M7350/bootable/bootloader/lk/platform/msm8996/acpuclock.c

607 lines
14 KiB
C
Raw Normal View History

2024-09-09 08:57:42 +00:00
/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of The Linux Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdint.h>
#include <debug.h>
#include <reg.h>
#include <mmc.h>
#include <clock.h>
#include <platform/timer.h>
#include <platform/clock.h>
#include <platform/iomap.h>
#include <pm8x41.h>
#include <rpm-smd.h>
#include <regulator.h>
#define RPM_CE_CLK_TYPE 0x6563
#define CE1_CLK_ID 0x0
#define RPM_SMD_KEY_RATE 0x007A484B
uint32_t CE1_CLK[][8]=
{
{
RPM_CE_CLK_TYPE, CE1_CLK_ID,
KEY_SOFTWARE_ENABLE, 4, GENERIC_DISABLE,
RPM_SMD_KEY_RATE, 4, 0,
},
{
RPM_CE_CLK_TYPE, CE1_CLK_ID,
KEY_SOFTWARE_ENABLE, 4, GENERIC_ENABLE,
RPM_SMD_KEY_RATE, 4, 176128, /* clk rate in KHZ */
},
};
void clock_init_mmc(uint32_t interface)
{
char clk_name[64];
int ret;
snprintf(clk_name, sizeof(clk_name), "sdc%u_iface_clk", interface);
/* enable interface clock */
ret = clk_get_set_enable(clk_name, 0, true);
if(ret)
{
dprintf(CRITICAL, "failed to set sdc%u_iface_clk ret = %d\n", interface, ret);
ASSERT(0);
}
}
/* Configure MMC clock */
void clock_config_mmc(uint32_t interface, uint32_t freq)
{
int ret = 0;
char clk_name[64];
snprintf(clk_name, sizeof(clk_name), "sdc%u_core_clk", interface);
if(freq == MMC_CLK_400KHZ)
{
ret = clk_get_set_enable(clk_name, 400000, true);
}
else if(freq == MMC_CLK_50MHZ)
{
ret = clk_get_set_enable(clk_name, 50000000, true);
}
else if(freq == MMC_CLK_96MHZ)
{
ret = clk_get_set_enable(clk_name, 96000000, true);
}
else if(freq == MMC_CLK_192MHZ)
{
ret = clk_get_set_enable(clk_name, 192000000, true);
}
else if(freq == MMC_CLK_400MHZ)
{
ret = clk_get_set_enable(clk_name, 384000000, 1);
}
else
{
dprintf(CRITICAL, "sdc frequency (%u) is not supported\n", freq);
ASSERT(0);
}
if(ret)
{
dprintf(CRITICAL, "failed to set sdc%u_core_clk ret = %d\n", interface, ret);
ASSERT(0);
}
}
/* Configure UART clock based on the UART block id*/
void clock_config_uart_dm(uint8_t id)
{
int ret;
char iclk[64];
char cclk[64];
snprintf(iclk, sizeof(iclk), "uart%u_iface_clk", id);
snprintf(cclk, sizeof(cclk), "uart%u_core_clk", id);
ret = clk_get_set_enable(iclk, 0, true);
if(ret)
{
dprintf(CRITICAL, "failed to set uart%u_iface_clk ret = %d\n", id, ret);
ASSERT(0);
}
ret = clk_get_set_enable(cclk, 7372800, true);
if(ret)
{
dprintf(CRITICAL, "failed to set uart%u_core_clk ret = %d\n", id, ret);
ASSERT(0);
}
}
/* Function to asynchronously reset CE (Crypto Engine).
* Function assumes that all the CE clocks are off.
*/
static void ce_async_reset(uint8_t instance)
{
if (instance == 1)
{
/* Start the block reset for CE */
writel(1, GCC_CE1_BCR);
udelay(2);
/* Take CE block out of reset */
writel(0, GCC_CE1_BCR);
udelay(2);
}
else
{
dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance);
ASSERT(0);
}
}
void clock_ce_enable(uint8_t instance)
{
if (instance == 1)
rpm_send_data(&CE1_CLK[GENERIC_ENABLE][0], 24, RPM_REQUEST_TYPE);
else
{
dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance);
ASSERT(0);
}
}
void clock_ce_disable(uint8_t instance)
{
if (instance == 1)
rpm_send_data(&CE1_CLK[GENERIC_DISABLE][0], 24, RPM_REQUEST_TYPE);
else
{
dprintf(CRITICAL, "Unsupported CE instance: %u\n", instance);
ASSERT(0);
}
}
void clock_config_ce(uint8_t instance)
{
/* Need to enable the clock before disabling since the clk_disable()
* has a check to default to nop when the clk_enable() is not called
* on that particular clock.
*/
clock_ce_enable(instance);
clock_ce_disable(instance);
ce_async_reset(instance);
clock_ce_enable(instance);
}
void clock_usb30_gdsc_enable(void)
{
uint32_t reg = readl(GCC_USB30_GDSCR);
reg &= ~(0x1);
writel(reg, GCC_USB30_GDSCR);
}
/* enables usb30 clocks */
void clock_usb30_init(void)
{
int ret;
ret = clk_get_set_enable("usb30_iface_clk", 0, true);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_iface_clk. ret = %d\n", ret);
ASSERT(0);
}
clock_usb30_gdsc_enable();
ret = clk_get_set_enable("usb30_master_clk", 150000000, true);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_master_clk. ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("gcc_aggre2_usb3_axi_clk", 150000000, true);
if (ret)
{
dprintf(CRITICAL, "failed to set aggre2_usb3_axi_clk, ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb30_phy_aux_clk", 1200000, true);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_phy_aux_clk. ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb30_mock_utmi_clk", 60000000, true);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_mock_utmi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb30_sleep_clk", 0, true);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_sleep_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("usb_phy_cfg_ahb2phy_clk", 0, true);
if(ret)
{
dprintf(CRITICAL, "failed to enable usb_phy_cfg_ahb2phy_clk = %d\n", ret);
ASSERT(0);
}
}
void clock_bumpup_pipe3_clk()
{
int ret = 0;
ret = clk_get_set_enable("usb30_pipe_clk", 0, true);
if(ret)
{
dprintf(CRITICAL, "failed to set usb30_pipe_clk. ret = %d\n", ret);
ASSERT(0);
}
return;
}
void clock_reset_usb_phy()
{
int ret;
struct clk *phy_reset_clk = NULL;
struct clk *pipe_reset_clk = NULL;
struct clk *master_clk = NULL;
master_clk = clk_get("usb30_master_clk");
ASSERT(master_clk);
/* Look if phy com clock is present */
phy_reset_clk = clk_get("usb30_phy_reset");
ASSERT(phy_reset_clk);
pipe_reset_clk = clk_get("usb30_pipe_clk");
ASSERT(pipe_reset_clk);
/* ASSERT */
ret = clk_reset(master_clk, CLK_RESET_ASSERT);
if (ret)
{
dprintf(CRITICAL, "Failed to assert usb30_master_reset clk\n");
return;
}
ret = clk_reset(phy_reset_clk, CLK_RESET_ASSERT);
if (ret)
{
dprintf(CRITICAL, "Failed to assert usb30_phy_reset clk\n");
goto deassert_master_clk;
}
ret = clk_reset(pipe_reset_clk, CLK_RESET_ASSERT);
if (ret)
{
dprintf(CRITICAL, "Failed to assert usb30_pipe_clk\n");
goto deassert_phy_clk;
}
udelay(100);
/* DEASSERT */
ret = clk_reset(pipe_reset_clk, CLK_RESET_DEASSERT);
if (ret)
{
dprintf(CRITICAL, "Failed to deassert usb_pipe_clk\n");
return;
}
deassert_phy_clk:
ret = clk_reset(phy_reset_clk, CLK_RESET_DEASSERT);
if (ret)
{
dprintf(CRITICAL, "Failed to deassert usb30_phy_com_reset clk\n");
return;
}
deassert_master_clk:
ret = clk_reset(master_clk, CLK_RESET_DEASSERT);
if (ret)
{
dprintf(CRITICAL, "Failed to deassert usb30_master clk\n");
return;
}
}
void mmss_gdsc_enable()
{
uint32_t reg = 0;
reg = readl(MMAGIC_BIMC_GDSCR);
if (!(reg & GDSC_POWER_ON_BIT)) {
reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK);
reg |= GDSC_EN_FEW_WAIT_256_MASK;
writel(reg, MMAGIC_BIMC_GDSCR);
while(!(readl(MMAGIC_BIMC_GDSCR) & (GDSC_POWER_ON_BIT)));
} else {
dprintf(SPEW, "MMAGIC BIMC GDSC already enabled\n");
}
reg = readl(MMAGIC_MDSS_GDSCR);
if (!(reg & GDSC_POWER_ON_BIT)) {
reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK);
reg |= GDSC_EN_FEW_WAIT_256_MASK;
writel(reg, MMAGIC_MDSS_GDSCR);
while(!(readl(MMAGIC_MDSS_GDSCR) & (GDSC_POWER_ON_BIT)));
} else {
dprintf(SPEW, "MMAGIC MDSS GDSC already enabled\n");
}
reg = readl(MDSS_GDSCR);
if (!(reg & GDSC_POWER_ON_BIT)) {
reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK);
reg |= GDSC_EN_FEW_WAIT_256_MASK;
writel(reg, MDSS_GDSCR);
while(!(readl(MDSS_GDSCR) & (GDSC_POWER_ON_BIT)));
} else {
dprintf(SPEW, "MDSS GDSC already enabled\n");
}
}
void mmss_gdsc_disable()
{
uint32_t reg = 0;
reg = readl(MDSS_GDSCR);
reg |= BIT(0);
writel(reg, MDSS_GDSCR);
while(readl(MDSS_GDSCR) & (GDSC_POWER_ON_BIT));
reg = readl(MMAGIC_MDSS_GDSCR);
reg |= BIT(0);
writel(reg, MMAGIC_MDSS_GDSCR);
while(readl(MMAGIC_MDSS_GDSCR) & (GDSC_POWER_ON_BIT));
reg = readl(MMAGIC_BIMC_GDSCR);
reg |= BIT(0);
writel(reg, MMAGIC_BIMC_GDSCR);
while(readl(MMAGIC_BIMC_GDSCR) & (GDSC_POWER_ON_BIT));
}
void video_gdsc_enable()
{
uint32_t reg = 0;
reg = readl(MMAGIC_VIDEO_GDSCR);
if (!(reg & GDSC_POWER_ON_BIT)) {
reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK);
reg |= GDSC_EN_FEW_WAIT_256_MASK;
writel(reg, MMAGIC_VIDEO_GDSCR);
while(!(readl(MMAGIC_VIDEO_GDSCR) & (GDSC_POWER_ON_BIT)));
} else {
dprintf(SPEW, "VIDEO BIMC GDSC already enabled\n");
}
reg = readl(VIDEO_GDSCR);
if (!(reg & GDSC_POWER_ON_BIT)) {
reg &= ~(BIT(0) | GDSC_EN_FEW_WAIT_MASK);
reg |= GDSC_EN_FEW_WAIT_256_MASK;
writel(reg, VIDEO_GDSCR);
while(!(readl(VIDEO_GDSCR) & (GDSC_POWER_ON_BIT)));
} else {
dprintf(SPEW, "VIDEO GDSC already enabled\n");
}
}
void video_gdsc_disable()
{
uint32_t reg = 0;
reg = readl(VIDEO_GDSCR);
reg |= BIT(0);
writel(reg, VIDEO_GDSCR);
while(readl(VIDEO_GDSCR) & (GDSC_POWER_ON_BIT));
reg = readl(MMAGIC_VIDEO_GDSCR);
reg |= BIT(0);
writel(reg, MMAGIC_VIDEO_GDSCR);
while(readl(MMAGIC_VIDEO_GDSCR) & (GDSC_POWER_ON_BIT));
}
/* Configure MDP clock */
void mdp_clock_enable(void)
{
int ret;
ret = clk_get_set_enable("mmss_mmagic_ahb_clk", 19200000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mmagic_ahb_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("smmu_mdp_ahb_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set smmu_mdp_ahb_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdp_ahb_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_ahb_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdss_mdp_clk", 320000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdp_clk_src ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdss_vsync_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdss vsync clk ret = %d\n", ret);
ASSERT(0);
}
}
void mdp_clock_disable()
{
clk_disable(clk_get("mdss_vsync_clk"));
clk_disable(clk_get("mdss_mdp_clk"));
clk_disable(clk_get("mdp_ahb_clk"));
clk_disable(clk_get("smmu_mdp_ahb_clk"));
clk_disable(clk_get("mmss_mmagic_ahb_clk"));
}
void mmss_bus_clock_enable(void)
{
int ret;
ret = clk_get_set_enable("mmss_mmagic_axi_clk", 320000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mmss_mmagic_axi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mmagic_bimc_axi_clk", 320000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mmss_s0_axi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mmss_s0_axi_clk", 320000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mmss_s0_axi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mmagic_mdss_axi_clk", 320000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mmss_mmagic_axi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("smmu_mdp_axi_clk", 320000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set smmu_mdp_axi_clk ret = %d\n", ret);
ASSERT(0);
}
ret = clk_get_set_enable("mdss_axi_clk", 320000000, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set mdss_axi_clk ret = %d\n", ret);
ASSERT(0);
}
}
void mmss_bus_clock_disable(void)
{
clk_disable(clk_get("mdss_axi_clk"));
clk_disable(clk_get("smmu_mdp_axi_clk"));
clk_disable(clk_get("mmagic_mdss_axi_clk"));
clk_disable(clk_get("mmss_s0_axi_clk"));
clk_disable(clk_get("mmagic_bimc_axi_clk"));
clk_disable(clk_get("mmss_mmagic_axi_clk"));
}
void mmss_dsi_clock_enable(uint32_t cfg_rcgr, uint32_t flags)
{
int ret;
if (flags & MMSS_DSI_CLKS_FLAG_DSI0) {
/* Enable DSI0 branch clocks */
writel(cfg_rcgr, DSI_BYTE0_CFG_RCGR);
writel(0x1, DSI_BYTE0_CMD_RCGR);
writel(0x1, DSI_BYTE0_CBCR);
writel(cfg_rcgr, DSI_PIXEL0_CFG_RCGR);
writel(0x1, DSI_PIXEL0_CMD_RCGR);
writel(0x1, DSI_PIXEL0_CBCR);
ret = clk_get_set_enable("mdss_esc0_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set esc0_clk ret = %d\n", ret);
ASSERT(0);
}
}
if (flags & MMSS_DSI_CLKS_FLAG_DSI1) {
/* Enable DSI1 branch clocks */
writel(cfg_rcgr, DSI_BYTE1_CFG_RCGR);
writel(0x1, DSI_BYTE1_CMD_RCGR);
writel(0x1, DSI_BYTE1_CBCR);
writel(cfg_rcgr, DSI_PIXEL1_CFG_RCGR);
writel(0x1, DSI_PIXEL1_CMD_RCGR);
writel(0x1, DSI_PIXEL1_CBCR);
ret = clk_get_set_enable("mdss_esc1_clk", 0, 1);
if(ret)
{
dprintf(CRITICAL, "failed to set esc1_clk ret = %d\n", ret);
ASSERT(0);
}
}
}
void mmss_dsi_clock_disable(uint32_t flags)
{
if (flags & MMSS_DSI_CLKS_FLAG_DSI0) {
clk_disable(clk_get("mdss_esc0_clk"));
writel(0x0, DSI_BYTE0_CBCR);
writel(0x0, DSI_PIXEL0_CBCR);
}
if (flags & MMSS_DSI_CLKS_FLAG_DSI1) {
clk_disable(clk_get("mdss_esc1_clk"));
writel(0x0, DSI_BYTE1_CBCR);
writel(0x0, DSI_PIXEL1_CBCR);
}
}