710 lines
17 KiB
C
710 lines
17 KiB
C
|
/*
|
||
|
* I2C Link Layer for ST21NFCA HCI based Driver
|
||
|
* Copyright (C) 2014 STMicroelectronics SAS. All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms and conditions of the GNU General Public License,
|
||
|
* version 2, as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/crc-ccitt.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/i2c.h>
|
||
|
#include <linux/gpio.h>
|
||
|
#include <linux/of_irq.h>
|
||
|
#include <linux/of_gpio.h>
|
||
|
#include <linux/miscdevice.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/nfc.h>
|
||
|
#include <linux/firmware.h>
|
||
|
#include <linux/unaligned/access_ok.h>
|
||
|
#include <linux/platform_data/st21nfca.h>
|
||
|
|
||
|
#include <net/nfc/hci.h>
|
||
|
#include <net/nfc/llc.h>
|
||
|
#include <net/nfc/nfc.h>
|
||
|
|
||
|
#include "st21nfca.h"
|
||
|
|
||
|
/*
|
||
|
* Every frame starts with ST21NFCA_SOF_EOF and ends with ST21NFCA_SOF_EOF.
|
||
|
* Because ST21NFCA_SOF_EOF is a possible data value, there is a mecanism
|
||
|
* called byte stuffing has been introduced.
|
||
|
*
|
||
|
* if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
|
||
|
* - insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
|
||
|
* - xor byte with ST21NFCA_BYTE_STUFFING_MASK
|
||
|
*/
|
||
|
#define ST21NFCA_SOF_EOF 0x7e
|
||
|
#define ST21NFCA_BYTE_STUFFING_MASK 0x20
|
||
|
#define ST21NFCA_ESCAPE_BYTE_STUFFING 0x7d
|
||
|
|
||
|
/* SOF + 00 */
|
||
|
#define ST21NFCA_FRAME_HEADROOM 2
|
||
|
|
||
|
/* 2 bytes crc + EOF */
|
||
|
#define ST21NFCA_FRAME_TAILROOM 3
|
||
|
#define IS_START_OF_FRAME(buf) (buf[0] == ST21NFCA_SOF_EOF && \
|
||
|
buf[1] == 0)
|
||
|
|
||
|
#define ST21NFCA_HCI_I2C_DRIVER_NAME "st21nfca_hci_i2c"
|
||
|
|
||
|
static struct i2c_device_id st21nfca_hci_i2c_id_table[] = {
|
||
|
{ST21NFCA_HCI_DRIVER_NAME, 0},
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
MODULE_DEVICE_TABLE(i2c, st21nfca_hci_i2c_id_table);
|
||
|
|
||
|
struct st21nfca_i2c_phy {
|
||
|
struct i2c_client *i2c_dev;
|
||
|
struct nfc_hci_dev *hdev;
|
||
|
|
||
|
unsigned int gpio_ena;
|
||
|
unsigned int gpio_irq;
|
||
|
unsigned int irq_polarity;
|
||
|
|
||
|
struct sk_buff *pending_skb;
|
||
|
int current_read_len;
|
||
|
/*
|
||
|
* crc might have fail because i2c macro
|
||
|
* is disable due to other interface activity
|
||
|
*/
|
||
|
int crc_trials;
|
||
|
|
||
|
int powered;
|
||
|
int run_mode;
|
||
|
|
||
|
/*
|
||
|
* < 0 if hardware error occured (e.g. i2c err)
|
||
|
* and prevents normal operation.
|
||
|
*/
|
||
|
int hard_fault;
|
||
|
struct mutex phy_lock;
|
||
|
};
|
||
|
static u8 len_seq[] = { 16, 24, 12, 29 };
|
||
|
static u16 wait_tab[] = { 2, 3, 5, 15, 20, 40};
|
||
|
|
||
|
#define I2C_DUMP_SKB(info, skb) \
|
||
|
do { \
|
||
|
pr_debug("%s:\n", info); \
|
||
|
print_hex_dump(KERN_DEBUG, "i2c: ", DUMP_PREFIX_OFFSET, \
|
||
|
16, 1, (skb)->data, (skb)->len, 0); \
|
||
|
} while (0)
|
||
|
|
||
|
/*
|
||
|
* In order to get the CLF in a known state we generate an internal reboot
|
||
|
* using a proprietary command.
|
||
|
* Once the reboot is completed, we expect to receive a ST21NFCA_SOF_EOF
|
||
|
* fill buffer.
|
||
|
*/
|
||
|
static int st21nfca_hci_platform_init(struct st21nfca_i2c_phy *phy)
|
||
|
{
|
||
|
u16 wait_reboot[] = { 50, 300, 1000 };
|
||
|
char reboot_cmd[] = { 0x7E, 0x66, 0x48, 0xF6, 0x7E };
|
||
|
u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE];
|
||
|
int i, r = -1;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) {
|
||
|
r = i2c_master_send(phy->i2c_dev, reboot_cmd,
|
||
|
sizeof(reboot_cmd));
|
||
|
if (r < 0)
|
||
|
msleep(wait_reboot[i]);
|
||
|
}
|
||
|
if (r < 0)
|
||
|
return r;
|
||
|
|
||
|
/* CLF is spending about 20ms to do an internal reboot */
|
||
|
msleep(20);
|
||
|
r = -1;
|
||
|
for (i = 0; i < ARRAY_SIZE(wait_reboot) && r < 0; i++) {
|
||
|
r = i2c_master_recv(phy->i2c_dev, tmp,
|
||
|
ST21NFCA_HCI_LLC_MAX_SIZE);
|
||
|
if (r < 0)
|
||
|
msleep(wait_reboot[i]);
|
||
|
}
|
||
|
if (r < 0)
|
||
|
return r;
|
||
|
|
||
|
for (i = 0; i < ST21NFCA_HCI_LLC_MAX_SIZE &&
|
||
|
tmp[i] == ST21NFCA_SOF_EOF; i++)
|
||
|
;
|
||
|
|
||
|
if (r != ST21NFCA_HCI_LLC_MAX_SIZE)
|
||
|
return -ENODEV;
|
||
|
|
||
|
usleep_range(1000, 1500);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int st21nfca_hci_i2c_enable(void *phy_id)
|
||
|
{
|
||
|
struct st21nfca_i2c_phy *phy = phy_id;
|
||
|
|
||
|
gpio_set_value(phy->gpio_ena, 1);
|
||
|
phy->powered = 1;
|
||
|
phy->run_mode = ST21NFCA_HCI_MODE;
|
||
|
|
||
|
usleep_range(10000, 15000);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void st21nfca_hci_i2c_disable(void *phy_id)
|
||
|
{
|
||
|
struct st21nfca_i2c_phy *phy = phy_id;
|
||
|
|
||
|
pr_info("\n");
|
||
|
gpio_set_value(phy->gpio_ena, 0);
|
||
|
|
||
|
phy->powered = 0;
|
||
|
}
|
||
|
|
||
|
static void st21nfca_hci_add_len_crc(struct sk_buff *skb)
|
||
|
{
|
||
|
u16 crc;
|
||
|
u8 tmp;
|
||
|
|
||
|
*skb_push(skb, 1) = 0;
|
||
|
|
||
|
crc = crc_ccitt(0xffff, skb->data, skb->len);
|
||
|
crc = ~crc;
|
||
|
|
||
|
tmp = crc & 0x00ff;
|
||
|
*skb_put(skb, 1) = tmp;
|
||
|
|
||
|
tmp = (crc >> 8) & 0x00ff;
|
||
|
*skb_put(skb, 1) = tmp;
|
||
|
}
|
||
|
|
||
|
static void st21nfca_hci_remove_len_crc(struct sk_buff *skb)
|
||
|
{
|
||
|
skb_pull(skb, ST21NFCA_FRAME_HEADROOM);
|
||
|
skb_trim(skb, skb->len - ST21NFCA_FRAME_TAILROOM);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Writing a frame must not return the number of written bytes.
|
||
|
* It must return either zero for success, or <0 for error.
|
||
|
* In addition, it must not alter the skb
|
||
|
*/
|
||
|
static int st21nfca_hci_i2c_write(void *phy_id, struct sk_buff *skb)
|
||
|
{
|
||
|
int r = -1, i, j;
|
||
|
struct st21nfca_i2c_phy *phy = phy_id;
|
||
|
struct i2c_client *client = phy->i2c_dev;
|
||
|
u8 tmp[ST21NFCA_HCI_LLC_MAX_SIZE * 2];
|
||
|
|
||
|
I2C_DUMP_SKB("st21nfca_hci_i2c_write", skb);
|
||
|
|
||
|
|
||
|
if (phy->hard_fault != 0)
|
||
|
return phy->hard_fault;
|
||
|
|
||
|
/*
|
||
|
* Compute CRC before byte stuffing computation on frame
|
||
|
* Note st21nfca_hci_add_len_crc is doing a byte stuffing
|
||
|
* on its own value
|
||
|
*/
|
||
|
st21nfca_hci_add_len_crc(skb);
|
||
|
|
||
|
/* add ST21NFCA_SOF_EOF on tail */
|
||
|
*skb_put(skb, 1) = ST21NFCA_SOF_EOF;
|
||
|
/* add ST21NFCA_SOF_EOF on head */
|
||
|
*skb_push(skb, 1) = ST21NFCA_SOF_EOF;
|
||
|
|
||
|
/*
|
||
|
* Compute byte stuffing
|
||
|
* if byte == ST21NFCA_SOF_EOF or ST21NFCA_ESCAPE_BYTE_STUFFING
|
||
|
* insert ST21NFCA_ESCAPE_BYTE_STUFFING (escape byte)
|
||
|
* xor byte with ST21NFCA_BYTE_STUFFING_MASK
|
||
|
*/
|
||
|
tmp[0] = skb->data[0];
|
||
|
for (i = 1, j = 1; i < skb->len - 1; i++, j++) {
|
||
|
if (skb->data[i] == ST21NFCA_SOF_EOF
|
||
|
|| skb->data[i] == ST21NFCA_ESCAPE_BYTE_STUFFING) {
|
||
|
tmp[j] = ST21NFCA_ESCAPE_BYTE_STUFFING;
|
||
|
j++;
|
||
|
tmp[j] = skb->data[i] ^ ST21NFCA_BYTE_STUFFING_MASK;
|
||
|
} else {
|
||
|
tmp[j] = skb->data[i];
|
||
|
}
|
||
|
}
|
||
|
tmp[j] = skb->data[i];
|
||
|
j++;
|
||
|
|
||
|
/*
|
||
|
* Manage sleep mode
|
||
|
* Try 3 times to send data with delay between each
|
||
|
*/
|
||
|
mutex_lock(&phy->phy_lock);
|
||
|
for (i = 0; i < ARRAY_SIZE(wait_tab) && r < 0; i++) {
|
||
|
r = i2c_master_send(client, tmp, j);
|
||
|
if (r < 0)
|
||
|
msleep(wait_tab[i]);
|
||
|
}
|
||
|
mutex_unlock(&phy->phy_lock);
|
||
|
|
||
|
if (r >= 0) {
|
||
|
if (r != j)
|
||
|
r = -EREMOTEIO;
|
||
|
else
|
||
|
r = 0;
|
||
|
}
|
||
|
|
||
|
st21nfca_hci_remove_len_crc(skb);
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
static int get_frame_size(u8 *buf, int buflen)
|
||
|
{
|
||
|
int len = 0;
|
||
|
|
||
|
if (buf[len + 1] == ST21NFCA_SOF_EOF)
|
||
|
return 0;
|
||
|
|
||
|
for (len = 1; len < buflen && buf[len] != ST21NFCA_SOF_EOF; len++)
|
||
|
;
|
||
|
|
||
|
return len;
|
||
|
}
|
||
|
|
||
|
static int check_crc(u8 *buf, int buflen)
|
||
|
{
|
||
|
u16 crc;
|
||
|
|
||
|
crc = crc_ccitt(0xffff, buf, buflen - 2);
|
||
|
crc = ~crc;
|
||
|
|
||
|
if (buf[buflen - 2] != (crc & 0xff) || buf[buflen - 1] != (crc >> 8)) {
|
||
|
pr_err(ST21NFCA_HCI_DRIVER_NAME
|
||
|
": CRC error 0x%x != 0x%x 0x%x\n", crc, buf[buflen - 1],
|
||
|
buf[buflen - 2]);
|
||
|
|
||
|
pr_info(DRIVER_DESC ": %s : BAD CRC\n", __func__);
|
||
|
print_hex_dump(KERN_DEBUG, "crc: ", DUMP_PREFIX_NONE,
|
||
|
16, 2, buf, buflen, false);
|
||
|
return -EPERM;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Prepare received data for upper layer.
|
||
|
* Received data include byte stuffing, crc and sof/eof
|
||
|
* which is not usable by hci part.
|
||
|
* returns:
|
||
|
* frame size without sof/eof, header and byte stuffing
|
||
|
* -EBADMSG : frame was incorrect and discarded
|
||
|
*/
|
||
|
static int st21nfca_hci_i2c_repack(struct sk_buff *skb)
|
||
|
{
|
||
|
int i, j, r, size;
|
||
|
|
||
|
if (skb->len < 1 || (skb->len > 1 && skb->data[1] != 0))
|
||
|
return -EBADMSG;
|
||
|
|
||
|
size = get_frame_size(skb->data, skb->len);
|
||
|
if (size > 0) {
|
||
|
skb_trim(skb, size);
|
||
|
/* remove ST21NFCA byte stuffing for upper layer */
|
||
|
for (i = 1, j = 0; i < skb->len; i++) {
|
||
|
if (skb->data[i + j] ==
|
||
|
(u8) ST21NFCA_ESCAPE_BYTE_STUFFING) {
|
||
|
skb->data[i] = skb->data[i + j + 1]
|
||
|
| ST21NFCA_BYTE_STUFFING_MASK;
|
||
|
i++;
|
||
|
j++;
|
||
|
}
|
||
|
skb->data[i] = skb->data[i + j];
|
||
|
}
|
||
|
/* remove byte stuffing useless byte */
|
||
|
skb_trim(skb, i - j);
|
||
|
/* remove ST21NFCA_SOF_EOF from head */
|
||
|
skb_pull(skb, 1);
|
||
|
|
||
|
r = check_crc(skb->data, skb->len);
|
||
|
if (r != 0) {
|
||
|
i = 0;
|
||
|
return -EBADMSG;
|
||
|
}
|
||
|
|
||
|
/* remove headbyte */
|
||
|
skb_pull(skb, 1);
|
||
|
/* remove crc. Byte Stuffing is already removed here */
|
||
|
skb_trim(skb, skb->len - 2);
|
||
|
return skb->len;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reads an shdlc frame and returns it in a newly allocated sk_buff. Guarantees
|
||
|
* that i2c bus will be flushed and that next read will start on a new frame.
|
||
|
* returned skb contains only LLC header and payload.
|
||
|
* returns:
|
||
|
* frame size : if received frame is complete (find ST21NFCA_SOF_EOF at
|
||
|
* end of read)
|
||
|
* -EAGAIN : if received frame is incomplete (not find ST21NFCA_SOF_EOF
|
||
|
* at end of read)
|
||
|
* -EREMOTEIO : i2c read error (fatal)
|
||
|
* -EBADMSG : frame was incorrect and discarded
|
||
|
* (value returned from st21nfca_hci_i2c_repack)
|
||
|
* -EIO : if no ST21NFCA_SOF_EOF is found after reaching
|
||
|
* the read length end sequence
|
||
|
*/
|
||
|
static int st21nfca_hci_i2c_read(struct st21nfca_i2c_phy *phy,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
int r, i;
|
||
|
u8 len;
|
||
|
u8 buf[ST21NFCA_HCI_LLC_MAX_PAYLOAD];
|
||
|
struct i2c_client *client = phy->i2c_dev;
|
||
|
|
||
|
if (phy->current_read_len < ARRAY_SIZE(len_seq)) {
|
||
|
len = len_seq[phy->current_read_len];
|
||
|
|
||
|
/*
|
||
|
* Add retry mecanism
|
||
|
* Operation on I2C interface may fail in case of operation on
|
||
|
* RF or SWP interface
|
||
|
*/
|
||
|
r = 0;
|
||
|
mutex_lock(&phy->phy_lock);
|
||
|
for (i = 0; i < ARRAY_SIZE(wait_tab) && r <= 0; i++) {
|
||
|
r = i2c_master_recv(client, buf, len);
|
||
|
if (r < 0)
|
||
|
msleep(wait_tab[i]);
|
||
|
}
|
||
|
mutex_unlock(&phy->phy_lock);
|
||
|
|
||
|
if (r != len) {
|
||
|
phy->current_read_len = 0;
|
||
|
return -EREMOTEIO;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The first read sequence does not start with SOF.
|
||
|
* Data is corrupeted so we drop it.
|
||
|
*/
|
||
|
if (!phy->current_read_len && !IS_START_OF_FRAME(buf)) {
|
||
|
skb_trim(skb, 0);
|
||
|
phy->current_read_len = 0;
|
||
|
return -EIO;
|
||
|
} else if (phy->current_read_len && IS_START_OF_FRAME(buf)) {
|
||
|
/*
|
||
|
* Previous frame transmission was interrupted and
|
||
|
* the frame got repeated.
|
||
|
* Received frame start with ST21NFCA_SOF_EOF + 00.
|
||
|
*/
|
||
|
skb_trim(skb, 0);
|
||
|
phy->current_read_len = 0;
|
||
|
}
|
||
|
|
||
|
memcpy(skb_put(skb, len), buf, len);
|
||
|
|
||
|
if (skb->data[skb->len - 1] == ST21NFCA_SOF_EOF) {
|
||
|
phy->current_read_len = 0;
|
||
|
return st21nfca_hci_i2c_repack(skb);
|
||
|
}
|
||
|
phy->current_read_len++;
|
||
|
return -EAGAIN;
|
||
|
}
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reads an shdlc frame from the chip. This is not as straightforward as it
|
||
|
* seems. The frame format is data-crc, and corruption can occur anywhere
|
||
|
* while transiting on i2c bus, such that we could read an invalid data.
|
||
|
* The tricky case is when we read a corrupted data or crc. We must detect
|
||
|
* this here in order to determine that data can be transmitted to the hci
|
||
|
* core. This is the reason why we check the crc here.
|
||
|
* The CLF will repeat a frame until we send a RR on that frame.
|
||
|
*
|
||
|
* On ST21NFCA, IRQ goes in idle when read starts. As no size information are
|
||
|
* available in the incoming data, other IRQ might come. Every IRQ will trigger
|
||
|
* a read sequence with different length and will fill the current frame.
|
||
|
* The reception is complete once we reach a ST21NFCA_SOF_EOF.
|
||
|
*/
|
||
|
static irqreturn_t st21nfca_hci_irq_thread_fn(int irq, void *phy_id)
|
||
|
{
|
||
|
struct st21nfca_i2c_phy *phy = phy_id;
|
||
|
struct i2c_client *client;
|
||
|
|
||
|
int r;
|
||
|
|
||
|
if (!phy || irq != phy->i2c_dev->irq) {
|
||
|
WARN_ON_ONCE(1);
|
||
|
return IRQ_NONE;
|
||
|
}
|
||
|
|
||
|
client = phy->i2c_dev;
|
||
|
dev_dbg(&client->dev, "IRQ\n");
|
||
|
|
||
|
if (phy->hard_fault != 0)
|
||
|
return IRQ_HANDLED;
|
||
|
|
||
|
r = st21nfca_hci_i2c_read(phy, phy->pending_skb);
|
||
|
if (r == -EREMOTEIO) {
|
||
|
phy->hard_fault = r;
|
||
|
|
||
|
nfc_hci_recv_frame(phy->hdev, NULL);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
} else if (r == -EAGAIN || r == -EIO) {
|
||
|
return IRQ_HANDLED;
|
||
|
} else if (r == -EBADMSG && phy->crc_trials < ARRAY_SIZE(wait_tab)) {
|
||
|
/*
|
||
|
* With ST21NFCA, only one interface (I2C, RF or SWP)
|
||
|
* may be active at a time.
|
||
|
* Having incorrect crc is usually due to i2c macrocell
|
||
|
* deactivation in the middle of a transmission.
|
||
|
* It may generate corrupted data on i2c.
|
||
|
* We give sometime to get i2c back.
|
||
|
* The complete frame will be repeated.
|
||
|
*/
|
||
|
msleep(wait_tab[phy->crc_trials]);
|
||
|
phy->crc_trials++;
|
||
|
phy->current_read_len = 0;
|
||
|
kfree_skb(phy->pending_skb);
|
||
|
} else if (r > 0) {
|
||
|
/*
|
||
|
* We succeeded to read data from the CLF and
|
||
|
* data is valid.
|
||
|
* Reset counter.
|
||
|
*/
|
||
|
nfc_hci_recv_frame(phy->hdev, phy->pending_skb);
|
||
|
phy->crc_trials = 0;
|
||
|
} else {
|
||
|
kfree_skb(phy->pending_skb);
|
||
|
}
|
||
|
|
||
|
phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
|
||
|
if (phy->pending_skb == NULL) {
|
||
|
phy->hard_fault = -ENOMEM;
|
||
|
nfc_hci_recv_frame(phy->hdev, NULL);
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static struct nfc_phy_ops i2c_phy_ops = {
|
||
|
.write = st21nfca_hci_i2c_write,
|
||
|
.enable = st21nfca_hci_i2c_enable,
|
||
|
.disable = st21nfca_hci_i2c_disable,
|
||
|
};
|
||
|
|
||
|
#ifdef CONFIG_OF
|
||
|
static int st21nfca_hci_i2c_of_request_resources(struct i2c_client *client)
|
||
|
{
|
||
|
struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client);
|
||
|
struct device_node *pp;
|
||
|
int gpio;
|
||
|
int r;
|
||
|
|
||
|
pp = client->dev.of_node;
|
||
|
if (!pp)
|
||
|
return -ENODEV;
|
||
|
|
||
|
/* Get GPIO from device tree */
|
||
|
gpio = of_get_named_gpio(pp, "enable-gpios", 0);
|
||
|
if (gpio < 0) {
|
||
|
nfc_err(&client->dev, "Failed to retrieve enable-gpios from device tree\n");
|
||
|
return gpio;
|
||
|
}
|
||
|
|
||
|
/* GPIO request and configuration */
|
||
|
r = devm_gpio_request_one(&client->dev, gpio, GPIOF_OUT_INIT_HIGH,
|
||
|
"clf_enable");
|
||
|
if (r) {
|
||
|
nfc_err(&client->dev, "Failed to request enable pin\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
phy->gpio_ena = gpio;
|
||
|
|
||
|
/* IRQ */
|
||
|
r = irq_of_parse_and_map(pp, 0);
|
||
|
if (r < 0) {
|
||
|
nfc_err(&client->dev, "Unable to get irq, error: %d\n", r);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
phy->irq_polarity = irq_get_trigger_type(r);
|
||
|
client->irq = r;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
#else
|
||
|
static int st21nfca_hci_i2c_of_request_resources(struct i2c_client *client)
|
||
|
{
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int st21nfca_hci_i2c_request_resources(struct i2c_client *client)
|
||
|
{
|
||
|
struct st21nfca_nfc_platform_data *pdata;
|
||
|
struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client);
|
||
|
int r;
|
||
|
int irq;
|
||
|
|
||
|
pdata = client->dev.platform_data;
|
||
|
if (pdata == NULL) {
|
||
|
nfc_err(&client->dev, "No platform data\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* store for later use */
|
||
|
phy->gpio_irq = pdata->gpio_irq;
|
||
|
phy->gpio_ena = pdata->gpio_ena;
|
||
|
phy->irq_polarity = pdata->irq_polarity;
|
||
|
|
||
|
r = devm_gpio_request_one(&client->dev, phy->gpio_irq, GPIOF_IN,
|
||
|
"wake_up");
|
||
|
if (r) {
|
||
|
pr_err("%s : gpio_request failed\n", __FILE__);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
if (phy->gpio_ena > 0) {
|
||
|
r = devm_gpio_request_one(&client->dev, phy->gpio_ena,
|
||
|
GPIOF_OUT_INIT_HIGH, "clf_enable");
|
||
|
if (r) {
|
||
|
pr_err("%s : ena gpio_request failed\n", __FILE__);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* IRQ */
|
||
|
irq = gpio_to_irq(phy->gpio_irq);
|
||
|
if (irq < 0) {
|
||
|
nfc_err(&client->dev,
|
||
|
"Unable to get irq number for GPIO %d error %d\n",
|
||
|
phy->gpio_irq, r);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
client->irq = irq;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int st21nfca_hci_i2c_probe(struct i2c_client *client,
|
||
|
const struct i2c_device_id *id)
|
||
|
{
|
||
|
struct st21nfca_i2c_phy *phy;
|
||
|
struct st21nfca_nfc_platform_data *pdata;
|
||
|
int r;
|
||
|
|
||
|
dev_dbg(&client->dev, "%s\n", __func__);
|
||
|
dev_dbg(&client->dev, "IRQ: %d\n", client->irq);
|
||
|
|
||
|
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
|
||
|
nfc_err(&client->dev, "Need I2C_FUNC_I2C\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
phy = devm_kzalloc(&client->dev, sizeof(struct st21nfca_i2c_phy),
|
||
|
GFP_KERNEL);
|
||
|
if (!phy) {
|
||
|
nfc_err(&client->dev,
|
||
|
"Cannot allocate memory for st21nfca i2c phy.\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
phy->i2c_dev = client;
|
||
|
phy->pending_skb = alloc_skb(ST21NFCA_HCI_LLC_MAX_SIZE * 2, GFP_KERNEL);
|
||
|
if (phy->pending_skb == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
phy->current_read_len = 0;
|
||
|
phy->crc_trials = 0;
|
||
|
mutex_init(&phy->phy_lock);
|
||
|
i2c_set_clientdata(client, phy);
|
||
|
|
||
|
pdata = client->dev.platform_data;
|
||
|
if (!pdata && client->dev.of_node) {
|
||
|
r = st21nfca_hci_i2c_of_request_resources(client);
|
||
|
if (r) {
|
||
|
nfc_err(&client->dev, "No platform data\n");
|
||
|
return r;
|
||
|
}
|
||
|
} else if (pdata) {
|
||
|
r = st21nfca_hci_i2c_request_resources(client);
|
||
|
if (r) {
|
||
|
nfc_err(&client->dev, "Cannot get platform resources\n");
|
||
|
return r;
|
||
|
}
|
||
|
} else {
|
||
|
nfc_err(&client->dev, "st21nfca platform resources not available\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
r = st21nfca_hci_platform_init(phy);
|
||
|
if (r < 0) {
|
||
|
nfc_err(&client->dev, "Unable to reboot st21nfca\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
r = devm_request_threaded_irq(&client->dev, client->irq, NULL,
|
||
|
st21nfca_hci_irq_thread_fn,
|
||
|
phy->irq_polarity | IRQF_ONESHOT,
|
||
|
ST21NFCA_HCI_DRIVER_NAME, phy);
|
||
|
if (r < 0) {
|
||
|
nfc_err(&client->dev, "Unable to register IRQ handler\n");
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
return st21nfca_hci_probe(phy, &i2c_phy_ops, LLC_SHDLC_NAME,
|
||
|
ST21NFCA_FRAME_HEADROOM, ST21NFCA_FRAME_TAILROOM,
|
||
|
ST21NFCA_HCI_LLC_MAX_PAYLOAD, &phy->hdev);
|
||
|
}
|
||
|
|
||
|
static int st21nfca_hci_i2c_remove(struct i2c_client *client)
|
||
|
{
|
||
|
struct st21nfca_i2c_phy *phy = i2c_get_clientdata(client);
|
||
|
|
||
|
dev_dbg(&client->dev, "%s\n", __func__);
|
||
|
|
||
|
st21nfca_hci_remove(phy->hdev);
|
||
|
|
||
|
if (phy->powered)
|
||
|
st21nfca_hci_i2c_disable(phy);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct of_device_id of_st21nfca_i2c_match[] = {
|
||
|
{ .compatible = "st,st21nfca_i2c", },
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static struct i2c_driver st21nfca_hci_i2c_driver = {
|
||
|
.driver = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.name = ST21NFCA_HCI_I2C_DRIVER_NAME,
|
||
|
.of_match_table = of_match_ptr(of_st21nfca_i2c_match),
|
||
|
},
|
||
|
.probe = st21nfca_hci_i2c_probe,
|
||
|
.id_table = st21nfca_hci_i2c_id_table,
|
||
|
.remove = st21nfca_hci_i2c_remove,
|
||
|
};
|
||
|
|
||
|
module_i2c_driver(st21nfca_hci_i2c_driver);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_DESCRIPTION(DRIVER_DESC);
|