M7350/kernel/drivers/rtc/qpnp-rtc.c

715 lines
18 KiB
C
Raw Normal View History

2024-09-09 08:57:42 +00:00
/* Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
2024-09-09 08:52:07 +00:00
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/rtc.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/idr.h>
#include <linux/of_device.h>
#include <linux/spmi.h>
#include <linux/spinlock.h>
#include <linux/spmi.h>
2024-09-09 08:57:42 +00:00
#include <linux/alarmtimer.h>
2024-09-09 08:52:07 +00:00
/* RTC/ALARM Register offsets */
#define REG_OFFSET_ALARM_RW 0x40
#define REG_OFFSET_ALARM_CTRL1 0x46
#define REG_OFFSET_ALARM_CTRL2 0x48
#define REG_OFFSET_RTC_WRITE 0x40
#define REG_OFFSET_RTC_CTRL 0x46
#define REG_OFFSET_RTC_READ 0x48
#define REG_OFFSET_PERP_SUBTYPE 0x05
/* RTC_CTRL register bit fields */
#define BIT_RTC_ENABLE BIT(7)
#define BIT_RTC_ALARM_ENABLE BIT(7)
#define BIT_RTC_ABORT_ENABLE BIT(0)
#define BIT_RTC_ALARM_CLEAR BIT(0)
/* RTC/ALARM peripheral subtype values */
#define RTC_PERPH_SUBTYPE 0x1
#define ALARM_PERPH_SUBTYPE 0x3
#define NUM_8_BIT_RTC_REGS 0x4
#define TO_SECS(arr) (arr[0] | (arr[1] << 8) | (arr[2] << 16) | \
(arr[3] << 24))
2024-09-09 08:57:42 +00:00
/* Module parameter to control power-on-alarm */
bool poweron_alarm;
module_param(poweron_alarm, bool, 0644);
MODULE_PARM_DESC(poweron_alarm, "Enable/Disable power-on alarm");
EXPORT_SYMBOL(poweron_alarm);
2024-09-09 08:52:07 +00:00
/* rtc driver internal structure */
struct qpnp_rtc {
u8 rtc_ctrl_reg;
u8 alarm_ctrl_reg1;
u16 rtc_base;
u16 alarm_base;
u32 rtc_write_enable;
u32 rtc_alarm_powerup;
int rtc_alarm_irq;
struct device *rtc_dev;
struct rtc_device *rtc;
struct spmi_device *spmi;
spinlock_t alarm_ctrl_lock;
};
static int qpnp_read_wrapper(struct qpnp_rtc *rtc_dd, u8 *rtc_val,
u16 base, int count)
{
int rc;
struct spmi_device *spmi = rtc_dd->spmi;
rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, base, rtc_val,
count);
if (rc) {
dev_err(rtc_dd->rtc_dev, "SPMI read failed\n");
return rc;
}
return 0;
}
static int qpnp_write_wrapper(struct qpnp_rtc *rtc_dd, u8 *rtc_val,
u16 base, int count)
{
int rc;
struct spmi_device *spmi = rtc_dd->spmi;
rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, base, rtc_val,
count);
if (rc) {
dev_err(rtc_dd->rtc_dev, "SPMI write failed\n");
return rc;
}
return 0;
}
static int
qpnp_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
int rc;
unsigned long secs, irq_flags;
u8 value[4], reg = 0, alarm_enabled = 0, ctrl_reg;
2024-09-09 08:57:42 +00:00
u8 rtc_disabled = 0, rtc_ctrl_reg;
2024-09-09 08:52:07 +00:00
struct qpnp_rtc *rtc_dd = dev_get_drvdata(dev);
rtc_tm_to_time(tm, &secs);
value[0] = secs & 0xFF;
value[1] = (secs >> 8) & 0xFF;
value[2] = (secs >> 16) & 0xFF;
value[3] = (secs >> 24) & 0xFF;
dev_dbg(dev, "Seconds value to be written to RTC = %lu\n", secs);
spin_lock_irqsave(&rtc_dd->alarm_ctrl_lock, irq_flags);
ctrl_reg = rtc_dd->alarm_ctrl_reg1;
if (ctrl_reg & BIT_RTC_ALARM_ENABLE) {
alarm_enabled = 1;
ctrl_reg &= ~BIT_RTC_ALARM_ENABLE;
rc = qpnp_write_wrapper(rtc_dd, &ctrl_reg,
rtc_dd->alarm_base + REG_OFFSET_ALARM_CTRL1, 1);
if (rc) {
dev_err(dev, "Write to ALARM ctrl reg failed\n");
goto rtc_rw_fail;
}
} else
spin_unlock_irqrestore(&rtc_dd->alarm_ctrl_lock, irq_flags);
/*
* 32 bit seconds value is coverted to four 8 bit values
* |<------ 32 bit time value in seconds ------>|
* <- 8 bit ->|<- 8 bit ->|<- 8 bit ->|<- 8 bit ->|
* ----------------------------------------------
* | BYTE[3] | BYTE[2] | BYTE[1] | BYTE[0] |
* ----------------------------------------------
*
* RTC has four 8 bit registers for writting time in seconds:
* WDATA[3], WDATA[2], WDATA[1], WDATA[0]
*
* Write to the RTC registers should be done in following order
* Clear WDATA[0] register
*
* Write BYTE[1], BYTE[2] and BYTE[3] of time to
* RTC WDATA[3], WDATA[2], WDATA[1] registers
*
* Write BYTE[0] of time to RTC WDATA[0] register
*
* Clearing BYTE[0] and writting in the end will prevent any
* unintentional overflow from WDATA[0] to higher bytes during the
* write operation
*/
2024-09-09 08:57:42 +00:00
/* Disable RTC H/w before writing on RTC register*/
rtc_ctrl_reg = rtc_dd->rtc_ctrl_reg;
if (rtc_ctrl_reg & BIT_RTC_ENABLE) {
rtc_disabled = 1;
rtc_ctrl_reg &= ~BIT_RTC_ENABLE;
rc = qpnp_write_wrapper(rtc_dd, &rtc_ctrl_reg,
rtc_dd->rtc_base + REG_OFFSET_RTC_CTRL, 1);
if (rc) {
dev_err(dev,
"Disabling of RTC control reg failed"
" with error:%d\n", rc);
goto rtc_rw_fail;
}
rtc_dd->rtc_ctrl_reg = rtc_ctrl_reg;
}
2024-09-09 08:52:07 +00:00
/* Clear WDATA[0] */
reg = 0x0;
rc = qpnp_write_wrapper(rtc_dd, &reg,
rtc_dd->rtc_base + REG_OFFSET_RTC_WRITE, 1);
if (rc) {
dev_err(dev, "Write to RTC reg failed\n");
goto rtc_rw_fail;
}
/* Write to WDATA[3], WDATA[2] and WDATA[1] */
rc = qpnp_write_wrapper(rtc_dd, &value[1],
rtc_dd->rtc_base + REG_OFFSET_RTC_WRITE + 1, 3);
if (rc) {
dev_err(dev, "Write to RTC reg failed\n");
goto rtc_rw_fail;
}
/* Write to WDATA[0] */
rc = qpnp_write_wrapper(rtc_dd, value,
rtc_dd->rtc_base + REG_OFFSET_RTC_WRITE, 1);
if (rc) {
dev_err(dev, "Write to RTC reg failed\n");
goto rtc_rw_fail;
}
2024-09-09 08:57:42 +00:00
/* Enable RTC H/w after writing on RTC register*/
if (rtc_disabled) {
rtc_ctrl_reg |= BIT_RTC_ENABLE;
rc = qpnp_write_wrapper(rtc_dd, &rtc_ctrl_reg,
rtc_dd->rtc_base + REG_OFFSET_RTC_CTRL, 1);
if (rc) {
dev_err(dev,
"Enabling of RTC control reg failed"
" with error:%d\n", rc);
goto rtc_rw_fail;
}
rtc_dd->rtc_ctrl_reg = rtc_ctrl_reg;
}
2024-09-09 08:52:07 +00:00
if (alarm_enabled) {
ctrl_reg |= BIT_RTC_ALARM_ENABLE;
rc = qpnp_write_wrapper(rtc_dd, &ctrl_reg,
rtc_dd->alarm_base + REG_OFFSET_ALARM_CTRL1, 1);
if (rc) {
dev_err(dev, "Write to ALARM ctrl reg failed\n");
goto rtc_rw_fail;
}
}
rtc_dd->alarm_ctrl_reg1 = ctrl_reg;
rtc_rw_fail:
if (alarm_enabled)
spin_unlock_irqrestore(&rtc_dd->alarm_ctrl_lock, irq_flags);
return rc;
}
static int
qpnp_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
int rc;
u8 value[4], reg;
unsigned long secs;
struct qpnp_rtc *rtc_dd = dev_get_drvdata(dev);
rc = qpnp_read_wrapper(rtc_dd, value,
rtc_dd->rtc_base + REG_OFFSET_RTC_READ,
NUM_8_BIT_RTC_REGS);
if (rc) {
dev_err(dev, "Read from RTC reg failed\n");
return rc;
}
/*
* Read the LSB again and check if there has been a carry over
* If there is, redo the read operation
*/
rc = qpnp_read_wrapper(rtc_dd, &reg,
rtc_dd->rtc_base + REG_OFFSET_RTC_READ, 1);
if (rc) {
dev_err(dev, "Read from RTC reg failed\n");
return rc;
}
if (reg < value[0]) {
rc = qpnp_read_wrapper(rtc_dd, value,
rtc_dd->rtc_base + REG_OFFSET_RTC_READ,
NUM_8_BIT_RTC_REGS);
if (rc) {
dev_err(dev, "Read from RTC reg failed\n");
return rc;
}
}
secs = TO_SECS(value);
rtc_time_to_tm(secs, tm);
rc = rtc_valid_tm(tm);
if (rc) {
dev_err(dev, "Invalid time read from RTC\n");
return rc;
}
dev_dbg(dev, "secs = %lu, h:m:s == %d:%d:%d, d/m/y = %d/%d/%d\n",
secs, tm->tm_hour, tm->tm_min, tm->tm_sec,
tm->tm_mday, tm->tm_mon, tm->tm_year);
return 0;
}
static int
qpnp_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
int rc;
u8 value[4], ctrl_reg;
unsigned long secs, secs_rtc, irq_flags;
struct qpnp_rtc *rtc_dd = dev_get_drvdata(dev);
struct rtc_time rtc_tm;
rtc_tm_to_time(&alarm->time, &secs);
/*
* Read the current RTC time and verify if the alarm time is in the
* past. If yes, return invalid
*/
rc = qpnp_rtc_read_time(dev, &rtc_tm);
if (rc) {
dev_err(dev, "Unable to read RTC time\n");
return -EINVAL;
}
rtc_tm_to_time(&rtc_tm, &secs_rtc);
if (secs < secs_rtc) {
dev_err(dev, "Trying to set alarm in the past\n");
return -EINVAL;
}
value[0] = secs & 0xFF;
value[1] = (secs >> 8) & 0xFF;
value[2] = (secs >> 16) & 0xFF;
value[3] = (secs >> 24) & 0xFF;
spin_lock_irqsave(&rtc_dd->alarm_ctrl_lock, irq_flags);
rc = qpnp_write_wrapper(rtc_dd, value,
rtc_dd->alarm_base + REG_OFFSET_ALARM_RW,
NUM_8_BIT_RTC_REGS);
if (rc) {
dev_err(dev, "Write to ALARM reg failed\n");
goto rtc_rw_fail;
}
ctrl_reg = (alarm->enabled) ?
(rtc_dd->alarm_ctrl_reg1 | BIT_RTC_ALARM_ENABLE) :
(rtc_dd->alarm_ctrl_reg1 & ~BIT_RTC_ALARM_ENABLE);
rc = qpnp_write_wrapper(rtc_dd, &ctrl_reg,
rtc_dd->alarm_base + REG_OFFSET_ALARM_CTRL1, 1);
if (rc) {
dev_err(dev, "Write to ALARM cntrol reg failed\n");
goto rtc_rw_fail;
}
rtc_dd->alarm_ctrl_reg1 = ctrl_reg;
dev_dbg(dev, "Alarm Set for h:r:s=%d:%d:%d, d/m/y=%d/%d/%d\n",
alarm->time.tm_hour, alarm->time.tm_min,
alarm->time.tm_sec, alarm->time.tm_mday,
alarm->time.tm_mon, alarm->time.tm_year);
rtc_rw_fail:
spin_unlock_irqrestore(&rtc_dd->alarm_ctrl_lock, irq_flags);
return rc;
}
static int
qpnp_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
int rc;
u8 value[4];
unsigned long secs;
struct qpnp_rtc *rtc_dd = dev_get_drvdata(dev);
rc = qpnp_read_wrapper(rtc_dd, value,
rtc_dd->alarm_base + REG_OFFSET_ALARM_RW,
NUM_8_BIT_RTC_REGS);
if (rc) {
dev_err(dev, "Read from ALARM reg failed\n");
return rc;
}
secs = TO_SECS(value);
rtc_time_to_tm(secs, &alarm->time);
rc = rtc_valid_tm(&alarm->time);
if (rc) {
dev_err(dev, "Invalid time read from RTC\n");
return rc;
}
dev_dbg(dev, "Alarm set for - h:r:s=%d:%d:%d, d/m/y=%d/%d/%d\n",
alarm->time.tm_hour, alarm->time.tm_min,
alarm->time.tm_sec, alarm->time.tm_mday,
alarm->time.tm_mon, alarm->time.tm_year);
return 0;
}
static int
qpnp_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
int rc;
unsigned long irq_flags;
struct qpnp_rtc *rtc_dd = dev_get_drvdata(dev);
u8 ctrl_reg;
2024-09-09 08:57:42 +00:00
u8 value[4] = {0};
2024-09-09 08:52:07 +00:00
spin_lock_irqsave(&rtc_dd->alarm_ctrl_lock, irq_flags);
ctrl_reg = rtc_dd->alarm_ctrl_reg1;
ctrl_reg = enabled ? (ctrl_reg | BIT_RTC_ALARM_ENABLE) :
(ctrl_reg & ~BIT_RTC_ALARM_ENABLE);
rc = qpnp_write_wrapper(rtc_dd, &ctrl_reg,
rtc_dd->alarm_base + REG_OFFSET_ALARM_CTRL1, 1);
if (rc) {
dev_err(dev, "Write to ALARM control reg failed\n");
goto rtc_rw_fail;
}
rtc_dd->alarm_ctrl_reg1 = ctrl_reg;
2024-09-09 08:57:42 +00:00
/* Clear Alarm register */
if (!enabled) {
rc = qpnp_write_wrapper(rtc_dd, value,
rtc_dd->alarm_base + REG_OFFSET_ALARM_RW,
NUM_8_BIT_RTC_REGS);
if (rc)
dev_err(dev, "Clear ALARM value reg failed\n");
}
2024-09-09 08:52:07 +00:00
rtc_rw_fail:
spin_unlock_irqrestore(&rtc_dd->alarm_ctrl_lock, irq_flags);
return rc;
}
static struct rtc_class_ops qpnp_rtc_ops = {
.read_time = qpnp_rtc_read_time,
.set_alarm = qpnp_rtc_set_alarm,
.read_alarm = qpnp_rtc_read_alarm,
.alarm_irq_enable = qpnp_rtc_alarm_irq_enable,
};
static irqreturn_t qpnp_alarm_trigger(int irq, void *dev_id)
{
struct qpnp_rtc *rtc_dd = dev_id;
u8 ctrl_reg;
int rc;
unsigned long irq_flags;
rtc_update_irq(rtc_dd->rtc, 1, RTC_IRQF | RTC_AF);
spin_lock_irqsave(&rtc_dd->alarm_ctrl_lock, irq_flags);
/* Clear the alarm enable bit */
ctrl_reg = rtc_dd->alarm_ctrl_reg1;
ctrl_reg &= ~BIT_RTC_ALARM_ENABLE;
rc = qpnp_write_wrapper(rtc_dd, &ctrl_reg,
rtc_dd->alarm_base + REG_OFFSET_ALARM_CTRL1, 1);
if (rc) {
spin_unlock_irqrestore(&rtc_dd->alarm_ctrl_lock, irq_flags);
dev_err(rtc_dd->rtc_dev,
"Write to ALARM control reg failed\n");
goto rtc_alarm_handled;
}
rtc_dd->alarm_ctrl_reg1 = ctrl_reg;
spin_unlock_irqrestore(&rtc_dd->alarm_ctrl_lock, irq_flags);
/* Set ALARM_CLR bit */
ctrl_reg = 0x1;
rc = qpnp_write_wrapper(rtc_dd, &ctrl_reg,
rtc_dd->alarm_base + REG_OFFSET_ALARM_CTRL2, 1);
if (rc)
dev_err(rtc_dd->rtc_dev,
"Write to ALARM control reg failed\n");
rtc_alarm_handled:
return IRQ_HANDLED;
}
2024-09-09 08:57:42 +00:00
static int qpnp_rtc_probe(struct spmi_device *spmi)
2024-09-09 08:52:07 +00:00
{
int rc;
u8 subtype;
struct qpnp_rtc *rtc_dd;
struct resource *resource;
struct spmi_resource *spmi_resource;
rtc_dd = devm_kzalloc(&spmi->dev, sizeof(*rtc_dd), GFP_KERNEL);
if (rtc_dd == NULL) {
dev_err(&spmi->dev, "Unable to allocate memory!\n");
return -ENOMEM;
}
/* Get the rtc write property */
rc = of_property_read_u32(spmi->dev.of_node, "qcom,qpnp-rtc-write",
&rtc_dd->rtc_write_enable);
if (rc && rc != -EINVAL) {
dev_err(&spmi->dev,
"Error reading rtc_write_enable property %d\n", rc);
return rc;
}
rc = of_property_read_u32(spmi->dev.of_node,
"qcom,qpnp-rtc-alarm-pwrup",
&rtc_dd->rtc_alarm_powerup);
if (rc && rc != -EINVAL) {
dev_err(&spmi->dev,
"Error reading rtc_alarm_powerup property %d\n", rc);
return rc;
}
/* Initialise spinlock to protect RTC control register */
spin_lock_init(&rtc_dd->alarm_ctrl_lock);
rtc_dd->rtc_dev = &(spmi->dev);
rtc_dd->spmi = spmi;
/* Get RTC/ALARM resources */
spmi_for_each_container_dev(spmi_resource, spmi) {
if (!spmi_resource) {
dev_err(&spmi->dev,
"%s: rtc_alarm: spmi resource absent!\n",
__func__);
rc = -ENXIO;
goto fail_rtc_enable;
}
resource = spmi_get_resource(spmi, spmi_resource,
IORESOURCE_MEM, 0);
if (!(resource && resource->start)) {
dev_err(&spmi->dev,
"%s: node %s IO resource absent!\n",
__func__, spmi->dev.of_node->full_name);
rc = -ENXIO;
goto fail_rtc_enable;
}
rc = qpnp_read_wrapper(rtc_dd, &subtype,
resource->start + REG_OFFSET_PERP_SUBTYPE, 1);
if (rc) {
dev_err(&spmi->dev,
"Peripheral subtype read failed\n");
goto fail_rtc_enable;
}
switch (subtype) {
case RTC_PERPH_SUBTYPE:
rtc_dd->rtc_base = resource->start;
break;
case ALARM_PERPH_SUBTYPE:
rtc_dd->alarm_base = resource->start;
rtc_dd->rtc_alarm_irq =
spmi_get_irq(spmi, spmi_resource, 0);
if (rtc_dd->rtc_alarm_irq < 0) {
dev_err(&spmi->dev, "ALARM IRQ absent\n");
rc = -ENXIO;
goto fail_rtc_enable;
}
break;
default:
dev_err(&spmi->dev, "Invalid peripheral subtype\n");
rc = -EINVAL;
goto fail_rtc_enable;
}
}
rc = qpnp_read_wrapper(rtc_dd, &rtc_dd->rtc_ctrl_reg,
rtc_dd->rtc_base + REG_OFFSET_RTC_CTRL, 1);
if (rc) {
dev_err(&spmi->dev,
"Read from RTC control reg failed\n");
goto fail_rtc_enable;
}
if (!(rtc_dd->rtc_ctrl_reg & BIT_RTC_ENABLE)) {
dev_err(&spmi->dev,
"RTC h/w disabled, rtc not registered\n");
goto fail_rtc_enable;
}
2024-09-09 08:57:42 +00:00
rc = qpnp_read_wrapper(rtc_dd, &rtc_dd->alarm_ctrl_reg1,
rtc_dd->alarm_base + REG_OFFSET_ALARM_CTRL1, 1);
if (rc) {
dev_err(&spmi->dev,
"Read from Alarm control reg failed\n");
goto fail_rtc_enable;
}
2024-09-09 08:52:07 +00:00
/* Enable abort enable feature */
2024-09-09 08:57:42 +00:00
rtc_dd->alarm_ctrl_reg1 |= BIT_RTC_ABORT_ENABLE;
2024-09-09 08:52:07 +00:00
rc = qpnp_write_wrapper(rtc_dd, &rtc_dd->alarm_ctrl_reg1,
rtc_dd->alarm_base + REG_OFFSET_ALARM_CTRL1, 1);
if (rc) {
dev_err(&spmi->dev, "SPMI write failed!\n");
goto fail_rtc_enable;
}
if (rtc_dd->rtc_write_enable == true)
qpnp_rtc_ops.set_time = qpnp_rtc_set_time;
dev_set_drvdata(&spmi->dev, rtc_dd);
/* Register the RTC device */
rtc_dd->rtc = rtc_device_register("qpnp_rtc", &spmi->dev,
&qpnp_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc_dd->rtc)) {
dev_err(&spmi->dev, "%s: RTC registration failed (%ld)\n",
__func__, PTR_ERR(rtc_dd->rtc));
rc = PTR_ERR(rtc_dd->rtc);
goto fail_rtc_enable;
}
2024-09-09 08:57:42 +00:00
/* Init power_on_alarm after adding rtc device */
power_on_alarm_init();
2024-09-09 08:52:07 +00:00
/* Request the alarm IRQ */
rc = request_any_context_irq(rtc_dd->rtc_alarm_irq,
qpnp_alarm_trigger, IRQF_TRIGGER_RISING,
"qpnp_rtc_alarm", rtc_dd);
if (rc) {
dev_err(&spmi->dev, "Request IRQ failed (%d)\n", rc);
goto fail_req_irq;
}
device_init_wakeup(&spmi->dev, 1);
enable_irq_wake(rtc_dd->rtc_alarm_irq);
dev_dbg(&spmi->dev, "Probe success !!\n");
return 0;
fail_req_irq:
rtc_device_unregister(rtc_dd->rtc);
fail_rtc_enable:
dev_set_drvdata(&spmi->dev, NULL);
return rc;
}
2024-09-09 08:57:42 +00:00
static int qpnp_rtc_remove(struct spmi_device *spmi)
2024-09-09 08:52:07 +00:00
{
struct qpnp_rtc *rtc_dd = dev_get_drvdata(&spmi->dev);
device_init_wakeup(&spmi->dev, 0);
free_irq(rtc_dd->rtc_alarm_irq, rtc_dd);
rtc_device_unregister(rtc_dd->rtc);
dev_set_drvdata(&spmi->dev, NULL);
return 0;
}
static void qpnp_rtc_shutdown(struct spmi_device *spmi)
{
u8 value[4] = {0};
u8 reg;
int rc;
unsigned long irq_flags;
2024-09-09 08:57:42 +00:00
struct qpnp_rtc *rtc_dd;
bool rtc_alarm_powerup;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (!spmi) {
pr_err("qpnp-rtc: spmi device not found\n");
return;
}
rtc_dd = dev_get_drvdata(&spmi->dev);
if (!rtc_dd) {
pr_err("qpnp-rtc: rtc driver data not found\n");
return;
}
rtc_alarm_powerup = rtc_dd->rtc_alarm_powerup;
if (!rtc_alarm_powerup && !poweron_alarm) {
2024-09-09 08:52:07 +00:00
spin_lock_irqsave(&rtc_dd->alarm_ctrl_lock, irq_flags);
dev_dbg(&spmi->dev, "Disabling alarm interrupts\n");
/* Disable RTC alarms */
reg = rtc_dd->alarm_ctrl_reg1;
reg &= ~BIT_RTC_ALARM_ENABLE;
rc = qpnp_write_wrapper(rtc_dd, &reg,
rtc_dd->alarm_base + REG_OFFSET_ALARM_CTRL1, 1);
if (rc) {
dev_err(rtc_dd->rtc_dev, "SPMI write failed\n");
goto fail_alarm_disable;
}
/* Clear Alarm register */
rc = qpnp_write_wrapper(rtc_dd, value,
rtc_dd->alarm_base + REG_OFFSET_ALARM_RW,
NUM_8_BIT_RTC_REGS);
if (rc)
dev_err(rtc_dd->rtc_dev, "SPMI write failed\n");
fail_alarm_disable:
spin_unlock_irqrestore(&rtc_dd->alarm_ctrl_lock, irq_flags);
}
}
static struct of_device_id spmi_match_table[] = {
{
.compatible = "qcom,qpnp-rtc",
},
{}
};
static struct spmi_driver qpnp_rtc_driver = {
.probe = qpnp_rtc_probe,
2024-09-09 08:57:42 +00:00
.remove = qpnp_rtc_remove,
2024-09-09 08:52:07 +00:00
.shutdown = qpnp_rtc_shutdown,
.driver = {
.name = "qcom,qpnp-rtc",
.owner = THIS_MODULE,
.of_match_table = spmi_match_table,
},
};
static int __init qpnp_rtc_init(void)
{
return spmi_driver_register(&qpnp_rtc_driver);
}
module_init(qpnp_rtc_init);
static void __exit qpnp_rtc_exit(void)
{
spmi_driver_unregister(&qpnp_rtc_driver);
}
module_exit(qpnp_rtc_exit);
MODULE_DESCRIPTION("SMPI PMIC RTC driver");
MODULE_LICENSE("GPL V2");