M7350/kernel/drivers/net/ethernet/sfc/rx.c

990 lines
28 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/****************************************************************************
2024-09-09 08:57:42 +00:00
* Driver for Solarflare network controllers and boards
2024-09-09 08:52:07 +00:00
* Copyright 2005-2006 Fen Systems Ltd.
2024-09-09 08:57:42 +00:00
* Copyright 2005-2013 Solarflare Communications Inc.
2024-09-09 08:52:07 +00:00
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/ip.h>
2024-09-09 08:57:42 +00:00
#include <linux/ipv6.h>
2024-09-09 08:52:07 +00:00
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/prefetch.h>
#include <linux/moduleparam.h>
2024-09-09 08:57:42 +00:00
#include <linux/iommu.h>
2024-09-09 08:52:07 +00:00
#include <net/ip.h>
#include <net/checksum.h>
#include "net_driver.h"
#include "efx.h"
2024-09-09 08:57:42 +00:00
#include "filter.h"
2024-09-09 08:52:07 +00:00
#include "nic.h"
#include "selftest.h"
#include "workarounds.h"
2024-09-09 08:57:42 +00:00
/* Preferred number of descriptors to fill at once */
#define EFX_RX_PREFERRED_BATCH 8U
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* Number of RX buffers to recycle pages for. When creating the RX page recycle
* ring, this number is divided by the number of buffers per page to calculate
* the number of pages to store in the RX page recycle ring.
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* Size of buffer allocated for skb header area. */
#define EFX_SKB_HEADERS 128u
2024-09-09 08:52:07 +00:00
/* This is the percentage fill level below which new RX descriptors
* will be added to the RX descriptor ring.
*/
2024-09-09 08:57:42 +00:00
static unsigned int rx_refill_threshold;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* Each packet can consume up to ceil(max_frame_len / buffer_size) buffers */
#define EFX_RX_MAX_FRAGS DIV_ROUND_UP(EFX_MAX_FRAME_LEN(EFX_MAX_MTU), \
EFX_RX_USR_BUF_SIZE)
2024-09-09 08:52:07 +00:00
/*
* RX maximum head room required.
*
2024-09-09 08:57:42 +00:00
* This must be at least 1 to prevent overflow, plus one packet-worth
* to allow pipelined receives.
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static inline u8 *efx_rx_buf_va(struct efx_rx_buffer *buf)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
return page_address(buf->page) + buf->page_offset;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static inline u32 efx_rx_buf_hash(struct efx_nic *efx, const u8 *eh)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_hash_offset));
2024-09-09 08:52:07 +00:00
#else
2024-09-09 08:57:42 +00:00
const u8 *data = eh + efx->rx_packet_hash_offset;
2024-09-09 08:52:07 +00:00
return (u32)data[0] |
(u32)data[1] << 8 |
(u32)data[2] << 16 |
(u32)data[3] << 24;
#endif
}
2024-09-09 08:57:42 +00:00
static inline struct efx_rx_buffer *
efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
{
if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
return efx_rx_buffer(rx_queue, 0);
else
return rx_buf + 1;
}
static inline void efx_sync_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf,
unsigned int len)
{
dma_sync_single_for_cpu(&efx->pci_dev->dev, rx_buf->dma_addr, len,
DMA_FROM_DEVICE);
}
void efx_rx_config_page_split(struct efx_nic *efx)
{
efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align,
EFX_RX_BUF_ALIGNMENT);
efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
efx->rx_page_buf_step);
efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
efx->rx_bufs_per_page;
efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
efx->rx_bufs_per_page);
}
/* Check the RX page recycle ring for a page that can be reused. */
static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
2024-09-09 08:52:07 +00:00
{
struct efx_nic *efx = rx_queue->efx;
2024-09-09 08:57:42 +00:00
struct page *page;
struct efx_rx_page_state *state;
unsigned index;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
index = rx_queue->page_remove & rx_queue->page_ptr_mask;
page = rx_queue->page_ring[index];
if (page == NULL)
return NULL;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
rx_queue->page_ring[index] = NULL;
/* page_remove cannot exceed page_add. */
if (rx_queue->page_remove != rx_queue->page_add)
++rx_queue->page_remove;
/* If page_count is 1 then we hold the only reference to this page. */
if (page_count(page) == 1) {
++rx_queue->page_recycle_count;
return page;
} else {
state = page_address(page);
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
put_page(page);
++rx_queue->page_recycle_failed;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
return NULL;
2024-09-09 08:52:07 +00:00
}
/**
2024-09-09 08:57:42 +00:00
* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
2024-09-09 08:52:07 +00:00
*
* @rx_queue: Efx RX queue
*
2024-09-09 08:57:42 +00:00
* This allocates a batch of pages, maps them for DMA, and populates
* struct efx_rx_buffers for each one. Return a negative error code or
* 0 on success. If a single page can be used for multiple buffers,
* then the page will either be inserted fully, or not at all.
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
2024-09-09 08:52:07 +00:00
{
struct efx_nic *efx = rx_queue->efx;
struct efx_rx_buffer *rx_buf;
struct page *page;
2024-09-09 08:57:42 +00:00
unsigned int page_offset;
2024-09-09 08:52:07 +00:00
struct efx_rx_page_state *state;
dma_addr_t dma_addr;
unsigned index, count;
2024-09-09 08:57:42 +00:00
count = 0;
do {
page = efx_reuse_page(rx_queue);
if (page == NULL) {
page = alloc_pages(__GFP_COLD | __GFP_COMP |
(atomic ? GFP_ATOMIC : GFP_KERNEL),
efx->rx_buffer_order);
if (unlikely(page == NULL))
return -ENOMEM;
dma_addr =
dma_map_page(&efx->pci_dev->dev, page, 0,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
dma_addr))) {
__free_pages(page, efx->rx_buffer_order);
return -EIO;
}
state = page_address(page);
state->dma_addr = dma_addr;
} else {
state = page_address(page);
dma_addr = state->dma_addr;
2024-09-09 08:52:07 +00:00
}
dma_addr += sizeof(struct efx_rx_page_state);
2024-09-09 08:57:42 +00:00
page_offset = sizeof(struct efx_rx_page_state);
do {
index = rx_queue->added_count & rx_queue->ptr_mask;
rx_buf = efx_rx_buffer(rx_queue, index);
rx_buf->dma_addr = dma_addr + efx->rx_ip_align;
rx_buf->page = page;
rx_buf->page_offset = page_offset + efx->rx_ip_align;
rx_buf->len = efx->rx_dma_len;
rx_buf->flags = 0;
++rx_queue->added_count;
2024-09-09 08:52:07 +00:00
get_page(page);
2024-09-09 08:57:42 +00:00
dma_addr += efx->rx_page_buf_step;
page_offset += efx->rx_page_buf_step;
} while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
} while (++count < efx->rx_pages_per_batch);
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
/* Unmap a DMA-mapped page. This function is only called for the final RX
* buffer in a page.
*/
2024-09-09 08:52:07 +00:00
static void efx_unmap_rx_buffer(struct efx_nic *efx,
struct efx_rx_buffer *rx_buf)
{
2024-09-09 08:57:42 +00:00
struct page *page = rx_buf->page;
if (page) {
struct efx_rx_page_state *state = page_address(page);
dma_unmap_page(&efx->pci_dev->dev,
state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
}
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static void efx_free_rx_buffer(struct efx_rx_buffer *rx_buf)
{
if (rx_buf->page) {
put_page(rx_buf->page);
rx_buf->page = NULL;
2024-09-09 08:52:07 +00:00
}
}
2024-09-09 08:57:42 +00:00
/* Attempt to recycle the page if there is an RX recycle ring; the page can
* only be added if this is the final RX buffer, to prevent pages being used in
* the descriptor ring and appearing in the recycle ring simultaneously.
*/
static void efx_recycle_rx_page(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct page *page = rx_buf->page;
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
struct efx_nic *efx = rx_queue->efx;
unsigned index;
/* Only recycle the page after processing the final buffer. */
if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
return;
index = rx_queue->page_add & rx_queue->page_ptr_mask;
if (rx_queue->page_ring[index] == NULL) {
unsigned read_index = rx_queue->page_remove &
rx_queue->page_ptr_mask;
/* The next slot in the recycle ring is available, but
* increment page_remove if the read pointer currently
* points here.
*/
if (read_index == index)
++rx_queue->page_remove;
rx_queue->page_ring[index] = page;
++rx_queue->page_add;
return;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
++rx_queue->page_recycle_full;
efx_unmap_rx_buffer(efx, rx_buf);
put_page(rx_buf->page);
2024-09-09 08:52:07 +00:00
}
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf)
{
2024-09-09 08:57:42 +00:00
/* Release the page reference we hold for the buffer. */
if (rx_buf->page)
put_page(rx_buf->page);
/* If this is the last buffer in a page, unmap and free it. */
if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
efx_free_rx_buffer(rx_buf);
}
rx_buf->page = NULL;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
/* Recycle the pages that are used by buffers that have just been received. */
static void efx_recycle_rx_pages(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf,
unsigned int n_frags)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
do {
efx_recycle_rx_page(channel, rx_buf);
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
} while (--n_frags);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static void efx_discard_rx_packet(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf,
unsigned int n_frags)
2024-09-09 08:52:07 +00:00
{
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
2024-09-09 08:57:42 +00:00
efx_recycle_rx_pages(channel, rx_buf, n_frags);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
do {
efx_free_rx_buffer(rx_buf);
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
} while (--n_frags);
2024-09-09 08:52:07 +00:00
}
/**
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
* @rx_queue: RX descriptor queue
2024-09-09 08:57:42 +00:00
*
2024-09-09 08:52:07 +00:00
* This will aim to fill the RX descriptor queue up to
2024-09-09 08:57:42 +00:00
* @rx_queue->@max_fill. If there is insufficient atomic
2024-09-09 08:52:07 +00:00
* memory to do so, a slow fill will be scheduled.
*
* The caller must provide serialisation (none is used here). In practise,
* this means this function must run from the NAPI handler, or be called
* when NAPI is disabled.
*/
2024-09-09 08:57:42 +00:00
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct efx_nic *efx = rx_queue->efx;
unsigned int fill_level, batch_size;
2024-09-09 08:52:07 +00:00
int space, rc = 0;
2024-09-09 08:57:42 +00:00
if (!rx_queue->refill_enabled)
return;
2024-09-09 08:52:07 +00:00
/* Calculate current fill level, and exit if we don't need to fill */
fill_level = (rx_queue->added_count - rx_queue->removed_count);
EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
if (fill_level >= rx_queue->fast_fill_trigger)
goto out;
/* Record minimum fill level */
if (unlikely(fill_level < rx_queue->min_fill)) {
if (fill_level)
rx_queue->min_fill = fill_level;
}
2024-09-09 08:57:42 +00:00
batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
space = rx_queue->max_fill - fill_level;
EFX_BUG_ON_PARANOID(space < batch_size);
2024-09-09 08:52:07 +00:00
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filling descriptor ring from"
2024-09-09 08:57:42 +00:00
" level %d to level %d\n",
2024-09-09 08:52:07 +00:00
efx_rx_queue_index(rx_queue), fill_level,
2024-09-09 08:57:42 +00:00
rx_queue->max_fill);
2024-09-09 08:52:07 +00:00
do {
2024-09-09 08:57:42 +00:00
rc = efx_init_rx_buffers(rx_queue, atomic);
2024-09-09 08:52:07 +00:00
if (unlikely(rc)) {
/* Ensure that we don't leave the rx queue empty */
if (rx_queue->added_count == rx_queue->removed_count)
efx_schedule_slow_fill(rx_queue);
goto out;
}
2024-09-09 08:57:42 +00:00
} while ((space -= batch_size) >= batch_size);
2024-09-09 08:52:07 +00:00
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
"RX queue %d fast-filled descriptor ring "
"to level %d\n", efx_rx_queue_index(rx_queue),
rx_queue->added_count - rx_queue->removed_count);
out:
if (rx_queue->notified_count != rx_queue->added_count)
efx_nic_notify_rx_desc(rx_queue);
}
void efx_rx_slow_fill(unsigned long context)
{
struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
/* Post an event to cause NAPI to run and refill the queue */
efx_nic_generate_fill_event(rx_queue);
++rx_queue->slow_fill_count;
}
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
struct efx_rx_buffer *rx_buf,
2024-09-09 08:57:42 +00:00
int len)
2024-09-09 08:52:07 +00:00
{
struct efx_nic *efx = rx_queue->efx;
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
if (likely(len <= max_len))
return;
/* The packet must be discarded, but this is only a fatal error
* if the caller indicated it was
*/
rx_buf->flags |= EFX_RX_PKT_DISCARD;
if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
if (net_ratelimit())
netif_err(efx, rx_err, efx->net_dev,
" RX queue %d seriously overlength "
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
efx_rx_queue_index(rx_queue), len, max_len,
efx->type->rx_buffer_padding);
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
} else {
if (net_ratelimit())
netif_err(efx, rx_err, efx->net_dev,
" RX queue %d overlength RX event "
"(0x%x > 0x%x)\n",
efx_rx_queue_index(rx_queue), len, max_len);
}
efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
}
/* Pass a received packet up through GRO. GRO can handle pages
* regardless of checksum state and skbs with a good checksum.
*/
2024-09-09 08:57:42 +00:00
static void
efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
unsigned int n_frags, u8 *eh)
2024-09-09 08:52:07 +00:00
{
struct napi_struct *napi = &channel->napi_str;
gro_result_t gro_result;
2024-09-09 08:57:42 +00:00
struct efx_nic *efx = channel->efx;
struct sk_buff *skb;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
skb = napi_get_frags(napi);
if (unlikely(!skb)) {
while (n_frags--) {
put_page(rx_buf->page);
rx_buf->page = NULL;
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
}
return;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (efx->net_dev->features & NETIF_F_RXHASH)
skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
PKT_HASH_TYPE_L3);
skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
for (;;) {
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
rx_buf->page, rx_buf->page_offset,
rx_buf->len);
rx_buf->page = NULL;
skb->len += rx_buf->len;
if (skb_shinfo(skb)->nr_frags == n_frags)
break;
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
skb->data_len = skb->len;
skb->truesize += n_frags * efx->rx_buffer_truesize;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
skb_record_rx_queue(skb, channel->rx_queue.core_index);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
skb_mark_napi_id(skb, &channel->napi_str);
gro_result = napi_gro_frags(napi);
if (gro_result != GRO_DROP)
channel->irq_mod_score += 2;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* Allocate and construct an SKB around page fragments */
static struct sk_buff *efx_rx_mk_skb(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf,
unsigned int n_frags,
u8 *eh, int hdr_len)
{
struct efx_nic *efx = channel->efx;
struct sk_buff *skb;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* Allocate an SKB to store the headers */
skb = netdev_alloc_skb(efx->net_dev,
efx->rx_ip_align + efx->rx_prefix_size +
hdr_len);
if (unlikely(skb == NULL)) {
atomic_inc(&efx->n_rx_noskb_drops);
return NULL;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
EFX_BUG_ON_PARANOID(rx_buf->len < hdr_len);
memcpy(skb->data + efx->rx_ip_align, eh - efx->rx_prefix_size,
efx->rx_prefix_size + hdr_len);
skb_reserve(skb, efx->rx_ip_align + efx->rx_prefix_size);
__skb_put(skb, hdr_len);
/* Append the remaining page(s) onto the frag list */
if (rx_buf->len > hdr_len) {
rx_buf->page_offset += hdr_len;
rx_buf->len -= hdr_len;
for (;;) {
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
rx_buf->page, rx_buf->page_offset,
rx_buf->len);
rx_buf->page = NULL;
skb->len += rx_buf->len;
skb->data_len += rx_buf->len;
if (skb_shinfo(skb)->nr_frags == n_frags)
break;
rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
}
2024-09-09 08:52:07 +00:00
} else {
2024-09-09 08:57:42 +00:00
__free_pages(rx_buf->page, efx->rx_buffer_order);
rx_buf->page = NULL;
n_frags = 0;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
skb->truesize += n_frags * efx->rx_buffer_truesize;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* Move past the ethernet header */
skb->protocol = eth_type_trans(skb, efx->net_dev);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
skb_mark_napi_id(skb, &channel->napi_str);
return skb;
2024-09-09 08:52:07 +00:00
}
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
2024-09-09 08:57:42 +00:00
unsigned int n_frags, unsigned int len, u16 flags)
2024-09-09 08:52:07 +00:00
{
struct efx_nic *efx = rx_queue->efx;
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
struct efx_rx_buffer *rx_buf;
2024-09-09 08:57:42 +00:00
rx_queue->rx_packets++;
2024-09-09 08:52:07 +00:00
rx_buf = efx_rx_buffer(rx_queue, index);
rx_buf->flags |= flags;
2024-09-09 08:57:42 +00:00
/* Validate the number of fragments and completed length */
if (n_frags == 1) {
if (!(flags & EFX_RX_PKT_PREFIX_LEN))
efx_rx_packet__check_len(rx_queue, rx_buf, len);
} else if (unlikely(n_frags > EFX_RX_MAX_FRAGS) ||
unlikely(len <= (n_frags - 1) * efx->rx_dma_len) ||
unlikely(len > n_frags * efx->rx_dma_len) ||
unlikely(!efx->rx_scatter)) {
/* If this isn't an explicit discard request, either
* the hardware or the driver is broken.
*/
WARN_ON(!(len == 0 && rx_buf->flags & EFX_RX_PKT_DISCARD));
rx_buf->flags |= EFX_RX_PKT_DISCARD;
}
2024-09-09 08:52:07 +00:00
netif_vdbg(efx, rx_status, efx->net_dev,
2024-09-09 08:57:42 +00:00
"RX queue %d received ids %x-%x len %d %s%s\n",
2024-09-09 08:52:07 +00:00
efx_rx_queue_index(rx_queue), index,
2024-09-09 08:57:42 +00:00
(index + n_frags - 1) & rx_queue->ptr_mask, len,
2024-09-09 08:52:07 +00:00
(rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
(rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
2024-09-09 08:57:42 +00:00
/* Discard packet, if instructed to do so. Process the
* previous receive first.
*/
2024-09-09 08:52:07 +00:00
if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
2024-09-09 08:57:42 +00:00
efx_rx_flush_packet(channel);
efx_discard_rx_packet(channel, rx_buf, n_frags);
return;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
if (n_frags == 1 && !(flags & EFX_RX_PKT_PREFIX_LEN))
rx_buf->len = len;
/* Release and/or sync the DMA mapping - assumes all RX buffers
* consumed in-order per RX queue.
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
2024-09-09 08:52:07 +00:00
/* Prefetch nice and early so data will (hopefully) be in cache by
* the time we look at it.
*/
2024-09-09 08:57:42 +00:00
prefetch(efx_rx_buf_va(rx_buf));
rx_buf->page_offset += efx->rx_prefix_size;
rx_buf->len -= efx->rx_prefix_size;
if (n_frags > 1) {
/* Release/sync DMA mapping for additional fragments.
* Fix length for last fragment.
*/
unsigned int tail_frags = n_frags - 1;
for (;;) {
rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
if (--tail_frags == 0)
break;
efx_sync_rx_buffer(efx, rx_buf, efx->rx_dma_len);
}
rx_buf->len = len - (n_frags - 1) * efx->rx_dma_len;
efx_sync_rx_buffer(efx, rx_buf, rx_buf->len);
}
/* All fragments have been DMA-synced, so recycle pages. */
rx_buf = efx_rx_buffer(rx_queue, index);
efx_recycle_rx_pages(channel, rx_buf, n_frags);
2024-09-09 08:52:07 +00:00
/* Pipeline receives so that we give time for packet headers to be
* prefetched into cache.
*/
2024-09-09 08:57:42 +00:00
efx_rx_flush_packet(channel);
channel->rx_pkt_n_frags = n_frags;
channel->rx_pkt_index = index;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static void efx_rx_deliver(struct efx_channel *channel, u8 *eh,
struct efx_rx_buffer *rx_buf,
unsigned int n_frags)
2024-09-09 08:52:07 +00:00
{
struct sk_buff *skb;
2024-09-09 08:57:42 +00:00
u16 hdr_len = min_t(u16, rx_buf->len, EFX_SKB_HEADERS);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
skb = efx_rx_mk_skb(channel, rx_buf, n_frags, eh, hdr_len);
if (unlikely(skb == NULL)) {
efx_free_rx_buffer(rx_buf);
return;
}
skb_record_rx_queue(skb, channel->rx_queue.core_index);
2024-09-09 08:52:07 +00:00
/* Set the SKB flags */
skb_checksum_none_assert(skb);
2024-09-09 08:57:42 +00:00
if (likely(rx_buf->flags & EFX_RX_PKT_CSUMMED))
skb->ip_summed = CHECKSUM_UNNECESSARY;
efx_rx_skb_attach_timestamp(channel, skb);
if (channel->type->receive_skb)
if (channel->type->receive_skb(channel, skb))
return;
2024-09-09 08:52:07 +00:00
/* Pass the packet up */
netif_receive_skb(skb);
}
/* Handle a received packet. Second half: Touches packet payload. */
2024-09-09 08:57:42 +00:00
void __efx_rx_packet(struct efx_channel *channel)
2024-09-09 08:52:07 +00:00
{
struct efx_nic *efx = channel->efx;
2024-09-09 08:57:42 +00:00
struct efx_rx_buffer *rx_buf =
efx_rx_buffer(&channel->rx_queue, channel->rx_pkt_index);
u8 *eh = efx_rx_buf_va(rx_buf);
/* Read length from the prefix if necessary. This already
* excludes the length of the prefix itself.
*/
if (rx_buf->flags & EFX_RX_PKT_PREFIX_LEN)
rx_buf->len = le16_to_cpup((__le16 *)
(eh + efx->rx_packet_len_offset));
2024-09-09 08:52:07 +00:00
/* If we're in loopback test, then pass the packet directly to the
* loopback layer, and free the rx_buf here
*/
if (unlikely(efx->loopback_selftest)) {
efx_loopback_rx_packet(efx, eh, rx_buf->len);
2024-09-09 08:57:42 +00:00
efx_free_rx_buffer(rx_buf);
goto out;
2024-09-09 08:52:07 +00:00
}
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
2024-09-09 08:57:42 +00:00
if ((rx_buf->flags & EFX_RX_PKT_TCP) && !channel->type->receive_skb &&
!efx_channel_busy_polling(channel))
efx_rx_packet_gro(channel, rx_buf, channel->rx_pkt_n_frags, eh);
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
efx_rx_deliver(channel, eh, rx_buf, channel->rx_pkt_n_frags);
out:
channel->rx_pkt_n_frags = 0;
2024-09-09 08:52:07 +00:00
}
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
unsigned int entries;
int rc;
/* Create the smallest power-of-two aligned ring */
entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
rx_queue->ptr_mask = entries - 1;
netif_dbg(efx, probe, efx->net_dev,
"creating RX queue %d size %#x mask %#x\n",
efx_rx_queue_index(rx_queue), efx->rxq_entries,
rx_queue->ptr_mask);
/* Allocate RX buffers */
rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
GFP_KERNEL);
if (!rx_queue->buffer)
return -ENOMEM;
rc = efx_nic_probe_rx(rx_queue);
if (rc) {
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
2024-09-09 08:57:42 +00:00
2024-09-09 08:52:07 +00:00
return rc;
}
2024-09-09 08:57:42 +00:00
static void efx_init_rx_recycle_ring(struct efx_nic *efx,
struct efx_rx_queue *rx_queue)
{
unsigned int bufs_in_recycle_ring, page_ring_size;
/* Set the RX recycle ring size */
#ifdef CONFIG_PPC64
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
#else
if (iommu_present(&pci_bus_type))
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
else
bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
#endif /* CONFIG_PPC64 */
page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
efx->rx_bufs_per_page);
rx_queue->page_ring = kcalloc(page_ring_size,
sizeof(*rx_queue->page_ring), GFP_KERNEL);
rx_queue->page_ptr_mask = page_ring_size - 1;
}
2024-09-09 08:52:07 +00:00
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
{
struct efx_nic *efx = rx_queue->efx;
2024-09-09 08:57:42 +00:00
unsigned int max_fill, trigger, max_trigger;
2024-09-09 08:52:07 +00:00
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
/* Initialise ptr fields */
rx_queue->added_count = 0;
rx_queue->notified_count = 0;
rx_queue->removed_count = 0;
rx_queue->min_fill = -1U;
2024-09-09 08:57:42 +00:00
efx_init_rx_recycle_ring(efx, rx_queue);
rx_queue->page_remove = 0;
rx_queue->page_add = rx_queue->page_ptr_mask + 1;
rx_queue->page_recycle_count = 0;
rx_queue->page_recycle_failed = 0;
rx_queue->page_recycle_full = 0;
2024-09-09 08:52:07 +00:00
/* Initialise limit fields */
max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
2024-09-09 08:57:42 +00:00
max_trigger =
max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
if (rx_refill_threshold != 0) {
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
if (trigger > max_trigger)
trigger = max_trigger;
} else {
trigger = max_trigger;
}
2024-09-09 08:52:07 +00:00
rx_queue->max_fill = max_fill;
rx_queue->fast_fill_trigger = trigger;
2024-09-09 08:57:42 +00:00
rx_queue->refill_enabled = true;
2024-09-09 08:52:07 +00:00
/* Set up RX descriptor ring */
efx_nic_init_rx(rx_queue);
}
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
{
int i;
2024-09-09 08:57:42 +00:00
struct efx_nic *efx = rx_queue->efx;
2024-09-09 08:52:07 +00:00
struct efx_rx_buffer *rx_buf;
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
del_timer_sync(&rx_queue->slow_fill);
2024-09-09 08:57:42 +00:00
/* Release RX buffers from the current read ptr to the write ptr */
2024-09-09 08:52:07 +00:00
if (rx_queue->buffer) {
2024-09-09 08:57:42 +00:00
for (i = rx_queue->removed_count; i < rx_queue->added_count;
i++) {
unsigned index = i & rx_queue->ptr_mask;
rx_buf = efx_rx_buffer(rx_queue, index);
2024-09-09 08:52:07 +00:00
efx_fini_rx_buffer(rx_queue, rx_buf);
}
}
2024-09-09 08:57:42 +00:00
/* Unmap and release the pages in the recycle ring. Remove the ring. */
for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
struct page *page = rx_queue->page_ring[i];
struct efx_rx_page_state *state;
if (page == NULL)
continue;
state = page_address(page);
dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
PAGE_SIZE << efx->rx_buffer_order,
DMA_FROM_DEVICE);
put_page(page);
}
kfree(rx_queue->page_ring);
rx_queue->page_ring = NULL;
2024-09-09 08:52:07 +00:00
}
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
{
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
"destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
efx_nic_remove_rx(rx_queue);
kfree(rx_queue->buffer);
rx_queue->buffer = NULL;
}
module_param(rx_refill_threshold, uint, 0444);
MODULE_PARM_DESC(rx_refill_threshold,
2024-09-09 08:57:42 +00:00
"RX descriptor ring refill threshold (%)");
#ifdef CONFIG_RFS_ACCEL
int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
u16 rxq_index, u32 flow_id)
{
struct efx_nic *efx = netdev_priv(net_dev);
struct efx_channel *channel;
struct efx_filter_spec spec;
const __be16 *ports;
__be16 ether_type;
int nhoff;
int rc;
/* The core RPS/RFS code has already parsed and validated
* VLAN, IP and transport headers. We assume they are in the
* header area.
*/
if (skb->protocol == htons(ETH_P_8021Q)) {
const struct vlan_hdr *vh =
(const struct vlan_hdr *)skb->data;
/* We can't filter on the IP 5-tuple and the vlan
* together, so just strip the vlan header and filter
* on the IP part.
*/
EFX_BUG_ON_PARANOID(skb_headlen(skb) < sizeof(*vh));
ether_type = vh->h_vlan_encapsulated_proto;
nhoff = sizeof(struct vlan_hdr);
} else {
ether_type = skb->protocol;
nhoff = 0;
}
if (ether_type != htons(ETH_P_IP) && ether_type != htons(ETH_P_IPV6))
return -EPROTONOSUPPORT;
efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT,
efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
rxq_index);
spec.match_flags =
EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
spec.ether_type = ether_type;
if (ether_type == htons(ETH_P_IP)) {
const struct iphdr *ip =
(const struct iphdr *)(skb->data + nhoff);
EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip));
if (ip_is_fragment(ip))
return -EPROTONOSUPPORT;
spec.ip_proto = ip->protocol;
spec.rem_host[0] = ip->saddr;
spec.loc_host[0] = ip->daddr;
EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4);
ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl);
} else {
const struct ipv6hdr *ip6 =
(const struct ipv6hdr *)(skb->data + nhoff);
EFX_BUG_ON_PARANOID(skb_headlen(skb) <
nhoff + sizeof(*ip6) + 4);
spec.ip_proto = ip6->nexthdr;
memcpy(spec.rem_host, &ip6->saddr, sizeof(ip6->saddr));
memcpy(spec.loc_host, &ip6->daddr, sizeof(ip6->daddr));
ports = (const __be16 *)(ip6 + 1);
}
spec.rem_port = ports[0];
spec.loc_port = ports[1];
rc = efx->type->filter_rfs_insert(efx, &spec);
if (rc < 0)
return rc;
/* Remember this so we can check whether to expire the filter later */
efx->rps_flow_id[rc] = flow_id;
channel = efx_get_channel(efx, skb_get_rx_queue(skb));
++channel->rfs_filters_added;
if (ether_type == htons(ETH_P_IP))
netif_info(efx, rx_status, efx->net_dev,
"steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n",
(spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
spec.rem_host, ntohs(ports[0]), spec.loc_host,
ntohs(ports[1]), rxq_index, flow_id, rc);
else
netif_info(efx, rx_status, efx->net_dev,
"steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d]\n",
(spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
spec.rem_host, ntohs(ports[0]), spec.loc_host,
ntohs(ports[1]), rxq_index, flow_id, rc);
return rc;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned int quota)
{
bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
unsigned int index, size;
u32 flow_id;
if (!spin_trylock_bh(&efx->filter_lock))
return false;
expire_one = efx->type->filter_rfs_expire_one;
index = efx->rps_expire_index;
size = efx->type->max_rx_ip_filters;
while (quota--) {
flow_id = efx->rps_flow_id[index];
if (expire_one(efx, flow_id, index))
netif_info(efx, rx_status, efx->net_dev,
"expired filter %d [flow %u]\n",
index, flow_id);
if (++index == size)
index = 0;
}
efx->rps_expire_index = index;
spin_unlock_bh(&efx->filter_lock);
return true;
}
#endif /* CONFIG_RFS_ACCEL */
/**
* efx_filter_is_mc_recipient - test whether spec is a multicast recipient
* @spec: Specification to test
*
* Return: %true if the specification is a non-drop RX filter that
* matches a local MAC address I/G bit value of 1 or matches a local
* IPv4 or IPv6 address value in the respective multicast address
* range. Otherwise %false.
*/
bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
{
if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
return false;
if (spec->match_flags &
(EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
is_multicast_ether_addr(spec->loc_mac))
return true;
if ((spec->match_flags &
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
(EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
if (spec->ether_type == htons(ETH_P_IP) &&
ipv4_is_multicast(spec->loc_host[0]))
return true;
if (spec->ether_type == htons(ETH_P_IPV6) &&
((const u8 *)spec->loc_host)[0] == 0xff)
return true;
}
return false;
}