M7350/kernel/net/wireless/reg.c

2860 lines
75 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/*
* Copyright 2002-2005, Instant802 Networks, Inc.
* Copyright 2005-2006, Devicescape Software, Inc.
* Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
2024-09-09 08:57:42 +00:00
* Copyright 2013-2014 Intel Mobile Communications GmbH
2024-09-09 08:52:07 +00:00
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/**
* DOC: Wireless regulatory infrastructure
*
* The usual implementation is for a driver to read a device EEPROM to
* determine which regulatory domain it should be operating under, then
* looking up the allowable channels in a driver-local table and finally
* registering those channels in the wiphy structure.
*
* Another set of compliance enforcement is for drivers to use their
* own compliance limits which can be stored on the EEPROM. The host
* driver or firmware may ensure these are used.
*
* In addition to all this we provide an extra layer of regulatory
* conformance. For drivers which do not have any regulatory
* information CRDA provides the complete regulatory solution.
* For others it provides a community effort on further restrictions
* to enhance compliance.
*
* Note: When number of rules --> infinity we will not be able to
* index on alpha2 any more, instead we'll probably have to
* rely on some SHA1 checksum of the regdomain for example.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <linux/moduleparam.h>
#include <net/cfg80211.h>
#include "core.h"
#include "reg.h"
#include "regdb.h"
#include "nl80211.h"
#ifdef CONFIG_CFG80211_REG_DEBUG
#define REG_DBG_PRINT(format, args...) \
printk(KERN_DEBUG pr_fmt(format), ##args)
#else
#define REG_DBG_PRINT(args...)
#endif
2024-09-09 08:57:42 +00:00
/**
* enum reg_request_treatment - regulatory request treatment
*
* @REG_REQ_OK: continue processing the regulatory request
* @REG_REQ_IGNORE: ignore the regulatory request
* @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
* be intersected with the current one.
* @REG_REQ_ALREADY_SET: the regulatory request will not change the current
* regulatory settings, and no further processing is required.
* @REG_REQ_USER_HINT_HANDLED: a non alpha2 user hint was handled and no
* further processing is required, i.e., not need to update last_request
* etc. This should be used for user hints that do not provide an alpha2
* but some other type of regulatory hint, i.e., indoor operation.
*/
enum reg_request_treatment {
REG_REQ_OK,
REG_REQ_IGNORE,
REG_REQ_INTERSECT,
REG_REQ_ALREADY_SET,
REG_REQ_USER_HINT_HANDLED,
};
2024-09-09 08:52:07 +00:00
static struct regulatory_request core_request_world = {
.initiator = NL80211_REGDOM_SET_BY_CORE,
.alpha2[0] = '0',
.alpha2[1] = '0',
.intersect = false,
.processed = true,
.country_ie_env = ENVIRON_ANY,
};
2024-09-09 08:57:42 +00:00
/*
* Receipt of information from last regulatory request,
* protected by RTNL (and can be accessed with RCU protection)
*/
static struct regulatory_request __rcu *last_request =
(void __rcu *)&core_request_world;
2024-09-09 08:52:07 +00:00
/* To trigger userspace events */
static struct platform_device *reg_pdev;
/*
* Central wireless core regulatory domains, we only need two,
* the current one and a world regulatory domain in case we have no
2024-09-09 08:57:42 +00:00
* information to give us an alpha2.
* (protected by RTNL, can be read under RCU)
*/
const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
/*
* Number of devices that registered to the core
* that support cellular base station regulatory hints
* (protected by RTNL)
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
static int reg_num_devs_support_basehint;
2024-09-09 08:52:07 +00:00
/*
2024-09-09 08:57:42 +00:00
* State variable indicating if the platform on which the devices
* are attached is operating in an indoor environment. The state variable
* is relevant for all registered devices.
* (protected by RTNL)
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
static bool reg_is_indoor;
static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
{
return rtnl_dereference(cfg80211_regdomain);
}
static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
{
return rtnl_dereference(wiphy->regd);
}
static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
{
switch (dfs_region) {
case NL80211_DFS_UNSET:
return "unset";
case NL80211_DFS_FCC:
return "FCC";
case NL80211_DFS_ETSI:
return "ETSI";
case NL80211_DFS_JP:
return "JP";
}
return "Unknown";
}
enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
{
const struct ieee80211_regdomain *regd = NULL;
const struct ieee80211_regdomain *wiphy_regd = NULL;
regd = get_cfg80211_regdom();
if (!wiphy)
goto out;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
wiphy_regd = get_wiphy_regdom(wiphy);
if (!wiphy_regd)
goto out;
if (wiphy_regd->dfs_region == regd->dfs_region)
goto out;
REG_DBG_PRINT("%s: device specific dfs_region "
"(%s) disagrees with cfg80211's "
"central dfs_region (%s)\n",
dev_name(&wiphy->dev),
reg_dfs_region_str(wiphy_regd->dfs_region),
reg_dfs_region_str(regd->dfs_region));
out:
return regd->dfs_region;
}
static void rcu_free_regdom(const struct ieee80211_regdomain *r)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
if (!r)
return;
kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
}
static struct regulatory_request *get_last_request(void)
{
return rcu_dereference_rtnl(last_request);
2024-09-09 08:52:07 +00:00
}
/* Used to queue up regulatory hints */
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;
/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);
struct reg_beacon {
struct list_head list;
struct ieee80211_channel chan;
};
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
2024-09-09 08:57:42 +00:00
.n_reg_rules = 6,
2024-09-09 08:52:07 +00:00
.alpha2 = "00",
.reg_rules = {
/* IEEE 802.11b/g, channels 1..11 */
REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
2024-09-09 08:57:42 +00:00
/* IEEE 802.11b/g, channels 12..13. */
REG_RULE(2467-10, 2472+10, 40, 6, 20,
NL80211_RRF_NO_IR),
2024-09-09 08:52:07 +00:00
/* IEEE 802.11 channel 14 - Only JP enables
* this and for 802.11b only */
REG_RULE(2484-10, 2484+10, 20, 6, 20,
2024-09-09 08:57:42 +00:00
NL80211_RRF_NO_IR |
2024-09-09 08:52:07 +00:00
NL80211_RRF_NO_OFDM),
/* IEEE 802.11a, channel 36..48 */
2024-09-09 08:57:42 +00:00
REG_RULE(5180-10, 5240+10, 160, 6, 20,
NL80211_RRF_NO_IR),
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* IEEE 802.11a, channel 52..64 - DFS required */
REG_RULE(5260-10, 5320+10, 160, 6, 20,
NL80211_RRF_NO_IR |
NL80211_RRF_DFS),
/* IEEE 802.11a, channel 100..144 - DFS required */
REG_RULE(5500-10, 5720+10, 160, 6, 20,
NL80211_RRF_NO_IR |
NL80211_RRF_DFS),
2024-09-09 08:52:07 +00:00
/* IEEE 802.11a, channel 149..165 */
2024-09-09 08:57:42 +00:00
REG_RULE(5745-10, 5825+10, 80, 6, 20,
NL80211_RRF_NO_IR),
/* IEEE 802.11ad (60gHz), channels 1..3 */
REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
2024-09-09 08:52:07 +00:00
}
};
2024-09-09 08:57:42 +00:00
/* protected by RTNL */
2024-09-09 08:52:07 +00:00
static const struct ieee80211_regdomain *cfg80211_world_regdom =
&world_regdom;
static char *ieee80211_regdom = "00";
static char user_alpha2[2];
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
2024-09-09 08:57:42 +00:00
static void reg_free_request(struct regulatory_request *request)
{
if (request != get_last_request())
kfree(request);
}
static void reg_free_last_request(void)
{
struct regulatory_request *lr = get_last_request();
if (lr != &core_request_world && lr)
kfree_rcu(lr, rcu_head);
}
static void reg_update_last_request(struct regulatory_request *request)
{
struct regulatory_request *lr;
lr = get_last_request();
if (lr == request)
return;
reg_free_last_request();
rcu_assign_pointer(last_request, request);
}
static void reset_regdomains(bool full_reset,
const struct ieee80211_regdomain *new_regdom)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
const struct ieee80211_regdomain *r;
ASSERT_RTNL();
r = get_cfg80211_regdom();
2024-09-09 08:52:07 +00:00
/* avoid freeing static information or freeing something twice */
2024-09-09 08:57:42 +00:00
if (r == cfg80211_world_regdom)
r = NULL;
2024-09-09 08:52:07 +00:00
if (cfg80211_world_regdom == &world_regdom)
cfg80211_world_regdom = NULL;
2024-09-09 08:57:42 +00:00
if (r == &world_regdom)
r = NULL;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
rcu_free_regdom(r);
rcu_free_regdom(cfg80211_world_regdom);
2024-09-09 08:52:07 +00:00
cfg80211_world_regdom = &world_regdom;
2024-09-09 08:57:42 +00:00
rcu_assign_pointer(cfg80211_regdomain, new_regdom);
2024-09-09 08:52:07 +00:00
if (!full_reset)
return;
2024-09-09 08:57:42 +00:00
reg_update_last_request(&core_request_world);
2024-09-09 08:52:07 +00:00
}
/*
* Dynamic world regulatory domain requested by the wireless
* core upon initialization
*/
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
{
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr;
lr = get_last_request();
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
WARN_ON(!lr);
reset_regdomains(false, rd);
2024-09-09 08:52:07 +00:00
cfg80211_world_regdom = rd;
}
bool is_world_regdom(const char *alpha2)
{
if (!alpha2)
return false;
2024-09-09 08:57:42 +00:00
return alpha2[0] == '0' && alpha2[1] == '0';
2024-09-09 08:52:07 +00:00
}
static bool is_alpha2_set(const char *alpha2)
{
if (!alpha2)
return false;
2024-09-09 08:57:42 +00:00
return alpha2[0] && alpha2[1];
2024-09-09 08:52:07 +00:00
}
static bool is_unknown_alpha2(const char *alpha2)
{
if (!alpha2)
return false;
/*
* Special case where regulatory domain was built by driver
* but a specific alpha2 cannot be determined
*/
2024-09-09 08:57:42 +00:00
return alpha2[0] == '9' && alpha2[1] == '9';
2024-09-09 08:52:07 +00:00
}
static bool is_intersected_alpha2(const char *alpha2)
{
if (!alpha2)
return false;
/*
* Special case where regulatory domain is the
* result of an intersection between two regulatory domain
* structures
*/
2024-09-09 08:57:42 +00:00
return alpha2[0] == '9' && alpha2[1] == '8';
2024-09-09 08:52:07 +00:00
}
static bool is_an_alpha2(const char *alpha2)
{
if (!alpha2)
return false;
2024-09-09 08:57:42 +00:00
return isalpha(alpha2[0]) && isalpha(alpha2[1]);
2024-09-09 08:52:07 +00:00
}
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
{
if (!alpha2_x || !alpha2_y)
return false;
2024-09-09 08:57:42 +00:00
return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
2024-09-09 08:52:07 +00:00
}
static bool regdom_changes(const char *alpha2)
{
2024-09-09 08:57:42 +00:00
const struct ieee80211_regdomain *r = get_cfg80211_regdom();
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (!r)
2024-09-09 08:52:07 +00:00
return true;
2024-09-09 08:57:42 +00:00
return !alpha2_equal(r->alpha2, alpha2);
2024-09-09 08:52:07 +00:00
}
/*
* The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
* you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
* has ever been issued.
*/
static bool is_user_regdom_saved(void)
{
if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
return false;
/* This would indicate a mistake on the design */
2024-09-09 08:57:42 +00:00
if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
2024-09-09 08:52:07 +00:00
"Unexpected user alpha2: %c%c\n",
2024-09-09 08:57:42 +00:00
user_alpha2[0], user_alpha2[1]))
2024-09-09 08:52:07 +00:00
return false;
return true;
}
2024-09-09 08:57:42 +00:00
static bool is_cfg80211_regdom_intersected(void)
{
return is_intersected_alpha2(get_cfg80211_regdom()->alpha2);
}
static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain *src_regd)
2024-09-09 08:52:07 +00:00
{
struct ieee80211_regdomain *regd;
2024-09-09 08:57:42 +00:00
int size_of_regd;
2024-09-09 08:52:07 +00:00
unsigned int i;
2024-09-09 08:57:42 +00:00
size_of_regd =
sizeof(struct ieee80211_regdomain) +
src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
2024-09-09 08:52:07 +00:00
regd = kzalloc(size_of_regd, GFP_KERNEL);
if (!regd)
2024-09-09 08:57:42 +00:00
return ERR_PTR(-ENOMEM);
2024-09-09 08:52:07 +00:00
memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
for (i = 0; i < src_regd->n_reg_rules; i++)
memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
2024-09-09 08:57:42 +00:00
sizeof(struct ieee80211_reg_rule));
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return regd;
2024-09-09 08:52:07 +00:00
}
#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
char alpha2[2];
struct list_head list;
};
static LIST_HEAD(reg_regdb_search_list);
static DEFINE_MUTEX(reg_regdb_search_mutex);
static void reg_regdb_search(struct work_struct *work)
{
struct reg_regdb_search_request *request;
2024-09-09 08:57:42 +00:00
const struct ieee80211_regdomain *curdom, *regdom = NULL;
int i;
rtnl_lock();
2024-09-09 08:52:07 +00:00
mutex_lock(&reg_regdb_search_mutex);
while (!list_empty(&reg_regdb_search_list)) {
request = list_first_entry(&reg_regdb_search_list,
struct reg_regdb_search_request,
list);
list_del(&request->list);
2024-09-09 08:57:42 +00:00
for (i = 0; i < reg_regdb_size; i++) {
2024-09-09 08:52:07 +00:00
curdom = reg_regdb[i];
2024-09-09 08:57:42 +00:00
if (alpha2_equal(request->alpha2, curdom->alpha2)) {
regdom = reg_copy_regd(curdom);
2024-09-09 08:52:07 +00:00
break;
}
}
kfree(request);
}
mutex_unlock(&reg_regdb_search_mutex);
2024-09-09 08:57:42 +00:00
if (!IS_ERR_OR_NULL(regdom))
set_regdom(regdom);
rtnl_unlock();
2024-09-09 08:52:07 +00:00
}
static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
static void reg_regdb_query(const char *alpha2)
{
struct reg_regdb_search_request *request;
if (!alpha2)
return;
request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
if (!request)
return;
memcpy(request->alpha2, alpha2, 2);
mutex_lock(&reg_regdb_search_mutex);
list_add_tail(&request->list, &reg_regdb_search_list);
mutex_unlock(&reg_regdb_search_mutex);
schedule_work(&reg_regdb_work);
}
2024-09-09 08:57:42 +00:00
/* Feel free to add any other sanity checks here */
static void reg_regdb_size_check(void)
{
/* We should ideally BUILD_BUG_ON() but then random builds would fail */
WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
}
2024-09-09 08:52:07 +00:00
#else
2024-09-09 08:57:42 +00:00
static inline void reg_regdb_size_check(void) {}
2024-09-09 08:52:07 +00:00
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */
/*
* This lets us keep regulatory code which is updated on a regulatory
2024-09-09 08:57:42 +00:00
* basis in userspace.
2024-09-09 08:52:07 +00:00
*/
static int call_crda(const char *alpha2)
{
2024-09-09 08:57:42 +00:00
char country[12];
char *env[] = { country, NULL };
snprintf(country, sizeof(country), "COUNTRY=%c%c",
alpha2[0], alpha2[1]);
2024-09-09 08:52:07 +00:00
if (!is_world_regdom((char *) alpha2))
pr_info("Calling CRDA for country: %c%c\n",
alpha2[0], alpha2[1]);
else
pr_info("Calling CRDA to update world regulatory domain\n");
/* query internal regulatory database (if it exists) */
reg_regdb_query(alpha2);
2024-09-09 08:57:42 +00:00
return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
}
static enum reg_request_treatment
reg_call_crda(struct regulatory_request *request)
{
if (call_crda(request->alpha2))
return REG_REQ_IGNORE;
return REG_REQ_OK;
2024-09-09 08:52:07 +00:00
}
bool reg_is_valid_request(const char *alpha2)
{
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr = get_last_request();
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (!lr || lr->processed)
2024-09-09 08:52:07 +00:00
return false;
2024-09-09 08:57:42 +00:00
return alpha2_equal(lr->alpha2, alpha2);
}
static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
{
struct regulatory_request *lr = get_last_request();
/*
* Follow the driver's regulatory domain, if present, unless a country
* IE has been processed or a user wants to help complaince further
*/
if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
lr->initiator != NL80211_REGDOM_SET_BY_USER &&
wiphy->regd)
return get_wiphy_regdom(wiphy);
return get_cfg80211_regdom();
}
unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
const struct ieee80211_reg_rule *rule)
{
const struct ieee80211_freq_range *freq_range = &rule->freq_range;
const struct ieee80211_freq_range *freq_range_tmp;
const struct ieee80211_reg_rule *tmp;
u32 start_freq, end_freq, idx, no;
for (idx = 0; idx < rd->n_reg_rules; idx++)
if (rule == &rd->reg_rules[idx])
break;
if (idx == rd->n_reg_rules)
return 0;
/* get start_freq */
no = idx;
while (no) {
tmp = &rd->reg_rules[--no];
freq_range_tmp = &tmp->freq_range;
if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
break;
freq_range = freq_range_tmp;
}
start_freq = freq_range->start_freq_khz;
/* get end_freq */
freq_range = &rule->freq_range;
no = idx;
while (no < rd->n_reg_rules - 1) {
tmp = &rd->reg_rules[++no];
freq_range_tmp = &tmp->freq_range;
if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
break;
freq_range = freq_range_tmp;
}
end_freq = freq_range->end_freq_khz;
return end_freq - start_freq;
2024-09-09 08:52:07 +00:00
}
/* Sanity check on a regulatory rule */
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
{
const struct ieee80211_freq_range *freq_range = &rule->freq_range;
u32 freq_diff;
if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
return false;
if (freq_range->start_freq_khz > freq_range->end_freq_khz)
return false;
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
2024-09-09 08:57:42 +00:00
freq_range->max_bandwidth_khz > freq_diff)
2024-09-09 08:52:07 +00:00
return false;
return true;
}
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
{
const struct ieee80211_reg_rule *reg_rule = NULL;
unsigned int i;
if (!rd->n_reg_rules)
return false;
if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
return false;
for (i = 0; i < rd->n_reg_rules; i++) {
reg_rule = &rd->reg_rules[i];
if (!is_valid_reg_rule(reg_rule))
return false;
}
return true;
}
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
2024-09-09 08:57:42 +00:00
u32 center_freq_khz, u32 bw_khz)
2024-09-09 08:52:07 +00:00
{
u32 start_freq_khz, end_freq_khz;
start_freq_khz = center_freq_khz - (bw_khz/2);
end_freq_khz = center_freq_khz + (bw_khz/2);
if (start_freq_khz >= freq_range->start_freq_khz &&
end_freq_khz <= freq_range->end_freq_khz)
return true;
return false;
}
/**
* freq_in_rule_band - tells us if a frequency is in a frequency band
* @freq_range: frequency rule we want to query
* @freq_khz: frequency we are inquiring about
*
* This lets us know if a specific frequency rule is or is not relevant to
* a specific frequency's band. Bands are device specific and artificial
2024-09-09 08:57:42 +00:00
* definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
* however it is safe for now to assume that a frequency rule should not be
* part of a frequency's band if the start freq or end freq are off by more
* than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
* 60 GHz band.
2024-09-09 08:52:07 +00:00
* This resolution can be lowered and should be considered as we add
* regulatory rule support for other "bands".
**/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
2024-09-09 08:57:42 +00:00
u32 freq_khz)
2024-09-09 08:52:07 +00:00
{
#define ONE_GHZ_IN_KHZ 1000000
2024-09-09 08:57:42 +00:00
/*
* From 802.11ad: directional multi-gigabit (DMG):
* Pertaining to operation in a frequency band containing a channel
* with the Channel starting frequency above 45 GHz.
*/
u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
2024-09-09 08:52:07 +00:00
return true;
2024-09-09 08:57:42 +00:00
if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
2024-09-09 08:52:07 +00:00
return true;
return false;
#undef ONE_GHZ_IN_KHZ
}
2024-09-09 08:57:42 +00:00
/*
* Later on we can perhaps use the more restrictive DFS
* region but we don't have information for that yet so
* for now simply disallow conflicts.
*/
static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
const enum nl80211_dfs_regions dfs_region2)
{
if (dfs_region1 != dfs_region2)
return NL80211_DFS_UNSET;
return dfs_region1;
}
2024-09-09 08:52:07 +00:00
/*
* Helper for regdom_intersect(), this does the real
* mathematical intersection fun
*/
2024-09-09 08:57:42 +00:00
static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
const struct ieee80211_regdomain *rd2,
const struct ieee80211_reg_rule *rule1,
const struct ieee80211_reg_rule *rule2,
struct ieee80211_reg_rule *intersected_rule)
2024-09-09 08:52:07 +00:00
{
const struct ieee80211_freq_range *freq_range1, *freq_range2;
struct ieee80211_freq_range *freq_range;
const struct ieee80211_power_rule *power_rule1, *power_rule2;
struct ieee80211_power_rule *power_rule;
2024-09-09 08:57:42 +00:00
u32 freq_diff, max_bandwidth1, max_bandwidth2;
2024-09-09 08:52:07 +00:00
freq_range1 = &rule1->freq_range;
freq_range2 = &rule2->freq_range;
freq_range = &intersected_rule->freq_range;
power_rule1 = &rule1->power_rule;
power_rule2 = &rule2->power_rule;
power_rule = &intersected_rule->power_rule;
freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
2024-09-09 08:57:42 +00:00
freq_range2->start_freq_khz);
2024-09-09 08:52:07 +00:00
freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
2024-09-09 08:57:42 +00:00
freq_range2->end_freq_khz);
max_bandwidth1 = freq_range1->max_bandwidth_khz;
max_bandwidth2 = freq_range2->max_bandwidth_khz;
if (rule1->flags & NL80211_RRF_AUTO_BW)
max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
if (rule2->flags & NL80211_RRF_AUTO_BW)
max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
intersected_rule->flags = rule1->flags | rule2->flags;
/*
* In case NL80211_RRF_AUTO_BW requested for both rules
* set AUTO_BW in intersected rule also. Next we will
* calculate BW correctly in handle_channel function.
* In other case remove AUTO_BW flag while we calculate
* maximum bandwidth correctly and auto calculation is
* not required.
*/
if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
(rule2->flags & NL80211_RRF_AUTO_BW))
intersected_rule->flags |= NL80211_RRF_AUTO_BW;
else
intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
2024-09-09 08:52:07 +00:00
freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
if (freq_range->max_bandwidth_khz > freq_diff)
freq_range->max_bandwidth_khz = freq_diff;
power_rule->max_eirp = min(power_rule1->max_eirp,
power_rule2->max_eirp);
power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
power_rule2->max_antenna_gain);
2024-09-09 08:57:42 +00:00
intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
rule2->dfs_cac_ms);
2024-09-09 08:52:07 +00:00
if (!is_valid_reg_rule(intersected_rule))
return -EINVAL;
return 0;
}
2024-09-09 08:57:42 +00:00
/* check whether old rule contains new rule */
static bool rule_contains(struct ieee80211_reg_rule *r1,
struct ieee80211_reg_rule *r2)
{
/* for simplicity, currently consider only same flags */
if (r1->flags != r2->flags)
return false;
/* verify r1 is more restrictive */
if ((r1->power_rule.max_antenna_gain >
r2->power_rule.max_antenna_gain) ||
r1->power_rule.max_eirp > r2->power_rule.max_eirp)
return false;
/* make sure r2's range is contained within r1 */
if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
return false;
/* and finally verify that r1.max_bw >= r2.max_bw */
if (r1->freq_range.max_bandwidth_khz <
r2->freq_range.max_bandwidth_khz)
return false;
return true;
}
/* add or extend current rules. do nothing if rule is already contained */
static void add_rule(struct ieee80211_reg_rule *rule,
struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
{
struct ieee80211_reg_rule *tmp_rule;
int i;
for (i = 0; i < *n_rules; i++) {
tmp_rule = &reg_rules[i];
/* rule is already contained - do nothing */
if (rule_contains(tmp_rule, rule))
return;
/* extend rule if possible */
if (rule_contains(rule, tmp_rule)) {
memcpy(tmp_rule, rule, sizeof(*rule));
return;
}
}
memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
(*n_rules)++;
}
2024-09-09 08:52:07 +00:00
/**
* regdom_intersect - do the intersection between two regulatory domains
* @rd1: first regulatory domain
* @rd2: second regulatory domain
*
* Use this function to get the intersection between two regulatory domains.
* Once completed we will mark the alpha2 for the rd as intersected, "98",
* as no one single alpha2 can represent this regulatory domain.
*
* Returns a pointer to the regulatory domain structure which will hold the
* resulting intersection of rules between rd1 and rd2. We will
* kzalloc() this structure for you.
*/
2024-09-09 08:57:42 +00:00
static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain *rd1,
const struct ieee80211_regdomain *rd2)
2024-09-09 08:52:07 +00:00
{
int r, size_of_regd;
unsigned int x, y;
2024-09-09 08:57:42 +00:00
unsigned int num_rules = 0;
2024-09-09 08:52:07 +00:00
const struct ieee80211_reg_rule *rule1, *rule2;
2024-09-09 08:57:42 +00:00
struct ieee80211_reg_rule intersected_rule;
2024-09-09 08:52:07 +00:00
struct ieee80211_regdomain *rd;
if (!rd1 || !rd2)
return NULL;
/*
* First we get a count of the rules we'll need, then we actually
* build them. This is to so we can malloc() and free() a
* regdomain once. The reason we use reg_rules_intersect() here
* is it will return -EINVAL if the rule computed makes no sense.
* All rules that do check out OK are valid.
*/
for (x = 0; x < rd1->n_reg_rules; x++) {
rule1 = &rd1->reg_rules[x];
for (y = 0; y < rd2->n_reg_rules; y++) {
rule2 = &rd2->reg_rules[y];
2024-09-09 08:57:42 +00:00
if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
&intersected_rule))
2024-09-09 08:52:07 +00:00
num_rules++;
}
}
if (!num_rules)
return NULL;
size_of_regd = sizeof(struct ieee80211_regdomain) +
2024-09-09 08:57:42 +00:00
num_rules * sizeof(struct ieee80211_reg_rule);
2024-09-09 08:52:07 +00:00
rd = kzalloc(size_of_regd, GFP_KERNEL);
if (!rd)
return NULL;
for (x = 0; x < rd1->n_reg_rules; x++) {
rule1 = &rd1->reg_rules[x];
for (y = 0; y < rd2->n_reg_rules; y++) {
rule2 = &rd2->reg_rules[y];
2024-09-09 08:57:42 +00:00
r = reg_rules_intersect(rd1, rd2, rule1, rule2,
&intersected_rule);
2024-09-09 08:52:07 +00:00
/*
* No need to memset here the intersected rule here as
* we're not using the stack anymore
*/
if (r)
continue;
2024-09-09 08:57:42 +00:00
add_rule(&intersected_rule, rd->reg_rules,
&rd->n_reg_rules);
}
2024-09-09 08:52:07 +00:00
}
rd->alpha2[0] = '9';
rd->alpha2[1] = '8';
2024-09-09 08:57:42 +00:00
rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
rd2->dfs_region);
2024-09-09 08:52:07 +00:00
return rd;
}
/*
* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
* want to just have the channel structure use these
*/
static u32 map_regdom_flags(u32 rd_flags)
{
u32 channel_flags = 0;
2024-09-09 08:57:42 +00:00
if (rd_flags & NL80211_RRF_NO_IR_ALL)
channel_flags |= IEEE80211_CHAN_NO_IR;
2024-09-09 08:52:07 +00:00
if (rd_flags & NL80211_RRF_DFS)
channel_flags |= IEEE80211_CHAN_RADAR;
2024-09-09 08:57:42 +00:00
if (rd_flags & NL80211_RRF_NO_OFDM)
channel_flags |= IEEE80211_CHAN_NO_OFDM;
if (rd_flags & NL80211_RRF_NO_OUTDOOR)
channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
2024-09-09 08:52:07 +00:00
return channel_flags;
}
2024-09-09 08:57:42 +00:00
static const struct ieee80211_reg_rule *
freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
const struct ieee80211_regdomain *regd)
2024-09-09 08:52:07 +00:00
{
int i;
bool band_rule_found = false;
bool bw_fits = false;
if (!regd)
2024-09-09 08:57:42 +00:00
return ERR_PTR(-EINVAL);
2024-09-09 08:52:07 +00:00
for (i = 0; i < regd->n_reg_rules; i++) {
const struct ieee80211_reg_rule *rr;
const struct ieee80211_freq_range *fr = NULL;
rr = &regd->reg_rules[i];
fr = &rr->freq_range;
/*
* We only need to know if one frequency rule was
* was in center_freq's band, that's enough, so lets
* not overwrite it once found
*/
if (!band_rule_found)
band_rule_found = freq_in_rule_band(fr, center_freq);
2024-09-09 08:57:42 +00:00
bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (band_rule_found && bw_fits)
return rr;
2024-09-09 08:52:07 +00:00
}
if (!band_rule_found)
2024-09-09 08:57:42 +00:00
return ERR_PTR(-ERANGE);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return ERR_PTR(-EINVAL);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
u32 center_freq)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
const struct ieee80211_regdomain *regd;
regd = reg_get_regdomain(wiphy);
return freq_reg_info_regd(wiphy, center_freq, regd);
2024-09-09 08:52:07 +00:00
}
EXPORT_SYMBOL(freq_reg_info);
2024-09-09 08:57:42 +00:00
const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
2024-09-09 08:52:07 +00:00
{
switch (initiator) {
case NL80211_REGDOM_SET_BY_CORE:
2024-09-09 08:57:42 +00:00
return "core";
2024-09-09 08:52:07 +00:00
case NL80211_REGDOM_SET_BY_USER:
2024-09-09 08:57:42 +00:00
return "user";
2024-09-09 08:52:07 +00:00
case NL80211_REGDOM_SET_BY_DRIVER:
2024-09-09 08:57:42 +00:00
return "driver";
2024-09-09 08:52:07 +00:00
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2024-09-09 08:57:42 +00:00
return "country IE";
2024-09-09 08:52:07 +00:00
default:
WARN_ON(1);
2024-09-09 08:57:42 +00:00
return "bug";
2024-09-09 08:52:07 +00:00
}
}
2024-09-09 08:57:42 +00:00
EXPORT_SYMBOL(reg_initiator_name);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
#ifdef CONFIG_CFG80211_REG_DEBUG
static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
struct ieee80211_channel *chan,
2024-09-09 08:52:07 +00:00
const struct ieee80211_reg_rule *reg_rule)
{
const struct ieee80211_power_rule *power_rule;
const struct ieee80211_freq_range *freq_range;
2024-09-09 08:57:42 +00:00
char max_antenna_gain[32], bw[32];
2024-09-09 08:52:07 +00:00
power_rule = &reg_rule->power_rule;
freq_range = &reg_rule->freq_range;
if (!power_rule->max_antenna_gain)
2024-09-09 08:57:42 +00:00
snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
else
snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
power_rule->max_antenna_gain);
if (reg_rule->flags & NL80211_RRF_AUTO_BW)
snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
freq_range->max_bandwidth_khz,
reg_get_max_bandwidth(regd, reg_rule));
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
snprintf(bw, sizeof(bw), "%d KHz",
freq_range->max_bandwidth_khz);
REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
chan->center_freq);
REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
freq_range->start_freq_khz, freq_range->end_freq_khz,
bw, max_antenna_gain,
2024-09-09 08:52:07 +00:00
power_rule->max_eirp);
}
#else
2024-09-09 08:57:42 +00:00
static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
struct ieee80211_channel *chan,
2024-09-09 08:52:07 +00:00
const struct ieee80211_reg_rule *reg_rule)
{
return;
}
#endif
/*
* Note that right now we assume the desired channel bandwidth
* is always 20 MHz for each individual channel (HT40 uses 20 MHz
2024-09-09 08:57:42 +00:00
* per channel, the primary and the extension channel).
2024-09-09 08:52:07 +00:00
*/
static void handle_channel(struct wiphy *wiphy,
enum nl80211_reg_initiator initiator,
2024-09-09 08:57:42 +00:00
struct ieee80211_channel *chan)
2024-09-09 08:52:07 +00:00
{
u32 flags, bw_flags = 0;
const struct ieee80211_reg_rule *reg_rule = NULL;
const struct ieee80211_power_rule *power_rule = NULL;
const struct ieee80211_freq_range *freq_range = NULL;
struct wiphy *request_wiphy = NULL;
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr = get_last_request();
const struct ieee80211_regdomain *regd;
u32 max_bandwidth_khz;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2024-09-09 08:52:07 +00:00
flags = chan->orig_flags;
2024-09-09 08:57:42 +00:00
reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
if (IS_ERR(reg_rule)) {
2024-09-09 08:52:07 +00:00
/*
* We will disable all channels that do not match our
* received regulatory rule unless the hint is coming
* from a Country IE and the Country IE had no information
* about a band. The IEEE 802.11 spec allows for an AP
* to send only a subset of the regulatory rules allowed,
* so an AP in the US that only supports 2.4 GHz may only send
* a country IE with information for the 2.4 GHz band
* while 5 GHz is still supported.
*/
if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2024-09-09 08:57:42 +00:00
PTR_ERR(reg_rule) == -ERANGE)
2024-09-09 08:52:07 +00:00
return;
2024-09-09 08:57:42 +00:00
if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
request_wiphy && request_wiphy == wiphy &&
request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
REG_DBG_PRINT("Disabling freq %d MHz for good\n",
chan->center_freq);
chan->orig_flags |= IEEE80211_CHAN_DISABLED;
chan->flags = chan->orig_flags;
} else {
REG_DBG_PRINT("Disabling freq %d MHz\n",
chan->center_freq);
chan->flags |= IEEE80211_CHAN_DISABLED;
}
2024-09-09 08:52:07 +00:00
return;
}
2024-09-09 08:57:42 +00:00
regd = reg_get_regdomain(wiphy);
chan_reg_rule_print_dbg(regd, chan, reg_rule);
2024-09-09 08:52:07 +00:00
power_rule = &reg_rule->power_rule;
freq_range = &reg_rule->freq_range;
2024-09-09 08:57:42 +00:00
max_bandwidth_khz = freq_range->max_bandwidth_khz;
/* Check if auto calculation requested */
if (reg_rule->flags & NL80211_RRF_AUTO_BW)
max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
if (max_bandwidth_khz < MHZ_TO_KHZ(10))
bw_flags |= IEEE80211_CHAN_NO_10MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(20))
bw_flags |= IEEE80211_CHAN_NO_20MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(40))
bw_flags |= IEEE80211_CHAN_NO_HT40;
if (max_bandwidth_khz < MHZ_TO_KHZ(80))
bw_flags |= IEEE80211_CHAN_NO_80MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(160))
bw_flags |= IEEE80211_CHAN_NO_160MHZ;
if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2024-09-09 08:52:07 +00:00
request_wiphy && request_wiphy == wiphy &&
2024-09-09 08:57:42 +00:00
request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2024-09-09 08:52:07 +00:00
/*
* This guarantees the driver's requested regulatory domain
* will always be used as a base for further regulatory
* settings
*/
chan->flags = chan->orig_flags =
map_regdom_flags(reg_rule->flags) | bw_flags;
chan->max_antenna_gain = chan->orig_mag =
(int) MBI_TO_DBI(power_rule->max_antenna_gain);
2024-09-09 08:57:42 +00:00
chan->max_reg_power = chan->max_power = chan->orig_mpwr =
2024-09-09 08:52:07 +00:00
(int) MBM_TO_DBM(power_rule->max_eirp);
2024-09-09 08:57:42 +00:00
if (chan->flags & IEEE80211_CHAN_RADAR) {
chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
if (reg_rule->dfs_cac_ms)
chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
}
2024-09-09 08:52:07 +00:00
return;
}
2024-09-09 08:57:42 +00:00
chan->dfs_state = NL80211_DFS_USABLE;
chan->dfs_state_entered = jiffies;
2024-09-09 08:52:07 +00:00
chan->beacon_found = false;
chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
2024-09-09 08:57:42 +00:00
chan->max_antenna_gain =
min_t(int, chan->orig_mag,
MBI_TO_DBI(power_rule->max_antenna_gain));
2024-09-09 08:52:07 +00:00
chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
2024-09-09 08:57:42 +00:00
if (chan->flags & IEEE80211_CHAN_RADAR) {
if (reg_rule->dfs_cac_ms)
chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
else
chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
}
if (chan->orig_mpwr) {
/*
* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
* will always follow the passed country IE power settings.
*/
if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
chan->max_power = chan->max_reg_power;
else
chan->max_power = min(chan->orig_mpwr,
chan->max_reg_power);
} else
chan->max_power = chan->max_reg_power;
2024-09-09 08:52:07 +00:00
}
static void handle_band(struct wiphy *wiphy,
2024-09-09 08:57:42 +00:00
enum nl80211_reg_initiator initiator,
struct ieee80211_supported_band *sband)
2024-09-09 08:52:07 +00:00
{
unsigned int i;
2024-09-09 08:57:42 +00:00
if (!sband)
return;
2024-09-09 08:52:07 +00:00
for (i = 0; i < sband->n_channels; i++)
2024-09-09 08:57:42 +00:00
handle_channel(wiphy, initiator, &sband->channels[i]);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static bool reg_request_cell_base(struct regulatory_request *request)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
if (request->initiator != NL80211_REGDOM_SET_BY_USER)
return false;
return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static bool reg_request_indoor(struct regulatory_request *request)
{
if (request->initiator != NL80211_REGDOM_SET_BY_USER)
return false;
return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
bool reg_last_request_cell_base(void)
{
return reg_request_cell_base(get_last_request());
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
/* Core specific check */
static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request *pending_request)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr = get_last_request();
if (!reg_num_devs_support_basehint)
return REG_REQ_IGNORE;
if (reg_request_cell_base(lr) &&
!regdom_changes(pending_request->alpha2))
return REG_REQ_ALREADY_SET;
return REG_REQ_OK;
}
/* Device specific check */
static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
}
#else
static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
{
return REG_REQ_IGNORE;
}
static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
return true;
}
#endif
static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
{
if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
return true;
return false;
}
static bool ignore_reg_update(struct wiphy *wiphy,
enum nl80211_reg_initiator initiator)
{
struct regulatory_request *lr = get_last_request();
if (!lr) {
REG_DBG_PRINT("Ignoring regulatory request set by %s "
"since last_request is not set\n",
reg_initiator_name(initiator));
return true;
}
if (initiator == NL80211_REGDOM_SET_BY_CORE &&
wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
REG_DBG_PRINT("Ignoring regulatory request set by %s "
"since the driver uses its own custom "
"regulatory domain\n",
reg_initiator_name(initiator));
return true;
}
/*
* wiphy->regd will be set once the device has its own
* desired regulatory domain set
*/
if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
!is_world_regdom(lr->alpha2)) {
REG_DBG_PRINT("Ignoring regulatory request set by %s "
"since the driver requires its own regulatory "
"domain to be set first\n",
reg_initiator_name(initiator));
return true;
}
if (reg_request_cell_base(lr))
return reg_dev_ignore_cell_hint(wiphy);
return false;
}
static bool reg_is_world_roaming(struct wiphy *wiphy)
{
const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
struct regulatory_request *lr = get_last_request();
if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
return true;
if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
return true;
return false;
}
static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
struct reg_beacon *reg_beacon)
{
struct ieee80211_supported_band *sband;
2024-09-09 08:52:07 +00:00
struct ieee80211_channel *chan;
bool channel_changed = false;
struct ieee80211_channel chan_before;
sband = wiphy->bands[reg_beacon->chan.band];
chan = &sband->channels[chan_idx];
if (likely(chan->center_freq != reg_beacon->chan.center_freq))
return;
if (chan->beacon_found)
return;
chan->beacon_found = true;
2024-09-09 08:57:42 +00:00
if (!reg_is_world_roaming(wiphy))
return;
if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2024-09-09 08:52:07 +00:00
return;
chan_before.center_freq = chan->center_freq;
chan_before.flags = chan->flags;
2024-09-09 08:57:42 +00:00
if (chan->flags & IEEE80211_CHAN_NO_IR) {
chan->flags &= ~IEEE80211_CHAN_NO_IR;
2024-09-09 08:52:07 +00:00
channel_changed = true;
}
if (channel_changed)
nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
}
/*
* Called when a scan on a wiphy finds a beacon on
* new channel
*/
static void wiphy_update_new_beacon(struct wiphy *wiphy,
struct reg_beacon *reg_beacon)
{
unsigned int i;
struct ieee80211_supported_band *sband;
if (!wiphy->bands[reg_beacon->chan.band])
return;
sband = wiphy->bands[reg_beacon->chan.band];
for (i = 0; i < sband->n_channels; i++)
handle_reg_beacon(wiphy, i, reg_beacon);
}
/*
* Called upon reg changes or a new wiphy is added
*/
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
unsigned int i;
struct ieee80211_supported_band *sband;
struct reg_beacon *reg_beacon;
list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
if (!wiphy->bands[reg_beacon->chan.band])
continue;
sband = wiphy->bands[reg_beacon->chan.band];
for (i = 0; i < sband->n_channels; i++)
handle_reg_beacon(wiphy, i, reg_beacon);
}
}
/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
/*
* Means we are just firing up cfg80211, so no beacons would
* have been processed yet.
*/
if (!last_request)
return;
wiphy_update_beacon_reg(wiphy);
}
2024-09-09 08:57:42 +00:00
static bool is_ht40_allowed(struct ieee80211_channel *chan)
2024-09-09 08:52:07 +00:00
{
if (!chan)
2024-09-09 08:57:42 +00:00
return false;
2024-09-09 08:52:07 +00:00
if (chan->flags & IEEE80211_CHAN_DISABLED)
2024-09-09 08:57:42 +00:00
return false;
2024-09-09 08:52:07 +00:00
/* This would happen when regulatory rules disallow HT40 completely */
2024-09-09 08:57:42 +00:00
if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
return false;
return true;
2024-09-09 08:52:07 +00:00
}
static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2024-09-09 08:57:42 +00:00
struct ieee80211_channel *channel)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2024-09-09 08:52:07 +00:00
struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
unsigned int i;
2024-09-09 08:57:42 +00:00
if (!is_ht40_allowed(channel)) {
2024-09-09 08:52:07 +00:00
channel->flags |= IEEE80211_CHAN_NO_HT40;
return;
}
/*
* We need to ensure the extension channels exist to
* be able to use HT40- or HT40+, this finds them (or not)
*/
for (i = 0; i < sband->n_channels; i++) {
struct ieee80211_channel *c = &sband->channels[i];
2024-09-09 08:57:42 +00:00
2024-09-09 08:52:07 +00:00
if (c->center_freq == (channel->center_freq - 20))
channel_before = c;
if (c->center_freq == (channel->center_freq + 20))
channel_after = c;
}
/*
* Please note that this assumes target bandwidth is 20 MHz,
* if that ever changes we also need to change the below logic
* to include that as well.
*/
2024-09-09 08:57:42 +00:00
if (!is_ht40_allowed(channel_before))
2024-09-09 08:52:07 +00:00
channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
else
channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2024-09-09 08:57:42 +00:00
if (!is_ht40_allowed(channel_after))
2024-09-09 08:52:07 +00:00
channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
else
channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
}
static void reg_process_ht_flags_band(struct wiphy *wiphy,
2024-09-09 08:57:42 +00:00
struct ieee80211_supported_band *sband)
2024-09-09 08:52:07 +00:00
{
unsigned int i;
2024-09-09 08:57:42 +00:00
if (!sband)
return;
2024-09-09 08:52:07 +00:00
for (i = 0; i < sband->n_channels; i++)
2024-09-09 08:57:42 +00:00
reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2024-09-09 08:52:07 +00:00
}
static void reg_process_ht_flags(struct wiphy *wiphy)
{
enum ieee80211_band band;
if (!wiphy)
return;
2024-09-09 08:57:42 +00:00
for (band = 0; band < IEEE80211_NUM_BANDS; band++)
reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static void reg_call_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
if (wiphy->reg_notifier)
wiphy->reg_notifier(wiphy, request);
2024-09-09 08:52:07 +00:00
}
static void wiphy_update_regulatory(struct wiphy *wiphy,
enum nl80211_reg_initiator initiator)
{
enum ieee80211_band band;
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr = get_last_request();
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (ignore_reg_update(wiphy, initiator)) {
/*
* Regulatory updates set by CORE are ignored for custom
* regulatory cards. Let us notify the changes to the driver,
* as some drivers used this to restore its orig_* reg domain.
*/
if (initiator == NL80211_REGDOM_SET_BY_CORE &&
wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
reg_call_notifier(wiphy, lr);
2024-09-09 08:52:07 +00:00
return;
2024-09-09 08:57:42 +00:00
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
for (band = 0; band < IEEE80211_NUM_BANDS; band++)
handle_band(wiphy, initiator, wiphy->bands[band]);
2024-09-09 08:52:07 +00:00
reg_process_beacons(wiphy);
reg_process_ht_flags(wiphy);
2024-09-09 08:57:42 +00:00
reg_call_notifier(wiphy, lr);
2024-09-09 08:52:07 +00:00
}
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
struct cfg80211_registered_device *rdev;
struct wiphy *wiphy;
2024-09-09 08:57:42 +00:00
ASSERT_RTNL();
2024-09-09 08:52:07 +00:00
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
wiphy = &rdev->wiphy;
wiphy_update_regulatory(wiphy, initiator);
}
}
static void handle_channel_custom(struct wiphy *wiphy,
2024-09-09 08:57:42 +00:00
struct ieee80211_channel *chan,
2024-09-09 08:52:07 +00:00
const struct ieee80211_regdomain *regd)
{
u32 bw_flags = 0;
const struct ieee80211_reg_rule *reg_rule = NULL;
const struct ieee80211_power_rule *power_rule = NULL;
const struct ieee80211_freq_range *freq_range = NULL;
2024-09-09 08:57:42 +00:00
u32 max_bandwidth_khz;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
regd);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (IS_ERR(reg_rule)) {
REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
chan->center_freq);
chan->orig_flags |= IEEE80211_CHAN_DISABLED;
chan->flags = chan->orig_flags;
2024-09-09 08:52:07 +00:00
return;
}
2024-09-09 08:57:42 +00:00
chan_reg_rule_print_dbg(regd, chan, reg_rule);
2024-09-09 08:52:07 +00:00
power_rule = &reg_rule->power_rule;
freq_range = &reg_rule->freq_range;
2024-09-09 08:57:42 +00:00
max_bandwidth_khz = freq_range->max_bandwidth_khz;
/* Check if auto calculation requested */
if (reg_rule->flags & NL80211_RRF_AUTO_BW)
max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
if (max_bandwidth_khz < MHZ_TO_KHZ(10))
bw_flags |= IEEE80211_CHAN_NO_10MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(20))
bw_flags |= IEEE80211_CHAN_NO_20MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(40))
bw_flags |= IEEE80211_CHAN_NO_HT40;
if (max_bandwidth_khz < MHZ_TO_KHZ(80))
bw_flags |= IEEE80211_CHAN_NO_80MHZ;
if (max_bandwidth_khz < MHZ_TO_KHZ(160))
bw_flags |= IEEE80211_CHAN_NO_160MHZ;
2024-09-09 08:52:07 +00:00
chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2024-09-09 08:57:42 +00:00
chan->max_reg_power = chan->max_power =
(int) MBM_TO_DBM(power_rule->max_eirp);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static void handle_band_custom(struct wiphy *wiphy,
struct ieee80211_supported_band *sband,
2024-09-09 08:52:07 +00:00
const struct ieee80211_regdomain *regd)
{
unsigned int i;
2024-09-09 08:57:42 +00:00
if (!sband)
return;
2024-09-09 08:52:07 +00:00
for (i = 0; i < sband->n_channels; i++)
2024-09-09 08:57:42 +00:00
handle_channel_custom(wiphy, &sband->channels[i], regd);
2024-09-09 08:52:07 +00:00
}
/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
const struct ieee80211_regdomain *regd)
{
enum ieee80211_band band;
unsigned int bands_set = 0;
2024-09-09 08:57:42 +00:00
WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
"wiphy should have REGULATORY_CUSTOM_REG\n");
wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2024-09-09 08:52:07 +00:00
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
if (!wiphy->bands[band])
continue;
2024-09-09 08:57:42 +00:00
handle_band_custom(wiphy, wiphy->bands[band], regd);
2024-09-09 08:52:07 +00:00
bands_set++;
}
/*
* no point in calling this if it won't have any effect
2024-09-09 08:57:42 +00:00
* on your device's supported bands.
2024-09-09 08:52:07 +00:00
*/
WARN_ON(!bands_set);
}
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2024-09-09 08:57:42 +00:00
static void reg_set_request_processed(void)
{
bool need_more_processing = false;
struct regulatory_request *lr = get_last_request();
lr->processed = true;
spin_lock(&reg_requests_lock);
if (!list_empty(&reg_requests_list))
need_more_processing = true;
spin_unlock(&reg_requests_lock);
if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
cancel_delayed_work(&reg_timeout);
if (need_more_processing)
schedule_work(&reg_work);
}
/**
* reg_process_hint_core - process core regulatory requests
* @pending_request: a pending core regulatory request
*
* The wireless subsystem can use this function to process
* a regulatory request issued by the regulatory core.
*
* Returns one of the different reg request treatment values.
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request *core_request)
{
core_request->intersect = false;
core_request->processed = false;
reg_update_last_request(core_request);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return reg_call_crda(core_request);
}
static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request *user_request)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr = get_last_request();
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (reg_request_indoor(user_request)) {
reg_is_indoor = true;
return REG_REQ_USER_HINT_HANDLED;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (reg_request_cell_base(user_request))
return reg_ignore_cell_hint(user_request);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (reg_request_cell_base(lr))
return REG_REQ_IGNORE;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
return REG_REQ_INTERSECT;
/*
* If the user knows better the user should set the regdom
* to their country before the IE is picked up
*/
if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
lr->intersect)
return REG_REQ_IGNORE;
/*
* Process user requests only after previous user/driver/core
* requests have been processed
*/
if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
lr->initiator == NL80211_REGDOM_SET_BY_USER)) {
if (lr->intersect) {
if (!is_cfg80211_regdom_intersected())
return REG_REQ_IGNORE;
} else if (regdom_changes(lr->alpha2)) {
return REG_REQ_IGNORE;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (!regdom_changes(user_request->alpha2))
return REG_REQ_ALREADY_SET;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return REG_REQ_OK;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/**
* reg_process_hint_user - process user regulatory requests
* @user_request: a pending user regulatory request
*
* The wireless subsystem can use this function to process
* a regulatory request initiated by userspace.
*
* Returns one of the different reg request treatment values.
*/
static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request *user_request)
{
enum reg_request_treatment treatment;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
treatment = __reg_process_hint_user(user_request);
if (treatment == REG_REQ_IGNORE ||
treatment == REG_REQ_ALREADY_SET ||
treatment == REG_REQ_USER_HINT_HANDLED) {
reg_free_request(user_request);
return treatment;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
user_request->intersect = treatment == REG_REQ_INTERSECT;
user_request->processed = false;
reg_update_last_request(user_request);
user_alpha2[0] = user_request->alpha2[0];
user_alpha2[1] = user_request->alpha2[1];
return reg_call_crda(user_request);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request *driver_request)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr = get_last_request();
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
if (regdom_changes(driver_request->alpha2))
return REG_REQ_OK;
return REG_REQ_ALREADY_SET;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/*
* This would happen if you unplug and plug your card
* back in or if you add a new device for which the previously
* loaded card also agrees on the regulatory domain.
*/
if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
!regdom_changes(driver_request->alpha2))
return REG_REQ_ALREADY_SET;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return REG_REQ_INTERSECT;
2024-09-09 08:52:07 +00:00
}
/**
2024-09-09 08:57:42 +00:00
* reg_process_hint_driver - process driver regulatory requests
* @driver_request: a pending driver regulatory request
2024-09-09 08:52:07 +00:00
*
2024-09-09 08:57:42 +00:00
* The wireless subsystem can use this function to process
* a regulatory request issued by an 802.11 driver.
2024-09-09 08:52:07 +00:00
*
2024-09-09 08:57:42 +00:00
* Returns one of the different reg request treatment values.
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
static enum reg_request_treatment
reg_process_hint_driver(struct wiphy *wiphy,
struct regulatory_request *driver_request)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
const struct ieee80211_regdomain *regd, *tmp;
enum reg_request_treatment treatment;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
treatment = __reg_process_hint_driver(driver_request);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
switch (treatment) {
case REG_REQ_OK:
break;
case REG_REQ_IGNORE:
case REG_REQ_USER_HINT_HANDLED:
reg_free_request(driver_request);
return treatment;
case REG_REQ_INTERSECT:
/* fall through */
case REG_REQ_ALREADY_SET:
regd = reg_copy_regd(get_cfg80211_regdom());
if (IS_ERR(regd)) {
reg_free_request(driver_request);
return REG_REQ_IGNORE;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
tmp = get_wiphy_regdom(wiphy);
rcu_assign_pointer(wiphy->regd, regd);
rcu_free_regdom(tmp);
}
driver_request->intersect = treatment == REG_REQ_INTERSECT;
driver_request->processed = false;
reg_update_last_request(driver_request);
/*
* Since CRDA will not be called in this case as we already
* have applied the requested regulatory domain before we just
* inform userspace we have processed the request
*/
if (treatment == REG_REQ_ALREADY_SET) {
nl80211_send_reg_change_event(driver_request);
reg_set_request_processed();
return treatment;
}
return reg_call_crda(driver_request);
}
static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy *wiphy,
struct regulatory_request *country_ie_request)
{
struct wiphy *last_wiphy = NULL;
struct regulatory_request *lr = get_last_request();
if (reg_request_cell_base(lr)) {
/* Trust a Cell base station over the AP's country IE */
if (regdom_changes(country_ie_request->alpha2))
return REG_REQ_IGNORE;
return REG_REQ_ALREADY_SET;
} else {
if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
return REG_REQ_IGNORE;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
return -EINVAL;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
return REG_REQ_OK;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (last_wiphy != wiphy) {
/*
* Two cards with two APs claiming different
* Country IE alpha2s. We could
* intersect them, but that seems unlikely
* to be correct. Reject second one for now.
*/
if (regdom_changes(country_ie_request->alpha2))
return REG_REQ_IGNORE;
return REG_REQ_ALREADY_SET;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
if (regdom_changes(country_ie_request->alpha2))
return REG_REQ_OK;
return REG_REQ_ALREADY_SET;
}
/**
* reg_process_hint_country_ie - process regulatory requests from country IEs
* @country_ie_request: a regulatory request from a country IE
*
* The wireless subsystem can use this function to process
* a regulatory request issued by a country Information Element.
*
* Returns one of the different reg request treatment values.
*/
static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy *wiphy,
struct regulatory_request *country_ie_request)
{
enum reg_request_treatment treatment;
treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
switch (treatment) {
case REG_REQ_OK:
break;
case REG_REQ_IGNORE:
case REG_REQ_USER_HINT_HANDLED:
/* fall through */
case REG_REQ_ALREADY_SET:
reg_free_request(country_ie_request);
return treatment;
case REG_REQ_INTERSECT:
reg_free_request(country_ie_request);
2024-09-09 08:52:07 +00:00
/*
2024-09-09 08:57:42 +00:00
* This doesn't happen yet, not sure we
* ever want to support it for this case.
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
WARN_ONCE(1, "Unexpected intersection for country IEs");
return REG_REQ_IGNORE;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
country_ie_request->intersect = false;
country_ie_request->processed = false;
reg_update_last_request(country_ie_request);
return reg_call_crda(country_ie_request);
2024-09-09 08:52:07 +00:00
}
/* This processes *all* regulatory hints */
2024-09-09 08:57:42 +00:00
static void reg_process_hint(struct regulatory_request *reg_request)
2024-09-09 08:52:07 +00:00
{
struct wiphy *wiphy = NULL;
2024-09-09 08:57:42 +00:00
enum reg_request_treatment treatment;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2024-09-09 08:52:07 +00:00
wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2024-09-09 08:57:42 +00:00
switch (reg_request->initiator) {
case NL80211_REGDOM_SET_BY_CORE:
reg_process_hint_core(reg_request);
2024-09-09 08:52:07 +00:00
return;
2024-09-09 08:57:42 +00:00
case NL80211_REGDOM_SET_BY_USER:
treatment = reg_process_hint_user(reg_request);
if (treatment == REG_REQ_IGNORE ||
treatment == REG_REQ_ALREADY_SET ||
treatment == REG_REQ_USER_HINT_HANDLED)
return;
queue_delayed_work(system_power_efficient_wq,
&reg_timeout, msecs_to_jiffies(3142));
return;
case NL80211_REGDOM_SET_BY_DRIVER:
if (!wiphy)
goto out_free;
treatment = reg_process_hint_driver(wiphy, reg_request);
break;
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
if (!wiphy)
goto out_free;
treatment = reg_process_hint_country_ie(wiphy, reg_request);
break;
default:
WARN(1, "invalid initiator %d\n", reg_request->initiator);
goto out_free;
2024-09-09 08:52:07 +00:00
}
/* This is required so that the orig_* parameters are saved */
2024-09-09 08:57:42 +00:00
if (treatment == REG_REQ_ALREADY_SET && wiphy &&
wiphy->regulatory_flags & REGULATORY_STRICT_REG)
wiphy_update_regulatory(wiphy, reg_request->initiator);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return;
out_free:
reg_free_request(reg_request);
2024-09-09 08:52:07 +00:00
}
/*
* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
* Regulatory hints come on a first come first serve basis and we
* must process each one atomically.
*/
static void reg_process_pending_hints(void)
{
2024-09-09 08:57:42 +00:00
struct regulatory_request *reg_request, *lr;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
lr = get_last_request();
2024-09-09 08:52:07 +00:00
/* When last_request->processed becomes true this will be rescheduled */
2024-09-09 08:57:42 +00:00
if (lr && !lr->processed) {
reg_process_hint(lr);
return;
2024-09-09 08:52:07 +00:00
}
spin_lock(&reg_requests_lock);
if (list_empty(&reg_requests_list)) {
spin_unlock(&reg_requests_lock);
2024-09-09 08:57:42 +00:00
return;
2024-09-09 08:52:07 +00:00
}
reg_request = list_first_entry(&reg_requests_list,
struct regulatory_request,
list);
list_del_init(&reg_request->list);
spin_unlock(&reg_requests_lock);
2024-09-09 08:57:42 +00:00
reg_process_hint(reg_request);
2024-09-09 08:52:07 +00:00
}
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
struct cfg80211_registered_device *rdev;
struct reg_beacon *pending_beacon, *tmp;
/* This goes through the _pending_ beacon list */
spin_lock_bh(&reg_pending_beacons_lock);
list_for_each_entry_safe(pending_beacon, tmp,
&reg_pending_beacons, list) {
list_del_init(&pending_beacon->list);
/* Applies the beacon hint to current wiphys */
list_for_each_entry(rdev, &cfg80211_rdev_list, list)
wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
/* Remembers the beacon hint for new wiphys or reg changes */
list_add_tail(&pending_beacon->list, &reg_beacon_list);
}
spin_unlock_bh(&reg_pending_beacons_lock);
}
static void reg_todo(struct work_struct *work)
{
2024-09-09 08:57:42 +00:00
rtnl_lock();
2024-09-09 08:52:07 +00:00
reg_process_pending_hints();
reg_process_pending_beacon_hints();
2024-09-09 08:57:42 +00:00
rtnl_unlock();
2024-09-09 08:52:07 +00:00
}
static void queue_regulatory_request(struct regulatory_request *request)
{
2024-09-09 08:57:42 +00:00
request->alpha2[0] = toupper(request->alpha2[0]);
request->alpha2[1] = toupper(request->alpha2[1]);
2024-09-09 08:52:07 +00:00
spin_lock(&reg_requests_lock);
list_add_tail(&request->list, &reg_requests_list);
spin_unlock(&reg_requests_lock);
schedule_work(&reg_work);
}
/*
* Core regulatory hint -- happens during cfg80211_init()
* and when we restore regulatory settings.
*/
static int regulatory_hint_core(const char *alpha2)
{
struct regulatory_request *request;
2024-09-09 08:57:42 +00:00
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2024-09-09 08:52:07 +00:00
if (!request)
return -ENOMEM;
request->alpha2[0] = alpha2[0];
request->alpha2[1] = alpha2[1];
request->initiator = NL80211_REGDOM_SET_BY_CORE;
queue_regulatory_request(request);
return 0;
}
/* User hints */
2024-09-09 08:57:42 +00:00
int regulatory_hint_user(const char *alpha2,
enum nl80211_user_reg_hint_type user_reg_hint_type)
2024-09-09 08:52:07 +00:00
{
struct regulatory_request *request;
2024-09-09 08:57:42 +00:00
if (WARN_ON(!alpha2))
return -EINVAL;
2024-09-09 08:52:07 +00:00
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
if (!request)
return -ENOMEM;
2024-09-09 08:57:42 +00:00
request->wiphy_idx = WIPHY_IDX_INVALID;
2024-09-09 08:52:07 +00:00
request->alpha2[0] = alpha2[0];
request->alpha2[1] = alpha2[1];
request->initiator = NL80211_REGDOM_SET_BY_USER;
2024-09-09 08:57:42 +00:00
request->user_reg_hint_type = user_reg_hint_type;
queue_regulatory_request(request);
return 0;
}
EXPORT_SYMBOL(regulatory_hint_user);
int regulatory_hint_indoor_user(void)
{
struct regulatory_request *request;
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
if (!request)
return -ENOMEM;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
request->wiphy_idx = WIPHY_IDX_INVALID;
request->initiator = NL80211_REGDOM_SET_BY_USER;
request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2024-09-09 08:52:07 +00:00
queue_regulatory_request(request);
return 0;
}
/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
struct regulatory_request *request;
2024-09-09 08:57:42 +00:00
if (WARN_ON(!alpha2 || !wiphy))
return -EINVAL;
wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2024-09-09 08:52:07 +00:00
request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
if (!request)
return -ENOMEM;
request->wiphy_idx = get_wiphy_idx(wiphy);
request->alpha2[0] = alpha2[0];
request->alpha2[1] = alpha2[1];
request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
queue_regulatory_request(request);
return 0;
}
EXPORT_SYMBOL(regulatory_hint);
2024-09-09 08:57:42 +00:00
void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
const u8 *country_ie, u8 country_ie_len)
2024-09-09 08:52:07 +00:00
{
char alpha2[2];
enum environment_cap env = ENVIRON_ANY;
2024-09-09 08:57:42 +00:00
struct regulatory_request *request = NULL, *lr;
2024-09-09 08:52:07 +00:00
/* IE len must be evenly divisible by 2 */
if (country_ie_len & 0x01)
2024-09-09 08:57:42 +00:00
return;
2024-09-09 08:52:07 +00:00
if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2024-09-09 08:57:42 +00:00
return;
request = kzalloc(sizeof(*request), GFP_KERNEL);
if (!request)
return;
2024-09-09 08:52:07 +00:00
alpha2[0] = country_ie[0];
alpha2[1] = country_ie[1];
if (country_ie[2] == 'I')
env = ENVIRON_INDOOR;
else if (country_ie[2] == 'O')
env = ENVIRON_OUTDOOR;
2024-09-09 08:57:42 +00:00
rcu_read_lock();
lr = get_last_request();
if (unlikely(!lr))
goto out;
2024-09-09 08:52:07 +00:00
/*
* We will run this only upon a successful connection on cfg80211.
* We leave conflict resolution to the workqueue, where can hold
2024-09-09 08:57:42 +00:00
* the RTNL.
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
lr->wiphy_idx != WIPHY_IDX_INVALID)
2024-09-09 08:52:07 +00:00
goto out;
request->wiphy_idx = get_wiphy_idx(wiphy);
request->alpha2[0] = alpha2[0];
request->alpha2[1] = alpha2[1];
request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
request->country_ie_env = env;
queue_regulatory_request(request);
2024-09-09 08:57:42 +00:00
request = NULL;
2024-09-09 08:52:07 +00:00
out:
2024-09-09 08:57:42 +00:00
kfree(request);
rcu_read_unlock();
2024-09-09 08:52:07 +00:00
}
static void restore_alpha2(char *alpha2, bool reset_user)
{
/* indicates there is no alpha2 to consider for restoration */
alpha2[0] = '9';
alpha2[1] = '7';
/* The user setting has precedence over the module parameter */
if (is_user_regdom_saved()) {
/* Unless we're asked to ignore it and reset it */
if (reset_user) {
2024-09-09 08:57:42 +00:00
REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2024-09-09 08:52:07 +00:00
user_alpha2[0] = '9';
user_alpha2[1] = '7';
/*
* If we're ignoring user settings, we still need to
* check the module parameter to ensure we put things
* back as they were for a full restore.
*/
if (!is_world_regdom(ieee80211_regdom)) {
2024-09-09 08:57:42 +00:00
REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
ieee80211_regdom[0], ieee80211_regdom[1]);
2024-09-09 08:52:07 +00:00
alpha2[0] = ieee80211_regdom[0];
alpha2[1] = ieee80211_regdom[1];
}
} else {
2024-09-09 08:57:42 +00:00
REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
user_alpha2[0], user_alpha2[1]);
2024-09-09 08:52:07 +00:00
alpha2[0] = user_alpha2[0];
alpha2[1] = user_alpha2[1];
}
} else if (!is_world_regdom(ieee80211_regdom)) {
2024-09-09 08:57:42 +00:00
REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
ieee80211_regdom[0], ieee80211_regdom[1]);
2024-09-09 08:52:07 +00:00
alpha2[0] = ieee80211_regdom[0];
alpha2[1] = ieee80211_regdom[1];
} else
REG_DBG_PRINT("Restoring regulatory settings\n");
}
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
struct ieee80211_supported_band *sband;
enum ieee80211_band band;
struct ieee80211_channel *chan;
int i;
for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
sband = wiphy->bands[band];
if (!sband)
continue;
for (i = 0; i < sband->n_channels; i++) {
chan = &sband->channels[i];
chan->flags = chan->orig_flags;
chan->max_antenna_gain = chan->orig_mag;
chan->max_power = chan->orig_mpwr;
2024-09-09 08:57:42 +00:00
chan->beacon_found = false;
2024-09-09 08:52:07 +00:00
}
}
}
/*
* Restoring regulatory settings involves ingoring any
* possibly stale country IE information and user regulatory
* settings if so desired, this includes any beacon hints
* learned as we could have traveled outside to another country
* after disconnection. To restore regulatory settings we do
* exactly what we did at bootup:
*
* - send a core regulatory hint
* - send a user regulatory hint if applicable
*
* Device drivers that send a regulatory hint for a specific country
* keep their own regulatory domain on wiphy->regd so that does does
* not need to be remembered.
*/
static void restore_regulatory_settings(bool reset_user)
{
char alpha2[2];
char world_alpha2[2];
struct reg_beacon *reg_beacon, *btmp;
struct regulatory_request *reg_request, *tmp;
LIST_HEAD(tmp_reg_req_list);
struct cfg80211_registered_device *rdev;
2024-09-09 08:57:42 +00:00
ASSERT_RTNL();
reg_is_indoor = false;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
reset_regdomains(true, &world_regdom);
2024-09-09 08:52:07 +00:00
restore_alpha2(alpha2, reset_user);
/*
* If there's any pending requests we simply
* stash them to a temporary pending queue and
* add then after we've restored regulatory
* settings.
*/
spin_lock(&reg_requests_lock);
2024-09-09 08:57:42 +00:00
list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
continue;
list_move_tail(&reg_request->list, &tmp_reg_req_list);
2024-09-09 08:52:07 +00:00
}
spin_unlock(&reg_requests_lock);
/* Clear beacon hints */
spin_lock_bh(&reg_pending_beacons_lock);
2024-09-09 08:57:42 +00:00
list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
2024-09-09 08:52:07 +00:00
}
spin_unlock_bh(&reg_pending_beacons_lock);
2024-09-09 08:57:42 +00:00
list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
2024-09-09 08:52:07 +00:00
}
/* First restore to the basic regulatory settings */
2024-09-09 08:57:42 +00:00
world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2024-09-09 08:52:07 +00:00
list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2024-09-09 08:57:42 +00:00
if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2024-09-09 08:52:07 +00:00
restore_custom_reg_settings(&rdev->wiphy);
}
regulatory_hint_core(world_alpha2);
/*
* This restores the ieee80211_regdom module parameter
* preference or the last user requested regulatory
* settings, user regulatory settings takes precedence.
*/
if (is_an_alpha2(alpha2))
2024-09-09 08:57:42 +00:00
regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2024-09-09 08:52:07 +00:00
spin_lock(&reg_requests_lock);
2024-09-09 08:57:42 +00:00
list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2024-09-09 08:52:07 +00:00
spin_unlock(&reg_requests_lock);
REG_DBG_PRINT("Kicking the queue\n");
schedule_work(&reg_work);
}
void regulatory_hint_disconnect(void)
{
2024-09-09 08:57:42 +00:00
REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2024-09-09 08:52:07 +00:00
restore_regulatory_settings(false);
}
static bool freq_is_chan_12_13_14(u16 freq)
{
if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
return true;
return false;
}
2024-09-09 08:57:42 +00:00
static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
{
struct reg_beacon *pending_beacon;
list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
if (beacon_chan->center_freq ==
pending_beacon->chan.center_freq)
return true;
return false;
}
2024-09-09 08:52:07 +00:00
int regulatory_hint_found_beacon(struct wiphy *wiphy,
struct ieee80211_channel *beacon_chan,
gfp_t gfp)
{
struct reg_beacon *reg_beacon;
2024-09-09 08:57:42 +00:00
bool processing;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (beacon_chan->beacon_found ||
beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2024-09-09 08:52:07 +00:00
(beacon_chan->band == IEEE80211_BAND_2GHZ &&
2024-09-09 08:57:42 +00:00
!freq_is_chan_12_13_14(beacon_chan->center_freq)))
return 0;
spin_lock_bh(&reg_pending_beacons_lock);
processing = pending_reg_beacon(beacon_chan);
spin_unlock_bh(&reg_pending_beacons_lock);
if (processing)
2024-09-09 08:52:07 +00:00
return 0;
reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
if (!reg_beacon)
return -ENOMEM;
2024-09-09 08:57:42 +00:00
REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2024-09-09 08:52:07 +00:00
beacon_chan->center_freq,
ieee80211_frequency_to_channel(beacon_chan->center_freq),
wiphy_name(wiphy));
memcpy(&reg_beacon->chan, beacon_chan,
2024-09-09 08:57:42 +00:00
sizeof(struct ieee80211_channel));
2024-09-09 08:52:07 +00:00
/*
* Since we can be called from BH or and non-BH context
* we must use spin_lock_bh()
*/
spin_lock_bh(&reg_pending_beacons_lock);
list_add_tail(&reg_beacon->list, &reg_pending_beacons);
spin_unlock_bh(&reg_pending_beacons_lock);
schedule_work(&reg_work);
return 0;
}
static void print_rd_rules(const struct ieee80211_regdomain *rd)
{
unsigned int i;
const struct ieee80211_reg_rule *reg_rule = NULL;
const struct ieee80211_freq_range *freq_range = NULL;
const struct ieee80211_power_rule *power_rule = NULL;
2024-09-09 08:57:42 +00:00
char bw[32], cac_time[32];
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2024-09-09 08:52:07 +00:00
for (i = 0; i < rd->n_reg_rules; i++) {
reg_rule = &rd->reg_rules[i];
freq_range = &reg_rule->freq_range;
power_rule = &reg_rule->power_rule;
2024-09-09 08:57:42 +00:00
if (reg_rule->flags & NL80211_RRF_AUTO_BW)
snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
freq_range->max_bandwidth_khz,
reg_get_max_bandwidth(rd, reg_rule));
else
snprintf(bw, sizeof(bw), "%d KHz",
freq_range->max_bandwidth_khz);
if (reg_rule->flags & NL80211_RRF_DFS)
scnprintf(cac_time, sizeof(cac_time), "%u s",
reg_rule->dfs_cac_ms/1000);
else
scnprintf(cac_time, sizeof(cac_time), "N/A");
2024-09-09 08:52:07 +00:00
/*
* There may not be documentation for max antenna gain
* in certain regions
*/
if (power_rule->max_antenna_gain)
2024-09-09 08:57:42 +00:00
pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2024-09-09 08:52:07 +00:00
freq_range->start_freq_khz,
freq_range->end_freq_khz,
2024-09-09 08:57:42 +00:00
bw,
2024-09-09 08:52:07 +00:00
power_rule->max_antenna_gain,
2024-09-09 08:57:42 +00:00
power_rule->max_eirp,
cac_time);
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2024-09-09 08:52:07 +00:00
freq_range->start_freq_khz,
freq_range->end_freq_khz,
2024-09-09 08:57:42 +00:00
bw,
power_rule->max_eirp,
cac_time);
2024-09-09 08:52:07 +00:00
}
}
2024-09-09 08:57:42 +00:00
bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2024-09-09 08:52:07 +00:00
{
switch (dfs_region) {
case NL80211_DFS_UNSET:
case NL80211_DFS_FCC:
case NL80211_DFS_ETSI:
case NL80211_DFS_JP:
return true;
default:
REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
dfs_region);
return false;
}
}
static void print_regdomain(const struct ieee80211_regdomain *rd)
{
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr = get_last_request();
2024-09-09 08:52:07 +00:00
if (is_intersected_alpha2(rd->alpha2)) {
2024-09-09 08:57:42 +00:00
if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2024-09-09 08:52:07 +00:00
struct cfg80211_registered_device *rdev;
2024-09-09 08:57:42 +00:00
rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2024-09-09 08:52:07 +00:00
if (rdev) {
pr_info("Current regulatory domain updated by AP to: %c%c\n",
rdev->country_ie_alpha2[0],
rdev->country_ie_alpha2[1]);
} else
pr_info("Current regulatory domain intersected:\n");
} else
pr_info("Current regulatory domain intersected:\n");
2024-09-09 08:57:42 +00:00
} else if (is_world_regdom(rd->alpha2)) {
2024-09-09 08:52:07 +00:00
pr_info("World regulatory domain updated:\n");
2024-09-09 08:57:42 +00:00
} else {
2024-09-09 08:52:07 +00:00
if (is_unknown_alpha2(rd->alpha2))
pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2024-09-09 08:57:42 +00:00
else {
if (reg_request_cell_base(lr))
pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
rd->alpha2[0], rd->alpha2[1]);
else
pr_info("Regulatory domain changed to country: %c%c\n",
rd->alpha2[0], rd->alpha2[1]);
}
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2024-09-09 08:52:07 +00:00
print_rd_rules(rd);
}
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
{
pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
print_rd_rules(rd);
}
2024-09-09 08:57:42 +00:00
static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
{
if (!is_world_regdom(rd->alpha2))
return -EINVAL;
update_world_regdomain(rd);
return 0;
}
static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
struct regulatory_request *user_request)
2024-09-09 08:52:07 +00:00
{
const struct ieee80211_regdomain *intersected_rd = NULL;
2024-09-09 08:57:42 +00:00
if (!regdom_changes(rd->alpha2))
return -EALREADY;
if (!is_valid_rd(rd)) {
pr_err("Invalid regulatory domain detected:\n");
print_regdomain_info(rd);
return -EINVAL;
}
if (!user_request->intersect) {
reset_regdomains(false, rd);
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
if (!intersected_rd)
2024-09-09 08:52:07 +00:00
return -EINVAL;
2024-09-09 08:57:42 +00:00
kfree(rd);
rd = NULL;
reset_regdomains(false, intersected_rd);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return 0;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
struct regulatory_request *driver_request)
{
const struct ieee80211_regdomain *regd;
const struct ieee80211_regdomain *intersected_rd = NULL;
const struct ieee80211_regdomain *tmp;
struct wiphy *request_wiphy;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (is_world_regdom(rd->alpha2))
2024-09-09 08:52:07 +00:00
return -EINVAL;
2024-09-09 08:57:42 +00:00
if (!regdom_changes(rd->alpha2))
return -EALREADY;
2024-09-09 08:52:07 +00:00
if (!is_valid_rd(rd)) {
pr_err("Invalid regulatory domain detected:\n");
print_regdomain_info(rd);
return -EINVAL;
}
2024-09-09 08:57:42 +00:00
request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
if (!request_wiphy) {
queue_delayed_work(system_power_efficient_wq,
&reg_timeout, 0);
2024-09-09 08:52:07 +00:00
return -ENODEV;
}
2024-09-09 08:57:42 +00:00
if (!driver_request->intersect) {
2024-09-09 08:52:07 +00:00
if (request_wiphy->regd)
return -EALREADY;
2024-09-09 08:57:42 +00:00
regd = reg_copy_regd(rd);
if (IS_ERR(regd))
return PTR_ERR(regd);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
rcu_assign_pointer(request_wiphy->regd, regd);
reset_regdomains(false, rd);
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
if (!intersected_rd)
return -EINVAL;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/*
* We can trash what CRDA provided now.
* However if a driver requested this specific regulatory
* domain we keep it for its private use
*/
tmp = get_wiphy_regdom(request_wiphy);
rcu_assign_pointer(request_wiphy->regd, rd);
rcu_free_regdom(tmp);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
rd = NULL;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
reset_regdomains(false, intersected_rd);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return 0;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
struct regulatory_request *country_ie_request)
{
struct wiphy *request_wiphy;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
!is_unknown_alpha2(rd->alpha2))
2024-09-09 08:52:07 +00:00
return -EINVAL;
2024-09-09 08:57:42 +00:00
/*
* Lets only bother proceeding on the same alpha2 if the current
* rd is non static (it means CRDA was present and was used last)
* and the pending request came in from a country IE
*/
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (!is_valid_rd(rd)) {
pr_err("Invalid regulatory domain detected:\n");
print_regdomain_info(rd);
return -EINVAL;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
if (!request_wiphy) {
queue_delayed_work(system_power_efficient_wq,
&reg_timeout, 0);
return -ENODEV;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (country_ie_request->intersect)
return -EINVAL;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
reset_regdomains(false, rd);
2024-09-09 08:52:07 +00:00
return 0;
}
/*
* Use this call to set the current regulatory domain. Conflicts with
* multiple drivers can be ironed out later. Caller must've already
2024-09-09 08:57:42 +00:00
* kmalloc'd the rd structure.
2024-09-09 08:52:07 +00:00
*/
int set_regdom(const struct ieee80211_regdomain *rd)
{
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr;
bool user_reset = false;
2024-09-09 08:52:07 +00:00
int r;
2024-09-09 08:57:42 +00:00
if (!reg_is_valid_request(rd->alpha2)) {
kfree(rd);
return -EINVAL;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
lr = get_last_request();
2024-09-09 08:52:07 +00:00
/* Note that this doesn't update the wiphys, this is done below */
2024-09-09 08:57:42 +00:00
switch (lr->initiator) {
case NL80211_REGDOM_SET_BY_CORE:
r = reg_set_rd_core(rd);
break;
case NL80211_REGDOM_SET_BY_USER:
r = reg_set_rd_user(rd, lr);
user_reset = true;
break;
case NL80211_REGDOM_SET_BY_DRIVER:
r = reg_set_rd_driver(rd, lr);
break;
case NL80211_REGDOM_SET_BY_COUNTRY_IE:
r = reg_set_rd_country_ie(rd, lr);
break;
default:
WARN(1, "invalid initiator %d\n", lr->initiator);
return -EINVAL;
}
2024-09-09 08:52:07 +00:00
if (r) {
2024-09-09 08:57:42 +00:00
switch (r) {
case -EALREADY:
reg_set_request_processed();
break;
default:
/* Back to world regulatory in case of errors */
restore_regulatory_settings(user_reset);
}
2024-09-09 08:52:07 +00:00
kfree(rd);
return r;
}
/* This would make this whole thing pointless */
2024-09-09 08:57:42 +00:00
if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
return -EINVAL;
2024-09-09 08:52:07 +00:00
/* update all wiphys now with the new established regulatory domain */
2024-09-09 08:57:42 +00:00
update_all_wiphy_regulatory(lr->initiator);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
print_regdomain(get_cfg80211_regdom());
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
nl80211_send_reg_change_event(lr);
2024-09-09 08:52:07 +00:00
reg_set_request_processed();
2024-09-09 08:57:42 +00:00
return 0;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
void wiphy_regulatory_register(struct wiphy *wiphy)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (!reg_dev_ignore_cell_hint(wiphy))
reg_num_devs_support_basehint++;
lr = get_last_request();
wiphy_update_regulatory(wiphy, lr->initiator);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
void wiphy_regulatory_deregister(struct wiphy *wiphy)
2024-09-09 08:52:07 +00:00
{
struct wiphy *request_wiphy = NULL;
2024-09-09 08:57:42 +00:00
struct regulatory_request *lr;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
lr = get_last_request();
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (!reg_dev_ignore_cell_hint(wiphy))
reg_num_devs_support_basehint--;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
rcu_free_regdom(get_wiphy_regdom(wiphy));
RCU_INIT_POINTER(wiphy->regd, NULL);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (lr)
request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2024-09-09 08:52:07 +00:00
if (!request_wiphy || request_wiphy != wiphy)
2024-09-09 08:57:42 +00:00
return;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
lr->wiphy_idx = WIPHY_IDX_INVALID;
lr->country_ie_env = ENVIRON_ANY;
2024-09-09 08:52:07 +00:00
}
static void reg_timeout_work(struct work_struct *work)
{
2024-09-09 08:57:42 +00:00
REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
rtnl_lock();
2024-09-09 08:52:07 +00:00
restore_regulatory_settings(true);
2024-09-09 08:57:42 +00:00
rtnl_unlock();
}
/*
* See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
* UNII band definitions
*/
int cfg80211_get_unii(int freq)
{
/* UNII-1 */
if (freq >= 5150 && freq <= 5250)
return 0;
/* UNII-2A */
if (freq > 5250 && freq <= 5350)
return 1;
/* UNII-2B */
if (freq > 5350 && freq <= 5470)
return 2;
/* UNII-2C */
if (freq > 5470 && freq <= 5725)
return 3;
/* UNII-3 */
if (freq > 5725 && freq <= 5825)
return 4;
return -EINVAL;
}
bool regulatory_indoor_allowed(void)
{
return reg_is_indoor;
2024-09-09 08:52:07 +00:00
}
int __init regulatory_init(void)
{
int err = 0;
reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
if (IS_ERR(reg_pdev))
return PTR_ERR(reg_pdev);
spin_lock_init(&reg_requests_lock);
spin_lock_init(&reg_pending_beacons_lock);
2024-09-09 08:57:42 +00:00
reg_regdb_size_check();
rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2024-09-09 08:52:07 +00:00
user_alpha2[0] = '9';
user_alpha2[1] = '7';
/* We always try to get an update for the static regdomain */
2024-09-09 08:57:42 +00:00
err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2024-09-09 08:52:07 +00:00
if (err) {
if (err == -ENOMEM)
return err;
/*
* N.B. kobject_uevent_env() can fail mainly for when we're out
* memory which is handled and propagated appropriately above
* but it can also fail during a netlink_broadcast() or during
* early boot for call_usermodehelper(). For now treat these
* errors as non-fatal.
*/
pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
}
/*
* Finally, if the user set the module parameter treat it
* as a user hint.
*/
if (!is_world_regdom(ieee80211_regdom))
2024-09-09 08:57:42 +00:00
regulatory_hint_user(ieee80211_regdom,
NL80211_USER_REG_HINT_USER);
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
void regulatory_exit(void)
2024-09-09 08:52:07 +00:00
{
struct regulatory_request *reg_request, *tmp;
struct reg_beacon *reg_beacon, *btmp;
cancel_work_sync(&reg_work);
cancel_delayed_work_sync(&reg_timeout);
2024-09-09 08:57:42 +00:00
/* Lock to suppress warnings */
rtnl_lock();
reset_regdomains(true, NULL);
rtnl_unlock();
2024-09-09 08:52:07 +00:00
dev_set_uevent_suppress(&reg_pdev->dev, true);
platform_device_unregister(reg_pdev);
2024-09-09 08:57:42 +00:00
list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
list_del(&reg_beacon->list);
kfree(reg_beacon);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
list_del(&reg_request->list);
kfree(reg_request);
2024-09-09 08:52:07 +00:00
}
}