3912 lines
157 KiB
Java
3912 lines
157 KiB
Java
|
/*
|
||
|
* Copyright (C) 2006 The Android Open Source Project
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
package android.app;
|
||
|
|
||
|
import com.android.internal.policy.PolicyManager;
|
||
|
|
||
|
import android.content.ComponentCallbacks;
|
||
|
import android.content.ComponentName;
|
||
|
import android.content.ContentResolver;
|
||
|
import android.content.Context;
|
||
|
import android.content.Intent;
|
||
|
import android.content.IIntentSender;
|
||
|
import android.content.IntentSender;
|
||
|
import android.content.SharedPreferences;
|
||
|
import android.content.pm.ActivityInfo;
|
||
|
import android.content.res.Configuration;
|
||
|
import android.content.res.Resources;
|
||
|
import android.database.Cursor;
|
||
|
import android.graphics.Bitmap;
|
||
|
import android.graphics.Canvas;
|
||
|
import android.graphics.drawable.Drawable;
|
||
|
import android.media.AudioManager;
|
||
|
import android.net.Uri;
|
||
|
import android.os.Build;
|
||
|
import android.os.Bundle;
|
||
|
import android.os.Handler;
|
||
|
import android.os.IBinder;
|
||
|
import android.os.RemoteException;
|
||
|
import android.text.Selection;
|
||
|
import android.text.SpannableStringBuilder;
|
||
|
import android.text.TextUtils;
|
||
|
import android.text.method.TextKeyListener;
|
||
|
import android.util.AttributeSet;
|
||
|
import android.util.Config;
|
||
|
import android.util.EventLog;
|
||
|
import android.util.Log;
|
||
|
import android.util.SparseArray;
|
||
|
import android.view.ContextMenu;
|
||
|
import android.view.ContextThemeWrapper;
|
||
|
import android.view.KeyEvent;
|
||
|
import android.view.LayoutInflater;
|
||
|
import android.view.Menu;
|
||
|
import android.view.MenuInflater;
|
||
|
import android.view.MenuItem;
|
||
|
import android.view.MotionEvent;
|
||
|
import android.view.View;
|
||
|
import android.view.ViewGroup;
|
||
|
import android.view.ViewManager;
|
||
|
import android.view.Window;
|
||
|
import android.view.WindowManager;
|
||
|
import android.view.ContextMenu.ContextMenuInfo;
|
||
|
import android.view.View.OnCreateContextMenuListener;
|
||
|
import android.view.ViewGroup.LayoutParams;
|
||
|
import android.view.accessibility.AccessibilityEvent;
|
||
|
import android.widget.AdapterView;
|
||
|
import android.widget.FrameLayout;
|
||
|
import android.widget.LinearLayout;
|
||
|
|
||
|
import java.util.ArrayList;
|
||
|
import java.util.HashMap;
|
||
|
|
||
|
/**
|
||
|
* An activity is a single, focused thing that the user can do. Almost all
|
||
|
* activities interact with the user, so the Activity class takes care of
|
||
|
* creating a window for you in which you can place your UI with
|
||
|
* {@link #setContentView}. While activities are often presented to the user
|
||
|
* as full-screen windows, they can also be used in other ways: as floating
|
||
|
* windows (via a theme with {@link android.R.attr#windowIsFloating} set)
|
||
|
* or embedded inside of another activity (using {@link ActivityGroup}).
|
||
|
*
|
||
|
* There are two methods almost all subclasses of Activity will implement:
|
||
|
*
|
||
|
* <ul>
|
||
|
* <li> {@link #onCreate} is where you initialize your activity. Most
|
||
|
* importantly, here you will usually call {@link #setContentView(int)}
|
||
|
* with a layout resource defining your UI, and using {@link #findViewById}
|
||
|
* to retrieve the widgets in that UI that you need to interact with
|
||
|
* programmatically.
|
||
|
*
|
||
|
* <li> {@link #onPause} is where you deal with the user leaving your
|
||
|
* activity. Most importantly, any changes made by the user should at this
|
||
|
* point be committed (usually to the
|
||
|
* {@link android.content.ContentProvider} holding the data).
|
||
|
* </ul>
|
||
|
*
|
||
|
* <p>To be of use with {@link android.content.Context#startActivity Context.startActivity()}, all
|
||
|
* activity classes must have a corresponding
|
||
|
* {@link android.R.styleable#AndroidManifestActivity <activity>}
|
||
|
* declaration in their package's <code>AndroidManifest.xml</code>.</p>
|
||
|
*
|
||
|
* <p>The Activity class is an important part of an application's overall lifecycle,
|
||
|
* and the way activities are launched and put together is a fundamental
|
||
|
* part of the platform's application model. For a detailed perspective on the structure of
|
||
|
* Android applications and lifecycles, please read the <em>Dev Guide</em> document on
|
||
|
* <a href="{@docRoot}guide/topics/fundamentals.html">Application Fundamentals</a>.</p>
|
||
|
*
|
||
|
* <p>Topics covered here:
|
||
|
* <ol>
|
||
|
* <li><a href="#ActivityLifecycle">Activity Lifecycle</a>
|
||
|
* <li><a href="#ConfigurationChanges">Configuration Changes</a>
|
||
|
* <li><a href="#StartingActivities">Starting Activities and Getting Results</a>
|
||
|
* <li><a href="#SavingPersistentState">Saving Persistent State</a>
|
||
|
* <li><a href="#Permissions">Permissions</a>
|
||
|
* <li><a href="#ProcessLifecycle">Process Lifecycle</a>
|
||
|
* </ol>
|
||
|
*
|
||
|
* <a name="ActivityLifecycle"></a>
|
||
|
* <h3>Activity Lifecycle</h3>
|
||
|
*
|
||
|
* <p>Activities in the system are managed as an <em>activity stack</em>.
|
||
|
* When a new activity is started, it is placed on the top of the stack
|
||
|
* and becomes the running activity -- the previous activity always remains
|
||
|
* below it in the stack, and will not come to the foreground again until
|
||
|
* the new activity exits.</p>
|
||
|
*
|
||
|
* <p>An activity has essentially four states:</p>
|
||
|
* <ul>
|
||
|
* <li> If an activity in the foreground of the screen (at the top of
|
||
|
* the stack),
|
||
|
* it is <em>active</em> or <em>running</em>. </li>
|
||
|
* <li>If an activity has lost focus but is still visible (that is, a new non-full-sized
|
||
|
* or transparent activity has focus on top of your activity), it
|
||
|
* is <em>paused</em>. A paused activity is completely alive (it
|
||
|
* maintains all state and member information and remains attached to
|
||
|
* the window manager), but can be killed by the system in extreme
|
||
|
* low memory situations.
|
||
|
* <li>If an activity is completely obscured by another activity,
|
||
|
* it is <em>stopped</em>. It still retains all state and member information,
|
||
|
* however, it is no longer visible to the user so its window is hidden
|
||
|
* and it will often be killed by the system when memory is needed
|
||
|
* elsewhere.</li>
|
||
|
* <li>If an activity is paused or stopped, the system can drop the activity
|
||
|
* from memory by either asking it to finish, or simply killing its
|
||
|
* process. When it is displayed again to the user, it must be
|
||
|
* completely restarted and restored to its previous state.</li>
|
||
|
* </ul>
|
||
|
*
|
||
|
* <p>The following diagram shows the important state paths of an Activity.
|
||
|
* The square rectangles represent callback methods you can implement to
|
||
|
* perform operations when the Activity moves between states. The colored
|
||
|
* ovals are major states the Activity can be in.</p>
|
||
|
*
|
||
|
* <p><img src="../../../images/activity_lifecycle.png"
|
||
|
* alt="State diagram for an Android Activity Lifecycle." border="0" /></p>
|
||
|
*
|
||
|
* <p>There are three key loops you may be interested in monitoring within your
|
||
|
* activity:
|
||
|
*
|
||
|
* <ul>
|
||
|
* <li>The <b>entire lifetime</b> of an activity happens between the first call
|
||
|
* to {@link android.app.Activity#onCreate} through to a single final call
|
||
|
* to {@link android.app.Activity#onDestroy}. An activity will do all setup
|
||
|
* of "global" state in onCreate(), and release all remaining resources in
|
||
|
* onDestroy(). For example, if it has a thread running in the background
|
||
|
* to download data from the network, it may create that thread in onCreate()
|
||
|
* and then stop the thread in onDestroy().
|
||
|
*
|
||
|
* <li>The <b>visible lifetime</b> of an activity happens between a call to
|
||
|
* {@link android.app.Activity#onStart} until a corresponding call to
|
||
|
* {@link android.app.Activity#onStop}. During this time the user can see the
|
||
|
* activity on-screen, though it may not be in the foreground and interacting
|
||
|
* with the user. Between these two methods you can maintain resources that
|
||
|
* are needed to show the activity to the user. For example, you can register
|
||
|
* a {@link android.content.BroadcastReceiver} in onStart() to monitor for changes
|
||
|
* that impact your UI, and unregister it in onStop() when the user an no
|
||
|
* longer see what you are displaying. The onStart() and onStop() methods
|
||
|
* can be called multiple times, as the activity becomes visible and hidden
|
||
|
* to the user.
|
||
|
*
|
||
|
* <li>The <b>foreground lifetime</b> of an activity happens between a call to
|
||
|
* {@link android.app.Activity#onResume} until a corresponding call to
|
||
|
* {@link android.app.Activity#onPause}. During this time the activity is
|
||
|
* in front of all other activities and interacting with the user. An activity
|
||
|
* can frequently go between the resumed and paused states -- for example when
|
||
|
* the device goes to sleep, when an activity result is delivered, when a new
|
||
|
* intent is delivered -- so the code in these methods should be fairly
|
||
|
* lightweight.
|
||
|
* </ul>
|
||
|
*
|
||
|
* <p>The entire lifecycle of an activity is defined by the following
|
||
|
* Activity methods. All of these are hooks that you can override
|
||
|
* to do appropriate work when the activity changes state. All
|
||
|
* activities will implement {@link android.app.Activity#onCreate}
|
||
|
* to do their initial setup; many will also implement
|
||
|
* {@link android.app.Activity#onPause} to commit changes to data and
|
||
|
* otherwise prepare to stop interacting with the user. You should always
|
||
|
* call up to your superclass when implementing these methods.</p>
|
||
|
*
|
||
|
* </p>
|
||
|
* <pre class="prettyprint">
|
||
|
* public class Activity extends ApplicationContext {
|
||
|
* protected void onCreate(Bundle savedInstanceState);
|
||
|
*
|
||
|
* protected void onStart();
|
||
|
*
|
||
|
* protected void onRestart();
|
||
|
*
|
||
|
* protected void onResume();
|
||
|
*
|
||
|
* protected void onPause();
|
||
|
*
|
||
|
* protected void onStop();
|
||
|
*
|
||
|
* protected void onDestroy();
|
||
|
* }
|
||
|
* </pre>
|
||
|
*
|
||
|
* <p>In general the movement through an activity's lifecycle looks like
|
||
|
* this:</p>
|
||
|
*
|
||
|
* <table border="2" width="85%" align="center" frame="hsides" rules="rows">
|
||
|
* <colgroup align="left" span="3" />
|
||
|
* <colgroup align="left" />
|
||
|
* <colgroup align="center" />
|
||
|
* <colgroup align="center" />
|
||
|
*
|
||
|
* <thead>
|
||
|
* <tr><th colspan="3">Method</th> <th>Description</th> <th>Killable?</th> <th>Next</th></tr>
|
||
|
* </thead>
|
||
|
*
|
||
|
* <tbody>
|
||
|
* <tr><th colspan="3" align="left" border="0">{@link android.app.Activity#onCreate onCreate()}</th>
|
||
|
* <td>Called when the activity is first created.
|
||
|
* This is where you should do all of your normal static set up:
|
||
|
* create views, bind data to lists, etc. This method also
|
||
|
* provides you with a Bundle containing the activity's previously
|
||
|
* frozen state, if there was one.
|
||
|
* <p>Always followed by <code>onStart()</code>.</td>
|
||
|
* <td align="center">No</td>
|
||
|
* <td align="center"><code>onStart()</code></td>
|
||
|
* </tr>
|
||
|
*
|
||
|
* <tr><td rowspan="5" style="border-left: none; border-right: none;"> </td>
|
||
|
* <th colspan="2" align="left" border="0">{@link android.app.Activity#onRestart onRestart()}</th>
|
||
|
* <td>Called after your activity has been stopped, prior to it being
|
||
|
* started again.
|
||
|
* <p>Always followed by <code>onStart()</code></td>
|
||
|
* <td align="center">No</td>
|
||
|
* <td align="center"><code>onStart()</code></td>
|
||
|
* </tr>
|
||
|
*
|
||
|
* <tr><th colspan="2" align="left" border="0">{@link android.app.Activity#onStart onStart()}</th>
|
||
|
* <td>Called when the activity is becoming visible to the user.
|
||
|
* <p>Followed by <code>onResume()</code> if the activity comes
|
||
|
* to the foreground, or <code>onStop()</code> if it becomes hidden.</td>
|
||
|
* <td align="center">No</td>
|
||
|
* <td align="center"><code>onResume()</code> or <code>onStop()</code></td>
|
||
|
* </tr>
|
||
|
*
|
||
|
* <tr><td rowspan="2" style="border-left: none;"> </td>
|
||
|
* <th align="left" border="0">{@link android.app.Activity#onResume onResume()}</th>
|
||
|
* <td>Called when the activity will start
|
||
|
* interacting with the user. At this point your activity is at
|
||
|
* the top of the activity stack, with user input going to it.
|
||
|
* <p>Always followed by <code>onPause()</code>.</td>
|
||
|
* <td align="center">No</td>
|
||
|
* <td align="center"><code>onPause()</code></td>
|
||
|
* </tr>
|
||
|
*
|
||
|
* <tr><th align="left" border="0">{@link android.app.Activity#onPause onPause()}</th>
|
||
|
* <td>Called when the system is about to start resuming a previous
|
||
|
* activity. This is typically used to commit unsaved changes to
|
||
|
* persistent data, stop animations and other things that may be consuming
|
||
|
* CPU, etc. Implementations of this method must be very quick because
|
||
|
* the next activity will not be resumed until this method returns.
|
||
|
* <p>Followed by either <code>onResume()</code> if the activity
|
||
|
* returns back to the front, or <code>onStop()</code> if it becomes
|
||
|
* invisible to the user.</td>
|
||
|
* <td align="center"><font color="#800000"><strong>Yes</strong></font></td>
|
||
|
* <td align="center"><code>onResume()</code> or<br>
|
||
|
* <code>onStop()</code></td>
|
||
|
* </tr>
|
||
|
*
|
||
|
* <tr><th colspan="2" align="left" border="0">{@link android.app.Activity#onStop onStop()}</th>
|
||
|
* <td>Called when the activity is no longer visible to the user, because
|
||
|
* another activity has been resumed and is covering this one. This
|
||
|
* may happen either because a new activity is being started, an existing
|
||
|
* one is being brought in front of this one, or this one is being
|
||
|
* destroyed.
|
||
|
* <p>Followed by either <code>onRestart()</code> if
|
||
|
* this activity is coming back to interact with the user, or
|
||
|
* <code>onDestroy()</code> if this activity is going away.</td>
|
||
|
* <td align="center"><font color="#800000"><strong>Yes</strong></font></td>
|
||
|
* <td align="center"><code>onRestart()</code> or<br>
|
||
|
* <code>onDestroy()</code></td>
|
||
|
* </tr>
|
||
|
*
|
||
|
* <tr><th colspan="3" align="left" border="0">{@link android.app.Activity#onDestroy onDestroy()}</th>
|
||
|
* <td>The final call you receive before your
|
||
|
* activity is destroyed. This can happen either because the
|
||
|
* activity is finishing (someone called {@link Activity#finish} on
|
||
|
* it, or because the system is temporarily destroying this
|
||
|
* instance of the activity to save space. You can distinguish
|
||
|
* between these two scenarios with the {@link
|
||
|
* Activity#isFinishing} method.</td>
|
||
|
* <td align="center"><font color="#800000"><strong>Yes</strong></font></td>
|
||
|
* <td align="center"><em>nothing</em></td>
|
||
|
* </tr>
|
||
|
* </tbody>
|
||
|
* </table>
|
||
|
*
|
||
|
* <p>Note the "Killable" column in the above table -- for those methods that
|
||
|
* are marked as being killable, after that method returns the process hosting the
|
||
|
* activity may killed by the system <em>at any time</em> without another line
|
||
|
* of its code being executed. Because of this, you should use the
|
||
|
* {@link #onPause} method to write any persistent data (such as user edits)
|
||
|
* to storage. In addition, the method
|
||
|
* {@link #onSaveInstanceState(Bundle)} is called before placing the activity
|
||
|
* in such a background state, allowing you to save away any dynamic instance
|
||
|
* state in your activity into the given Bundle, to be later received in
|
||
|
* {@link #onCreate} if the activity needs to be re-created.
|
||
|
* See the <a href="#ProcessLifecycle">Process Lifecycle</a>
|
||
|
* section for more information on how the lifecycle of a process is tied
|
||
|
* to the activities it is hosting. Note that it is important to save
|
||
|
* persistent data in {@link #onPause} instead of {@link #onSaveInstanceState}
|
||
|
* because the later is not part of the lifecycle callbacks, so will not
|
||
|
* be called in every situation as described in its documentation.</p>
|
||
|
*
|
||
|
* <p>For those methods that are not marked as being killable, the activity's
|
||
|
* process will not be killed by the system starting from the time the method
|
||
|
* is called and continuing after it returns. Thus an activity is in the killable
|
||
|
* state, for example, between after <code>onPause()</code> to the start of
|
||
|
* <code>onResume()</code>.</p>
|
||
|
*
|
||
|
* <a name="ConfigurationChanges"></a>
|
||
|
* <h3>Configuration Changes</h3>
|
||
|
*
|
||
|
* <p>If the configuration of the device (as defined by the
|
||
|
* {@link Configuration Resources.Configuration} class) changes,
|
||
|
* then anything displaying a user interface will need to update to match that
|
||
|
* configuration. Because Activity is the primary mechanism for interacting
|
||
|
* with the user, it includes special support for handling configuration
|
||
|
* changes.</p>
|
||
|
*
|
||
|
* <p>Unless you specify otherwise, a configuration change (such as a change
|
||
|
* in screen orientation, language, input devices, etc) will cause your
|
||
|
* current activity to be <em>destroyed</em>, going through the normal activity
|
||
|
* lifecycle process of {@link #onPause},
|
||
|
* {@link #onStop}, and {@link #onDestroy} as appropriate. If the activity
|
||
|
* had been in the foreground or visible to the user, once {@link #onDestroy} is
|
||
|
* called in that instance then a new instance of the activity will be
|
||
|
* created, with whatever savedInstanceState the previous instance had generated
|
||
|
* from {@link #onSaveInstanceState}.</p>
|
||
|
*
|
||
|
* <p>This is done because any application resource,
|
||
|
* including layout files, can change based on any configuration value. Thus
|
||
|
* the only safe way to handle a configuration change is to re-retrieve all
|
||
|
* resources, including layouts, drawables, and strings. Because activities
|
||
|
* must already know how to save their state and re-create themselves from
|
||
|
* that state, this is a convenient way to have an activity restart itself
|
||
|
* with a new configuration.</p>
|
||
|
*
|
||
|
* <p>In some special cases, you may want to bypass restarting of your
|
||
|
* activity based on one or more types of configuration changes. This is
|
||
|
* done with the {@link android.R.attr#configChanges android:configChanges}
|
||
|
* attribute in its manifest. For any types of configuration changes you say
|
||
|
* that you handle there, you will receive a call to your current activity's
|
||
|
* {@link #onConfigurationChanged} method instead of being restarted. If
|
||
|
* a configuration change involves any that you do not handle, however, the
|
||
|
* activity will still be restarted and {@link #onConfigurationChanged}
|
||
|
* will not be called.</p>
|
||
|
*
|
||
|
* <a name="StartingActivities"></a>
|
||
|
* <h3>Starting Activities and Getting Results</h3>
|
||
|
*
|
||
|
* <p>The {@link android.app.Activity#startActivity}
|
||
|
* method is used to start a
|
||
|
* new activity, which will be placed at the top of the activity stack. It
|
||
|
* takes a single argument, an {@link android.content.Intent Intent},
|
||
|
* which describes the activity
|
||
|
* to be executed.</p>
|
||
|
*
|
||
|
* <p>Sometimes you want to get a result back from an activity when it
|
||
|
* ends. For example, you may start an activity that lets the user pick
|
||
|
* a person in a list of contacts; when it ends, it returns the person
|
||
|
* that was selected. To do this, you call the
|
||
|
* {@link android.app.Activity#startActivityForResult(Intent, int)}
|
||
|
* version with a second integer parameter identifying the call. The result
|
||
|
* will come back through your {@link android.app.Activity#onActivityResult}
|
||
|
* method.</p>
|
||
|
*
|
||
|
* <p>When an activity exits, it can call
|
||
|
* {@link android.app.Activity#setResult(int)}
|
||
|
* to return data back to its parent. It must always supply a result code,
|
||
|
* which can be the standard results RESULT_CANCELED, RESULT_OK, or any
|
||
|
* custom values starting at RESULT_FIRST_USER. In addition, it can optionally
|
||
|
* return back an Intent containing any additional data it wants. All of this
|
||
|
* information appears back on the
|
||
|
* parent's <code>Activity.onActivityResult()</code>, along with the integer
|
||
|
* identifier it originally supplied.</p>
|
||
|
*
|
||
|
* <p>If a child activity fails for any reason (such as crashing), the parent
|
||
|
* activity will receive a result with the code RESULT_CANCELED.</p>
|
||
|
*
|
||
|
* <pre class="prettyprint">
|
||
|
* public class MyActivity extends Activity {
|
||
|
* ...
|
||
|
*
|
||
|
* static final int PICK_CONTACT_REQUEST = 0;
|
||
|
*
|
||
|
* protected boolean onKeyDown(int keyCode, KeyEvent event) {
|
||
|
* if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
|
||
|
* // When the user center presses, let them pick a contact.
|
||
|
* startActivityForResult(
|
||
|
* new Intent(Intent.ACTION_PICK,
|
||
|
* new Uri("content://contacts")),
|
||
|
* PICK_CONTACT_REQUEST);
|
||
|
* return true;
|
||
|
* }
|
||
|
* return false;
|
||
|
* }
|
||
|
*
|
||
|
* protected void onActivityResult(int requestCode, int resultCode,
|
||
|
* Intent data) {
|
||
|
* if (requestCode == PICK_CONTACT_REQUEST) {
|
||
|
* if (resultCode == RESULT_OK) {
|
||
|
* // A contact was picked. Here we will just display it
|
||
|
* // to the user.
|
||
|
* startActivity(new Intent(Intent.ACTION_VIEW, data));
|
||
|
* }
|
||
|
* }
|
||
|
* }
|
||
|
* }
|
||
|
* </pre>
|
||
|
*
|
||
|
* <a name="SavingPersistentState"></a>
|
||
|
* <h3>Saving Persistent State</h3>
|
||
|
*
|
||
|
* <p>There are generally two kinds of persistent state than an activity
|
||
|
* will deal with: shared document-like data (typically stored in a SQLite
|
||
|
* database using a {@linkplain android.content.ContentProvider content provider})
|
||
|
* and internal state such as user preferences.</p>
|
||
|
*
|
||
|
* <p>For content provider data, we suggest that activities use a
|
||
|
* "edit in place" user model. That is, any edits a user makes are effectively
|
||
|
* made immediately without requiring an additional confirmation step.
|
||
|
* Supporting this model is generally a simple matter of following two rules:</p>
|
||
|
*
|
||
|
* <ul>
|
||
|
* <li> <p>When creating a new document, the backing database entry or file for
|
||
|
* it is created immediately. For example, if the user chooses to write
|
||
|
* a new e-mail, a new entry for that e-mail is created as soon as they
|
||
|
* start entering data, so that if they go to any other activity after
|
||
|
* that point this e-mail will now appear in the list of drafts.</p>
|
||
|
* <li> <p>When an activity's <code>onPause()</code> method is called, it should
|
||
|
* commit to the backing content provider or file any changes the user
|
||
|
* has made. This ensures that those changes will be seen by any other
|
||
|
* activity that is about to run. You will probably want to commit
|
||
|
* your data even more aggressively at key times during your
|
||
|
* activity's lifecycle: for example before starting a new
|
||
|
* activity, before finishing your own activity, when the user
|
||
|
* switches between input fields, etc.</p>
|
||
|
* </ul>
|
||
|
*
|
||
|
* <p>This model is designed to prevent data loss when a user is navigating
|
||
|
* between activities, and allows the system to safely kill an activity (because
|
||
|
* system resources are needed somewhere else) at any time after it has been
|
||
|
* paused. Note this implies
|
||
|
* that the user pressing BACK from your activity does <em>not</em>
|
||
|
* mean "cancel" -- it means to leave the activity with its current contents
|
||
|
* saved away. Cancelling edits in an activity must be provided through
|
||
|
* some other mechanism, such as an explicit "revert" or "undo" option.</p>
|
||
|
*
|
||
|
* <p>See the {@linkplain android.content.ContentProvider content package} for
|
||
|
* more information about content providers. These are a key aspect of how
|
||
|
* different activities invoke and propagate data between themselves.</p>
|
||
|
*
|
||
|
* <p>The Activity class also provides an API for managing internal persistent state
|
||
|
* associated with an activity. This can be used, for example, to remember
|
||
|
* the user's preferred initial display in a calendar (day view or week view)
|
||
|
* or the user's default home page in a web browser.</p>
|
||
|
*
|
||
|
* <p>Activity persistent state is managed
|
||
|
* with the method {@link #getPreferences},
|
||
|
* allowing you to retrieve and
|
||
|
* modify a set of name/value pairs associated with the activity. To use
|
||
|
* preferences that are shared across multiple application components
|
||
|
* (activities, receivers, services, providers), you can use the underlying
|
||
|
* {@link Context#getSharedPreferences Context.getSharedPreferences()} method
|
||
|
* to retrieve a preferences
|
||
|
* object stored under a specific name.
|
||
|
* (Note that it is not possible to share settings data across application
|
||
|
* packages -- for that you will need a content provider.)</p>
|
||
|
*
|
||
|
* <p>Here is an excerpt from a calendar activity that stores the user's
|
||
|
* preferred view mode in its persistent settings:</p>
|
||
|
*
|
||
|
* <pre class="prettyprint">
|
||
|
* public class CalendarActivity extends Activity {
|
||
|
* ...
|
||
|
*
|
||
|
* static final int DAY_VIEW_MODE = 0;
|
||
|
* static final int WEEK_VIEW_MODE = 1;
|
||
|
*
|
||
|
* private SharedPreferences mPrefs;
|
||
|
* private int mCurViewMode;
|
||
|
*
|
||
|
* protected void onCreate(Bundle savedInstanceState) {
|
||
|
* super.onCreate(savedInstanceState);
|
||
|
*
|
||
|
* SharedPreferences mPrefs = getSharedPreferences();
|
||
|
* mCurViewMode = mPrefs.getInt("view_mode" DAY_VIEW_MODE);
|
||
|
* }
|
||
|
*
|
||
|
* protected void onPause() {
|
||
|
* super.onPause();
|
||
|
*
|
||
|
* SharedPreferences.Editor ed = mPrefs.edit();
|
||
|
* ed.putInt("view_mode", mCurViewMode);
|
||
|
* ed.commit();
|
||
|
* }
|
||
|
* }
|
||
|
* </pre>
|
||
|
*
|
||
|
* <a name="Permissions"></a>
|
||
|
* <h3>Permissions</h3>
|
||
|
*
|
||
|
* <p>The ability to start a particular Activity can be enforced when it is
|
||
|
* declared in its
|
||
|
* manifest's {@link android.R.styleable#AndroidManifestActivity <activity>}
|
||
|
* tag. By doing so, other applications will need to declare a corresponding
|
||
|
* {@link android.R.styleable#AndroidManifestUsesPermission <uses-permission>}
|
||
|
* element in their own manifest to be able to start that activity.
|
||
|
*
|
||
|
* <p>See the <a href="{@docRoot}guide/topics/security/security.html">Security and Permissions</a>
|
||
|
* document for more information on permissions and security in general.
|
||
|
*
|
||
|
* <a name="ProcessLifecycle"></a>
|
||
|
* <h3>Process Lifecycle</h3>
|
||
|
*
|
||
|
* <p>The Android system attempts to keep application process around for as
|
||
|
* long as possible, but eventually will need to remove old processes when
|
||
|
* memory runs low. As described in <a href="#ActivityLifecycle">Activity
|
||
|
* Lifecycle</a>, the decision about which process to remove is intimately
|
||
|
* tied to the state of the user's interaction with it. In general, there
|
||
|
* are four states a process can be in based on the activities running in it,
|
||
|
* listed here in order of importance. The system will kill less important
|
||
|
* processes (the last ones) before it resorts to killing more important
|
||
|
* processes (the first ones).
|
||
|
*
|
||
|
* <ol>
|
||
|
* <li> <p>The <b>foreground activity</b> (the activity at the top of the screen
|
||
|
* that the user is currently interacting with) is considered the most important.
|
||
|
* Its process will only be killed as a last resort, if it uses more memory
|
||
|
* than is available on the device. Generally at this point the device has
|
||
|
* reached a memory paging state, so this is required in order to keep the user
|
||
|
* interface responsive.
|
||
|
* <li> <p>A <b>visible activity</b> (an activity that is visible to the user
|
||
|
* but not in the foreground, such as one sitting behind a foreground dialog)
|
||
|
* is considered extremely important and will not be killed unless that is
|
||
|
* required to keep the foreground activity running.
|
||
|
* <li> <p>A <b>background activity</b> (an activity that is not visible to
|
||
|
* the user and has been paused) is no longer critical, so the system may
|
||
|
* safely kill its process to reclaim memory for other foreground or
|
||
|
* visible processes. If its process needs to be killed, when the user navigates
|
||
|
* back to the activity (making it visible on the screen again), its
|
||
|
* {@link #onCreate} method will be called with the savedInstanceState it had previously
|
||
|
* supplied in {@link #onSaveInstanceState} so that it can restart itself in the same
|
||
|
* state as the user last left it.
|
||
|
* <li> <p>An <b>empty process</b> is one hosting no activities or other
|
||
|
* application components (such as {@link Service} or
|
||
|
* {@link android.content.BroadcastReceiver} classes). These are killed very
|
||
|
* quickly by the system as memory becomes low. For this reason, any
|
||
|
* background operation you do outside of an activity must be executed in the
|
||
|
* context of an activity BroadcastReceiver or Service to ensure that the system
|
||
|
* knows it needs to keep your process around.
|
||
|
* </ol>
|
||
|
*
|
||
|
* <p>Sometimes an Activity may need to do a long-running operation that exists
|
||
|
* independently of the activity lifecycle itself. An example may be a camera
|
||
|
* application that allows you to upload a picture to a web site. The upload
|
||
|
* may take a long time, and the application should allow the user to leave
|
||
|
* the application will it is executing. To accomplish this, your Activity
|
||
|
* should start a {@link Service} in which the upload takes place. This allows
|
||
|
* the system to properly prioritize your process (considering it to be more
|
||
|
* important than other non-visible applications) for the duration of the
|
||
|
* upload, independent of whether the original activity is paused, stopped,
|
||
|
* or finished.
|
||
|
*/
|
||
|
public class Activity extends ContextThemeWrapper
|
||
|
implements LayoutInflater.Factory,
|
||
|
Window.Callback, KeyEvent.Callback,
|
||
|
OnCreateContextMenuListener, ComponentCallbacks {
|
||
|
private static final String TAG = "Activity";
|
||
|
|
||
|
/** Standard activity result: operation canceled. */
|
||
|
public static final int RESULT_CANCELED = 0;
|
||
|
/** Standard activity result: operation succeeded. */
|
||
|
public static final int RESULT_OK = -1;
|
||
|
/** Start of user-defined activity results. */
|
||
|
public static final int RESULT_FIRST_USER = 1;
|
||
|
|
||
|
private static long sInstanceCount = 0;
|
||
|
|
||
|
private static final String WINDOW_HIERARCHY_TAG = "android:viewHierarchyState";
|
||
|
private static final String SAVED_DIALOG_IDS_KEY = "android:savedDialogIds";
|
||
|
private static final String SAVED_DIALOGS_TAG = "android:savedDialogs";
|
||
|
private static final String SAVED_DIALOG_KEY_PREFIX = "android:dialog_";
|
||
|
private static final String SAVED_DIALOG_ARGS_KEY_PREFIX = "android:dialog_args_";
|
||
|
|
||
|
private static class ManagedDialog {
|
||
|
Dialog mDialog;
|
||
|
Bundle mArgs;
|
||
|
}
|
||
|
private SparseArray<ManagedDialog> mManagedDialogs;
|
||
|
|
||
|
// set by the thread after the constructor and before onCreate(Bundle savedInstanceState) is called.
|
||
|
private Instrumentation mInstrumentation;
|
||
|
private IBinder mToken;
|
||
|
private int mIdent;
|
||
|
/*package*/ String mEmbeddedID;
|
||
|
private Application mApplication;
|
||
|
/*package*/ Intent mIntent;
|
||
|
private ComponentName mComponent;
|
||
|
/*package*/ ActivityInfo mActivityInfo;
|
||
|
/*package*/ ActivityThread mMainThread;
|
||
|
/*package*/ Object mLastNonConfigurationInstance;
|
||
|
/*package*/ HashMap<String,Object> mLastNonConfigurationChildInstances;
|
||
|
Activity mParent;
|
||
|
boolean mCalled;
|
||
|
/*package*/ boolean mResumed;
|
||
|
private boolean mStopped;
|
||
|
boolean mFinished;
|
||
|
boolean mStartedActivity;
|
||
|
/*package*/ int mConfigChangeFlags;
|
||
|
/*package*/ Configuration mCurrentConfig;
|
||
|
private SearchManager mSearchManager;
|
||
|
|
||
|
private Window mWindow;
|
||
|
|
||
|
private WindowManager mWindowManager;
|
||
|
/*package*/ View mDecor = null;
|
||
|
/*package*/ boolean mWindowAdded = false;
|
||
|
/*package*/ boolean mVisibleFromServer = false;
|
||
|
/*package*/ boolean mVisibleFromClient = true;
|
||
|
|
||
|
private CharSequence mTitle;
|
||
|
private int mTitleColor = 0;
|
||
|
|
||
|
private static final class ManagedCursor {
|
||
|
ManagedCursor(Cursor cursor) {
|
||
|
mCursor = cursor;
|
||
|
mReleased = false;
|
||
|
mUpdated = false;
|
||
|
}
|
||
|
|
||
|
private final Cursor mCursor;
|
||
|
private boolean mReleased;
|
||
|
private boolean mUpdated;
|
||
|
}
|
||
|
private final ArrayList<ManagedCursor> mManagedCursors =
|
||
|
new ArrayList<ManagedCursor>();
|
||
|
|
||
|
// protected by synchronized (this)
|
||
|
int mResultCode = RESULT_CANCELED;
|
||
|
Intent mResultData = null;
|
||
|
|
||
|
private boolean mTitleReady = false;
|
||
|
|
||
|
private int mDefaultKeyMode = DEFAULT_KEYS_DISABLE;
|
||
|
private SpannableStringBuilder mDefaultKeySsb = null;
|
||
|
|
||
|
protected static final int[] FOCUSED_STATE_SET = {com.android.internal.R.attr.state_focused};
|
||
|
|
||
|
private Thread mUiThread;
|
||
|
private final Handler mHandler = new Handler();
|
||
|
|
||
|
// Used for debug only
|
||
|
/*
|
||
|
public Activity() {
|
||
|
++sInstanceCount;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
protected void finalize() throws Throwable {
|
||
|
super.finalize();
|
||
|
--sInstanceCount;
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
public static long getInstanceCount() {
|
||
|
return sInstanceCount;
|
||
|
}
|
||
|
|
||
|
/** Return the intent that started this activity. */
|
||
|
public Intent getIntent() {
|
||
|
return mIntent;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Change the intent returned by {@link #getIntent}. This holds a
|
||
|
* reference to the given intent; it does not copy it. Often used in
|
||
|
* conjunction with {@link #onNewIntent}.
|
||
|
*
|
||
|
* @param newIntent The new Intent object to return from getIntent
|
||
|
*
|
||
|
* @see #getIntent
|
||
|
* @see #onNewIntent
|
||
|
*/
|
||
|
public void setIntent(Intent newIntent) {
|
||
|
mIntent = newIntent;
|
||
|
}
|
||
|
|
||
|
/** Return the application that owns this activity. */
|
||
|
public final Application getApplication() {
|
||
|
return mApplication;
|
||
|
}
|
||
|
|
||
|
/** Is this activity embedded inside of another activity? */
|
||
|
public final boolean isChild() {
|
||
|
return mParent != null;
|
||
|
}
|
||
|
|
||
|
/** Return the parent activity if this view is an embedded child. */
|
||
|
public final Activity getParent() {
|
||
|
return mParent;
|
||
|
}
|
||
|
|
||
|
/** Retrieve the window manager for showing custom windows. */
|
||
|
public WindowManager getWindowManager() {
|
||
|
return mWindowManager;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieve the current {@link android.view.Window} for the activity.
|
||
|
* This can be used to directly access parts of the Window API that
|
||
|
* are not available through Activity/Screen.
|
||
|
*
|
||
|
* @return Window The current window, or null if the activity is not
|
||
|
* visual.
|
||
|
*/
|
||
|
public Window getWindow() {
|
||
|
return mWindow;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calls {@link android.view.Window#getCurrentFocus} on the
|
||
|
* Window of this Activity to return the currently focused view.
|
||
|
*
|
||
|
* @return View The current View with focus or null.
|
||
|
*
|
||
|
* @see #getWindow
|
||
|
* @see android.view.Window#getCurrentFocus
|
||
|
*/
|
||
|
public View getCurrentFocus() {
|
||
|
return mWindow != null ? mWindow.getCurrentFocus() : null;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public int getWallpaperDesiredMinimumWidth() {
|
||
|
int width = super.getWallpaperDesiredMinimumWidth();
|
||
|
return width <= 0 ? getWindowManager().getDefaultDisplay().getWidth() : width;
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public int getWallpaperDesiredMinimumHeight() {
|
||
|
int height = super.getWallpaperDesiredMinimumHeight();
|
||
|
return height <= 0 ? getWindowManager().getDefaultDisplay().getHeight() : height;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the activity is starting. This is where most initialization
|
||
|
* should go: calling {@link #setContentView(int)} to inflate the
|
||
|
* activity's UI, using {@link #findViewById} to programmatically interact
|
||
|
* with widgets in the UI, calling
|
||
|
* {@link #managedQuery(android.net.Uri , String[], String, String[], String)} to retrieve
|
||
|
* cursors for data being displayed, etc.
|
||
|
*
|
||
|
* <p>You can call {@link #finish} from within this function, in
|
||
|
* which case onDestroy() will be immediately called without any of the rest
|
||
|
* of the activity lifecycle ({@link #onStart}, {@link #onResume},
|
||
|
* {@link #onPause}, etc) executing.
|
||
|
*
|
||
|
* <p><em>Derived classes must call through to the super class's
|
||
|
* implementation of this method. If they do not, an exception will be
|
||
|
* thrown.</em></p>
|
||
|
*
|
||
|
* @param savedInstanceState If the activity is being re-initialized after
|
||
|
* previously being shut down then this Bundle contains the data it most
|
||
|
* recently supplied in {@link #onSaveInstanceState}. <b><i>Note: Otherwise it is null.</i></b>
|
||
|
*
|
||
|
* @see #onStart
|
||
|
* @see #onSaveInstanceState
|
||
|
* @see #onRestoreInstanceState
|
||
|
* @see #onPostCreate
|
||
|
*/
|
||
|
protected void onCreate(Bundle savedInstanceState) {
|
||
|
mVisibleFromClient = !mWindow.getWindowStyle().getBoolean(
|
||
|
com.android.internal.R.styleable.Window_windowNoDisplay, false);
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* The hook for {@link ActivityThread} to restore the state of this activity.
|
||
|
*
|
||
|
* Calls {@link #onSaveInstanceState(android.os.Bundle)} and
|
||
|
* {@link #restoreManagedDialogs(android.os.Bundle)}.
|
||
|
*
|
||
|
* @param savedInstanceState contains the saved state
|
||
|
*/
|
||
|
final void performRestoreInstanceState(Bundle savedInstanceState) {
|
||
|
onRestoreInstanceState(savedInstanceState);
|
||
|
restoreManagedDialogs(savedInstanceState);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method is called after {@link #onStart} when the activity is
|
||
|
* being re-initialized from a previously saved state, given here in
|
||
|
* <var>savedInstanceState</var>. Most implementations will simply use {@link #onCreate}
|
||
|
* to restore their state, but it is sometimes convenient to do it here
|
||
|
* after all of the initialization has been done or to allow subclasses to
|
||
|
* decide whether to use your default implementation. The default
|
||
|
* implementation of this method performs a restore of any view state that
|
||
|
* had previously been frozen by {@link #onSaveInstanceState}.
|
||
|
*
|
||
|
* <p>This method is called between {@link #onStart} and
|
||
|
* {@link #onPostCreate}.
|
||
|
*
|
||
|
* @param savedInstanceState the data most recently supplied in {@link #onSaveInstanceState}.
|
||
|
*
|
||
|
* @see #onCreate
|
||
|
* @see #onPostCreate
|
||
|
* @see #onResume
|
||
|
* @see #onSaveInstanceState
|
||
|
*/
|
||
|
protected void onRestoreInstanceState(Bundle savedInstanceState) {
|
||
|
if (mWindow != null) {
|
||
|
Bundle windowState = savedInstanceState.getBundle(WINDOW_HIERARCHY_TAG);
|
||
|
if (windowState != null) {
|
||
|
mWindow.restoreHierarchyState(windowState);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Restore the state of any saved managed dialogs.
|
||
|
*
|
||
|
* @param savedInstanceState The bundle to restore from.
|
||
|
*/
|
||
|
private void restoreManagedDialogs(Bundle savedInstanceState) {
|
||
|
final Bundle b = savedInstanceState.getBundle(SAVED_DIALOGS_TAG);
|
||
|
if (b == null) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
final int[] ids = b.getIntArray(SAVED_DIALOG_IDS_KEY);
|
||
|
final int numDialogs = ids.length;
|
||
|
mManagedDialogs = new SparseArray<ManagedDialog>(numDialogs);
|
||
|
for (int i = 0; i < numDialogs; i++) {
|
||
|
final Integer dialogId = ids[i];
|
||
|
Bundle dialogState = b.getBundle(savedDialogKeyFor(dialogId));
|
||
|
if (dialogState != null) {
|
||
|
// Calling onRestoreInstanceState() below will invoke dispatchOnCreate
|
||
|
// so tell createDialog() not to do it, otherwise we get an exception
|
||
|
final ManagedDialog md = new ManagedDialog();
|
||
|
md.mArgs = b.getBundle(savedDialogArgsKeyFor(dialogId));
|
||
|
md.mDialog = createDialog(dialogId, dialogState, md.mArgs);
|
||
|
if (md.mDialog != null) {
|
||
|
mManagedDialogs.put(dialogId, md);
|
||
|
onPrepareDialog(dialogId, md.mDialog, md.mArgs);
|
||
|
md.mDialog.onRestoreInstanceState(dialogState);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private Dialog createDialog(Integer dialogId, Bundle state, Bundle args) {
|
||
|
final Dialog dialog = onCreateDialog(dialogId, args);
|
||
|
if (dialog == null) {
|
||
|
return null;
|
||
|
}
|
||
|
dialog.dispatchOnCreate(state);
|
||
|
return dialog;
|
||
|
}
|
||
|
|
||
|
private static String savedDialogKeyFor(int key) {
|
||
|
return SAVED_DIALOG_KEY_PREFIX + key;
|
||
|
}
|
||
|
|
||
|
private static String savedDialogArgsKeyFor(int key) {
|
||
|
return SAVED_DIALOG_ARGS_KEY_PREFIX + key;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when activity start-up is complete (after {@link #onStart}
|
||
|
* and {@link #onRestoreInstanceState} have been called). Applications will
|
||
|
* generally not implement this method; it is intended for system
|
||
|
* classes to do final initialization after application code has run.
|
||
|
*
|
||
|
* <p><em>Derived classes must call through to the super class's
|
||
|
* implementation of this method. If they do not, an exception will be
|
||
|
* thrown.</em></p>
|
||
|
*
|
||
|
* @param savedInstanceState If the activity is being re-initialized after
|
||
|
* previously being shut down then this Bundle contains the data it most
|
||
|
* recently supplied in {@link #onSaveInstanceState}. <b><i>Note: Otherwise it is null.</i></b>
|
||
|
* @see #onCreate
|
||
|
*/
|
||
|
protected void onPostCreate(Bundle savedInstanceState) {
|
||
|
if (!isChild()) {
|
||
|
mTitleReady = true;
|
||
|
onTitleChanged(getTitle(), getTitleColor());
|
||
|
}
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called after {@link #onCreate} — or after {@link #onRestart} when
|
||
|
* the activity had been stopped, but is now again being displayed to the
|
||
|
* user. It will be followed by {@link #onResume}.
|
||
|
*
|
||
|
* <p><em>Derived classes must call through to the super class's
|
||
|
* implementation of this method. If they do not, an exception will be
|
||
|
* thrown.</em></p>
|
||
|
*
|
||
|
* @see #onCreate
|
||
|
* @see #onStop
|
||
|
* @see #onResume
|
||
|
*/
|
||
|
protected void onStart() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called after {@link #onStop} when the current activity is being
|
||
|
* re-displayed to the user (the user has navigated back to it). It will
|
||
|
* be followed by {@link #onStart} and then {@link #onResume}.
|
||
|
*
|
||
|
* <p>For activities that are using raw {@link Cursor} objects (instead of
|
||
|
* creating them through
|
||
|
* {@link #managedQuery(android.net.Uri , String[], String, String[], String)},
|
||
|
* this is usually the place
|
||
|
* where the cursor should be requeried (because you had deactivated it in
|
||
|
* {@link #onStop}.
|
||
|
*
|
||
|
* <p><em>Derived classes must call through to the super class's
|
||
|
* implementation of this method. If they do not, an exception will be
|
||
|
* thrown.</em></p>
|
||
|
*
|
||
|
* @see #onStop
|
||
|
* @see #onStart
|
||
|
* @see #onResume
|
||
|
*/
|
||
|
protected void onRestart() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called after {@link #onRestoreInstanceState}, {@link #onRestart}, or
|
||
|
* {@link #onPause}, for your activity to start interacting with the user.
|
||
|
* This is a good place to begin animations, open exclusive-access devices
|
||
|
* (such as the camera), etc.
|
||
|
*
|
||
|
* <p>Keep in mind that onResume is not the best indicator that your activity
|
||
|
* is visible to the user; a system window such as the keyguard may be in
|
||
|
* front. Use {@link #onWindowFocusChanged} to know for certain that your
|
||
|
* activity is visible to the user (for example, to resume a game).
|
||
|
*
|
||
|
* <p><em>Derived classes must call through to the super class's
|
||
|
* implementation of this method. If they do not, an exception will be
|
||
|
* thrown.</em></p>
|
||
|
*
|
||
|
* @see #onRestoreInstanceState
|
||
|
* @see #onRestart
|
||
|
* @see #onPostResume
|
||
|
* @see #onPause
|
||
|
*/
|
||
|
protected void onResume() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when activity resume is complete (after {@link #onResume} has
|
||
|
* been called). Applications will generally not implement this method;
|
||
|
* it is intended for system classes to do final setup after application
|
||
|
* resume code has run.
|
||
|
*
|
||
|
* <p><em>Derived classes must call through to the super class's
|
||
|
* implementation of this method. If they do not, an exception will be
|
||
|
* thrown.</em></p>
|
||
|
*
|
||
|
* @see #onResume
|
||
|
*/
|
||
|
protected void onPostResume() {
|
||
|
final Window win = getWindow();
|
||
|
if (win != null) win.makeActive();
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This is called for activities that set launchMode to "singleTop" in
|
||
|
* their package, or if a client used the {@link Intent#FLAG_ACTIVITY_SINGLE_TOP}
|
||
|
* flag when calling {@link #startActivity}. In either case, when the
|
||
|
* activity is re-launched while at the top of the activity stack instead
|
||
|
* of a new instance of the activity being started, onNewIntent() will be
|
||
|
* called on the existing instance with the Intent that was used to
|
||
|
* re-launch it.
|
||
|
*
|
||
|
* <p>An activity will always be paused before receiving a new intent, so
|
||
|
* you can count on {@link #onResume} being called after this method.
|
||
|
*
|
||
|
* <p>Note that {@link #getIntent} still returns the original Intent. You
|
||
|
* can use {@link #setIntent} to update it to this new Intent.
|
||
|
*
|
||
|
* @param intent The new intent that was started for the activity.
|
||
|
*
|
||
|
* @see #getIntent
|
||
|
* @see #setIntent
|
||
|
* @see #onResume
|
||
|
*/
|
||
|
protected void onNewIntent(Intent intent) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* The hook for {@link ActivityThread} to save the state of this activity.
|
||
|
*
|
||
|
* Calls {@link #onSaveInstanceState(android.os.Bundle)}
|
||
|
* and {@link #saveManagedDialogs(android.os.Bundle)}.
|
||
|
*
|
||
|
* @param outState The bundle to save the state to.
|
||
|
*/
|
||
|
final void performSaveInstanceState(Bundle outState) {
|
||
|
onSaveInstanceState(outState);
|
||
|
saveManagedDialogs(outState);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called to retrieve per-instance state from an activity before being killed
|
||
|
* so that the state can be restored in {@link #onCreate} or
|
||
|
* {@link #onRestoreInstanceState} (the {@link Bundle} populated by this method
|
||
|
* will be passed to both).
|
||
|
*
|
||
|
* <p>This method is called before an activity may be killed so that when it
|
||
|
* comes back some time in the future it can restore its state. For example,
|
||
|
* if activity B is launched in front of activity A, and at some point activity
|
||
|
* A is killed to reclaim resources, activity A will have a chance to save the
|
||
|
* current state of its user interface via this method so that when the user
|
||
|
* returns to activity A, the state of the user interface can be restored
|
||
|
* via {@link #onCreate} or {@link #onRestoreInstanceState}.
|
||
|
*
|
||
|
* <p>Do not confuse this method with activity lifecycle callbacks such as
|
||
|
* {@link #onPause}, which is always called when an activity is being placed
|
||
|
* in the background or on its way to destruction, or {@link #onStop} which
|
||
|
* is called before destruction. One example of when {@link #onPause} and
|
||
|
* {@link #onStop} is called and not this method is when a user navigates back
|
||
|
* from activity B to activity A: there is no need to call {@link #onSaveInstanceState}
|
||
|
* on B because that particular instance will never be restored, so the
|
||
|
* system avoids calling it. An example when {@link #onPause} is called and
|
||
|
* not {@link #onSaveInstanceState} is when activity B is launched in front of activity A:
|
||
|
* the system may avoid calling {@link #onSaveInstanceState} on activity A if it isn't
|
||
|
* killed during the lifetime of B since the state of the user interface of
|
||
|
* A will stay intact.
|
||
|
*
|
||
|
* <p>The default implementation takes care of most of the UI per-instance
|
||
|
* state for you by calling {@link android.view.View#onSaveInstanceState()} on each
|
||
|
* view in the hierarchy that has an id, and by saving the id of the currently
|
||
|
* focused view (all of which is restored by the default implementation of
|
||
|
* {@link #onRestoreInstanceState}). If you override this method to save additional
|
||
|
* information not captured by each individual view, you will likely want to
|
||
|
* call through to the default implementation, otherwise be prepared to save
|
||
|
* all of the state of each view yourself.
|
||
|
*
|
||
|
* <p>If called, this method will occur before {@link #onStop}. There are
|
||
|
* no guarantees about whether it will occur before or after {@link #onPause}.
|
||
|
*
|
||
|
* @param outState Bundle in which to place your saved state.
|
||
|
*
|
||
|
* @see #onCreate
|
||
|
* @see #onRestoreInstanceState
|
||
|
* @see #onPause
|
||
|
*/
|
||
|
protected void onSaveInstanceState(Bundle outState) {
|
||
|
outState.putBundle(WINDOW_HIERARCHY_TAG, mWindow.saveHierarchyState());
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Save the state of any managed dialogs.
|
||
|
*
|
||
|
* @param outState place to store the saved state.
|
||
|
*/
|
||
|
private void saveManagedDialogs(Bundle outState) {
|
||
|
if (mManagedDialogs == null) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
final int numDialogs = mManagedDialogs.size();
|
||
|
if (numDialogs == 0) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Bundle dialogState = new Bundle();
|
||
|
|
||
|
int[] ids = new int[mManagedDialogs.size()];
|
||
|
|
||
|
// save each dialog's bundle, gather the ids
|
||
|
for (int i = 0; i < numDialogs; i++) {
|
||
|
final int key = mManagedDialogs.keyAt(i);
|
||
|
ids[i] = key;
|
||
|
final ManagedDialog md = mManagedDialogs.valueAt(i);
|
||
|
dialogState.putBundle(savedDialogKeyFor(key), md.mDialog.onSaveInstanceState());
|
||
|
if (md.mArgs != null) {
|
||
|
dialogState.putBundle(savedDialogArgsKeyFor(key), md.mArgs);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
dialogState.putIntArray(SAVED_DIALOG_IDS_KEY, ids);
|
||
|
outState.putBundle(SAVED_DIALOGS_TAG, dialogState);
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Called as part of the activity lifecycle when an activity is going into
|
||
|
* the background, but has not (yet) been killed. The counterpart to
|
||
|
* {@link #onResume}.
|
||
|
*
|
||
|
* <p>When activity B is launched in front of activity A, this callback will
|
||
|
* be invoked on A. B will not be created until A's {@link #onPause} returns,
|
||
|
* so be sure to not do anything lengthy here.
|
||
|
*
|
||
|
* <p>This callback is mostly used for saving any persistent state the
|
||
|
* activity is editing, to present a "edit in place" model to the user and
|
||
|
* making sure nothing is lost if there are not enough resources to start
|
||
|
* the new activity without first killing this one. This is also a good
|
||
|
* place to do things like stop animations and other things that consume a
|
||
|
* noticeable mount of CPU in order to make the switch to the next activity
|
||
|
* as fast as possible, or to close resources that are exclusive access
|
||
|
* such as the camera.
|
||
|
*
|
||
|
* <p>In situations where the system needs more memory it may kill paused
|
||
|
* processes to reclaim resources. Because of this, you should be sure
|
||
|
* that all of your state is saved by the time you return from
|
||
|
* this function. In general {@link #onSaveInstanceState} is used to save
|
||
|
* per-instance state in the activity and this method is used to store
|
||
|
* global persistent data (in content providers, files, etc.)
|
||
|
*
|
||
|
* <p>After receiving this call you will usually receive a following call
|
||
|
* to {@link #onStop} (after the next activity has been resumed and
|
||
|
* displayed), however in some cases there will be a direct call back to
|
||
|
* {@link #onResume} without going through the stopped state.
|
||
|
*
|
||
|
* <p><em>Derived classes must call through to the super class's
|
||
|
* implementation of this method. If they do not, an exception will be
|
||
|
* thrown.</em></p>
|
||
|
*
|
||
|
* @see #onResume
|
||
|
* @see #onSaveInstanceState
|
||
|
* @see #onStop
|
||
|
*/
|
||
|
protected void onPause() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called as part of the activity lifecycle when an activity is about to go
|
||
|
* into the background as the result of user choice. For example, when the
|
||
|
* user presses the Home key, {@link #onUserLeaveHint} will be called, but
|
||
|
* when an incoming phone call causes the in-call Activity to be automatically
|
||
|
* brought to the foreground, {@link #onUserLeaveHint} will not be called on
|
||
|
* the activity being interrupted. In cases when it is invoked, this method
|
||
|
* is called right before the activity's {@link #onPause} callback.
|
||
|
*
|
||
|
* <p>This callback and {@link #onUserInteraction} are intended to help
|
||
|
* activities manage status bar notifications intelligently; specifically,
|
||
|
* for helping activities determine the proper time to cancel a notfication.
|
||
|
*
|
||
|
* @see #onUserInteraction()
|
||
|
*/
|
||
|
protected void onUserLeaveHint() {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate a new thumbnail for this activity. This method is called before
|
||
|
* pausing the activity, and should draw into <var>outBitmap</var> the
|
||
|
* imagery for the desired thumbnail in the dimensions of that bitmap. It
|
||
|
* can use the given <var>canvas</var>, which is configured to draw into the
|
||
|
* bitmap, for rendering if desired.
|
||
|
*
|
||
|
* <p>The default implementation renders the Screen's current view
|
||
|
* hierarchy into the canvas to generate a thumbnail.
|
||
|
*
|
||
|
* <p>If you return false, the bitmap will be filled with a default
|
||
|
* thumbnail.
|
||
|
*
|
||
|
* @param outBitmap The bitmap to contain the thumbnail.
|
||
|
* @param canvas Can be used to render into the bitmap.
|
||
|
*
|
||
|
* @return Return true if you have drawn into the bitmap; otherwise after
|
||
|
* you return it will be filled with a default thumbnail.
|
||
|
*
|
||
|
* @see #onCreateDescription
|
||
|
* @see #onSaveInstanceState
|
||
|
* @see #onPause
|
||
|
*/
|
||
|
public boolean onCreateThumbnail(Bitmap outBitmap, Canvas canvas) {
|
||
|
if (mDecor == null) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int paddingLeft = 0;
|
||
|
int paddingRight = 0;
|
||
|
int paddingTop = 0;
|
||
|
int paddingBottom = 0;
|
||
|
|
||
|
// Find System window and use padding so we ignore space reserved for decorations
|
||
|
// like the status bar and such.
|
||
|
final FrameLayout top = (FrameLayout) mDecor;
|
||
|
for (int i = 0; i < top.getChildCount(); i++) {
|
||
|
View child = top.getChildAt(i);
|
||
|
if (child.isFitsSystemWindowsFlagSet()) {
|
||
|
paddingLeft = child.getPaddingLeft();
|
||
|
paddingRight = child.getPaddingRight();
|
||
|
paddingTop = child.getPaddingTop();
|
||
|
paddingBottom = child.getPaddingBottom();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
final int visibleWidth = mDecor.getWidth() - paddingLeft - paddingRight;
|
||
|
final int visibleHeight = mDecor.getHeight() - paddingTop - paddingBottom;
|
||
|
|
||
|
canvas.save();
|
||
|
canvas.scale( (float) outBitmap.getWidth() / visibleWidth,
|
||
|
(float) outBitmap.getHeight() / visibleHeight);
|
||
|
canvas.translate(-paddingLeft, -paddingTop);
|
||
|
mDecor.draw(canvas);
|
||
|
canvas.restore();
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Generate a new description for this activity. This method is called
|
||
|
* before pausing the activity and can, if desired, return some textual
|
||
|
* description of its current state to be displayed to the user.
|
||
|
*
|
||
|
* <p>The default implementation returns null, which will cause you to
|
||
|
* inherit the description from the previous activity. If all activities
|
||
|
* return null, generally the label of the top activity will be used as the
|
||
|
* description.
|
||
|
*
|
||
|
* @return A description of what the user is doing. It should be short and
|
||
|
* sweet (only a few words).
|
||
|
*
|
||
|
* @see #onCreateThumbnail
|
||
|
* @see #onSaveInstanceState
|
||
|
* @see #onPause
|
||
|
*/
|
||
|
public CharSequence onCreateDescription() {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when you are no longer visible to the user. You will next
|
||
|
* receive either {@link #onRestart}, {@link #onDestroy}, or nothing,
|
||
|
* depending on later user activity.
|
||
|
*
|
||
|
* <p>Note that this method may never be called, in low memory situations
|
||
|
* where the system does not have enough memory to keep your activity's
|
||
|
* process running after its {@link #onPause} method is called.
|
||
|
*
|
||
|
* <p><em>Derived classes must call through to the super class's
|
||
|
* implementation of this method. If they do not, an exception will be
|
||
|
* thrown.</em></p>
|
||
|
*
|
||
|
* @see #onRestart
|
||
|
* @see #onResume
|
||
|
* @see #onSaveInstanceState
|
||
|
* @see #onDestroy
|
||
|
*/
|
||
|
protected void onStop() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Perform any final cleanup before an activity is destroyed. This can
|
||
|
* happen either because the activity is finishing (someone called
|
||
|
* {@link #finish} on it, or because the system is temporarily destroying
|
||
|
* this instance of the activity to save space. You can distinguish
|
||
|
* between these two scenarios with the {@link #isFinishing} method.
|
||
|
*
|
||
|
* <p><em>Note: do not count on this method being called as a place for
|
||
|
* saving data! For example, if an activity is editing data in a content
|
||
|
* provider, those edits should be committed in either {@link #onPause} or
|
||
|
* {@link #onSaveInstanceState}, not here.</em> This method is usually implemented to
|
||
|
* free resources like threads that are associated with an activity, so
|
||
|
* that a destroyed activity does not leave such things around while the
|
||
|
* rest of its application is still running. There are situations where
|
||
|
* the system will simply kill the activity's hosting process without
|
||
|
* calling this method (or any others) in it, so it should not be used to
|
||
|
* do things that are intended to remain around after the process goes
|
||
|
* away.
|
||
|
*
|
||
|
* <p><em>Derived classes must call through to the super class's
|
||
|
* implementation of this method. If they do not, an exception will be
|
||
|
* thrown.</em></p>
|
||
|
*
|
||
|
* @see #onPause
|
||
|
* @see #onStop
|
||
|
* @see #finish
|
||
|
* @see #isFinishing
|
||
|
*/
|
||
|
protected void onDestroy() {
|
||
|
mCalled = true;
|
||
|
|
||
|
// dismiss any dialogs we are managing.
|
||
|
if (mManagedDialogs != null) {
|
||
|
final int numDialogs = mManagedDialogs.size();
|
||
|
for (int i = 0; i < numDialogs; i++) {
|
||
|
final ManagedDialog md = mManagedDialogs.valueAt(i);
|
||
|
if (md.mDialog.isShowing()) {
|
||
|
md.mDialog.dismiss();
|
||
|
}
|
||
|
}
|
||
|
mManagedDialogs = null;
|
||
|
}
|
||
|
|
||
|
// close any cursors we are managing.
|
||
|
synchronized (mManagedCursors) {
|
||
|
int numCursors = mManagedCursors.size();
|
||
|
for (int i = 0; i < numCursors; i++) {
|
||
|
ManagedCursor c = mManagedCursors.get(i);
|
||
|
if (c != null) {
|
||
|
c.mCursor.close();
|
||
|
}
|
||
|
}
|
||
|
mManagedCursors.clear();
|
||
|
}
|
||
|
|
||
|
// Close any open search dialog
|
||
|
if (mSearchManager != null) {
|
||
|
mSearchManager.stopSearch();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called by the system when the device configuration changes while your
|
||
|
* activity is running. Note that this will <em>only</em> be called if
|
||
|
* you have selected configurations you would like to handle with the
|
||
|
* {@link android.R.attr#configChanges} attribute in your manifest. If
|
||
|
* any configuration change occurs that is not selected to be reported
|
||
|
* by that attribute, then instead of reporting it the system will stop
|
||
|
* and restart the activity (to have it launched with the new
|
||
|
* configuration).
|
||
|
*
|
||
|
* <p>At the time that this function has been called, your Resources
|
||
|
* object will have been updated to return resource values matching the
|
||
|
* new configuration.
|
||
|
*
|
||
|
* @param newConfig The new device configuration.
|
||
|
*/
|
||
|
public void onConfigurationChanged(Configuration newConfig) {
|
||
|
mCalled = true;
|
||
|
|
||
|
if (mWindow != null) {
|
||
|
// Pass the configuration changed event to the window
|
||
|
mWindow.onConfigurationChanged(newConfig);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* If this activity is being destroyed because it can not handle a
|
||
|
* configuration parameter being changed (and thus its
|
||
|
* {@link #onConfigurationChanged(Configuration)} method is
|
||
|
* <em>not</em> being called), then you can use this method to discover
|
||
|
* the set of changes that have occurred while in the process of being
|
||
|
* destroyed. Note that there is no guarantee that these will be
|
||
|
* accurate (other changes could have happened at any time), so you should
|
||
|
* only use this as an optimization hint.
|
||
|
*
|
||
|
* @return Returns a bit field of the configuration parameters that are
|
||
|
* changing, as defined by the {@link android.content.res.Configuration}
|
||
|
* class.
|
||
|
*/
|
||
|
public int getChangingConfigurations() {
|
||
|
return mConfigChangeFlags;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieve the non-configuration instance data that was previously
|
||
|
* returned by {@link #onRetainNonConfigurationInstance()}. This will
|
||
|
* be available from the initial {@link #onCreate} and
|
||
|
* {@link #onStart} calls to the new instance, allowing you to extract
|
||
|
* any useful dynamic state from the previous instance.
|
||
|
*
|
||
|
* <p>Note that the data you retrieve here should <em>only</em> be used
|
||
|
* as an optimization for handling configuration changes. You should always
|
||
|
* be able to handle getting a null pointer back, and an activity must
|
||
|
* still be able to restore itself to its previous state (through the
|
||
|
* normal {@link #onSaveInstanceState(Bundle)} mechanism) even if this
|
||
|
* function returns null.
|
||
|
*
|
||
|
* @return Returns the object previously returned by
|
||
|
* {@link #onRetainNonConfigurationInstance()}.
|
||
|
*/
|
||
|
public Object getLastNonConfigurationInstance() {
|
||
|
return mLastNonConfigurationInstance;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called by the system, as part of destroying an
|
||
|
* activity due to a configuration change, when it is known that a new
|
||
|
* instance will immediately be created for the new configuration. You
|
||
|
* can return any object you like here, including the activity instance
|
||
|
* itself, which can later be retrieved by calling
|
||
|
* {@link #getLastNonConfigurationInstance()} in the new activity
|
||
|
* instance.
|
||
|
*
|
||
|
* <p>This function is called purely as an optimization, and you must
|
||
|
* not rely on it being called. When it is called, a number of guarantees
|
||
|
* will be made to help optimize configuration switching:
|
||
|
* <ul>
|
||
|
* <li> The function will be called between {@link #onStop} and
|
||
|
* {@link #onDestroy}.
|
||
|
* <li> A new instance of the activity will <em>always</em> be immediately
|
||
|
* created after this one's {@link #onDestroy()} is called. In particular,
|
||
|
* <em>no</em> messages will be dispatched during this time (when the returned
|
||
|
* object does not have an activity to be associated with).
|
||
|
* <li> The object you return here will <em>always</em> be available from
|
||
|
* the {@link #getLastNonConfigurationInstance()} method of the following
|
||
|
* activity instance as described there.
|
||
|
* </ul>
|
||
|
*
|
||
|
* <p>These guarantees are designed so that an activity can use this API
|
||
|
* to propagate extensive state from the old to new activity instance, from
|
||
|
* loaded bitmaps, to network connections, to evenly actively running
|
||
|
* threads. Note that you should <em>not</em> propagate any data that
|
||
|
* may change based on the configuration, including any data loaded from
|
||
|
* resources such as strings, layouts, or drawables.
|
||
|
*
|
||
|
* <p>The guarantee of no message handling during the switch to the next
|
||
|
* activity simplifies use with active objects. For example if your retained
|
||
|
* state is an {@link android.os.AsyncTask} you are guaranteed that its
|
||
|
* call back functions (like {@link android.os.AsyncTask#onPostExecute}) will
|
||
|
* not be called from the call here until you execute the next instance's
|
||
|
* {@link #onCreate(Bundle)}. (Note however that there is of course no such
|
||
|
* guarantee for {@link android.os.AsyncTask#doInBackground} since that is
|
||
|
* running in a separate thread.)
|
||
|
*
|
||
|
* @return Return any Object holding the desired state to propagate to the
|
||
|
* next activity instance.
|
||
|
*/
|
||
|
public Object onRetainNonConfigurationInstance() {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieve the non-configuration instance data that was previously
|
||
|
* returned by {@link #onRetainNonConfigurationChildInstances()}. This will
|
||
|
* be available from the initial {@link #onCreate} and
|
||
|
* {@link #onStart} calls to the new instance, allowing you to extract
|
||
|
* any useful dynamic state from the previous instance.
|
||
|
*
|
||
|
* <p>Note that the data you retrieve here should <em>only</em> be used
|
||
|
* as an optimization for handling configuration changes. You should always
|
||
|
* be able to handle getting a null pointer back, and an activity must
|
||
|
* still be able to restore itself to its previous state (through the
|
||
|
* normal {@link #onSaveInstanceState(Bundle)} mechanism) even if this
|
||
|
* function returns null.
|
||
|
*
|
||
|
* @return Returns the object previously returned by
|
||
|
* {@link #onRetainNonConfigurationChildInstances()}
|
||
|
*/
|
||
|
HashMap<String,Object> getLastNonConfigurationChildInstances() {
|
||
|
return mLastNonConfigurationChildInstances;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method is similar to {@link #onRetainNonConfigurationInstance()} except that
|
||
|
* it should return either a mapping from child activity id strings to arbitrary objects,
|
||
|
* or null. This method is intended to be used by Activity framework subclasses that control a
|
||
|
* set of child activities, such as ActivityGroup. The same guarantees and restrictions apply
|
||
|
* as for {@link #onRetainNonConfigurationInstance()}. The default implementation returns null.
|
||
|
*/
|
||
|
HashMap<String,Object> onRetainNonConfigurationChildInstances() {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
public void onLowMemory() {
|
||
|
mCalled = true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Wrapper around
|
||
|
* {@link ContentResolver#query(android.net.Uri , String[], String, String[], String)}
|
||
|
* that gives the resulting {@link Cursor} to call
|
||
|
* {@link #startManagingCursor} so that the activity will manage its
|
||
|
* lifecycle for you.
|
||
|
*
|
||
|
* @param uri The URI of the content provider to query.
|
||
|
* @param projection List of columns to return.
|
||
|
* @param selection SQL WHERE clause.
|
||
|
* @param sortOrder SQL ORDER BY clause.
|
||
|
*
|
||
|
* @return The Cursor that was returned by query().
|
||
|
*
|
||
|
* @see ContentResolver#query(android.net.Uri , String[], String, String[], String)
|
||
|
* @see #startManagingCursor
|
||
|
* @hide
|
||
|
*/
|
||
|
public final Cursor managedQuery(Uri uri,
|
||
|
String[] projection,
|
||
|
String selection,
|
||
|
String sortOrder)
|
||
|
{
|
||
|
Cursor c = getContentResolver().query(uri, projection, selection, null, sortOrder);
|
||
|
if (c != null) {
|
||
|
startManagingCursor(c);
|
||
|
}
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Wrapper around
|
||
|
* {@link ContentResolver#query(android.net.Uri , String[], String, String[], String)}
|
||
|
* that gives the resulting {@link Cursor} to call
|
||
|
* {@link #startManagingCursor} so that the activity will manage its
|
||
|
* lifecycle for you.
|
||
|
*
|
||
|
* @param uri The URI of the content provider to query.
|
||
|
* @param projection List of columns to return.
|
||
|
* @param selection SQL WHERE clause.
|
||
|
* @param selectionArgs The arguments to selection, if any ?s are pesent
|
||
|
* @param sortOrder SQL ORDER BY clause.
|
||
|
*
|
||
|
* @return The Cursor that was returned by query().
|
||
|
*
|
||
|
* @see ContentResolver#query(android.net.Uri , String[], String, String[], String)
|
||
|
* @see #startManagingCursor
|
||
|
*/
|
||
|
public final Cursor managedQuery(Uri uri,
|
||
|
String[] projection,
|
||
|
String selection,
|
||
|
String[] selectionArgs,
|
||
|
String sortOrder)
|
||
|
{
|
||
|
Cursor c = getContentResolver().query(uri, projection, selection, selectionArgs, sortOrder);
|
||
|
if (c != null) {
|
||
|
startManagingCursor(c);
|
||
|
}
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Wrapper around {@link Cursor#commitUpdates()} that takes care of noting
|
||
|
* that the Cursor needs to be requeried. You can call this method in
|
||
|
* {@link #onPause} or {@link #onStop} to have the system call
|
||
|
* {@link Cursor#requery} for you if the activity is later resumed. This
|
||
|
* allows you to avoid determing when to do the requery yourself (which is
|
||
|
* required for the Cursor to see any data changes that were committed with
|
||
|
* it).
|
||
|
*
|
||
|
* @param c The Cursor whose changes are to be committed.
|
||
|
*
|
||
|
* @see #managedQuery(android.net.Uri , String[], String, String[], String)
|
||
|
* @see #startManagingCursor
|
||
|
* @see Cursor#commitUpdates()
|
||
|
* @see Cursor#requery
|
||
|
* @hide
|
||
|
*/
|
||
|
@Deprecated
|
||
|
public void managedCommitUpdates(Cursor c) {
|
||
|
synchronized (mManagedCursors) {
|
||
|
final int N = mManagedCursors.size();
|
||
|
for (int i=0; i<N; i++) {
|
||
|
ManagedCursor mc = mManagedCursors.get(i);
|
||
|
if (mc.mCursor == c) {
|
||
|
c.commitUpdates();
|
||
|
mc.mUpdated = true;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
throw new RuntimeException(
|
||
|
"Cursor " + c + " is not currently managed");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method allows the activity to take care of managing the given
|
||
|
* {@link Cursor}'s lifecycle for you based on the activity's lifecycle.
|
||
|
* That is, when the activity is stopped it will automatically call
|
||
|
* {@link Cursor#deactivate} on the given Cursor, and when it is later restarted
|
||
|
* it will call {@link Cursor#requery} for you. When the activity is
|
||
|
* destroyed, all managed Cursors will be closed automatically.
|
||
|
*
|
||
|
* @param c The Cursor to be managed.
|
||
|
*
|
||
|
* @see #managedQuery(android.net.Uri , String[], String, String[], String)
|
||
|
* @see #stopManagingCursor
|
||
|
*/
|
||
|
public void startManagingCursor(Cursor c) {
|
||
|
synchronized (mManagedCursors) {
|
||
|
mManagedCursors.add(new ManagedCursor(c));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Given a Cursor that was previously given to
|
||
|
* {@link #startManagingCursor}, stop the activity's management of that
|
||
|
* cursor.
|
||
|
*
|
||
|
* @param c The Cursor that was being managed.
|
||
|
*
|
||
|
* @see #startManagingCursor
|
||
|
*/
|
||
|
public void stopManagingCursor(Cursor c) {
|
||
|
synchronized (mManagedCursors) {
|
||
|
final int N = mManagedCursors.size();
|
||
|
for (int i=0; i<N; i++) {
|
||
|
ManagedCursor mc = mManagedCursors.get(i);
|
||
|
if (mc.mCursor == c) {
|
||
|
mManagedCursors.remove(i);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @deprecated As of {@link android.os.Build.VERSION_CODES#GINGERBREAD}
|
||
|
* this is a no-op.
|
||
|
*/
|
||
|
@Deprecated
|
||
|
public void setPersistent(boolean isPersistent) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Finds a view that was identified by the id attribute from the XML that
|
||
|
* was processed in {@link #onCreate}.
|
||
|
*
|
||
|
* @return The view if found or null otherwise.
|
||
|
*/
|
||
|
public View findViewById(int id) {
|
||
|
return getWindow().findViewById(id);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the activity content from a layout resource. The resource will be
|
||
|
* inflated, adding all top-level views to the activity.
|
||
|
*
|
||
|
* @param layoutResID Resource ID to be inflated.
|
||
|
*/
|
||
|
public void setContentView(int layoutResID) {
|
||
|
getWindow().setContentView(layoutResID);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the activity content to an explicit view. This view is placed
|
||
|
* directly into the activity's view hierarchy. It can itself be a complex
|
||
|
* view hierarhcy.
|
||
|
*
|
||
|
* @param view The desired content to display.
|
||
|
*/
|
||
|
public void setContentView(View view) {
|
||
|
getWindow().setContentView(view);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Set the activity content to an explicit view. This view is placed
|
||
|
* directly into the activity's view hierarchy. It can itself be a complex
|
||
|
* view hierarhcy.
|
||
|
*
|
||
|
* @param view The desired content to display.
|
||
|
* @param params Layout parameters for the view.
|
||
|
*/
|
||
|
public void setContentView(View view, ViewGroup.LayoutParams params) {
|
||
|
getWindow().setContentView(view, params);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Add an additional content view to the activity. Added after any existing
|
||
|
* ones in the activity -- existing views are NOT removed.
|
||
|
*
|
||
|
* @param view The desired content to display.
|
||
|
* @param params Layout parameters for the view.
|
||
|
*/
|
||
|
public void addContentView(View view, ViewGroup.LayoutParams params) {
|
||
|
getWindow().addContentView(view, params);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Use with {@link #setDefaultKeyMode} to turn off default handling of
|
||
|
* keys.
|
||
|
*
|
||
|
* @see #setDefaultKeyMode
|
||
|
*/
|
||
|
static public final int DEFAULT_KEYS_DISABLE = 0;
|
||
|
/**
|
||
|
* Use with {@link #setDefaultKeyMode} to launch the dialer during default
|
||
|
* key handling.
|
||
|
*
|
||
|
* @see #setDefaultKeyMode
|
||
|
*/
|
||
|
static public final int DEFAULT_KEYS_DIALER = 1;
|
||
|
/**
|
||
|
* Use with {@link #setDefaultKeyMode} to execute a menu shortcut in
|
||
|
* default key handling.
|
||
|
*
|
||
|
* <p>That is, the user does not need to hold down the menu key to execute menu shortcuts.
|
||
|
*
|
||
|
* @see #setDefaultKeyMode
|
||
|
*/
|
||
|
static public final int DEFAULT_KEYS_SHORTCUT = 2;
|
||
|
/**
|
||
|
* Use with {@link #setDefaultKeyMode} to specify that unhandled keystrokes
|
||
|
* will start an application-defined search. (If the application or activity does not
|
||
|
* actually define a search, the the keys will be ignored.)
|
||
|
*
|
||
|
* <p>See {@link android.app.SearchManager android.app.SearchManager} for more details.
|
||
|
*
|
||
|
* @see #setDefaultKeyMode
|
||
|
*/
|
||
|
static public final int DEFAULT_KEYS_SEARCH_LOCAL = 3;
|
||
|
|
||
|
/**
|
||
|
* Use with {@link #setDefaultKeyMode} to specify that unhandled keystrokes
|
||
|
* will start a global search (typically web search, but some platforms may define alternate
|
||
|
* methods for global search)
|
||
|
*
|
||
|
* <p>See {@link android.app.SearchManager android.app.SearchManager} for more details.
|
||
|
*
|
||
|
* @see #setDefaultKeyMode
|
||
|
*/
|
||
|
static public final int DEFAULT_KEYS_SEARCH_GLOBAL = 4;
|
||
|
|
||
|
/**
|
||
|
* Select the default key handling for this activity. This controls what
|
||
|
* will happen to key events that are not otherwise handled. The default
|
||
|
* mode ({@link #DEFAULT_KEYS_DISABLE}) will simply drop them on the
|
||
|
* floor. Other modes allow you to launch the dialer
|
||
|
* ({@link #DEFAULT_KEYS_DIALER}), execute a shortcut in your options
|
||
|
* menu without requiring the menu key be held down
|
||
|
* ({@link #DEFAULT_KEYS_SHORTCUT}), or launch a search ({@link #DEFAULT_KEYS_SEARCH_LOCAL}
|
||
|
* and {@link #DEFAULT_KEYS_SEARCH_GLOBAL}).
|
||
|
*
|
||
|
* <p>Note that the mode selected here does not impact the default
|
||
|
* handling of system keys, such as the "back" and "menu" keys, and your
|
||
|
* activity and its views always get a first chance to receive and handle
|
||
|
* all application keys.
|
||
|
*
|
||
|
* @param mode The desired default key mode constant.
|
||
|
*
|
||
|
* @see #DEFAULT_KEYS_DISABLE
|
||
|
* @see #DEFAULT_KEYS_DIALER
|
||
|
* @see #DEFAULT_KEYS_SHORTCUT
|
||
|
* @see #DEFAULT_KEYS_SEARCH_LOCAL
|
||
|
* @see #DEFAULT_KEYS_SEARCH_GLOBAL
|
||
|
* @see #onKeyDown
|
||
|
*/
|
||
|
public final void setDefaultKeyMode(int mode) {
|
||
|
mDefaultKeyMode = mode;
|
||
|
|
||
|
// Some modes use a SpannableStringBuilder to track & dispatch input events
|
||
|
// This list must remain in sync with the switch in onKeyDown()
|
||
|
switch (mode) {
|
||
|
case DEFAULT_KEYS_DISABLE:
|
||
|
case DEFAULT_KEYS_SHORTCUT:
|
||
|
mDefaultKeySsb = null; // not used in these modes
|
||
|
break;
|
||
|
case DEFAULT_KEYS_DIALER:
|
||
|
case DEFAULT_KEYS_SEARCH_LOCAL:
|
||
|
case DEFAULT_KEYS_SEARCH_GLOBAL:
|
||
|
mDefaultKeySsb = new SpannableStringBuilder();
|
||
|
Selection.setSelection(mDefaultKeySsb,0);
|
||
|
break;
|
||
|
default:
|
||
|
throw new IllegalArgumentException();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when a key was pressed down and not handled by any of the views
|
||
|
* inside of the activity. So, for example, key presses while the cursor
|
||
|
* is inside a TextView will not trigger the event (unless it is a navigation
|
||
|
* to another object) because TextView handles its own key presses.
|
||
|
*
|
||
|
* <p>If the focused view didn't want this event, this method is called.
|
||
|
*
|
||
|
* <p>The default implementation takes care of {@link KeyEvent#KEYCODE_BACK}
|
||
|
* by calling {@link #onBackPressed()}, though the behavior varies based
|
||
|
* on the application compatibility mode: for
|
||
|
* {@link android.os.Build.VERSION_CODES#ECLAIR} or later applications,
|
||
|
* it will set up the dispatch to call {@link #onKeyUp} where the action
|
||
|
* will be performed; for earlier applications, it will perform the
|
||
|
* action immediately in on-down, as those versions of the platform
|
||
|
* behaved.
|
||
|
*
|
||
|
* <p>Other additional default key handling may be performed
|
||
|
* if configured with {@link #setDefaultKeyMode}.
|
||
|
*
|
||
|
* @return Return <code>true</code> to prevent this event from being propagated
|
||
|
* further, or <code>false</code> to indicate that you have not handled
|
||
|
* this event and it should continue to be propagated.
|
||
|
* @see #onKeyUp
|
||
|
* @see android.view.KeyEvent
|
||
|
*/
|
||
|
public boolean onKeyDown(int keyCode, KeyEvent event) {
|
||
|
if (keyCode == KeyEvent.KEYCODE_BACK) {
|
||
|
if (getApplicationInfo().targetSdkVersion
|
||
|
>= Build.VERSION_CODES.ECLAIR) {
|
||
|
event.startTracking();
|
||
|
} else {
|
||
|
onBackPressed();
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (mDefaultKeyMode == DEFAULT_KEYS_DISABLE) {
|
||
|
return false;
|
||
|
} else if (mDefaultKeyMode == DEFAULT_KEYS_SHORTCUT) {
|
||
|
if (getWindow().performPanelShortcut(Window.FEATURE_OPTIONS_PANEL,
|
||
|
keyCode, event, Menu.FLAG_ALWAYS_PERFORM_CLOSE)) {
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
} else {
|
||
|
// Common code for DEFAULT_KEYS_DIALER & DEFAULT_KEYS_SEARCH_*
|
||
|
boolean clearSpannable = false;
|
||
|
boolean handled;
|
||
|
if ((event.getRepeatCount() != 0) || event.isSystem()) {
|
||
|
clearSpannable = true;
|
||
|
handled = false;
|
||
|
} else {
|
||
|
handled = TextKeyListener.getInstance().onKeyDown(
|
||
|
null, mDefaultKeySsb, keyCode, event);
|
||
|
if (handled && mDefaultKeySsb.length() > 0) {
|
||
|
// something useable has been typed - dispatch it now.
|
||
|
|
||
|
final String str = mDefaultKeySsb.toString();
|
||
|
clearSpannable = true;
|
||
|
|
||
|
switch (mDefaultKeyMode) {
|
||
|
case DEFAULT_KEYS_DIALER:
|
||
|
Intent intent = new Intent(Intent.ACTION_DIAL, Uri.parse("tel:" + str));
|
||
|
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
|
||
|
startActivity(intent);
|
||
|
break;
|
||
|
case DEFAULT_KEYS_SEARCH_LOCAL:
|
||
|
startSearch(str, false, null, false);
|
||
|
break;
|
||
|
case DEFAULT_KEYS_SEARCH_GLOBAL:
|
||
|
startSearch(str, false, null, true);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (clearSpannable) {
|
||
|
mDefaultKeySsb.clear();
|
||
|
mDefaultKeySsb.clearSpans();
|
||
|
Selection.setSelection(mDefaultKeySsb,0);
|
||
|
}
|
||
|
return handled;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Default implementation of {@link KeyEvent.Callback#onKeyLongPress(int, KeyEvent)
|
||
|
* KeyEvent.Callback.onKeyLongPress()}: always returns false (doesn't handle
|
||
|
* the event).
|
||
|
*/
|
||
|
public boolean onKeyLongPress(int keyCode, KeyEvent event) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when a key was released and not handled by any of the views
|
||
|
* inside of the activity. So, for example, key presses while the cursor
|
||
|
* is inside a TextView will not trigger the event (unless it is a navigation
|
||
|
* to another object) because TextView handles its own key presses.
|
||
|
*
|
||
|
* <p>The default implementation handles KEYCODE_BACK to stop the activity
|
||
|
* and go back.
|
||
|
*
|
||
|
* @return Return <code>true</code> to prevent this event from being propagated
|
||
|
* further, or <code>false</code> to indicate that you have not handled
|
||
|
* this event and it should continue to be propagated.
|
||
|
* @see #onKeyDown
|
||
|
* @see KeyEvent
|
||
|
*/
|
||
|
public boolean onKeyUp(int keyCode, KeyEvent event) {
|
||
|
if (getApplicationInfo().targetSdkVersion
|
||
|
>= Build.VERSION_CODES.ECLAIR) {
|
||
|
if (keyCode == KeyEvent.KEYCODE_BACK && event.isTracking()
|
||
|
&& !event.isCanceled()) {
|
||
|
onBackPressed();
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Default implementation of {@link KeyEvent.Callback#onKeyMultiple(int, int, KeyEvent)
|
||
|
* KeyEvent.Callback.onKeyMultiple()}: always returns false (doesn't handle
|
||
|
* the event).
|
||
|
*/
|
||
|
public boolean onKeyMultiple(int keyCode, int repeatCount, KeyEvent event) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the activity has detected the user's press of the back
|
||
|
* key. The default implementation simply finishes the current activity,
|
||
|
* but you can override this to do whatever you want.
|
||
|
*/
|
||
|
public void onBackPressed() {
|
||
|
finish();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when a touch screen event was not handled by any of the views
|
||
|
* under it. This is most useful to process touch events that happen
|
||
|
* outside of your window bounds, where there is no view to receive it.
|
||
|
*
|
||
|
* @param event The touch screen event being processed.
|
||
|
*
|
||
|
* @return Return true if you have consumed the event, false if you haven't.
|
||
|
* The default implementation always returns false.
|
||
|
*/
|
||
|
public boolean onTouchEvent(MotionEvent event) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the trackball was moved and not handled by any of the
|
||
|
* views inside of the activity. So, for example, if the trackball moves
|
||
|
* while focus is on a button, you will receive a call here because
|
||
|
* buttons do not normally do anything with trackball events. The call
|
||
|
* here happens <em>before</em> trackball movements are converted to
|
||
|
* DPAD key events, which then get sent back to the view hierarchy, and
|
||
|
* will be processed at the point for things like focus navigation.
|
||
|
*
|
||
|
* @param event The trackball event being processed.
|
||
|
*
|
||
|
* @return Return true if you have consumed the event, false if you haven't.
|
||
|
* The default implementation always returns false.
|
||
|
*/
|
||
|
public boolean onTrackballEvent(MotionEvent event) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called whenever a key, touch, or trackball event is dispatched to the
|
||
|
* activity. Implement this method if you wish to know that the user has
|
||
|
* interacted with the device in some way while your activity is running.
|
||
|
* This callback and {@link #onUserLeaveHint} are intended to help
|
||
|
* activities manage status bar notifications intelligently; specifically,
|
||
|
* for helping activities determine the proper time to cancel a notfication.
|
||
|
*
|
||
|
* <p>All calls to your activity's {@link #onUserLeaveHint} callback will
|
||
|
* be accompanied by calls to {@link #onUserInteraction}. This
|
||
|
* ensures that your activity will be told of relevant user activity such
|
||
|
* as pulling down the notification pane and touching an item there.
|
||
|
*
|
||
|
* <p>Note that this callback will be invoked for the touch down action
|
||
|
* that begins a touch gesture, but may not be invoked for the touch-moved
|
||
|
* and touch-up actions that follow.
|
||
|
*
|
||
|
* @see #onUserLeaveHint()
|
||
|
*/
|
||
|
public void onUserInteraction() {
|
||
|
}
|
||
|
|
||
|
public void onWindowAttributesChanged(WindowManager.LayoutParams params) {
|
||
|
// Update window manager if: we have a view, that view is
|
||
|
// attached to its parent (which will be a RootView), and
|
||
|
// this activity is not embedded.
|
||
|
if (mParent == null) {
|
||
|
View decor = mDecor;
|
||
|
if (decor != null && decor.getParent() != null) {
|
||
|
getWindowManager().updateViewLayout(decor, params);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public void onContentChanged() {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the current {@link Window} of the activity gains or loses
|
||
|
* focus. This is the best indicator of whether this activity is visible
|
||
|
* to the user. The default implementation clears the key tracking
|
||
|
* state, so should always be called.
|
||
|
*
|
||
|
* <p>Note that this provides information about global focus state, which
|
||
|
* is managed independently of activity lifecycles. As such, while focus
|
||
|
* changes will generally have some relation to lifecycle changes (an
|
||
|
* activity that is stopped will not generally get window focus), you
|
||
|
* should not rely on any particular order between the callbacks here and
|
||
|
* those in the other lifecycle methods such as {@link #onResume}.
|
||
|
*
|
||
|
* <p>As a general rule, however, a resumed activity will have window
|
||
|
* focus... unless it has displayed other dialogs or popups that take
|
||
|
* input focus, in which case the activity itself will not have focus
|
||
|
* when the other windows have it. Likewise, the system may display
|
||
|
* system-level windows (such as the status bar notification panel or
|
||
|
* a system alert) which will temporarily take window input focus without
|
||
|
* pausing the foreground activity.
|
||
|
*
|
||
|
* @param hasFocus Whether the window of this activity has focus.
|
||
|
*
|
||
|
* @see #hasWindowFocus()
|
||
|
* @see #onResume
|
||
|
* @see View#onWindowFocusChanged(boolean)
|
||
|
*/
|
||
|
public void onWindowFocusChanged(boolean hasFocus) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the main window associated with the activity has been
|
||
|
* attached to the window manager.
|
||
|
* See {@link View#onAttachedToWindow() View.onAttachedToWindow()}
|
||
|
* for more information.
|
||
|
* @see View#onAttachedToWindow
|
||
|
*/
|
||
|
public void onAttachedToWindow() {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when the main window associated with the activity has been
|
||
|
* detached from the window manager.
|
||
|
* See {@link View#onDetachedFromWindow() View.onDetachedFromWindow()}
|
||
|
* for more information.
|
||
|
* @see View#onDetachedFromWindow
|
||
|
*/
|
||
|
public void onDetachedFromWindow() {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns true if this activity's <em>main</em> window currently has window focus.
|
||
|
* Note that this is not the same as the view itself having focus.
|
||
|
*
|
||
|
* @return True if this activity's main window currently has window focus.
|
||
|
*
|
||
|
* @see #onWindowAttributesChanged(android.view.WindowManager.LayoutParams)
|
||
|
*/
|
||
|
public boolean hasWindowFocus() {
|
||
|
Window w = getWindow();
|
||
|
if (w != null) {
|
||
|
View d = w.getDecorView();
|
||
|
if (d != null) {
|
||
|
return d.hasWindowFocus();
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called to process key events. You can override this to intercept all
|
||
|
* key events before they are dispatched to the window. Be sure to call
|
||
|
* this implementation for key events that should be handled normally.
|
||
|
*
|
||
|
* @param event The key event.
|
||
|
*
|
||
|
* @return boolean Return true if this event was consumed.
|
||
|
*/
|
||
|
public boolean dispatchKeyEvent(KeyEvent event) {
|
||
|
onUserInteraction();
|
||
|
Window win = getWindow();
|
||
|
if (win.superDispatchKeyEvent(event)) {
|
||
|
return true;
|
||
|
}
|
||
|
View decor = mDecor;
|
||
|
if (decor == null) decor = win.getDecorView();
|
||
|
return event.dispatch(this, decor != null
|
||
|
? decor.getKeyDispatcherState() : null, this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called to process touch screen events. You can override this to
|
||
|
* intercept all touch screen events before they are dispatched to the
|
||
|
* window. Be sure to call this implementation for touch screen events
|
||
|
* that should be handled normally.
|
||
|
*
|
||
|
* @param ev The touch screen event.
|
||
|
*
|
||
|
* @return boolean Return true if this event was consumed.
|
||
|
*/
|
||
|
public boolean dispatchTouchEvent(MotionEvent ev) {
|
||
|
if (ev.getAction() == MotionEvent.ACTION_DOWN) {
|
||
|
onUserInteraction();
|
||
|
}
|
||
|
if (getWindow().superDispatchTouchEvent(ev)) {
|
||
|
return true;
|
||
|
}
|
||
|
return onTouchEvent(ev);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called to process trackball events. You can override this to
|
||
|
* intercept all trackball events before they are dispatched to the
|
||
|
* window. Be sure to call this implementation for trackball events
|
||
|
* that should be handled normally.
|
||
|
*
|
||
|
* @param ev The trackball event.
|
||
|
*
|
||
|
* @return boolean Return true if this event was consumed.
|
||
|
*/
|
||
|
public boolean dispatchTrackballEvent(MotionEvent ev) {
|
||
|
onUserInteraction();
|
||
|
if (getWindow().superDispatchTrackballEvent(ev)) {
|
||
|
return true;
|
||
|
}
|
||
|
return onTrackballEvent(ev);
|
||
|
}
|
||
|
|
||
|
public boolean dispatchPopulateAccessibilityEvent(AccessibilityEvent event) {
|
||
|
event.setClassName(getClass().getName());
|
||
|
event.setPackageName(getPackageName());
|
||
|
|
||
|
LayoutParams params = getWindow().getAttributes();
|
||
|
boolean isFullScreen = (params.width == LayoutParams.MATCH_PARENT) &&
|
||
|
(params.height == LayoutParams.MATCH_PARENT);
|
||
|
event.setFullScreen(isFullScreen);
|
||
|
|
||
|
CharSequence title = getTitle();
|
||
|
if (!TextUtils.isEmpty(title)) {
|
||
|
event.getText().add(title);
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Default implementation of
|
||
|
* {@link android.view.Window.Callback#onCreatePanelView}
|
||
|
* for activities. This
|
||
|
* simply returns null so that all panel sub-windows will have the default
|
||
|
* menu behavior.
|
||
|
*/
|
||
|
public View onCreatePanelView(int featureId) {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Default implementation of
|
||
|
* {@link android.view.Window.Callback#onCreatePanelMenu}
|
||
|
* for activities. This calls through to the new
|
||
|
* {@link #onCreateOptionsMenu} method for the
|
||
|
* {@link android.view.Window#FEATURE_OPTIONS_PANEL} panel,
|
||
|
* so that subclasses of Activity don't need to deal with feature codes.
|
||
|
*/
|
||
|
public boolean onCreatePanelMenu(int featureId, Menu menu) {
|
||
|
if (featureId == Window.FEATURE_OPTIONS_PANEL) {
|
||
|
return onCreateOptionsMenu(menu);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Default implementation of
|
||
|
* {@link android.view.Window.Callback#onPreparePanel}
|
||
|
* for activities. This
|
||
|
* calls through to the new {@link #onPrepareOptionsMenu} method for the
|
||
|
* {@link android.view.Window#FEATURE_OPTIONS_PANEL}
|
||
|
* panel, so that subclasses of
|
||
|
* Activity don't need to deal with feature codes.
|
||
|
*/
|
||
|
public boolean onPreparePanel(int featureId, View view, Menu menu) {
|
||
|
if (featureId == Window.FEATURE_OPTIONS_PANEL && menu != null) {
|
||
|
boolean goforit = onPrepareOptionsMenu(menu);
|
||
|
return goforit && menu.hasVisibleItems();
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* {@inheritDoc}
|
||
|
*
|
||
|
* @return The default implementation returns true.
|
||
|
*/
|
||
|
public boolean onMenuOpened(int featureId, Menu menu) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Default implementation of
|
||
|
* {@link android.view.Window.Callback#onMenuItemSelected}
|
||
|
* for activities. This calls through to the new
|
||
|
* {@link #onOptionsItemSelected} method for the
|
||
|
* {@link android.view.Window#FEATURE_OPTIONS_PANEL}
|
||
|
* panel, so that subclasses of
|
||
|
* Activity don't need to deal with feature codes.
|
||
|
*/
|
||
|
public boolean onMenuItemSelected(int featureId, MenuItem item) {
|
||
|
switch (featureId) {
|
||
|
case Window.FEATURE_OPTIONS_PANEL:
|
||
|
// Put event logging here so it gets called even if subclass
|
||
|
// doesn't call through to superclass's implmeentation of each
|
||
|
// of these methods below
|
||
|
EventLog.writeEvent(50000, 0, item.getTitleCondensed());
|
||
|
return onOptionsItemSelected(item);
|
||
|
|
||
|
case Window.FEATURE_CONTEXT_MENU:
|
||
|
EventLog.writeEvent(50000, 1, item.getTitleCondensed());
|
||
|
return onContextItemSelected(item);
|
||
|
|
||
|
default:
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Default implementation of
|
||
|
* {@link android.view.Window.Callback#onPanelClosed(int, Menu)} for
|
||
|
* activities. This calls through to {@link #onOptionsMenuClosed(Menu)}
|
||
|
* method for the {@link android.view.Window#FEATURE_OPTIONS_PANEL} panel,
|
||
|
* so that subclasses of Activity don't need to deal with feature codes.
|
||
|
* For context menus ({@link Window#FEATURE_CONTEXT_MENU}), the
|
||
|
* {@link #onContextMenuClosed(Menu)} will be called.
|
||
|
*/
|
||
|
public void onPanelClosed(int featureId, Menu menu) {
|
||
|
switch (featureId) {
|
||
|
case Window.FEATURE_OPTIONS_PANEL:
|
||
|
onOptionsMenuClosed(menu);
|
||
|
break;
|
||
|
|
||
|
case Window.FEATURE_CONTEXT_MENU:
|
||
|
onContextMenuClosed(menu);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Initialize the contents of the Activity's standard options menu. You
|
||
|
* should place your menu items in to <var>menu</var>.
|
||
|
*
|
||
|
* <p>This is only called once, the first time the options menu is
|
||
|
* displayed. To update the menu every time it is displayed, see
|
||
|
* {@link #onPrepareOptionsMenu}.
|
||
|
*
|
||
|
* <p>The default implementation populates the menu with standard system
|
||
|
* menu items. These are placed in the {@link Menu#CATEGORY_SYSTEM} group so that
|
||
|
* they will be correctly ordered with application-defined menu items.
|
||
|
* Deriving classes should always call through to the base implementation.
|
||
|
*
|
||
|
* <p>You can safely hold on to <var>menu</var> (and any items created
|
||
|
* from it), making modifications to it as desired, until the next
|
||
|
* time onCreateOptionsMenu() is called.
|
||
|
*
|
||
|
* <p>When you add items to the menu, you can implement the Activity's
|
||
|
* {@link #onOptionsItemSelected} method to handle them there.
|
||
|
*
|
||
|
* @param menu The options menu in which you place your items.
|
||
|
*
|
||
|
* @return You must return true for the menu to be displayed;
|
||
|
* if you return false it will not be shown.
|
||
|
*
|
||
|
* @see #onPrepareOptionsMenu
|
||
|
* @see #onOptionsItemSelected
|
||
|
*/
|
||
|
public boolean onCreateOptionsMenu(Menu menu) {
|
||
|
if (mParent != null) {
|
||
|
return mParent.onCreateOptionsMenu(menu);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Prepare the Screen's standard options menu to be displayed. This is
|
||
|
* called right before the menu is shown, every time it is shown. You can
|
||
|
* use this method to efficiently enable/disable items or otherwise
|
||
|
* dynamically modify the contents.
|
||
|
*
|
||
|
* <p>The default implementation updates the system menu items based on the
|
||
|
* activity's state. Deriving classes should always call through to the
|
||
|
* base class implementation.
|
||
|
*
|
||
|
* @param menu The options menu as last shown or first initialized by
|
||
|
* onCreateOptionsMenu().
|
||
|
*
|
||
|
* @return You must return true for the menu to be displayed;
|
||
|
* if you return false it will not be shown.
|
||
|
*
|
||
|
* @see #onCreateOptionsMenu
|
||
|
*/
|
||
|
public boolean onPrepareOptionsMenu(Menu menu) {
|
||
|
if (mParent != null) {
|
||
|
return mParent.onPrepareOptionsMenu(menu);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This hook is called whenever an item in your options menu is selected.
|
||
|
* The default implementation simply returns false to have the normal
|
||
|
* processing happen (calling the item's Runnable or sending a message to
|
||
|
* its Handler as appropriate). You can use this method for any items
|
||
|
* for which you would like to do processing without those other
|
||
|
* facilities.
|
||
|
*
|
||
|
* <p>Derived classes should call through to the base class for it to
|
||
|
* perform the default menu handling.
|
||
|
*
|
||
|
* @param item The menu item that was selected.
|
||
|
*
|
||
|
* @return boolean Return false to allow normal menu processing to
|
||
|
* proceed, true to consume it here.
|
||
|
*
|
||
|
* @see #onCreateOptionsMenu
|
||
|
*/
|
||
|
public boolean onOptionsItemSelected(MenuItem item) {
|
||
|
if (mParent != null) {
|
||
|
return mParent.onOptionsItemSelected(item);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This hook is called whenever the options menu is being closed (either by the user canceling
|
||
|
* the menu with the back/menu button, or when an item is selected).
|
||
|
*
|
||
|
* @param menu The options menu as last shown or first initialized by
|
||
|
* onCreateOptionsMenu().
|
||
|
*/
|
||
|
public void onOptionsMenuClosed(Menu menu) {
|
||
|
if (mParent != null) {
|
||
|
mParent.onOptionsMenuClosed(menu);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Programmatically opens the options menu. If the options menu is already
|
||
|
* open, this method does nothing.
|
||
|
*/
|
||
|
public void openOptionsMenu() {
|
||
|
mWindow.openPanel(Window.FEATURE_OPTIONS_PANEL, null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Progammatically closes the options menu. If the options menu is already
|
||
|
* closed, this method does nothing.
|
||
|
*/
|
||
|
public void closeOptionsMenu() {
|
||
|
mWindow.closePanel(Window.FEATURE_OPTIONS_PANEL);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when a context menu for the {@code view} is about to be shown.
|
||
|
* Unlike {@link #onCreateOptionsMenu(Menu)}, this will be called every
|
||
|
* time the context menu is about to be shown and should be populated for
|
||
|
* the view (or item inside the view for {@link AdapterView} subclasses,
|
||
|
* this can be found in the {@code menuInfo})).
|
||
|
* <p>
|
||
|
* Use {@link #onContextItemSelected(android.view.MenuItem)} to know when an
|
||
|
* item has been selected.
|
||
|
* <p>
|
||
|
* It is not safe to hold onto the context menu after this method returns.
|
||
|
* {@inheritDoc}
|
||
|
*/
|
||
|
public void onCreateContextMenu(ContextMenu menu, View v, ContextMenuInfo menuInfo) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Registers a context menu to be shown for the given view (multiple views
|
||
|
* can show the context menu). This method will set the
|
||
|
* {@link OnCreateContextMenuListener} on the view to this activity, so
|
||
|
* {@link #onCreateContextMenu(ContextMenu, View, ContextMenuInfo)} will be
|
||
|
* called when it is time to show the context menu.
|
||
|
*
|
||
|
* @see #unregisterForContextMenu(View)
|
||
|
* @param view The view that should show a context menu.
|
||
|
*/
|
||
|
public void registerForContextMenu(View view) {
|
||
|
view.setOnCreateContextMenuListener(this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Prevents a context menu to be shown for the given view. This method will remove the
|
||
|
* {@link OnCreateContextMenuListener} on the view.
|
||
|
*
|
||
|
* @see #registerForContextMenu(View)
|
||
|
* @param view The view that should stop showing a context menu.
|
||
|
*/
|
||
|
public void unregisterForContextMenu(View view) {
|
||
|
view.setOnCreateContextMenuListener(null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Programmatically opens the context menu for a particular {@code view}.
|
||
|
* The {@code view} should have been added via
|
||
|
* {@link #registerForContextMenu(View)}.
|
||
|
*
|
||
|
* @param view The view to show the context menu for.
|
||
|
*/
|
||
|
public void openContextMenu(View view) {
|
||
|
view.showContextMenu();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Programmatically closes the most recently opened context menu, if showing.
|
||
|
*/
|
||
|
public void closeContextMenu() {
|
||
|
mWindow.closePanel(Window.FEATURE_CONTEXT_MENU);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This hook is called whenever an item in a context menu is selected. The
|
||
|
* default implementation simply returns false to have the normal processing
|
||
|
* happen (calling the item's Runnable or sending a message to its Handler
|
||
|
* as appropriate). You can use this method for any items for which you
|
||
|
* would like to do processing without those other facilities.
|
||
|
* <p>
|
||
|
* Use {@link MenuItem#getMenuInfo()} to get extra information set by the
|
||
|
* View that added this menu item.
|
||
|
* <p>
|
||
|
* Derived classes should call through to the base class for it to perform
|
||
|
* the default menu handling.
|
||
|
*
|
||
|
* @param item The context menu item that was selected.
|
||
|
* @return boolean Return false to allow normal context menu processing to
|
||
|
* proceed, true to consume it here.
|
||
|
*/
|
||
|
public boolean onContextItemSelected(MenuItem item) {
|
||
|
if (mParent != null) {
|
||
|
return mParent.onContextItemSelected(item);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This hook is called whenever the context menu is being closed (either by
|
||
|
* the user canceling the menu with the back/menu button, or when an item is
|
||
|
* selected).
|
||
|
*
|
||
|
* @param menu The context menu that is being closed.
|
||
|
*/
|
||
|
public void onContextMenuClosed(Menu menu) {
|
||
|
if (mParent != null) {
|
||
|
mParent.onContextMenuClosed(menu);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @deprecated Old no-arguments version of {@link #onCreateDialog(int, Bundle)}.
|
||
|
*/
|
||
|
@Deprecated
|
||
|
protected Dialog onCreateDialog(int id) {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Callback for creating dialogs that are managed (saved and restored) for you
|
||
|
* by the activity. The default implementation calls through to
|
||
|
* {@link #onCreateDialog(int)} for compatibility.
|
||
|
*
|
||
|
* <p>If you use {@link #showDialog(int)}, the activity will call through to
|
||
|
* this method the first time, and hang onto it thereafter. Any dialog
|
||
|
* that is created by this method will automatically be saved and restored
|
||
|
* for you, including whether it is showing.
|
||
|
*
|
||
|
* <p>If you would like the activity to manage saving and restoring dialogs
|
||
|
* for you, you should override this method and handle any ids that are
|
||
|
* passed to {@link #showDialog}.
|
||
|
*
|
||
|
* <p>If you would like an opportunity to prepare your dialog before it is shown,
|
||
|
* override {@link #onPrepareDialog(int, Dialog, Bundle)}.
|
||
|
*
|
||
|
* @param id The id of the dialog.
|
||
|
* @param args The dialog arguments provided to {@link #showDialog(int, Bundle)}.
|
||
|
* @return The dialog. If you return null, the dialog will not be created.
|
||
|
*
|
||
|
* @see #onPrepareDialog(int, Dialog, Bundle)
|
||
|
* @see #showDialog(int, Bundle)
|
||
|
* @see #dismissDialog(int)
|
||
|
* @see #removeDialog(int)
|
||
|
*/
|
||
|
protected Dialog onCreateDialog(int id, Bundle args) {
|
||
|
return onCreateDialog(id);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @deprecated Old no-arguments version of
|
||
|
* {@link #onPrepareDialog(int, Dialog, Bundle)}.
|
||
|
*/
|
||
|
@Deprecated
|
||
|
protected void onPrepareDialog(int id, Dialog dialog) {
|
||
|
dialog.setOwnerActivity(this);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Provides an opportunity to prepare a managed dialog before it is being
|
||
|
* shown. The default implementation calls through to
|
||
|
* {@link #onPrepareDialog(int, Dialog)} for compatibility.
|
||
|
*
|
||
|
* <p>
|
||
|
* Override this if you need to update a managed dialog based on the state
|
||
|
* of the application each time it is shown. For example, a time picker
|
||
|
* dialog might want to be updated with the current time. You should call
|
||
|
* through to the superclass's implementation. The default implementation
|
||
|
* will set this Activity as the owner activity on the Dialog.
|
||
|
*
|
||
|
* @param id The id of the managed dialog.
|
||
|
* @param dialog The dialog.
|
||
|
* @param args The dialog arguments provided to {@link #showDialog(int, Bundle)}.
|
||
|
* @see #onCreateDialog(int, Bundle)
|
||
|
* @see #showDialog(int)
|
||
|
* @see #dismissDialog(int)
|
||
|
* @see #removeDialog(int)
|
||
|
*/
|
||
|
protected void onPrepareDialog(int id, Dialog dialog, Bundle args) {
|
||
|
onPrepareDialog(id, dialog);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Simple version of {@link #showDialog(int, Bundle)} that does not
|
||
|
* take any arguments. Simply calls {@link #showDialog(int, Bundle)}
|
||
|
* with null arguments.
|
||
|
*/
|
||
|
public final void showDialog(int id) {
|
||
|
showDialog(id, null);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Show a dialog managed by this activity. A call to {@link #onCreateDialog(int, Bundle)}
|
||
|
* will be made with the same id the first time this is called for a given
|
||
|
* id. From thereafter, the dialog will be automatically saved and restored.
|
||
|
*
|
||
|
* <p>Each time a dialog is shown, {@link #onPrepareDialog(int, Dialog, Bundle)} will
|
||
|
* be made to provide an opportunity to do any timely preparation.
|
||
|
*
|
||
|
* @param id The id of the managed dialog.
|
||
|
* @param args Arguments to pass through to the dialog. These will be saved
|
||
|
* and restored for you. Note that if the dialog is already created,
|
||
|
* {@link #onCreateDialog(int, Bundle)} will not be called with the new
|
||
|
* arguments but {@link #onPrepareDialog(int, Dialog, Bundle)} will be.
|
||
|
* If you need to rebuild the dialog, call {@link #removeDialog(int)} first.
|
||
|
* @return Returns true if the Dialog was created; false is returned if
|
||
|
* it is not created because {@link #onCreateDialog(int, Bundle)} returns false.
|
||
|
*
|
||
|
* @see Dialog
|
||
|
* @see #onCreateDialog(int, Bundle)
|
||
|
* @see #onPrepareDialog(int, Dialog, Bundle)
|
||
|
* @see #dismissDialog(int)
|
||
|
* @see #removeDialog(int)
|
||
|
*/
|
||
|
public final boolean showDialog(int id, Bundle args) {
|
||
|
if (mManagedDialogs == null) {
|
||
|
mManagedDialogs = new SparseArray<ManagedDialog>();
|
||
|
}
|
||
|
ManagedDialog md = mManagedDialogs.get(id);
|
||
|
if (md == null) {
|
||
|
md = new ManagedDialog();
|
||
|
md.mDialog = createDialog(id, null, args);
|
||
|
if (md.mDialog == null) {
|
||
|
return false;
|
||
|
}
|
||
|
mManagedDialogs.put(id, md);
|
||
|
}
|
||
|
|
||
|
md.mArgs = args;
|
||
|
onPrepareDialog(id, md.mDialog, args);
|
||
|
md.mDialog.show();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Dismiss a dialog that was previously shown via {@link #showDialog(int)}.
|
||
|
*
|
||
|
* @param id The id of the managed dialog.
|
||
|
*
|
||
|
* @throws IllegalArgumentException if the id was not previously shown via
|
||
|
* {@link #showDialog(int)}.
|
||
|
*
|
||
|
* @see #onCreateDialog(int, Bundle)
|
||
|
* @see #onPrepareDialog(int, Dialog, Bundle)
|
||
|
* @see #showDialog(int)
|
||
|
* @see #removeDialog(int)
|
||
|
*/
|
||
|
public final void dismissDialog(int id) {
|
||
|
if (mManagedDialogs == null) {
|
||
|
throw missingDialog(id);
|
||
|
}
|
||
|
|
||
|
final ManagedDialog md = mManagedDialogs.get(id);
|
||
|
if (md == null) {
|
||
|
throw missingDialog(id);
|
||
|
}
|
||
|
md.mDialog.dismiss();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Creates an exception to throw if a user passed in a dialog id that is
|
||
|
* unexpected.
|
||
|
*/
|
||
|
private IllegalArgumentException missingDialog(int id) {
|
||
|
return new IllegalArgumentException("no dialog with id " + id + " was ever "
|
||
|
+ "shown via Activity#showDialog");
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Removes any internal references to a dialog managed by this Activity.
|
||
|
* If the dialog is showing, it will dismiss it as part of the clean up.
|
||
|
*
|
||
|
* <p>This can be useful if you know that you will never show a dialog again and
|
||
|
* want to avoid the overhead of saving and restoring it in the future.
|
||
|
*
|
||
|
* <p>As of {@link android.os.Build.VERSION_CODES#GINGERBREAD}, this function
|
||
|
* will not throw an exception if you try to remove an ID that does not
|
||
|
* currently have an associated dialog.</p>
|
||
|
*
|
||
|
* @param id The id of the managed dialog.
|
||
|
*
|
||
|
* @see #onCreateDialog(int, Bundle)
|
||
|
* @see #onPrepareDialog(int, Dialog, Bundle)
|
||
|
* @see #showDialog(int)
|
||
|
* @see #dismissDialog(int)
|
||
|
*/
|
||
|
public final void removeDialog(int id) {
|
||
|
if (mManagedDialogs != null) {
|
||
|
final ManagedDialog md = mManagedDialogs.get(id);
|
||
|
if (md != null) {
|
||
|
md.mDialog.dismiss();
|
||
|
mManagedDialogs.remove(id);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This hook is called when the user signals the desire to start a search.
|
||
|
*
|
||
|
* <p>You can use this function as a simple way to launch the search UI, in response to a
|
||
|
* menu item, search button, or other widgets within your activity. Unless overidden,
|
||
|
* calling this function is the same as calling
|
||
|
* {@link #startSearch startSearch(null, false, null, false)}, which launches
|
||
|
* search for the current activity as specified in its manifest, see {@link SearchManager}.
|
||
|
*
|
||
|
* <p>You can override this function to force global search, e.g. in response to a dedicated
|
||
|
* search key, or to block search entirely (by simply returning false).
|
||
|
*
|
||
|
* @return Returns {@code true} if search launched, and {@code false} if activity blocks it.
|
||
|
* The default implementation always returns {@code true}.
|
||
|
*
|
||
|
* @see android.app.SearchManager
|
||
|
*/
|
||
|
public boolean onSearchRequested() {
|
||
|
startSearch(null, false, null, false);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This hook is called to launch the search UI.
|
||
|
*
|
||
|
* <p>It is typically called from onSearchRequested(), either directly from
|
||
|
* Activity.onSearchRequested() or from an overridden version in any given
|
||
|
* Activity. If your goal is simply to activate search, it is preferred to call
|
||
|
* onSearchRequested(), which may have been overriden elsewhere in your Activity. If your goal
|
||
|
* is to inject specific data such as context data, it is preferred to <i>override</i>
|
||
|
* onSearchRequested(), so that any callers to it will benefit from the override.
|
||
|
*
|
||
|
* @param initialQuery Any non-null non-empty string will be inserted as
|
||
|
* pre-entered text in the search query box.
|
||
|
* @param selectInitialQuery If true, the intial query will be preselected, which means that
|
||
|
* any further typing will replace it. This is useful for cases where an entire pre-formed
|
||
|
* query is being inserted. If false, the selection point will be placed at the end of the
|
||
|
* inserted query. This is useful when the inserted query is text that the user entered,
|
||
|
* and the user would expect to be able to keep typing. <i>This parameter is only meaningful
|
||
|
* if initialQuery is a non-empty string.</i>
|
||
|
* @param appSearchData An application can insert application-specific
|
||
|
* context here, in order to improve quality or specificity of its own
|
||
|
* searches. This data will be returned with SEARCH intent(s). Null if
|
||
|
* no extra data is required.
|
||
|
* @param globalSearch If false, this will only launch the search that has been specifically
|
||
|
* defined by the application (which is usually defined as a local search). If no default
|
||
|
* search is defined in the current application or activity, global search will be launched.
|
||
|
* If true, this will always launch a platform-global (e.g. web-based) search instead.
|
||
|
*
|
||
|
* @see android.app.SearchManager
|
||
|
* @see #onSearchRequested
|
||
|
*/
|
||
|
public void startSearch(String initialQuery, boolean selectInitialQuery,
|
||
|
Bundle appSearchData, boolean globalSearch) {
|
||
|
ensureSearchManager();
|
||
|
mSearchManager.startSearch(initialQuery, selectInitialQuery, getComponentName(),
|
||
|
appSearchData, globalSearch);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Similar to {@link #startSearch}, but actually fires off the search query after invoking
|
||
|
* the search dialog. Made available for testing purposes.
|
||
|
*
|
||
|
* @param query The query to trigger. If empty, the request will be ignored.
|
||
|
* @param appSearchData An application can insert application-specific
|
||
|
* context here, in order to improve quality or specificity of its own
|
||
|
* searches. This data will be returned with SEARCH intent(s). Null if
|
||
|
* no extra data is required.
|
||
|
*/
|
||
|
public void triggerSearch(String query, Bundle appSearchData) {
|
||
|
ensureSearchManager();
|
||
|
mSearchManager.triggerSearch(query, getComponentName(), appSearchData);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Request that key events come to this activity. Use this if your
|
||
|
* activity has no views with focus, but the activity still wants
|
||
|
* a chance to process key events.
|
||
|
*
|
||
|
* @see android.view.Window#takeKeyEvents
|
||
|
*/
|
||
|
public void takeKeyEvents(boolean get) {
|
||
|
getWindow().takeKeyEvents(get);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Enable extended window features. This is a convenience for calling
|
||
|
* {@link android.view.Window#requestFeature getWindow().requestFeature()}.
|
||
|
*
|
||
|
* @param featureId The desired feature as defined in
|
||
|
* {@link android.view.Window}.
|
||
|
* @return Returns true if the requested feature is supported and now
|
||
|
* enabled.
|
||
|
*
|
||
|
* @see android.view.Window#requestFeature
|
||
|
*/
|
||
|
public final boolean requestWindowFeature(int featureId) {
|
||
|
return getWindow().requestFeature(featureId);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Convenience for calling
|
||
|
* {@link android.view.Window#setFeatureDrawableResource}.
|
||
|
*/
|
||
|
public final void setFeatureDrawableResource(int featureId, int resId) {
|
||
|
getWindow().setFeatureDrawableResource(featureId, resId);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Convenience for calling
|
||
|
* {@link android.view.Window#setFeatureDrawableUri}.
|
||
|
*/
|
||
|
public final void setFeatureDrawableUri(int featureId, Uri uri) {
|
||
|
getWindow().setFeatureDrawableUri(featureId, uri);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Convenience for calling
|
||
|
* {@link android.view.Window#setFeatureDrawable(int, Drawable)}.
|
||
|
*/
|
||
|
public final void setFeatureDrawable(int featureId, Drawable drawable) {
|
||
|
getWindow().setFeatureDrawable(featureId, drawable);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Convenience for calling
|
||
|
* {@link android.view.Window#setFeatureDrawableAlpha}.
|
||
|
*/
|
||
|
public final void setFeatureDrawableAlpha(int featureId, int alpha) {
|
||
|
getWindow().setFeatureDrawableAlpha(featureId, alpha);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Convenience for calling
|
||
|
* {@link android.view.Window#getLayoutInflater}.
|
||
|
*/
|
||
|
public LayoutInflater getLayoutInflater() {
|
||
|
return getWindow().getLayoutInflater();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns a {@link MenuInflater} with this context.
|
||
|
*/
|
||
|
public MenuInflater getMenuInflater() {
|
||
|
return new MenuInflater(this);
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
protected void onApplyThemeResource(Resources.Theme theme, int resid,
|
||
|
boolean first) {
|
||
|
if (mParent == null) {
|
||
|
super.onApplyThemeResource(theme, resid, first);
|
||
|
} else {
|
||
|
try {
|
||
|
theme.setTo(mParent.getTheme());
|
||
|
} catch (Exception e) {
|
||
|
// Empty
|
||
|
}
|
||
|
theme.applyStyle(resid, false);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Launch an activity for which you would like a result when it finished.
|
||
|
* When this activity exits, your
|
||
|
* onActivityResult() method will be called with the given requestCode.
|
||
|
* Using a negative requestCode is the same as calling
|
||
|
* {@link #startActivity} (the activity is not launched as a sub-activity).
|
||
|
*
|
||
|
* <p>Note that this method should only be used with Intent protocols
|
||
|
* that are defined to return a result. In other protocols (such as
|
||
|
* {@link Intent#ACTION_MAIN} or {@link Intent#ACTION_VIEW}), you may
|
||
|
* not get the result when you expect. For example, if the activity you
|
||
|
* are launching uses the singleTask launch mode, it will not run in your
|
||
|
* task and thus you will immediately receive a cancel result.
|
||
|
*
|
||
|
* <p>As a special case, if you call startActivityForResult() with a requestCode
|
||
|
* >= 0 during the initial onCreate(Bundle savedInstanceState)/onResume() of your
|
||
|
* activity, then your window will not be displayed until a result is
|
||
|
* returned back from the started activity. This is to avoid visible
|
||
|
* flickering when redirecting to another activity.
|
||
|
*
|
||
|
* <p>This method throws {@link android.content.ActivityNotFoundException}
|
||
|
* if there was no Activity found to run the given Intent.
|
||
|
*
|
||
|
* @param intent The intent to start.
|
||
|
* @param requestCode If >= 0, this code will be returned in
|
||
|
* onActivityResult() when the activity exits.
|
||
|
*
|
||
|
* @throws android.content.ActivityNotFoundException
|
||
|
*
|
||
|
* @see #startActivity
|
||
|
*/
|
||
|
public void startActivityForResult(Intent intent, int requestCode) {
|
||
|
if (mParent == null) {
|
||
|
Instrumentation.ActivityResult ar =
|
||
|
mInstrumentation.execStartActivity(
|
||
|
this, mMainThread.getApplicationThread(), mToken, this,
|
||
|
intent, requestCode);
|
||
|
if (ar != null) {
|
||
|
mMainThread.sendActivityResult(
|
||
|
mToken, mEmbeddedID, requestCode, ar.getResultCode(),
|
||
|
ar.getResultData());
|
||
|
}
|
||
|
if (requestCode >= 0) {
|
||
|
// If this start is requesting a result, we can avoid making
|
||
|
// the activity visible until the result is received. Setting
|
||
|
// this code during onCreate(Bundle savedInstanceState) or onResume() will keep the
|
||
|
// activity hidden during this time, to avoid flickering.
|
||
|
// This can only be done when a result is requested because
|
||
|
// that guarantees we will get information back when the
|
||
|
// activity is finished, no matter what happens to it.
|
||
|
mStartedActivity = true;
|
||
|
}
|
||
|
} else {
|
||
|
mParent.startActivityFromChild(this, intent, requestCode);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Like {@link #startActivityForResult(Intent, int)}, but allowing you
|
||
|
* to use a IntentSender to describe the activity to be started. If
|
||
|
* the IntentSender is for an activity, that activity will be started
|
||
|
* as if you had called the regular {@link #startActivityForResult(Intent, int)}
|
||
|
* here; otherwise, its associated action will be executed (such as
|
||
|
* sending a broadcast) as if you had called
|
||
|
* {@link IntentSender#sendIntent IntentSender.sendIntent} on it.
|
||
|
*
|
||
|
* @param intent The IntentSender to launch.
|
||
|
* @param requestCode If >= 0, this code will be returned in
|
||
|
* onActivityResult() when the activity exits.
|
||
|
* @param fillInIntent If non-null, this will be provided as the
|
||
|
* intent parameter to {@link IntentSender#sendIntent}.
|
||
|
* @param flagsMask Intent flags in the original IntentSender that you
|
||
|
* would like to change.
|
||
|
* @param flagsValues Desired values for any bits set in
|
||
|
* <var>flagsMask</var>
|
||
|
* @param extraFlags Always set to 0.
|
||
|
*/
|
||
|
public void startIntentSenderForResult(IntentSender intent, int requestCode,
|
||
|
Intent fillInIntent, int flagsMask, int flagsValues, int extraFlags)
|
||
|
throws IntentSender.SendIntentException {
|
||
|
if (mParent == null) {
|
||
|
startIntentSenderForResultInner(intent, requestCode, fillInIntent,
|
||
|
flagsMask, flagsValues, this);
|
||
|
} else {
|
||
|
mParent.startIntentSenderFromChild(this, intent, requestCode,
|
||
|
fillInIntent, flagsMask, flagsValues, extraFlags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private void startIntentSenderForResultInner(IntentSender intent, int requestCode,
|
||
|
Intent fillInIntent, int flagsMask, int flagsValues, Activity activity)
|
||
|
throws IntentSender.SendIntentException {
|
||
|
try {
|
||
|
String resolvedType = null;
|
||
|
if (fillInIntent != null) {
|
||
|
resolvedType = fillInIntent.resolveTypeIfNeeded(getContentResolver());
|
||
|
}
|
||
|
int result = ActivityManagerNative.getDefault()
|
||
|
.startActivityIntentSender(mMainThread.getApplicationThread(), intent,
|
||
|
fillInIntent, resolvedType, mToken, activity.mEmbeddedID,
|
||
|
requestCode, flagsMask, flagsValues);
|
||
|
if (result == IActivityManager.START_CANCELED) {
|
||
|
throw new IntentSender.SendIntentException();
|
||
|
}
|
||
|
Instrumentation.checkStartActivityResult(result, null);
|
||
|
} catch (RemoteException e) {
|
||
|
}
|
||
|
if (requestCode >= 0) {
|
||
|
// If this start is requesting a result, we can avoid making
|
||
|
// the activity visible until the result is received. Setting
|
||
|
// this code during onCreate(Bundle savedInstanceState) or onResume() will keep the
|
||
|
// activity hidden during this time, to avoid flickering.
|
||
|
// This can only be done when a result is requested because
|
||
|
// that guarantees we will get information back when the
|
||
|
// activity is finished, no matter what happens to it.
|
||
|
mStartedActivity = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Launch a new activity. You will not receive any information about when
|
||
|
* the activity exits. This implementation overrides the base version,
|
||
|
* providing information about
|
||
|
* the activity performing the launch. Because of this additional
|
||
|
* information, the {@link Intent#FLAG_ACTIVITY_NEW_TASK} launch flag is not
|
||
|
* required; if not specified, the new activity will be added to the
|
||
|
* task of the caller.
|
||
|
*
|
||
|
* <p>This method throws {@link android.content.ActivityNotFoundException}
|
||
|
* if there was no Activity found to run the given Intent.
|
||
|
*
|
||
|
* @param intent The intent to start.
|
||
|
*
|
||
|
* @throws android.content.ActivityNotFoundException
|
||
|
*
|
||
|
* @see #startActivityForResult
|
||
|
*/
|
||
|
@Override
|
||
|
public void startActivity(Intent intent) {
|
||
|
startActivityForResult(intent, -1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Like {@link #startActivity(Intent)}, but taking a IntentSender
|
||
|
* to start; see
|
||
|
* {@link #startIntentSenderForResult(IntentSender, int, Intent, int, int, int)}
|
||
|
* for more information.
|
||
|
*
|
||
|
* @param intent The IntentSender to launch.
|
||
|
* @param fillInIntent If non-null, this will be provided as the
|
||
|
* intent parameter to {@link IntentSender#sendIntent}.
|
||
|
* @param flagsMask Intent flags in the original IntentSender that you
|
||
|
* would like to change.
|
||
|
* @param flagsValues Desired values for any bits set in
|
||
|
* <var>flagsMask</var>
|
||
|
* @param extraFlags Always set to 0.
|
||
|
*/
|
||
|
public void startIntentSender(IntentSender intent,
|
||
|
Intent fillInIntent, int flagsMask, int flagsValues, int extraFlags)
|
||
|
throws IntentSender.SendIntentException {
|
||
|
startIntentSenderForResult(intent, -1, fillInIntent, flagsMask,
|
||
|
flagsValues, extraFlags);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* A special variation to launch an activity only if a new activity
|
||
|
* instance is needed to handle the given Intent. In other words, this is
|
||
|
* just like {@link #startActivityForResult(Intent, int)} except: if you are
|
||
|
* using the {@link Intent#FLAG_ACTIVITY_SINGLE_TOP} flag, or
|
||
|
* singleTask or singleTop
|
||
|
* {@link android.R.styleable#AndroidManifestActivity_launchMode launchMode},
|
||
|
* and the activity
|
||
|
* that handles <var>intent</var> is the same as your currently running
|
||
|
* activity, then a new instance is not needed. In this case, instead of
|
||
|
* the normal behavior of calling {@link #onNewIntent} this function will
|
||
|
* return and you can handle the Intent yourself.
|
||
|
*
|
||
|
* <p>This function can only be called from a top-level activity; if it is
|
||
|
* called from a child activity, a runtime exception will be thrown.
|
||
|
*
|
||
|
* @param intent The intent to start.
|
||
|
* @param requestCode If >= 0, this code will be returned in
|
||
|
* onActivityResult() when the activity exits, as described in
|
||
|
* {@link #startActivityForResult}.
|
||
|
*
|
||
|
* @return If a new activity was launched then true is returned; otherwise
|
||
|
* false is returned and you must handle the Intent yourself.
|
||
|
*
|
||
|
* @see #startActivity
|
||
|
* @see #startActivityForResult
|
||
|
*/
|
||
|
public boolean startActivityIfNeeded(Intent intent, int requestCode) {
|
||
|
if (mParent == null) {
|
||
|
int result = IActivityManager.START_RETURN_INTENT_TO_CALLER;
|
||
|
try {
|
||
|
result = ActivityManagerNative.getDefault()
|
||
|
.startActivity(mMainThread.getApplicationThread(),
|
||
|
intent, intent.resolveTypeIfNeeded(
|
||
|
getContentResolver()),
|
||
|
null, 0,
|
||
|
mToken, mEmbeddedID, requestCode, true, false);
|
||
|
} catch (RemoteException e) {
|
||
|
// Empty
|
||
|
}
|
||
|
|
||
|
Instrumentation.checkStartActivityResult(result, intent);
|
||
|
|
||
|
if (requestCode >= 0) {
|
||
|
// If this start is requesting a result, we can avoid making
|
||
|
// the activity visible until the result is received. Setting
|
||
|
// this code during onCreate(Bundle savedInstanceState) or onResume() will keep the
|
||
|
// activity hidden during this time, to avoid flickering.
|
||
|
// This can only be done when a result is requested because
|
||
|
// that guarantees we will get information back when the
|
||
|
// activity is finished, no matter what happens to it.
|
||
|
mStartedActivity = true;
|
||
|
}
|
||
|
return result != IActivityManager.START_RETURN_INTENT_TO_CALLER;
|
||
|
}
|
||
|
|
||
|
throw new UnsupportedOperationException(
|
||
|
"startActivityIfNeeded can only be called from a top-level activity");
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Special version of starting an activity, for use when you are replacing
|
||
|
* other activity components. You can use this to hand the Intent off
|
||
|
* to the next Activity that can handle it. You typically call this in
|
||
|
* {@link #onCreate} with the Intent returned by {@link #getIntent}.
|
||
|
*
|
||
|
* @param intent The intent to dispatch to the next activity. For
|
||
|
* correct behavior, this must be the same as the Intent that started
|
||
|
* your own activity; the only changes you can make are to the extras
|
||
|
* inside of it.
|
||
|
*
|
||
|
* @return Returns a boolean indicating whether there was another Activity
|
||
|
* to start: true if there was a next activity to start, false if there
|
||
|
* wasn't. In general, if true is returned you will then want to call
|
||
|
* finish() on yourself.
|
||
|
*/
|
||
|
public boolean startNextMatchingActivity(Intent intent) {
|
||
|
if (mParent == null) {
|
||
|
try {
|
||
|
return ActivityManagerNative.getDefault()
|
||
|
.startNextMatchingActivity(mToken, intent);
|
||
|
} catch (RemoteException e) {
|
||
|
// Empty
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
throw new UnsupportedOperationException(
|
||
|
"startNextMatchingActivity can only be called from a top-level activity");
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This is called when a child activity of this one calls its
|
||
|
* {@link #startActivity} or {@link #startActivityForResult} method.
|
||
|
*
|
||
|
* <p>This method throws {@link android.content.ActivityNotFoundException}
|
||
|
* if there was no Activity found to run the given Intent.
|
||
|
*
|
||
|
* @param child The activity making the call.
|
||
|
* @param intent The intent to start.
|
||
|
* @param requestCode Reply request code. < 0 if reply is not requested.
|
||
|
*
|
||
|
* @throws android.content.ActivityNotFoundException
|
||
|
*
|
||
|
* @see #startActivity
|
||
|
* @see #startActivityForResult
|
||
|
*/
|
||
|
public void startActivityFromChild(Activity child, Intent intent,
|
||
|
int requestCode) {
|
||
|
Instrumentation.ActivityResult ar =
|
||
|
mInstrumentation.execStartActivity(
|
||
|
this, mMainThread.getApplicationThread(), mToken, child,
|
||
|
intent, requestCode);
|
||
|
if (ar != null) {
|
||
|
mMainThread.sendActivityResult(
|
||
|
mToken, child.mEmbeddedID, requestCode,
|
||
|
ar.getResultCode(), ar.getResultData());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Like {@link #startActivityFromChild(Activity, Intent, int)}, but
|
||
|
* taking a IntentSender; see
|
||
|
* {@link #startIntentSenderForResult(IntentSender, int, Intent, int, int, int)}
|
||
|
* for more information.
|
||
|
*/
|
||
|
public void startIntentSenderFromChild(Activity child, IntentSender intent,
|
||
|
int requestCode, Intent fillInIntent, int flagsMask, int flagsValues,
|
||
|
int extraFlags)
|
||
|
throws IntentSender.SendIntentException {
|
||
|
startIntentSenderForResultInner(intent, requestCode, fillInIntent,
|
||
|
flagsMask, flagsValues, child);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call immediately after one of the flavors of {@link #startActivity(Intent)}
|
||
|
* or {@link #finish} to specify an explicit transition animation to
|
||
|
* perform next.
|
||
|
* @param enterAnim A resource ID of the animation resource to use for
|
||
|
* the incoming activity. Use 0 for no animation.
|
||
|
* @param exitAnim A resource ID of the animation resource to use for
|
||
|
* the outgoing activity. Use 0 for no animation.
|
||
|
*/
|
||
|
public void overridePendingTransition(int enterAnim, int exitAnim) {
|
||
|
try {
|
||
|
ActivityManagerNative.getDefault().overridePendingTransition(
|
||
|
mToken, getPackageName(), enterAnim, exitAnim);
|
||
|
} catch (RemoteException e) {
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call this to set the result that your activity will return to its
|
||
|
* caller.
|
||
|
*
|
||
|
* @param resultCode The result code to propagate back to the originating
|
||
|
* activity, often RESULT_CANCELED or RESULT_OK
|
||
|
*
|
||
|
* @see #RESULT_CANCELED
|
||
|
* @see #RESULT_OK
|
||
|
* @see #RESULT_FIRST_USER
|
||
|
* @see #setResult(int, Intent)
|
||
|
*/
|
||
|
public final void setResult(int resultCode) {
|
||
|
synchronized (this) {
|
||
|
mResultCode = resultCode;
|
||
|
mResultData = null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call this to set the result that your activity will return to its
|
||
|
* caller.
|
||
|
*
|
||
|
* @param resultCode The result code to propagate back to the originating
|
||
|
* activity, often RESULT_CANCELED or RESULT_OK
|
||
|
* @param data The data to propagate back to the originating activity.
|
||
|
*
|
||
|
* @see #RESULT_CANCELED
|
||
|
* @see #RESULT_OK
|
||
|
* @see #RESULT_FIRST_USER
|
||
|
* @see #setResult(int)
|
||
|
*/
|
||
|
public final void setResult(int resultCode, Intent data) {
|
||
|
synchronized (this) {
|
||
|
mResultCode = resultCode;
|
||
|
mResultData = data;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the name of the package that invoked this activity. This is who
|
||
|
* the data in {@link #setResult setResult()} will be sent to. You can
|
||
|
* use this information to validate that the recipient is allowed to
|
||
|
* receive the data.
|
||
|
*
|
||
|
* <p>Note: if the calling activity is not expecting a result (that is it
|
||
|
* did not use the {@link #startActivityForResult}
|
||
|
* form that includes a request code), then the calling package will be
|
||
|
* null.
|
||
|
*
|
||
|
* @return The package of the activity that will receive your
|
||
|
* reply, or null if none.
|
||
|
*/
|
||
|
public String getCallingPackage() {
|
||
|
try {
|
||
|
return ActivityManagerNative.getDefault().getCallingPackage(mToken);
|
||
|
} catch (RemoteException e) {
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the name of the activity that invoked this activity. This is
|
||
|
* who the data in {@link #setResult setResult()} will be sent to. You
|
||
|
* can use this information to validate that the recipient is allowed to
|
||
|
* receive the data.
|
||
|
*
|
||
|
* <p>Note: if the calling activity is not expecting a result (that is it
|
||
|
* did not use the {@link #startActivityForResult}
|
||
|
* form that includes a request code), then the calling package will be
|
||
|
* null.
|
||
|
*
|
||
|
* @return String The full name of the activity that will receive your
|
||
|
* reply, or null if none.
|
||
|
*/
|
||
|
public ComponentName getCallingActivity() {
|
||
|
try {
|
||
|
return ActivityManagerNative.getDefault().getCallingActivity(mToken);
|
||
|
} catch (RemoteException e) {
|
||
|
return null;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Control whether this activity's main window is visible. This is intended
|
||
|
* only for the special case of an activity that is not going to show a
|
||
|
* UI itself, but can't just finish prior to onResume() because it needs
|
||
|
* to wait for a service binding or such. Setting this to false allows
|
||
|
* you to prevent your UI from being shown during that time.
|
||
|
*
|
||
|
* <p>The default value for this is taken from the
|
||
|
* {@link android.R.attr#windowNoDisplay} attribute of the activity's theme.
|
||
|
*/
|
||
|
public void setVisible(boolean visible) {
|
||
|
if (mVisibleFromClient != visible) {
|
||
|
mVisibleFromClient = visible;
|
||
|
if (mVisibleFromServer) {
|
||
|
if (visible) makeVisible();
|
||
|
else mDecor.setVisibility(View.INVISIBLE);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void makeVisible() {
|
||
|
if (!mWindowAdded) {
|
||
|
ViewManager wm = getWindowManager();
|
||
|
wm.addView(mDecor, getWindow().getAttributes());
|
||
|
mWindowAdded = true;
|
||
|
}
|
||
|
mDecor.setVisibility(View.VISIBLE);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Check to see whether this activity is in the process of finishing,
|
||
|
* either because you called {@link #finish} on it or someone else
|
||
|
* has requested that it finished. This is often used in
|
||
|
* {@link #onPause} to determine whether the activity is simply pausing or
|
||
|
* completely finishing.
|
||
|
*
|
||
|
* @return If the activity is finishing, returns true; else returns false.
|
||
|
*
|
||
|
* @see #finish
|
||
|
*/
|
||
|
public boolean isFinishing() {
|
||
|
return mFinished;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Call this when your activity is done and should be closed. The
|
||
|
* ActivityResult is propagated back to whoever launched you via
|
||
|
* onActivityResult().
|
||
|
*/
|
||
|
public void finish() {
|
||
|
if (mParent == null) {
|
||
|
int resultCode;
|
||
|
Intent resultData;
|
||
|
synchronized (this) {
|
||
|
resultCode = mResultCode;
|
||
|
resultData = mResultData;
|
||
|
}
|
||
|
if (Config.LOGV) Log.v(TAG, "Finishing self: token=" + mToken);
|
||
|
try {
|
||
|
if (ActivityManagerNative.getDefault()
|
||
|
.finishActivity(mToken, resultCode, resultData)) {
|
||
|
mFinished = true;
|
||
|
}
|
||
|
} catch (RemoteException e) {
|
||
|
// Empty
|
||
|
}
|
||
|
} else {
|
||
|
mParent.finishFromChild(this);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This is called when a child activity of this one calls its
|
||
|
* {@link #finish} method. The default implementation simply calls
|
||
|
* finish() on this activity (the parent), finishing the entire group.
|
||
|
*
|
||
|
* @param child The activity making the call.
|
||
|
*
|
||
|
* @see #finish
|
||
|
*/
|
||
|
public void finishFromChild(Activity child) {
|
||
|
finish();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Force finish another activity that you had previously started with
|
||
|
* {@link #startActivityForResult}.
|
||
|
*
|
||
|
* @param requestCode The request code of the activity that you had
|
||
|
* given to startActivityForResult(). If there are multiple
|
||
|
* activities started with this request code, they
|
||
|
* will all be finished.
|
||
|
*/
|
||
|
public void finishActivity(int requestCode) {
|
||
|
if (mParent == null) {
|
||
|
try {
|
||
|
ActivityManagerNative.getDefault()
|
||
|
.finishSubActivity(mToken, mEmbeddedID, requestCode);
|
||
|
} catch (RemoteException e) {
|
||
|
// Empty
|
||
|
}
|
||
|
} else {
|
||
|
mParent.finishActivityFromChild(this, requestCode);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This is called when a child activity of this one calls its
|
||
|
* finishActivity().
|
||
|
*
|
||
|
* @param child The activity making the call.
|
||
|
* @param requestCode Request code that had been used to start the
|
||
|
* activity.
|
||
|
*/
|
||
|
public void finishActivityFromChild(Activity child, int requestCode) {
|
||
|
try {
|
||
|
ActivityManagerNative.getDefault()
|
||
|
.finishSubActivity(mToken, child.mEmbeddedID, requestCode);
|
||
|
} catch (RemoteException e) {
|
||
|
// Empty
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Called when an activity you launched exits, giving you the requestCode
|
||
|
* you started it with, the resultCode it returned, and any additional
|
||
|
* data from it. The <var>resultCode</var> will be
|
||
|
* {@link #RESULT_CANCELED} if the activity explicitly returned that,
|
||
|
* didn't return any result, or crashed during its operation.
|
||
|
*
|
||
|
* <p>You will receive this call immediately before onResume() when your
|
||
|
* activity is re-starting.
|
||
|
*
|
||
|
* @param requestCode The integer request code originally supplied to
|
||
|
* startActivityForResult(), allowing you to identify who this
|
||
|
* result came from.
|
||
|
* @param resultCode The integer result code returned by the child activity
|
||
|
* through its setResult().
|
||
|
* @param data An Intent, which can return result data to the caller
|
||
|
* (various data can be attached to Intent "extras").
|
||
|
*
|
||
|
* @see #startActivityForResult
|
||
|
* @see #createPendingResult
|
||
|
* @see #setResult(int)
|
||
|
*/
|
||
|
protected void onActivityResult(int requestCode, int resultCode,
|
||
|
Intent data) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Create a new PendingIntent object which you can hand to others
|
||
|
* for them to use to send result data back to your
|
||
|
* {@link #onActivityResult} callback. The created object will be either
|
||
|
* one-shot (becoming invalid after a result is sent back) or multiple
|
||
|
* (allowing any number of results to be sent through it).
|
||
|
*
|
||
|
* @param requestCode Private request code for the sender that will be
|
||
|
* associated with the result data when it is returned. The sender can not
|
||
|
* modify this value, allowing you to identify incoming results.
|
||
|
* @param data Default data to supply in the result, which may be modified
|
||
|
* by the sender.
|
||
|
* @param flags May be {@link PendingIntent#FLAG_ONE_SHOT PendingIntent.FLAG_ONE_SHOT},
|
||
|
* {@link PendingIntent#FLAG_NO_CREATE PendingIntent.FLAG_NO_CREATE},
|
||
|
* {@link PendingIntent#FLAG_CANCEL_CURRENT PendingIntent.FLAG_CANCEL_CURRENT},
|
||
|
* {@link PendingIntent#FLAG_UPDATE_CURRENT PendingIntent.FLAG_UPDATE_CURRENT},
|
||
|
* or any of the flags as supported by
|
||
|
* {@link Intent#fillIn Intent.fillIn()} to control which unspecified parts
|
||
|
* of the intent that can be supplied when the actual send happens.
|
||
|
*
|
||
|
* @return Returns an existing or new PendingIntent matching the given
|
||
|
* parameters. May return null only if
|
||
|
* {@link PendingIntent#FLAG_NO_CREATE PendingIntent.FLAG_NO_CREATE} has been
|
||
|
* supplied.
|
||
|
*
|
||
|
* @see PendingIntent
|
||
|
*/
|
||
|
public PendingIntent createPendingResult(int requestCode, Intent data,
|
||
|
int flags) {
|
||
|
String packageName = getPackageName();
|
||
|
try {
|
||
|
IIntentSender target =
|
||
|
ActivityManagerNative.getDefault().getIntentSender(
|
||
|
IActivityManager.INTENT_SENDER_ACTIVITY_RESULT, packageName,
|
||
|
mParent == null ? mToken : mParent.mToken,
|
||
|
mEmbeddedID, requestCode, data, null, flags);
|
||
|
return target != null ? new PendingIntent(target) : null;
|
||
|
} catch (RemoteException e) {
|
||
|
// Empty
|
||
|
}
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Change the desired orientation of this activity. If the activity
|
||
|
* is currently in the foreground or otherwise impacting the screen
|
||
|
* orientation, the screen will immediately be changed (possibly causing
|
||
|
* the activity to be restarted). Otherwise, this will be used the next
|
||
|
* time the activity is visible.
|
||
|
*
|
||
|
* @param requestedOrientation An orientation constant as used in
|
||
|
* {@link ActivityInfo#screenOrientation ActivityInfo.screenOrientation}.
|
||
|
*/
|
||
|
public void setRequestedOrientation(int requestedOrientation) {
|
||
|
if (mParent == null) {
|
||
|
try {
|
||
|
ActivityManagerNative.getDefault().setRequestedOrientation(
|
||
|
mToken, requestedOrientation);
|
||
|
} catch (RemoteException e) {
|
||
|
// Empty
|
||
|
}
|
||
|
} else {
|
||
|
mParent.setRequestedOrientation(requestedOrientation);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the current requested orientation of the activity. This will
|
||
|
* either be the orientation requested in its component's manifest, or
|
||
|
* the last requested orientation given to
|
||
|
* {@link #setRequestedOrientation(int)}.
|
||
|
*
|
||
|
* @return Returns an orientation constant as used in
|
||
|
* {@link ActivityInfo#screenOrientation ActivityInfo.screenOrientation}.
|
||
|
*/
|
||
|
public int getRequestedOrientation() {
|
||
|
if (mParent == null) {
|
||
|
try {
|
||
|
return ActivityManagerNative.getDefault()
|
||
|
.getRequestedOrientation(mToken);
|
||
|
} catch (RemoteException e) {
|
||
|
// Empty
|
||
|
}
|
||
|
} else {
|
||
|
return mParent.getRequestedOrientation();
|
||
|
}
|
||
|
return ActivityInfo.SCREEN_ORIENTATION_UNSPECIFIED;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return the identifier of the task this activity is in. This identifier
|
||
|
* will remain the same for the lifetime of the activity.
|
||
|
*
|
||
|
* @return Task identifier, an opaque integer.
|
||
|
*/
|
||
|
public int getTaskId() {
|
||
|
try {
|
||
|
return ActivityManagerNative.getDefault()
|
||
|
.getTaskForActivity(mToken, false);
|
||
|
} catch (RemoteException e) {
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Return whether this activity is the root of a task. The root is the
|
||
|
* first activity in a task.
|
||
|
*
|
||
|
* @return True if this is the root activity, else false.
|
||
|
*/
|
||
|
public boolean isTaskRoot() {
|
||
|
try {
|
||
|
return ActivityManagerNative.getDefault()
|
||
|
.getTaskForActivity(mToken, true) >= 0;
|
||
|
} catch (RemoteException e) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Move the task containing this activity to the back of the activity
|
||
|
* stack. The activity's order within the task is unchanged.
|
||
|
*
|
||
|
* @param nonRoot If false then this only works if the activity is the root
|
||
|
* of a task; if true it will work for any activity in
|
||
|
* a task.
|
||
|
*
|
||
|
* @return If the task was moved (or it was already at the
|
||
|
* back) true is returned, else false.
|
||
|
*/
|
||
|
public boolean moveTaskToBack(boolean nonRoot) {
|
||
|
try {
|
||
|
return ActivityManagerNative.getDefault().moveActivityTaskToBack(
|
||
|
mToken, nonRoot);
|
||
|
} catch (RemoteException e) {
|
||
|
// Empty
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns class name for this activity with the package prefix removed.
|
||
|
* This is the default name used to read and write settings.
|
||
|
*
|
||
|
* @return The local class name.
|
||
|
*/
|
||
|
public String getLocalClassName() {
|
||
|
final String pkg = getPackageName();
|
||
|
final String cls = mComponent.getClassName();
|
||
|
int packageLen = pkg.length();
|
||
|
if (!cls.startsWith(pkg) || cls.length() <= packageLen
|
||
|
|| cls.charAt(packageLen) != '.') {
|
||
|
return cls;
|
||
|
}
|
||
|
return cls.substring(packageLen+1);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns complete component name of this activity.
|
||
|
*
|
||
|
* @return Returns the complete component name for this activity
|
||
|
*/
|
||
|
public ComponentName getComponentName()
|
||
|
{
|
||
|
return mComponent;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Retrieve a {@link SharedPreferences} object for accessing preferences
|
||
|
* that are private to this activity. This simply calls the underlying
|
||
|
* {@link #getSharedPreferences(String, int)} method by passing in this activity's
|
||
|
* class name as the preferences name.
|
||
|
*
|
||
|
* @param mode Operating mode. Use {@link #MODE_PRIVATE} for the default
|
||
|
* operation, {@link #MODE_WORLD_READABLE} and
|
||
|
* {@link #MODE_WORLD_WRITEABLE} to control permissions.
|
||
|
*
|
||
|
* @return Returns the single SharedPreferences instance that can be used
|
||
|
* to retrieve and modify the preference values.
|
||
|
*/
|
||
|
public SharedPreferences getPreferences(int mode) {
|
||
|
return getSharedPreferences(getLocalClassName(), mode);
|
||
|
}
|
||
|
|
||
|
private void ensureSearchManager() {
|
||
|
if (mSearchManager != null) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
mSearchManager = new SearchManager(this, null);
|
||
|
}
|
||
|
|
||
|
@Override
|
||
|
public Object getSystemService(String name) {
|
||
|
if (getBaseContext() == null) {
|
||
|
throw new IllegalStateException(
|
||
|
"System services not available to Activities before onCreate()");
|
||
|
}
|
||
|
|
||
|
if (WINDOW_SERVICE.equals(name)) {
|
||
|
return mWindowManager;
|
||
|
} else if (SEARCH_SERVICE.equals(name)) {
|
||
|
ensureSearchManager();
|
||
|
return mSearchManager;
|
||
|
}
|
||
|
return super.getSystemService(name);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Change the title associated with this activity. If this is a
|
||
|
* top-level activity, the title for its window will change. If it
|
||
|
* is an embedded activity, the parent can do whatever it wants
|
||
|
* with it.
|
||
|
*/
|
||
|
public void setTitle(CharSequence title) {
|
||
|
mTitle = title;
|
||
|
onTitleChanged(title, mTitleColor);
|
||
|
|
||
|
if (mParent != null) {
|
||
|
mParent.onChildTitleChanged(this, title);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Change the title associated with this activity. If this is a
|
||
|
* top-level activity, the title for its window will change. If it
|
||
|
* is an embedded activity, the parent can do whatever it wants
|
||
|
* with it.
|
||
|
*/
|
||
|
public void setTitle(int titleId) {
|
||
|
setTitle(getText(titleId));
|
||
|
}
|
||
|
|
||
|
public void setTitleColor(int textColor) {
|
||
|
mTitleColor = textColor;
|
||
|
onTitleChanged(mTitle, textColor);
|
||
|
}
|
||
|
|
||
|
public final CharSequence getTitle() {
|
||
|
return mTitle;
|
||
|
}
|
||
|
|
||
|
public final int getTitleColor() {
|
||
|
return mTitleColor;
|
||
|
}
|
||
|
|
||
|
protected void onTitleChanged(CharSequence title, int color) {
|
||
|
if (mTitleReady) {
|
||
|
final Window win = getWindow();
|
||
|
if (win != null) {
|
||
|
win.setTitle(title);
|
||
|
if (color != 0) {
|
||
|
win.setTitleColor(color);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
protected void onChildTitleChanged(Activity childActivity, CharSequence title) {
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the visibility of the progress bar in the title.
|
||
|
* <p>
|
||
|
* In order for the progress bar to be shown, the feature must be requested
|
||
|
* via {@link #requestWindowFeature(int)}.
|
||
|
*
|
||
|
* @param visible Whether to show the progress bars in the title.
|
||
|
*/
|
||
|
public final void setProgressBarVisibility(boolean visible) {
|
||
|
getWindow().setFeatureInt(Window.FEATURE_PROGRESS, visible ? Window.PROGRESS_VISIBILITY_ON :
|
||
|
Window.PROGRESS_VISIBILITY_OFF);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the visibility of the indeterminate progress bar in the title.
|
||
|
* <p>
|
||
|
* In order for the progress bar to be shown, the feature must be requested
|
||
|
* via {@link #requestWindowFeature(int)}.
|
||
|
*
|
||
|
* @param visible Whether to show the progress bars in the title.
|
||
|
*/
|
||
|
public final void setProgressBarIndeterminateVisibility(boolean visible) {
|
||
|
getWindow().setFeatureInt(Window.FEATURE_INDETERMINATE_PROGRESS,
|
||
|
visible ? Window.PROGRESS_VISIBILITY_ON : Window.PROGRESS_VISIBILITY_OFF);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets whether the horizontal progress bar in the title should be indeterminate (the circular
|
||
|
* is always indeterminate).
|
||
|
* <p>
|
||
|
* In order for the progress bar to be shown, the feature must be requested
|
||
|
* via {@link #requestWindowFeature(int)}.
|
||
|
*
|
||
|
* @param indeterminate Whether the horizontal progress bar should be indeterminate.
|
||
|
*/
|
||
|
public final void setProgressBarIndeterminate(boolean indeterminate) {
|
||
|
getWindow().setFeatureInt(Window.FEATURE_PROGRESS,
|
||
|
indeterminate ? Window.PROGRESS_INDETERMINATE_ON : Window.PROGRESS_INDETERMINATE_OFF);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the progress for the progress bars in the title.
|
||
|
* <p>
|
||
|
* In order for the progress bar to be shown, the feature must be requested
|
||
|
* via {@link #requestWindowFeature(int)}.
|
||
|
*
|
||
|
* @param progress The progress for the progress bar. Valid ranges are from
|
||
|
* 0 to 10000 (both inclusive). If 10000 is given, the progress
|
||
|
* bar will be completely filled and will fade out.
|
||
|
*/
|
||
|
public final void setProgress(int progress) {
|
||
|
getWindow().setFeatureInt(Window.FEATURE_PROGRESS, progress + Window.PROGRESS_START);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Sets the secondary progress for the progress bar in the title. This
|
||
|
* progress is drawn between the primary progress (set via
|
||
|
* {@link #setProgress(int)} and the background. It can be ideal for media
|
||
|
* scenarios such as showing the buffering progress while the default
|
||
|
* progress shows the play progress.
|
||
|
* <p>
|
||
|
* In order for the progress bar to be shown, the feature must be requested
|
||
|
* via {@link #requestWindowFeature(int)}.
|
||
|
*
|
||
|
* @param secondaryProgress The secondary progress for the progress bar. Valid ranges are from
|
||
|
* 0 to 10000 (both inclusive).
|
||
|
*/
|
||
|
public final void setSecondaryProgress(int secondaryProgress) {
|
||
|
getWindow().setFeatureInt(Window.FEATURE_PROGRESS,
|
||
|
secondaryProgress + Window.PROGRESS_SECONDARY_START);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Suggests an audio stream whose volume should be changed by the hardware
|
||
|
* volume controls.
|
||
|
* <p>
|
||
|
* The suggested audio stream will be tied to the window of this Activity.
|
||
|
* If the Activity is switched, the stream set here is no longer the
|
||
|
* suggested stream. The client does not need to save and restore the old
|
||
|
* suggested stream value in onPause and onResume.
|
||
|
*
|
||
|
* @param streamType The type of the audio stream whose volume should be
|
||
|
* changed by the hardware volume controls. It is not guaranteed that
|
||
|
* the hardware volume controls will always change this stream's
|
||
|
* volume (for example, if a call is in progress, its stream's volume
|
||
|
* may be changed instead). To reset back to the default, use
|
||
|
* {@link AudioManager#USE_DEFAULT_STREAM_TYPE}.
|
||
|
*/
|
||
|
public final void setVolumeControlStream(int streamType) {
|
||
|
getWindow().setVolumeControlStream(streamType);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Gets the suggested audio stream whose volume should be changed by the
|
||
|
* harwdare volume controls.
|
||
|
*
|
||
|
* @return The suggested audio stream type whose volume should be changed by
|
||
|
* the hardware volume controls.
|
||
|
* @see #setVolumeControlStream(int)
|
||
|
*/
|
||
|
public final int getVolumeControlStream() {
|
||
|
return getWindow().getVolumeControlStream();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Runs the specified action on the UI thread. If the current thread is the UI
|
||
|
* thread, then the action is executed immediately. If the current thread is
|
||
|
* not the UI thread, the action is posted to the event queue of the UI thread.
|
||
|
*
|
||
|
* @param action the action to run on the UI thread
|
||
|
*/
|
||
|
public final void runOnUiThread(Runnable action) {
|
||
|
if (Thread.currentThread() != mUiThread) {
|
||
|
mHandler.post(action);
|
||
|
} else {
|
||
|
action.run();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Stub implementation of {@link android.view.LayoutInflater.Factory#onCreateView} used when
|
||
|
* inflating with the LayoutInflater returned by {@link #getSystemService}. This
|
||
|
* implementation simply returns null for all view names.
|
||
|
*
|
||
|
* @see android.view.LayoutInflater#createView
|
||
|
* @see android.view.Window#getLayoutInflater
|
||
|
*/
|
||
|
public View onCreateView(String name, Context context, AttributeSet attrs) {
|
||
|
return null;
|
||
|
}
|
||
|
|
||
|
// ------------------ Internal API ------------------
|
||
|
|
||
|
final void setParent(Activity parent) {
|
||
|
mParent = parent;
|
||
|
}
|
||
|
|
||
|
final void attach(Context context, ActivityThread aThread, Instrumentation instr, IBinder token,
|
||
|
Application application, Intent intent, ActivityInfo info, CharSequence title,
|
||
|
Activity parent, String id, Object lastNonConfigurationInstance,
|
||
|
Configuration config) {
|
||
|
attach(context, aThread, instr, token, 0, application, intent, info, title, parent, id,
|
||
|
lastNonConfigurationInstance, null, config);
|
||
|
}
|
||
|
|
||
|
final void attach(Context context, ActivityThread aThread,
|
||
|
Instrumentation instr, IBinder token, int ident,
|
||
|
Application application, Intent intent, ActivityInfo info,
|
||
|
CharSequence title, Activity parent, String id,
|
||
|
Object lastNonConfigurationInstance,
|
||
|
HashMap<String,Object> lastNonConfigurationChildInstances,
|
||
|
Configuration config) {
|
||
|
attachBaseContext(context);
|
||
|
|
||
|
mWindow = PolicyManager.makeNewWindow(this);
|
||
|
mWindow.setCallback(this);
|
||
|
if (info.softInputMode != WindowManager.LayoutParams.SOFT_INPUT_STATE_UNSPECIFIED) {
|
||
|
mWindow.setSoftInputMode(info.softInputMode);
|
||
|
}
|
||
|
mUiThread = Thread.currentThread();
|
||
|
|
||
|
mMainThread = aThread;
|
||
|
mInstrumentation = instr;
|
||
|
mToken = token;
|
||
|
mIdent = ident;
|
||
|
mApplication = application;
|
||
|
mIntent = intent;
|
||
|
mComponent = intent.getComponent();
|
||
|
mActivityInfo = info;
|
||
|
mTitle = title;
|
||
|
mParent = parent;
|
||
|
mEmbeddedID = id;
|
||
|
mLastNonConfigurationInstance = lastNonConfigurationInstance;
|
||
|
mLastNonConfigurationChildInstances = lastNonConfigurationChildInstances;
|
||
|
|
||
|
mWindow.setWindowManager(null, mToken, mComponent.flattenToString());
|
||
|
if (mParent != null) {
|
||
|
mWindow.setContainer(mParent.getWindow());
|
||
|
}
|
||
|
mWindowManager = mWindow.getWindowManager();
|
||
|
mCurrentConfig = config;
|
||
|
}
|
||
|
|
||
|
final IBinder getActivityToken() {
|
||
|
return mParent != null ? mParent.getActivityToken() : mToken;
|
||
|
}
|
||
|
|
||
|
final void performStart() {
|
||
|
mCalled = false;
|
||
|
mInstrumentation.callActivityOnStart(this);
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException(
|
||
|
"Activity " + mComponent.toShortString() +
|
||
|
" did not call through to super.onStart()");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
final void performRestart() {
|
||
|
synchronized (mManagedCursors) {
|
||
|
final int N = mManagedCursors.size();
|
||
|
for (int i=0; i<N; i++) {
|
||
|
ManagedCursor mc = mManagedCursors.get(i);
|
||
|
if (mc.mReleased || mc.mUpdated) {
|
||
|
mc.mCursor.requery();
|
||
|
mc.mReleased = false;
|
||
|
mc.mUpdated = false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (mStopped) {
|
||
|
mStopped = false;
|
||
|
mCalled = false;
|
||
|
mInstrumentation.callActivityOnRestart(this);
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException(
|
||
|
"Activity " + mComponent.toShortString() +
|
||
|
" did not call through to super.onRestart()");
|
||
|
}
|
||
|
performStart();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
final void performResume() {
|
||
|
performRestart();
|
||
|
|
||
|
mLastNonConfigurationInstance = null;
|
||
|
|
||
|
mCalled = false;
|
||
|
// mResumed is set by the instrumentation
|
||
|
mInstrumentation.callActivityOnResume(this);
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException(
|
||
|
"Activity " + mComponent.toShortString() +
|
||
|
" did not call through to super.onResume()");
|
||
|
}
|
||
|
|
||
|
// Now really resume, and install the current status bar and menu.
|
||
|
mCalled = false;
|
||
|
onPostResume();
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException(
|
||
|
"Activity " + mComponent.toShortString() +
|
||
|
" did not call through to super.onPostResume()");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
final void performPause() {
|
||
|
mCalled = false;
|
||
|
onPause();
|
||
|
if (!mCalled && getApplicationInfo().targetSdkVersion
|
||
|
>= android.os.Build.VERSION_CODES.GINGERBREAD) {
|
||
|
throw new SuperNotCalledException(
|
||
|
"Activity " + mComponent.toShortString() +
|
||
|
" did not call through to super.onPause()");
|
||
|
}
|
||
|
mResumed = false;
|
||
|
}
|
||
|
|
||
|
final void performUserLeaving() {
|
||
|
onUserInteraction();
|
||
|
onUserLeaveHint();
|
||
|
}
|
||
|
|
||
|
final void performStop() {
|
||
|
if (!mStopped) {
|
||
|
if (mWindow != null) {
|
||
|
mWindow.closeAllPanels();
|
||
|
}
|
||
|
|
||
|
mCalled = false;
|
||
|
mInstrumentation.callActivityOnStop(this);
|
||
|
if (!mCalled) {
|
||
|
throw new SuperNotCalledException(
|
||
|
"Activity " + mComponent.toShortString() +
|
||
|
" did not call through to super.onStop()");
|
||
|
}
|
||
|
|
||
|
synchronized (mManagedCursors) {
|
||
|
final int N = mManagedCursors.size();
|
||
|
for (int i=0; i<N; i++) {
|
||
|
ManagedCursor mc = mManagedCursors.get(i);
|
||
|
if (!mc.mReleased) {
|
||
|
mc.mCursor.deactivate();
|
||
|
mc.mReleased = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
mStopped = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* @hide
|
||
|
*/
|
||
|
public final boolean isResumed() {
|
||
|
return mResumed;
|
||
|
}
|
||
|
|
||
|
void dispatchActivityResult(String who, int requestCode,
|
||
|
int resultCode, Intent data) {
|
||
|
if (Config.LOGV) Log.v(
|
||
|
TAG, "Dispatching result: who=" + who + ", reqCode=" + requestCode
|
||
|
+ ", resCode=" + resultCode + ", data=" + data);
|
||
|
if (who == null) {
|
||
|
onActivityResult(requestCode, resultCode, data);
|
||
|
}
|
||
|
}
|
||
|
}
|