0f, -0.1f, -0.1f, 0.0f, -0.1f, -0.2f, 0.0f, -0.1f },
|
||
|
{ 0.0f, 0.0f, 0.1f, 0.0f, 0.1f, 0.0f, 0.1f, 0.0f, -0.1f, -0.1f, 0.0f, -0.1f },
|
||
|
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } };
|
||
|
|
||
|
static private final long BASE_TIME =
|
||
|
new GregorianCalendar(2010, 1, 1).getTimeInMillis();
|
||
|
|
||
|
// The ratio between the Gauss-normalized associated Legendre functions and
|
||
|
// the Schmid quasi-normalized ones. Compute these once staticly since they
|
||
|
// don't depend on input variables at all.
|
||
|
static private final float[][] SCHMIDT_QUASI_NORM_FACTORS =
|
||
|
computeSchmidtQuasiNormFactors(G_COEFF.length);
|
||
|
|
||
|
/**
|
||
|
* Estimate the magnetic field at a given point and time.
|
||
|
*
|
||
|
* @param gdLatitudeDeg
|
||
|
* Latitude in WGS84 geodetic coordinates -- positive is east.
|
||
|
* @param gdLongitudeDeg
|
||
|
* Longitude in WGS84 geodetic coordinates -- positive is north.
|
||
|
* @param altitudeMeters
|
||
|
* Altitude in WGS84 geodetic coordinates, in meters.
|
||
|
* @param timeMillis
|
||
|
* Time at which to evaluate the declination, in milliseconds
|
||
|
* since January 1, 1970. (approximate is fine -- the declination
|
||
|
* changes very slowly).
|
||
|
*/
|
||
|
public GeomagneticField(float gdLatitudeDeg,
|
||
|
float gdLongitudeDeg,
|
||
|
float altitudeMeters,
|
||
|
long timeMillis) {
|
||
|
final int MAX_N = G_COEFF.length; // Maximum degree of the coefficients.
|
||
|
|
||
|
// We don't handle the north and south poles correctly -- pretend that
|
||
|
// we're not quite at them to avoid crashing.
|
||
|
gdLatitudeDeg = Math.min(90.0f - 1e-5f,
|
||
|
Math.max(-90.0f + 1e-5f, gdLatitudeDeg));
|
||
|
computeGeocentricCoordinates(gdLatitudeDeg,
|
||
|
gdLongitudeDeg,
|
||
|
altitudeMeters);
|
||
|
|
||
|
assert G_COEFF.length == H_COEFF.length;
|
||
|
|
||
|
// Note: LegendreTable computes associated Legendre functions for
|
||
|
// cos(theta). We want the associated Legendre functions for
|
||
|
// sin(latitude), which is the same as cos(PI/2 - latitude), except the
|
||
|
// derivate will be negated.
|
||
|
LegendreTable legendre =
|
||
|
new LegendreTable(MAX_N - 1,
|
||
|
(float) (Math.PI / 2.0 - mGcLatitudeRad));
|
||
|
|
||
|
// Compute a table of (EARTH_REFERENCE_RADIUS_KM / radius)^n for i in
|
||
|
// 0..MAX_N-2 (this is much faster than calling Math.pow MAX_N+1 times).
|
||
|
float[] relativeRadiusPower = new float[MAX_N + 2];
|
||
|
relativeRadiusPower[0] = 1.0f;
|
||
|
relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS_KM / mGcRadiusKm;
|
||
|
for (int i = 2; i < relativeRadiusPower.length; ++i) {
|
||
|
relativeRadiusPower[i] = relativeRadiusPower[i - 1] *
|
||
|
relativeRadiusPower[1];
|
||
|
}
|
||
|
|
||
|
// Compute tables of sin(lon * m) and cos(lon * m) for m = 0..MAX_N --
|
||
|
// this is much faster than calling Math.sin and Math.com MAX_N+1 times.
|
||
|
float[] sinMLon = new float[MAX_N];
|
||
|
float[] cosMLon = new float[MAX_N];
|
||
|
sinMLon[0] = 0.0f;
|
||
|
cosMLon[0] = 1.0f;
|
||
|
sinMLon[1] = (float) Math.sin(mGcLongitudeRad);
|
||
|
cosMLon[1] = (float) Math.cos(mGcLongitudeRad);
|
||
|
|
||
|
for (int m = 2; m < MAX_N; ++m) {
|
||
|
// Standard expansions for sin((m-x)*theta + x*theta) and
|
||
|
// cos((m-x)*theta + x*theta).
|
||
|
int x = m >> 1;
|
||
|
sinMLon[m] = sinMLon[m-x] * cosMLon[x] + cosMLon[m-x] * sinMLon[x];
|
||
|
cosMLon[m] = cosMLon[m-x] * cosMLon[x] - sinMLon[m-x] * sinMLon[x];
|
||
|
}
|
||
|
|
||
|
float inverseCosLatitude = 1.0f / (float) Math.cos(mGcLatitudeRad);
|
||
|
float yearsSinceBase =
|
||
|
(timeMillis - BASE_TIME) / (365f * 24f * 60f * 60f * 1000f);
|
||
|
|
||
|
// We now compute the magnetic field strength given the geocentric
|
||
|
// location. The magnetic field is the derivative of the potential
|
||
|
// function defined by the model. See NOAA Technical Report: The US/UK
|
||
|
// World Magnetic Model for 2010-2015 for the derivation.
|
||
|
float gcX = 0.0f; // Geocentric northwards component.
|
||
|
float gcY = 0.0f; // Geocentric eastwards component.
|
||
|
float gcZ = 0.0f; // Geocentric downwards component.
|
||
|
|
||
|
for (int n = 1; n < MAX_N; n++) {
|
||
|
for (int m = 0; m <= n; m++) {
|
||
|
// Adjust the coefficients for the current date.
|
||
|
float g = G_COEFF[n][m] + yearsSinceBase * DELTA_G[n][m];
|
||
|
float h = H_COEFF[n][m] + yearsSinceBase * DELTA_H[n][m];
|
||
|
|
||
|
// Negative derivative with respect to latitude, divided by
|
||
|
// radius. This looks like the negation of the version in the
|
||
|
// NOAA Techincal report because that report used
|
||
|
// P_n^m(sin(theta)) and we use P_n^m(cos(90 - theta)), so the
|
||
|
// derivative with respect to theta is negated.
|
||
|
gcX += relativeRadiusPower[n+2]
|
||
|
* (g * cosMLon[m] + h * sinMLon[m])
|
||
|
* legendre.mPDeriv[n][m]
|
||
|
* SCHMIDT_QUASI_NORM_FACTORS[n][m];
|
||
|
|
||
|
// Negative derivative with respect to longitude, divided by
|
||
|
// radius.
|
||
|
gcY += relativeRadiusPower[n+2] * m
|
||
|
* (g * sinMLon[m] - h * cosMLon[m])
|
||
|
* legendre.mP[n][m]
|
||
|
* SCHMIDT_QUASI_NORM_FACTORS[n][m]
|
||
|
* inverseCosLatitude;
|
||
|
|
||
|
// Negative derivative with respect to radius.
|
||
|
gcZ -= (n + 1) * relativeRadiusPower[n+2]
|
||
|
* (g * cosMLon[m] + h * sinMLon[m])
|
||
|
* legendre.mP[n][m]
|
||
|
* SCHMIDT_QUASI_NORM_FACTORS[n][m];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Convert back to geodetic coordinates. This is basically just a
|
||
|
// rotation around the Y-axis by the difference in latitudes between the
|
||
|
// geocentric frame and the geodetic frame.
|
||
|
double latDiffRad = Math.toRadians(gdLatitudeDeg) - mGcLatitudeRad;
|
||
|
mX = (float) (gcX * Math.cos(latDiffRad)
|
||
|
+ gcZ * Math.sin(latDiffRad));
|
||
|
mY = gcY;
|
||
|
mZ = (float) (- gcX * Math.sin(latDiffRad)
|
||
|
+ gcZ * Math.cos(latDiffRad));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @return The X (northward) component of the magnetic field in nanoteslas.
|
||
|
*/
|
||
|
public float getX() {
|
||
|
return mX;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @return The Y (eastward) component of the magnetic field in nanoteslas.
|
||
|
*/
|
||
|
public float getY() {
|
||
|
return mY;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @return The Z (downward) component of the magnetic field in nanoteslas.
|
||
|
*/
|
||
|
public float getZ() {
|
||
|
return mZ;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @return The declination of the horizontal component of the magnetic
|
||
|
* field from true north, in degrees (i.e. positive means the
|
||
|
* magnetic field is rotated east that much from true north).
|
||
|
*/
|
||
|
public float getDeclination() {
|
||
|
return (float) Math.toDegrees(Math.atan2(mY, mX));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @return The inclination of the magnetic field in degrees -- positive
|
||
|
* means the magnetic field is rotated downwards.
|
||
|
*/
|
||
|
public float getInclination() {
|
||
|
return (float) Math.toDegrees(Math.atan2(mZ,
|
||
|
getHorizontalStrength()));
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @return Horizontal component of the field strength in nonoteslas.
|
||
|
*/
|
||
|
public float getHorizontalStrength() {
|
||
|
return (float) Math.sqrt(mX * mX + mY * mY);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @return Total field strength in nanoteslas.
|
||
|
*/
|
||
|
public float getFieldStrength() {
|
||
|
return (float) Math.sqrt(mX * mX + mY * mY + mZ * mZ);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @param gdLatitudeDeg
|
||
|
* Latitude in WGS84 geodetic coordinates.
|
||
|
* @param gdLongitudeDeg
|
||
|
* Longitude in WGS84 geodetic coordinates.
|
||
|
* @param altitudeMeters
|
||
|
* Altitude above sea level in WGS84 geodetic coordinates.
|
||
|
* @return Geocentric latitude (i.e. angle between closest point on the
|
||
|
* equator and this point, at the center of the earth.
|
||
|
*/
|
||
|
private void computeGeocentricCoordinates(float gdLatitudeDeg,
|
||
|
float gdLongitudeDeg,
|
||
|
float altitudeMeters) {
|
||
|
float altitudeKm = altitudeMeters / 1000.0f;
|
||
|
float a2 = EARTH_SEMI_MAJOR_AXIS_KM * EARTH_SEMI_MAJOR_AXIS_KM;
|
||
|
float b2 = EARTH_SEMI_MINOR_AXIS_KM * EARTH_SEMI_MINOR_AXIS_KM;
|
||
|
double gdLatRad = Math.toRadians(gdLatitudeDeg);
|
||
|
float clat = (float) Math.cos(gdLatRad);
|
||
|
float slat = (float) Math.sin(gdLatRad);
|
||
|
float tlat = slat / clat;
|
||
|
float latRad =
|
||
|
(float) Math.sqrt(a2 * clat * clat + b2 * slat * slat);
|
||
|
|
||
|
mGcLatitudeRad = (float) Math.atan(tlat * (latRad * altitudeKm + b2)
|
||
|
/ (latRad * altitudeKm + a2));
|
||
|
|
||
|
mGcLongitudeRad = (float) Math.toRadians(gdLongitudeDeg);
|
||
|
|
||
|
float radSq = altitudeKm * altitudeKm
|
||
|
+ 2 * altitudeKm * (float) Math.sqrt(a2 * clat * clat +
|
||
|
b2 * slat * slat)
|
||
|
+ (a2 * a2 * clat * clat + b2 * b2 * slat * slat)
|
||
|
/ (a2 * clat * clat + b2 * slat * slat);
|
||
|
mGcRadiusKm = (float) Math.sqrt(radSq);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Utility class to compute a table of Gauss-normalized associated Legendre
|
||
|
* functions P_n^m(cos(theta))
|
||
|
*/
|
||
|
static private class LegendreTable {
|
||
|
// These are the Gauss-normalized associated Legendre functions -- that
|
||
|
// is, they are normal Legendre functions multiplied by
|
||
|
// (n-m)!/(2n-1)!! (where (2n-1)!! = 1*3*5*...*2n-1)
|
||
|
public final float[][] mP;
|
||
|
|
||
|
// Derivative of mP, with respect to theta.
|
||
|
public final float[][] mPDeriv;
|
||
|
|
||
|
/**
|
||
|
* @param maxN
|
||
|
* The maximum n- and m-values to support
|
||
|
* @param thetaRad
|
||
|
* Returned functions will be Gauss-normalized
|
||
|
* P_n^m(cos(thetaRad)), with thetaRad in radians.
|
||
|
*/
|
||
|
public LegendreTable(int maxN, float thetaRad) {
|
||
|
// Compute the table of Gauss-normalized associated Legendre
|
||
|
// functions using standard recursion relations. Also compute the
|
||
|
// table of derivatives using the derivative of the recursion
|
||
|
// relations.
|
||
|
float cos = (float) Math.cos(thetaRad);
|
||
|
float sin = (float) Math.sin(thetaRad);
|
||
|
|
||
|
mP = new float[maxN + 1][];
|
||
|
mPDeriv = new float[maxN + 1][];
|
||
|
mP[0] = new float[] { 1.0f };
|
||
|
mPDeriv[0] = new float[] { 0.0f };
|
||
|
for (int n = 1; n <= maxN; n++) {
|
||
|
mP[n] = new float[n + 1];
|
||
|
mPDeriv[n] = new float[n + 1];
|
||
|
for (int m = 0; m <= n; m++) {
|
||
|
if (n == m) {
|
||
|
mP[n][m] = sin * mP[n - 1][m - 1];
|
||
|
mPDeriv[n][m] = cos * mP[n - 1][m - 1]
|
||
|
+ sin * mPDeriv[n - 1][m - 1];
|
||
|
} else if (n == 1 || m == n - 1) {
|
||
|
mP[n][m] = cos * mP[n - 1][m];
|
||
|
mPDeriv[n][m] = -sin * mP[n - 1][m]
|
||
|
+ cos * mPDeriv[n - 1][m];
|
||
|
} else {
|
||
|
assert n > 1 && m < n - 1;
|
||
|
float k = ((n - 1) * (n - 1) - m * m)
|
||
|
/ (float) ((2 * n - 1) * (2 * n - 3));
|
||
|
mP[n][m] = cos * mP[n - 1][m] - k * mP[n - 2][m];
|
||
|
mPDeriv[n][m] = -sin * mP[n - 1][m]
|
||
|
+ cos * mPDeriv[n - 1][m] - k * mPDeriv[n - 2][m];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Compute the ration between the Gauss-normalized associated Legendre
|
||
|
* functions and the Schmidt quasi-normalized version. This is equivalent to
|
||
|
* sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)!
|
||
|
*/
|
||
|
private static float[][] computeSchmidtQuasiNormFactors(int maxN) {
|
||
|
float[][] schmidtQuasiNorm = new float[maxN + 1][];
|
||
|
schmidtQuasiNorm[0] = new float[] { 1.0f };
|
||
|
for (int n = 1; n <= maxN; n++) {
|
||
|
schmidtQuasiNorm[n] = new float[n + 1];
|
||
|
schmidtQuasiNorm[n][0] =
|
||
|
schmidtQuasiNorm[n - 1][0] * (2 * n - 1) / (float) n;
|
||
|
for (int m = 1; m <= n; m++) {
|
||
|
schmidtQuasiNorm[n][m] = schmidtQuasiNorm[n][m - 1]
|
||
|
* (float) Math.sqrt((n - m + 1) * (m == 1 ? 2 : 1)
|
||
|
/ (float) (n + m));
|
||
|
}
|
||
|
}
|
||
|
return schmidtQuasiNorm;
|
||
|
}
|
||
|
}
|