M7350/kernel/drivers/usb/phy/phy-msm-ssusb.c

596 lines
16 KiB
C
Raw Normal View History

2024-09-09 08:57:42 +00:00
/*
* Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/clk/msm-clk.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/phy.h>
#include <linux/usb/msm_hsusb.h>
static int ss_phy_override_deemphasis;
module_param(ss_phy_override_deemphasis, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(ss_phy_override_deemphasis, "Override SSPHY demphasis value");
/* QSCRATCH SSPHY control registers */
#define SS_PHY_CTRL_REG 0x30
#define SS_PHY_PARAM_CTRL_1 0x34
#define SS_PHY_PARAM_CTRL_2 0x38
#define SS_CR_PROTOCOL_DATA_IN_REG 0x3C
#define SS_CR_PROTOCOL_DATA_OUT_REG 0x40
#define SS_CR_PROTOCOL_CAP_ADDR_REG 0x44
#define SS_CR_PROTOCOL_CAP_DATA_REG 0x48
#define SS_CR_PROTOCOL_READ_REG 0x4C
#define SS_CR_PROTOCOL_WRITE_REG 0x50
/* SS_PHY_CTRL_REG bits */
#define SS_PHY_RESET BIT(7)
#define REF_SS_PHY_EN BIT(8)
#define LANE0_PWR_PRESENT BIT(24)
#define TEST_POWERDOWN BIT(26)
#define REF_USE_PAD BIT(28)
#define USB_SSPHY_1P8_VOL_MIN 1800000 /* uV */
#define USB_SSPHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_SSPHY_1P8_HPM_LOAD 23000 /* uA */
struct msm_ssphy {
struct usb_phy phy;
void __iomem *base;
struct clk *core_clk; /* USB3 master clock */
struct clk *com_reset_clk; /* PHY common block reset */
struct clk *reset_clk; /* SS PHY reset */
struct regulator *vdd;
struct regulator *vdda18;
atomic_t active_count; /* num of active instances */
bool suspended;
int vdd_levels[3]; /* none, low, high */
int deemphasis_val;
};
static int msm_ssusb_config_vdd(struct msm_ssphy *phy, int high)
{
int min, ret;
min = high ? 1 : 0; /* low or none? */
ret = regulator_set_voltage(phy->vdd, phy->vdd_levels[min],
phy->vdd_levels[2]);
if (ret) {
dev_err(phy->phy.dev, "unable to set voltage for ssusb vdd\n");
return ret;
}
dev_dbg(phy->phy.dev, "%s: min_vol:%d max_vol:%d\n", __func__,
phy->vdd_levels[min], phy->vdd_levels[2]);
return ret;
}
static int msm_ssusb_ldo_enable(struct msm_ssphy *phy, int on)
{
int rc = 0;
dev_dbg(phy->phy.dev, "reg (%s)\n", on ? "HPM" : "LPM");
if (!on)
goto disable_regulators;
rc = regulator_set_optimum_mode(phy->vdda18, USB_SSPHY_1P8_HPM_LOAD);
if (rc < 0) {
dev_err(phy->phy.dev, "Unable to set HPM of vdda18\n");
return rc;
}
rc = regulator_set_voltage(phy->vdda18, USB_SSPHY_1P8_VOL_MIN,
USB_SSPHY_1P8_VOL_MAX);
if (rc) {
dev_err(phy->phy.dev, "unable to set voltage for vdda18\n");
goto put_vdda18_lpm;
}
rc = regulator_enable(phy->vdda18);
if (rc) {
dev_err(phy->phy.dev, "Unable to enable vdda18\n");
goto unset_vdda18;
}
return 0;
disable_regulators:
rc = regulator_disable(phy->vdda18);
if (rc)
dev_err(phy->phy.dev, "Unable to disable vdda18\n");
unset_vdda18:
rc = regulator_set_voltage(phy->vdda18, 0, USB_SSPHY_1P8_VOL_MAX);
if (rc)
dev_err(phy->phy.dev, "unable to set voltage for vdda18\n");
put_vdda18_lpm:
rc = regulator_set_optimum_mode(phy->vdda18, 0);
if (rc < 0)
dev_err(phy->phy.dev, "Unable to set LPM of vdda18\n");
return rc < 0 ? rc : 0;
}
static void msm_usb_write_readback(void *base, u32 offset,
const u32 mask, u32 val)
{
u32 write_val, tmp = readl_relaxed(base + offset);
tmp &= ~mask; /* retain other bits */
write_val = tmp | val;
writel_relaxed(write_val, base + offset);
/* Read back to see if val was written */
tmp = readl_relaxed(base + offset);
tmp &= mask; /* clear other bits */
if (tmp != val)
pr_err("%s: write: %x to QSCRATCH: %x FAILED\n",
__func__, val, offset);
}
/**
* Write SSPHY register with debug info.
*
* @base - base virtual address.
* @addr - SSPHY address to write.
* @val - value to write.
*
*/
static void msm_ssusb_write_phycreg(void *base, u32 addr, u32 val)
{
writel_relaxed(addr, base + SS_CR_PROTOCOL_DATA_IN_REG);
writel_relaxed(0x1, base + SS_CR_PROTOCOL_CAP_ADDR_REG);
while (readl_relaxed(base + SS_CR_PROTOCOL_CAP_ADDR_REG))
cpu_relax();
writel_relaxed(val, base + SS_CR_PROTOCOL_DATA_IN_REG);
writel_relaxed(0x1, base + SS_CR_PROTOCOL_CAP_DATA_REG);
while (readl_relaxed(base + SS_CR_PROTOCOL_CAP_DATA_REG))
cpu_relax();
writel_relaxed(0x1, base + SS_CR_PROTOCOL_WRITE_REG);
while (readl_relaxed(base + SS_CR_PROTOCOL_WRITE_REG))
cpu_relax();
}
/**
* Read SSPHY register with debug info.
*
* @base - base virtual address.
* @addr - SSPHY address to read.
*
*/
static u32 msm_ssusb_read_phycreg(void *base, u32 addr)
{
bool first_read = true;
writel_relaxed(addr, base + SS_CR_PROTOCOL_DATA_IN_REG);
writel_relaxed(0x1, base + SS_CR_PROTOCOL_CAP_ADDR_REG);
while (readl_relaxed(base + SS_CR_PROTOCOL_CAP_ADDR_REG))
cpu_relax();
/*
* Due to hardware bug, first read of SSPHY register might be
* incorrect. Hence as workaround, SW should perform SSPHY register
* read twice, but use only second read and ignore first read.
*/
retry:
writel_relaxed(0x1, base + SS_CR_PROTOCOL_READ_REG);
while (readl_relaxed(base + SS_CR_PROTOCOL_READ_REG))
cpu_relax();
if (first_read) {
readl_relaxed(base + SS_CR_PROTOCOL_DATA_OUT_REG);
first_read = false;
goto retry;
}
return readl_relaxed(base + SS_CR_PROTOCOL_DATA_OUT_REG);
}
static int msm_ssphy_set_params(struct usb_phy *uphy)
{
struct msm_ssphy *phy = container_of(uphy, struct msm_ssphy, phy);
u32 data = 0;
/*
* WORKAROUND: There is SSPHY suspend bug due to which USB enumerates
* in HS mode instead of SS mode. Workaround it by asserting
* LANE0.TX_ALT_BLOCK.EN_ALT_BUS to enable TX to use alt bus mode
*/
data = msm_ssusb_read_phycreg(phy->base, 0x102D);
data |= (1 << 7);
msm_ssusb_write_phycreg(phy->base, 0x102D, data);
data = msm_ssusb_read_phycreg(phy->base, 0x1010);
data &= ~0xFF0;
data |= 0x20;
msm_ssusb_write_phycreg(phy->base, 0x1010, data);
/*
* Fix RX Equalization setting as follows
* LANE0.RX_OVRD_IN_HI. RX_EQ_EN set to 0
* LANE0.RX_OVRD_IN_HI.RX_EQ_EN_OVRD set to 1
* LANE0.RX_OVRD_IN_HI.RX_EQ set to 3
* LANE0.RX_OVRD_IN_HI.RX_EQ_OVRD set to 1
*/
data = msm_ssusb_read_phycreg(phy->base, 0x1006);
data &= ~(1 << 6);
data |= (1 << 7);
data &= ~(0x7 << 8);
data |= (0x3 << 8);
data |= (0x1 << 11);
msm_ssusb_write_phycreg(phy->base, 0x1006, data);
/*
* Set EQ and TX launch amplitudes as follows
* LANE0.TX_OVRD_DRV_LO.PREEMPH set to 22
* LANE0.TX_OVRD_DRV_LO.AMPLITUDE set to 127
* LANE0.TX_OVRD_DRV_LO.EN set to 1.
*/
data = msm_ssusb_read_phycreg(phy->base, 0x1002);
data &= ~0x3F80;
if (ss_phy_override_deemphasis)
phy->deemphasis_val = ss_phy_override_deemphasis;
if (phy->deemphasis_val)
data |= (phy->deemphasis_val << 7);
else
data |= (0x16 << 7);
data &= ~0x7F;
data |= (0x7F | (1 << 14));
msm_ssusb_write_phycreg(phy->base, 0x1002, data);
/*
* Set the QSCRATCH SS_PHY_PARAM_CTRL1 parameters as follows
* TX_FULL_SWING [26:20] amplitude to 127
* TX_DEEMPH_3_5DB [13:8] to 22
* LOS_BIAS [2:0] to 0x5
*/
msm_usb_write_readback(phy->base, SS_PHY_PARAM_CTRL_1,
0x07f03f07, 0x07f01605);
return 0;
}
/* SSPHY Initialization */
static int msm_ssphy_init(struct usb_phy *uphy)
{
struct msm_ssphy *phy = container_of(uphy, struct msm_ssphy, phy);
u32 val;
/* Ensure clock is on before accessing QSCRATCH registers */
clk_prepare_enable(phy->core_clk);
/* read initial value */
val = readl_relaxed(phy->base + SS_PHY_CTRL_REG);
/* Use clk reset, if available; otherwise use SS_PHY_RESET bit */
if (phy->com_reset_clk) {
clk_reset(phy->com_reset_clk, CLK_RESET_ASSERT);
clk_reset(phy->reset_clk, CLK_RESET_ASSERT);
udelay(10); /* 10us required before de-asserting */
clk_reset(phy->com_reset_clk, CLK_RESET_DEASSERT);
clk_reset(phy->reset_clk, CLK_RESET_DEASSERT);
} else {
writel_relaxed(val | SS_PHY_RESET, phy->base + SS_PHY_CTRL_REG);
udelay(10); /* 10us required before de-asserting */
writel_relaxed(val, phy->base + SS_PHY_CTRL_REG);
}
/* Use ref_clk from pads and set its parameters */
val |= REF_USE_PAD;
writel_relaxed(val, phy->base + SS_PHY_CTRL_REG);
msleep(30);
/* Ref clock must be stable now, enable ref clock for HS mode */
val |= LANE0_PWR_PRESENT | REF_SS_PHY_EN;
writel_relaxed(val, phy->base + SS_PHY_CTRL_REG);
usleep_range(2000, 2200);
/*
* Reinitialize SSPHY parameters as SS_PHY RESET will reset
* the internal registers to default values.
*/
msm_ssphy_set_params(uphy);
clk_disable_unprepare(phy->core_clk);
return 0;
}
static int msm_ssphy_set_suspend(struct usb_phy *uphy, int suspend)
{
struct msm_ssphy *phy = container_of(uphy, struct msm_ssphy, phy);
void __iomem *base = phy->base;
int count;
/* Ensure clock is on before accessing QSCRATCH registers */
clk_prepare_enable(phy->core_clk);
if (suspend) {
count = atomic_dec_return(&phy->active_count);
if (count > 0 || phy->suspended) {
dev_dbg(uphy->dev, "Skipping suspend, active_count=%d phy->suspended=%d\n",
count, phy->suspended);
goto done;
}
if (count < 0) {
dev_WARN(uphy->dev, "Suspended too many times! active_count=%d\n",
count);
atomic_set(&phy->active_count, 0);
}
/* Clear REF_SS_PHY_EN */
msm_usb_write_readback(base, SS_PHY_CTRL_REG, REF_SS_PHY_EN, 0);
/* Clear REF_USE_PAD */
msm_usb_write_readback(base, SS_PHY_CTRL_REG, REF_USE_PAD, 0);
/* Set TEST_POWERDOWN (enables PHY retention) */
msm_usb_write_readback(base, SS_PHY_CTRL_REG, TEST_POWERDOWN,
TEST_POWERDOWN);
if (phy->com_reset_clk &&
!(phy->phy.flags & ENABLE_SECONDARY_PHY)) {
/* leave these asserted until resuming */
clk_reset(phy->com_reset_clk, CLK_RESET_ASSERT);
clk_reset(phy->reset_clk, CLK_RESET_ASSERT);
}
msm_ssusb_ldo_enable(phy, 0);
msm_ssusb_config_vdd(phy, 0);
phy->suspended = true;
} else {
count = atomic_inc_return(&phy->active_count);
if (count > 1 || !phy->suspended) {
dev_dbg(uphy->dev, "Skipping resume, active_count=%d phy->suspended=%d\n",
count, phy->suspended);
goto done;
}
phy->suspended = false;
msm_ssusb_config_vdd(phy, 1);
msm_ssusb_ldo_enable(phy, 1);
if (phy->phy.flags & ENABLE_SECONDARY_PHY) {
dev_err(uphy->dev, "secondary PHY, skipping reset\n");
goto done;
}
if (phy->com_reset_clk) {
clk_reset(phy->com_reset_clk, CLK_RESET_DEASSERT);
clk_reset(phy->reset_clk, CLK_RESET_DEASSERT);
} else {
/* Assert SS PHY RESET */
msm_usb_write_readback(base, SS_PHY_CTRL_REG,
SS_PHY_RESET, SS_PHY_RESET);
}
/* Set REF_USE_PAD */
msm_usb_write_readback(base, SS_PHY_CTRL_REG, REF_USE_PAD,
REF_USE_PAD);
/* Set REF_SS_PHY_EN */
msm_usb_write_readback(base, SS_PHY_CTRL_REG, REF_SS_PHY_EN,
REF_SS_PHY_EN);
/* Clear TEST_POWERDOWN */
msm_usb_write_readback(base, SS_PHY_CTRL_REG, TEST_POWERDOWN,
0);
if (!phy->com_reset_clk) {
udelay(10); /* 10us required before de-asserting */
msm_usb_write_readback(base, SS_PHY_CTRL_REG,
SS_PHY_RESET, 0);
}
}
done:
clk_disable_unprepare(phy->core_clk);
return 0;
}
static int msm_ssphy_notify_connect(struct usb_phy *uphy,
enum usb_device_speed speed)
{
struct msm_ssphy *phy = container_of(uphy, struct msm_ssphy, phy);
if (uphy->flags & PHY_HOST_MODE)
return 0;
if (uphy->flags & PHY_VBUS_VALID_OVERRIDE)
/* Indicate power present to SS phy */
msm_usb_write_readback(phy->base, SS_PHY_CTRL_REG,
LANE0_PWR_PRESENT, LANE0_PWR_PRESENT);
return 0;
}
static int msm_ssphy_notify_disconnect(struct usb_phy *uphy,
enum usb_device_speed speed)
{
struct msm_ssphy *phy = container_of(uphy, struct msm_ssphy, phy);
if (uphy->flags & PHY_HOST_MODE)
return 0;
if (uphy->flags & PHY_VBUS_VALID_OVERRIDE)
/* Clear power indication to SS phy */
msm_usb_write_readback(phy->base, SS_PHY_CTRL_REG,
LANE0_PWR_PRESENT, 0);
return 0;
}
static int msm_ssphy_probe(struct platform_device *pdev)
{
struct msm_ssphy *phy;
struct device *dev = &pdev->dev;
struct resource *res;
int ret = 0;
phy = devm_kzalloc(dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "missing memory base resource\n");
return -ENODEV;
}
phy->base = devm_ioremap_nocache(dev, res->start, resource_size(res));
if (!phy->base) {
dev_err(dev, "ioremap failed\n");
return -ENODEV;
}
phy->core_clk = devm_clk_get(dev, "core_clk");
if (IS_ERR(phy->core_clk)) {
dev_err(dev, "unable to get core_clk\n");
return PTR_ERR(phy->core_clk);
}
phy->com_reset_clk = devm_clk_get(dev, "com_reset_clk");
if (IS_ERR(phy->com_reset_clk)) {
dev_dbg(dev, "com_reset_clk unavailable\n");
phy->com_reset_clk = NULL;
}
phy->reset_clk = devm_clk_get(dev, "reset_clk");
if (IS_ERR(phy->reset_clk)) {
dev_dbg(dev, "reset_clk unavailable\n");
phy->reset_clk = NULL;
}
if (of_get_property(dev->of_node, "qcom,primary-phy", NULL)) {
dev_dbg(dev, "secondary HSPHY\n");
phy->phy.flags |= ENABLE_SECONDARY_PHY;
}
ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level",
(u32 *) phy->vdd_levels,
ARRAY_SIZE(phy->vdd_levels));
if (ret) {
dev_err(dev, "error reading qcom,vdd-voltage-level property\n");
return ret;
}
phy->phy.dev = dev;
phy->vdd = devm_regulator_get(dev, "vdd");
if (IS_ERR(phy->vdd)) {
dev_err(dev, "unable to get vdd supply\n");
return PTR_ERR(phy->vdd);
}
phy->vdda18 = devm_regulator_get(dev, "vdda18");
if (IS_ERR(phy->vdda18)) {
dev_err(dev, "unable to get vdda18 supply\n");
return PTR_ERR(phy->vdda18);
}
ret = msm_ssusb_config_vdd(phy, 1);
if (ret) {
dev_err(dev, "ssusb vdd_dig configuration failed\n");
return ret;
}
ret = regulator_enable(phy->vdd);
if (ret) {
dev_err(dev, "unable to enable the ssusb vdd_dig\n");
goto unconfig_ss_vdd;
}
ret = msm_ssusb_ldo_enable(phy, 1);
if (ret) {
dev_err(dev, "ssusb vreg enable failed\n");
goto disable_ss_vdd;
}
platform_set_drvdata(pdev, phy);
if (of_property_read_bool(dev->of_node, "qcom,vbus-valid-override"))
phy->phy.flags |= PHY_VBUS_VALID_OVERRIDE;
if (of_property_read_u32(dev->of_node, "qcom,deemphasis-value",
&phy->deemphasis_val))
dev_dbg(dev, "unable to read ssphy deemphasis value\n");
phy->phy.init = msm_ssphy_init;
phy->phy.set_suspend = msm_ssphy_set_suspend;
phy->phy.notify_connect = msm_ssphy_notify_connect;
phy->phy.notify_disconnect = msm_ssphy_notify_disconnect;
phy->phy.type = USB_PHY_TYPE_USB3;
ret = usb_add_phy_dev(&phy->phy);
if (ret)
goto disable_ss_ldo;
return 0;
disable_ss_ldo:
msm_ssusb_ldo_enable(phy, 0);
disable_ss_vdd:
regulator_disable(phy->vdd);
unconfig_ss_vdd:
msm_ssusb_config_vdd(phy, 0);
return ret;
}
static int msm_ssphy_remove(struct platform_device *pdev)
{
struct msm_ssphy *phy = platform_get_drvdata(pdev);
if (!phy)
return 0;
usb_remove_phy(&phy->phy);
msm_ssusb_ldo_enable(phy, 0);
regulator_disable(phy->vdd);
msm_ssusb_config_vdd(phy, 0);
kfree(phy);
return 0;
}
static const struct of_device_id msm_usb_id_table[] = {
{
.compatible = "qcom,usb-ssphy",
},
{ },
};
MODULE_DEVICE_TABLE(of, msm_usb_id_table);
static struct platform_driver msm_ssphy_driver = {
.probe = msm_ssphy_probe,
.remove = msm_ssphy_remove,
.driver = {
.name = "msm-usb-ssphy",
.of_match_table = of_match_ptr(msm_usb_id_table),
},
};
module_platform_driver(msm_ssphy_driver);
MODULE_DESCRIPTION("MSM USB SS PHY driver");
MODULE_LICENSE("GPL v2");