M7350/kernel/drivers/video/msm/mdss/mdss_smmu.c

718 lines
19 KiB
C
Raw Normal View History

2024-09-09 08:57:42 +00:00
/* Copyright (c) 2007-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/iommu.h>
#include <linux/qcom_iommu.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/clk/msm-clk.h>
#include <linux/dma-mapping.h>
#include <linux/dma-buf.h>
#include <linux/of_platform.h>
#include <linux/msm_dma_iommu_mapping.h>
#include <linux/qcom_iommu.h>
#include <asm/dma-iommu.h>
#include "soc/qcom/secure_buffer.h"
#include "mdss.h"
#include "mdss_mdp.h"
#include "mdss_smmu.h"
static DEFINE_MUTEX(mdp_iommu_lock);
void mdss_iommu_lock(void)
{
mutex_lock(&mdp_iommu_lock);
}
void mdss_iommu_unlock(void)
{
mutex_unlock(&mdp_iommu_lock);
}
static int mdss_smmu_util_parse_dt_clock(struct platform_device *pdev,
struct dss_module_power *mp)
{
u32 i = 0, rc = 0;
const char *clock_name;
u32 clock_rate;
int num_clk;
num_clk = of_property_count_strings(pdev->dev.of_node,
"clock-names");
if (num_clk <= 0) {
pr_err("clocks are not defined\n");
goto clk_err;
}
mp->num_clk = num_clk;
mp->clk_config = devm_kzalloc(&pdev->dev,
sizeof(struct dss_clk) * mp->num_clk, GFP_KERNEL);
if (!mp->clk_config) {
pr_err("clock configuration allocation failed\n");
rc = -ENOMEM;
mp->num_clk = 0;
goto clk_err;
}
for (i = 0; i < mp->num_clk; i++) {
of_property_read_string_index(pdev->dev.of_node, "clock-names",
i, &clock_name);
strlcpy(mp->clk_config[i].clk_name, clock_name,
sizeof(mp->clk_config[i].clk_name));
of_property_read_u32_index(pdev->dev.of_node, "clock-rate",
i, &clock_rate);
mp->clk_config[i].rate = clock_rate;
if (!clock_rate)
mp->clk_config[i].type = DSS_CLK_AHB;
else
mp->clk_config[i].type = DSS_CLK_PCLK;
}
clk_err:
return rc;
}
static int mdss_smmu_clk_register(struct platform_device *pdev,
struct dss_module_power *mp)
{
int i, ret;
struct clk *clk;
ret = mdss_smmu_util_parse_dt_clock(pdev, mp);
if (ret) {
pr_err("unable to parse clocks\n");
return -EINVAL;
}
for (i = 0; i < mp->num_clk; i++) {
clk = devm_clk_get(&pdev->dev,
mp->clk_config[i].clk_name);
if (IS_ERR(clk)) {
pr_err("unable to get clk: %s\n",
mp->clk_config[i].clk_name);
return PTR_ERR(clk);
}
mp->clk_config[i].clk = clk;
}
return 0;
}
static int mdss_smmu_enable_power(struct mdss_smmu_client *mdss_smmu,
bool enable)
{
int rc = 0;
struct dss_module_power *mp;
if (!mdss_smmu)
return -EINVAL;
mp = &mdss_smmu->mp;
if (!mp->num_vreg && !mp->num_clk)
return 0;
if (enable) {
rc = msm_dss_enable_vreg(mp->vreg_config, mp->num_vreg, true);
if (rc) {
pr_err("vreg enable failed - rc:%d\n", rc);
goto end;
}
mdss_update_reg_bus_vote(mdss_smmu->reg_bus_clt,
VOTE_INDEX_19_MHZ);
rc = msm_dss_enable_clk(mp->clk_config, mp->num_clk, true);
if (rc) {
pr_err("clock enable failed - rc:%d\n", rc);
mdss_update_reg_bus_vote(mdss_smmu->reg_bus_clt,
VOTE_INDEX_DISABLE);
msm_dss_enable_vreg(mp->vreg_config, mp->num_vreg,
false);
goto end;
}
} else {
msm_dss_enable_clk(mp->clk_config, mp->num_clk, false);
mdss_update_reg_bus_vote(mdss_smmu->reg_bus_clt,
VOTE_INDEX_DISABLE);
msm_dss_enable_vreg(mp->vreg_config, mp->num_vreg, false);
}
end:
return rc;
}
/*
* mdss_smmu_v2_attach()
*
* Associates each configured VA range with the corresponding smmu context
* bank device. Enables the clks as smmu_v2 requires voting it before the usage.
* And iommu attach is done only once during the initial attach and it is never
* detached as smmu v2 uses a feature called 'retention'.
*/
static int mdss_smmu_attach_v2(struct mdss_data_type *mdata)
{
struct mdss_smmu_client *mdss_smmu;
int i, rc = 0;
for (i = 0; i < MDSS_IOMMU_MAX_DOMAIN; i++) {
if (!mdss_smmu_is_valid_domain_type(mdata, i))
continue;
mdss_smmu = mdss_smmu_get_cb(i);
if (mdss_smmu && mdss_smmu->dev) {
if (!mdss_smmu->handoff_pending) {
rc = mdss_smmu_enable_power(mdss_smmu, true);
if (rc) {
pr_err("power enable failed - domain:[%d] rc:%d\n",
i, rc);
goto err;
}
}
mdss_smmu->handoff_pending = false;
if (!mdss_smmu->domain_attached) {
rc = arm_iommu_attach_device(mdss_smmu->dev,
mdss_smmu->mmu_mapping);
if (rc) {
pr_err("iommu attach device failed for domain[%d] with err:%d\n",
i, rc);
mdss_smmu_enable_power(mdss_smmu,
false);
goto err;
}
mdss_smmu->domain_attached = true;
pr_debug("iommu v2 domain[%i] attached\n", i);
}
} else {
pr_err("iommu device not attached for domain[%d]\n", i);
return -ENODEV;
}
}
return 0;
err:
for (i--; i >= 0; i--) {
mdss_smmu = mdss_smmu_get_cb(i);
if (mdss_smmu && mdss_smmu->dev) {
arm_iommu_detach_device(mdss_smmu->dev);
mdss_smmu_enable_power(mdss_smmu, false);
mdss_smmu->domain_attached = false;
}
}
return rc;
}
/*
* mdss_smmu_v2_detach()
*
* Only disables the clks as it is not required to detach the iommu mapped
* VA range from the device in smmu_v2 as explained in the mdss_smmu_v2_attach
*/
static int mdss_smmu_detach_v2(struct mdss_data_type *mdata)
{
struct mdss_smmu_client *mdss_smmu;
int i;
for (i = 0; i < MDSS_IOMMU_MAX_DOMAIN; i++) {
if (!mdss_smmu_is_valid_domain_type(mdata, i))
continue;
mdss_smmu = mdss_smmu_get_cb(i);
if (mdss_smmu && mdss_smmu->dev && !mdss_smmu->handoff_pending)
mdss_smmu_enable_power(mdss_smmu, false);
}
return 0;
}
static int mdss_smmu_get_domain_id_v2(u32 type)
{
return type;
}
/*
* mdss_smmu_dma_buf_attach_v2()
*
* Same as mdss_smmu_dma_buf_attach except that the device is got from
* the configured smmu v2 context banks.
*/
static struct dma_buf_attachment *mdss_smmu_dma_buf_attach_v2(
struct dma_buf *dma_buf, struct device *dev, int domain)
{
struct mdss_smmu_client *mdss_smmu = mdss_smmu_get_cb(domain);
if (!mdss_smmu) {
pr_err("not able to get smmu context\n");
return NULL;
}
return dma_buf_attach(dma_buf, mdss_smmu->dev);
}
/*
* mdss_smmu_map_dma_buf_v2()
*
* Maps existing buffer (by struct scatterlist) into SMMU context bank device.
* From which we can take the virtual address and size allocated.
* msm_map_dma_buf is depricated with smmu v2 and it uses dma_map_sg instead
*/
static int mdss_smmu_map_dma_buf_v2(struct dma_buf *dma_buf,
struct sg_table *table, int domain, dma_addr_t *iova,
unsigned long *size, int dir)
{
int rc;
struct mdss_smmu_client *mdss_smmu = mdss_smmu_get_cb(domain);
if (!mdss_smmu) {
pr_err("not able to get smmu context\n");
return -EINVAL;
}
ATRACE_BEGIN("map_buffer");
rc = msm_dma_map_sg_lazy(mdss_smmu->dev, table->sgl, table->nents, dir,
dma_buf);
if (rc != table->nents) {
pr_err("dma map sg failed\n");
return -ENOMEM;
}
ATRACE_END("map_buffer");
*iova = table->sgl->dma_address;
*size = table->sgl->dma_length;
return 0;
}
static void mdss_smmu_unmap_dma_buf_v2(struct sg_table *table, int domain,
int dir, struct dma_buf *dma_buf)
{
struct mdss_smmu_client *mdss_smmu = mdss_smmu_get_cb(domain);
if (!mdss_smmu) {
pr_err("not able to get smmu context\n");
return;
}
ATRACE_BEGIN("unmap_buffer");
msm_dma_unmap_sg(mdss_smmu->dev, table->sgl, table->nents, dir,
dma_buf);
ATRACE_END("unmap_buffer");
}
/*
* mdss_smmu_dma_alloc_coherent_v2()
*
* Allocates buffer same as mdss_smmu_dma_alloc_coherent_v1, but in addition it
* also maps to the SMMU domain with the help of the respective SMMU context
* bank device
*/
static int mdss_smmu_dma_alloc_coherent_v2(struct device *dev, size_t size,
dma_addr_t *phys, dma_addr_t *iova, void *cpu_addr,
gfp_t gfp, int domain)
{
struct mdss_smmu_client *mdss_smmu = mdss_smmu_get_cb(domain);
if (!mdss_smmu) {
pr_err("not able to get smmu context\n");
return -EINVAL;
}
cpu_addr = dma_alloc_coherent(mdss_smmu->dev, size, iova, gfp);
if (!cpu_addr) {
pr_err("dma alloc coherent failed!\n");
return -ENOMEM;
}
*phys = iommu_iova_to_phys(mdss_smmu->mmu_mapping->domain,
*iova);
return 0;
}
static void mdss_smmu_dma_free_coherent_v2(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t phys, dma_addr_t iova, int domain)
{
struct mdss_smmu_client *mdss_smmu = mdss_smmu_get_cb(domain);
if (!mdss_smmu) {
pr_err("not able to get smmu context\n");
return;
}
dma_free_coherent(mdss_smmu->dev, size, cpu_addr, iova);
}
/*
* mdss_smmu_map_v1()
*
* Same as mdss_smmu_map_v1, just that it maps to the appropriate domain
* referred by the smmu context bank handles.
*/
static int mdss_smmu_map_v2(int domain, phys_addr_t iova, phys_addr_t phys,
int gfp_order, int prot)
{
struct mdss_smmu_client *mdss_smmu = mdss_smmu_get_cb(domain);
if (!mdss_smmu) {
pr_err("not able to get smmu context\n");
return -EINVAL;
}
return iommu_map(mdss_smmu->mmu_mapping->domain,
iova, phys, gfp_order, prot);
}
static void mdss_smmu_unmap_v2(int domain, unsigned long iova, int gfp_order)
{
struct mdss_smmu_client *mdss_smmu = mdss_smmu_get_cb(domain);
if (!mdss_smmu) {
pr_err("not able to get smmu context\n");
return;
}
iommu_unmap(mdss_smmu->mmu_mapping->domain, iova, gfp_order);
}
/*
* mdss_smmUdsi_alloc_buf_v2()
*
* Allocates the buffer and mapping is done later
*/
static char *mdss_smmu_dsi_alloc_buf_v2(struct device *dev, int size,
dma_addr_t *dmap, gfp_t gfp)
{
char *data;
data = kzalloc(size, GFP_KERNEL | GFP_DMA);
if (data)
*dmap = (dma_addr_t) virt_to_phys(data);
return data;
}
/*
* mdss_smmu_dsi_map_buffer_v2()
*
* Maps the buffer allocated in mdss_smmu_dsi_alloc_buffer_v2 with the SMMU
* domain and uses dma_map_single as msm_iommu_map_contig_buffer is depricated
* in smmu v2.
*/
static int mdss_smmu_dsi_map_buffer_v2(phys_addr_t phys, unsigned int domain,
unsigned long size, dma_addr_t *dma_addr, void *cpu_addr,
int dir)
{
struct mdss_smmu_client *mdss_smmu = mdss_smmu_get_cb(domain);
if (!mdss_smmu) {
pr_err("not able to get smmu context\n");
return -EINVAL;
}
*dma_addr = dma_map_single(mdss_smmu->dev, cpu_addr, size, dir);
if (IS_ERR_VALUE(*dma_addr)) {
pr_err("dma map single failed\n");
return -ENOMEM;
}
return 0;
}
static void mdss_smmu_dsi_unmap_buffer_v2(dma_addr_t dma_addr, int domain,
unsigned long size, int dir)
{
struct mdss_smmu_client *mdss_smmu = mdss_smmu_get_cb(domain);
if (!mdss_smmu) {
pr_err("not able to get smmu context\n");
return;
}
if (is_mdss_iommu_attached())
dma_unmap_single(mdss_smmu->dev, dma_addr, size, dir);
}
static void mdss_smmu_deinit_v2(struct mdss_data_type *mdata)
{
int i;
struct mdss_smmu_client *mdss_smmu;
for (i = 0; i < MDSS_IOMMU_MAX_DOMAIN; i++) {
mdss_smmu = mdss_smmu_get_cb(i);
if (mdss_smmu && mdss_smmu->dev)
arm_iommu_release_mapping(mdss_smmu->mmu_mapping);
}
}
static void mdss_smmu_ops_init(struct mdss_data_type *mdata)
{
mdata->smmu_ops.smmu_attach = mdss_smmu_attach_v2;
mdata->smmu_ops.smmu_detach = mdss_smmu_detach_v2;
mdata->smmu_ops.smmu_get_domain_id = mdss_smmu_get_domain_id_v2;
mdata->smmu_ops.smmu_dma_buf_attach =
mdss_smmu_dma_buf_attach_v2;
mdata->smmu_ops.smmu_map_dma_buf = mdss_smmu_map_dma_buf_v2;
mdata->smmu_ops.smmu_unmap_dma_buf = mdss_smmu_unmap_dma_buf_v2;
mdata->smmu_ops.smmu_dma_alloc_coherent =
mdss_smmu_dma_alloc_coherent_v2;
mdata->smmu_ops.smmu_dma_free_coherent =
mdss_smmu_dma_free_coherent_v2;
mdata->smmu_ops.smmu_map = mdss_smmu_map_v2;
mdata->smmu_ops.smmu_unmap = mdss_smmu_unmap_v2;
mdata->smmu_ops.smmu_dsi_alloc_buf = mdss_smmu_dsi_alloc_buf_v2;
mdata->smmu_ops.smmu_dsi_map_buffer =
mdss_smmu_dsi_map_buffer_v2;
mdata->smmu_ops.smmu_dsi_unmap_buffer =
mdss_smmu_dsi_unmap_buffer_v2;
mdata->smmu_ops.smmu_deinit = mdss_smmu_deinit_v2;
}
/*
* mdss_smmu_device_create()
* @dev: mdss_mdp device
*
* For smmu_v2, each context bank is a seperate child device of mdss_mdp.
* Platform devices are created for those smmu related child devices of
* mdss_mdp here. This would facilitate probes to happen for these devices in
* which the smmu mapping and initilization is handled.
*/
void mdss_smmu_device_create(struct device *dev)
{
struct device_node *parent, *child;
parent = dev->of_node;
for_each_child_of_node(parent, child) {
if (is_mdss_smmu_compatible_device(child->name))
of_platform_device_create(child, NULL, dev);
}
}
int mdss_smmu_init(struct mdss_data_type *mdata, struct device *dev)
{
mdss_smmu_device_create(dev);
mdss_smmu_ops_init(mdata);
mdata->mdss_util->iommu_lock = mdss_iommu_lock;
mdata->mdss_util->iommu_unlock = mdss_iommu_unlock;
return 0;
}
static struct mdss_smmu_domain mdss_mdp_unsec = {
"mdp_0", MDSS_IOMMU_DOMAIN_UNSECURE, SZ_128K, (SZ_1G - SZ_128K)};
static struct mdss_smmu_domain mdss_rot_unsec = {
NULL, MDSS_IOMMU_DOMAIN_ROT_UNSECURE, SZ_128K, (SZ_1G - SZ_128K)};
static struct mdss_smmu_domain mdss_mdp_sec = {
"mdp_1", MDSS_IOMMU_DOMAIN_SECURE, SZ_1G, SZ_2G};
static struct mdss_smmu_domain mdss_rot_sec = {
NULL, MDSS_IOMMU_DOMAIN_ROT_SECURE, SZ_1G, SZ_2G};
static const struct of_device_id mdss_smmu_dt_match[] = {
{ .compatible = "qcom,smmu_mdp_unsec", .data = &mdss_mdp_unsec},
{ .compatible = "qcom,smmu_rot_unsec", .data = &mdss_rot_unsec},
{ .compatible = "qcom,smmu_mdp_sec", .data = &mdss_mdp_sec},
{ .compatible = "qcom,smmu_rot_sec", .data = &mdss_rot_sec},
{}
};
MODULE_DEVICE_TABLE(of, mdss_smmu_dt_match);
/*
* mdss_smmu_probe()
* @pdev: platform device
*
* Each smmu context acts as a separate device and the context banks are
* configured with a VA range.
* Registeres the clks as each context bank has its own clks, for which voting
* has to be done everytime before using that context bank.
*/
int mdss_smmu_probe(struct platform_device *pdev)
{
struct device *dev;
struct mdss_data_type *mdata = mdss_mdp_get_mdata();
struct mdss_smmu_client *mdss_smmu;
int rc = 0;
struct mdss_smmu_domain smmu_domain;
const struct of_device_id *match;
struct dss_module_power *mp;
int disable_htw = 1;
char name[MAX_CLIENT_NAME_LEN];
if (!mdata) {
pr_err("probe failed as mdata is not initialized\n");
return -EPROBE_DEFER;
}
match = of_match_device(mdss_smmu_dt_match, &pdev->dev);
if (!match || !match->data) {
pr_err("probe failed as match data is invalid\n");
return -EINVAL;
}
smmu_domain = *(struct mdss_smmu_domain *) (match->data);
if (smmu_domain.domain >= MDSS_IOMMU_MAX_DOMAIN) {
pr_err("no matching device found\n");
return -EINVAL;
}
if (of_find_property(pdev->dev.of_node, "iommus", NULL)) {
dev = &pdev->dev;
} else {
/*
* For old iommu driver we query the context bank device
* rather than getting it from dt.
*/
dev = msm_iommu_get_ctx(smmu_domain.ctx_name);
if (!dev) {
pr_err("Invalid SMMU ctx for domain:%d\n",
smmu_domain.domain);
return -EINVAL;
}
}
mdss_smmu = &mdata->mdss_smmu[smmu_domain.domain];
mp = &mdss_smmu->mp;
memset(mp, 0, sizeof(struct dss_module_power));
if (of_find_property(pdev->dev.of_node,
"gdsc-mmagic-mdss-supply", NULL)) {
mp->vreg_config = devm_kzalloc(&pdev->dev,
sizeof(struct dss_vreg), GFP_KERNEL);
if (!mp->vreg_config)
return -ENOMEM;
strlcpy(mp->vreg_config->vreg_name, "gdsc-mmagic-mdss",
sizeof(mp->vreg_config->vreg_name));
mp->num_vreg = 1;
}
rc = msm_dss_config_vreg(&pdev->dev, mp->vreg_config,
mp->num_vreg, true);
if (rc) {
pr_err("vreg config failed rc=%d\n", rc);
return rc;
}
rc = mdss_smmu_clk_register(pdev, mp);
if (rc) {
pr_err("smmu clk register failed for domain[%d] with err:%d\n",
smmu_domain.domain, rc);
msm_dss_config_vreg(&pdev->dev, mp->vreg_config, mp->num_vreg,
false);
return rc;
}
snprintf(name, MAX_CLIENT_NAME_LEN, "smmu:%u", smmu_domain.domain);
mdss_smmu->reg_bus_clt = mdss_reg_bus_vote_client_create(name);
if (IS_ERR_OR_NULL(mdss_smmu->reg_bus_clt)) {
pr_err("mdss bus client register failed\n");
msm_dss_config_vreg(&pdev->dev, mp->vreg_config, mp->num_vreg,
false);
return PTR_ERR(mdss_smmu->reg_bus_clt);
}
rc = mdss_smmu_enable_power(mdss_smmu, true);
if (rc) {
pr_err("power enable failed - domain:[%d] rc:%d\n",
smmu_domain.domain, rc);
goto bus_client_destroy;
}
mdss_smmu->mmu_mapping = arm_iommu_create_mapping(
msm_iommu_get_bus(dev), smmu_domain.start, smmu_domain.size);
if (IS_ERR(mdss_smmu->mmu_mapping)) {
pr_err("iommu create mapping failed for domain[%d]\n",
smmu_domain.domain);
rc = PTR_ERR(mdss_smmu->mmu_mapping);
goto disable_power;
}
rc = iommu_domain_set_attr(mdss_smmu->mmu_mapping->domain,
DOMAIN_ATTR_COHERENT_HTW_DISABLE, &disable_htw);
if (rc) {
pr_err("couldn't disable coherent HTW\n");
goto release_mapping;
}
if (smmu_domain.domain == MDSS_IOMMU_DOMAIN_SECURE ||
smmu_domain.domain == MDSS_IOMMU_DOMAIN_ROT_SECURE) {
int secure_vmid = VMID_CP_PIXEL;
rc = iommu_domain_set_attr(mdss_smmu->mmu_mapping->domain,
DOMAIN_ATTR_SECURE_VMID, &secure_vmid);
if (rc) {
pr_err("couldn't set secure pixel vmid\n");
goto release_mapping;
}
}
if (!mdata->handoff_pending)
mdss_smmu_enable_power(mdss_smmu, false);
else
mdss_smmu->handoff_pending = true;
mdss_smmu->dev = dev;
pr_info("iommu v2 domain[%d] mapping and clk register successful!\n",
smmu_domain.domain);
return 0;
release_mapping:
arm_iommu_release_mapping(mdss_smmu->mmu_mapping);
disable_power:
mdss_smmu_enable_power(mdss_smmu, false);
bus_client_destroy:
mdss_reg_bus_vote_client_destroy(mdss_smmu->reg_bus_clt);
mdss_smmu->reg_bus_clt = NULL;
msm_dss_config_vreg(&pdev->dev, mp->vreg_config, mp->num_vreg,
false);
return rc;
}
int mdss_smmu_remove(struct platform_device *pdev)
{
int i;
struct mdss_smmu_client *mdss_smmu;
for (i = 0; i < MDSS_IOMMU_MAX_DOMAIN; i++) {
mdss_smmu = mdss_smmu_get_cb(i);
if (mdss_smmu && mdss_smmu->dev &&
(mdss_smmu->dev == &pdev->dev))
arm_iommu_release_mapping(mdss_smmu->mmu_mapping);
}
return 0;
}
static struct platform_driver mdss_smmu_driver = {
.probe = mdss_smmu_probe,
.remove = mdss_smmu_remove,
.shutdown = NULL,
.driver = {
.name = "mdss_smmu",
.of_match_table = mdss_smmu_dt_match,
},
};
static int mdss_smmu_register_driver(void)
{
return platform_driver_register(&mdss_smmu_driver);
}
static int __init mdss_smmu_driver_init(void)
{
int ret;
ret = mdss_smmu_register_driver();
if (ret)
pr_err("mdss_smmu_register_driver() failed!\n");
return ret;
}
module_init(mdss_smmu_driver_init);
static void __exit mdss_smmu_driver_cleanup(void)
{
platform_driver_unregister(&mdss_smmu_driver);
}
module_exit(mdss_smmu_driver_cleanup);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MDSS SMMU driver");