3122 lines
85 KiB
C
3122 lines
85 KiB
C
|
/* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 and
|
||
|
* only version 2 as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "BMS: %s: " fmt, __func__
|
||
|
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/of_device.h>
|
||
|
#include <linux/power_supply.h>
|
||
|
#include <linux/spmi.h>
|
||
|
#include <linux/rtc.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/qpnp/qpnp-adc.h>
|
||
|
#include <linux/qpnp/power-on.h>
|
||
|
#include <linux/mfd/pm8xxx/batterydata-lib.h>
|
||
|
|
||
|
/* BMS Register Offsets */
|
||
|
#define BMS1_REVISION1 0x0
|
||
|
#define BMS1_REVISION2 0x1
|
||
|
#define BMS1_STATUS1 0x8
|
||
|
#define BMS1_MODE_CTL 0X40
|
||
|
/* Coulomb counter clear registers */
|
||
|
#define BMS1_CC_DATA_CTL 0x42
|
||
|
#define BMS1_CC_CLEAR_CTL 0x43
|
||
|
/* BMS Tolerances */
|
||
|
#define BMS1_TOL_CTL 0X44
|
||
|
/* OCV limit registers */
|
||
|
#define BMS1_OCV_USE_LOW_LIMIT_THR0 0x48
|
||
|
#define BMS1_OCV_USE_LOW_LIMIT_THR1 0x49
|
||
|
#define BMS1_OCV_USE_HIGH_LIMIT_THR0 0x4A
|
||
|
#define BMS1_OCV_USE_HIGH_LIMIT_THR1 0x4B
|
||
|
#define BMS1_OCV_USE_LIMIT_CTL 0x4C
|
||
|
/* Delay control */
|
||
|
#define BMS1_S1_DELAY_CTL 0x5A
|
||
|
/* CC interrupt threshold */
|
||
|
#define BMS1_CC_THR0 0x7A
|
||
|
#define BMS1_CC_THR1 0x7B
|
||
|
#define BMS1_CC_THR2 0x7C
|
||
|
#define BMS1_CC_THR3 0x7D
|
||
|
#define BMS1_CC_THR4 0x7E
|
||
|
/* OCV for r registers */
|
||
|
#define BMS1_OCV_FOR_R_DATA0 0x80
|
||
|
#define BMS1_OCV_FOR_R_DATA1 0x81
|
||
|
#define BMS1_VSENSE_FOR_R_DATA0 0x82
|
||
|
#define BMS1_VSENSE_FOR_R_DATA1 0x83
|
||
|
/* Coulomb counter data */
|
||
|
#define BMS1_CC_DATA0 0x8A
|
||
|
#define BMS1_CC_DATA1 0x8B
|
||
|
#define BMS1_CC_DATA2 0x8C
|
||
|
#define BMS1_CC_DATA3 0x8D
|
||
|
#define BMS1_CC_DATA4 0x8E
|
||
|
/* OCV for soc data */
|
||
|
#define BMS1_OCV_FOR_SOC_DATA0 0x90
|
||
|
#define BMS1_OCV_FOR_SOC_DATA1 0x91
|
||
|
#define BMS1_VSENSE_PON_DATA0 0x94
|
||
|
#define BMS1_VSENSE_PON_DATA1 0x95
|
||
|
#define BMS1_VSENSE_AVG_DATA0 0x98
|
||
|
#define BMS1_VSENSE_AVG_DATA1 0x99
|
||
|
#define BMS1_VBAT_AVG_DATA0 0x9E
|
||
|
#define BMS1_VBAT_AVG_DATA1 0x9F
|
||
|
/* Extra bms registers */
|
||
|
#define SOC_STORAGE_REG 0xB0
|
||
|
#define IAVG_STORAGE_REG 0xB1
|
||
|
#define BMS1_BMS_DATA_REG_2 0xB2
|
||
|
#define BMS1_BMS_DATA_REG_3 0xB3
|
||
|
/* IADC Channel Select */
|
||
|
#define IADC1_BMS_ADC_CH_SEL_CTL 0x48
|
||
|
|
||
|
/* Configuration for saving of shutdown soc/iavg */
|
||
|
#define IGNORE_SOC_TEMP_DECIDEG 50
|
||
|
#define IAVG_STEP_SIZE_MA 50
|
||
|
#define IAVG_START 600
|
||
|
#define IAVG_INVALID 0xFF
|
||
|
#define SOC_INVALID 0xFF
|
||
|
|
||
|
#define IAVG_SAMPLES 16
|
||
|
|
||
|
#define QPNP_BMS_DEV_NAME "qcom,qpnp-bms"
|
||
|
|
||
|
struct soc_params {
|
||
|
int fcc_uah;
|
||
|
int cc_uah;
|
||
|
int rbatt_mohm;
|
||
|
int iavg_ua;
|
||
|
int uuc_uah;
|
||
|
int ocv_charge_uah;
|
||
|
int delta_time_s;
|
||
|
};
|
||
|
|
||
|
struct raw_soc_params {
|
||
|
uint16_t last_good_ocv_raw;
|
||
|
int64_t cc;
|
||
|
int last_good_ocv_uv;
|
||
|
};
|
||
|
|
||
|
struct qpnp_bms_chip {
|
||
|
struct device *dev;
|
||
|
struct power_supply bms_psy;
|
||
|
struct power_supply *batt_psy;
|
||
|
struct spmi_device *spmi;
|
||
|
u16 base;
|
||
|
u16 iadc_base;
|
||
|
|
||
|
u8 revision1;
|
||
|
u8 revision2;
|
||
|
int battery_present;
|
||
|
int battery_status;
|
||
|
bool new_battery;
|
||
|
bool done_charging;
|
||
|
bool last_soc_invalid;
|
||
|
/* platform data */
|
||
|
int r_sense_uohm;
|
||
|
unsigned int v_cutoff_uv;
|
||
|
int max_voltage_uv;
|
||
|
int r_conn_mohm;
|
||
|
int shutdown_soc_valid_limit;
|
||
|
int adjust_soc_low_threshold;
|
||
|
int chg_term_ua;
|
||
|
enum battery_type batt_type;
|
||
|
unsigned int fcc_mah;
|
||
|
struct single_row_lut *fcc_temp_lut;
|
||
|
struct single_row_lut *fcc_sf_lut;
|
||
|
struct pc_temp_ocv_lut *pc_temp_ocv_lut;
|
||
|
struct sf_lut *pc_sf_lut;
|
||
|
struct sf_lut *rbatt_sf_lut;
|
||
|
int default_rbatt_mohm;
|
||
|
int rbatt_capacitive_mohm;
|
||
|
int rbatt_mohm;
|
||
|
|
||
|
struct delayed_work calculate_soc_delayed_work;
|
||
|
struct work_struct recalc_work;
|
||
|
|
||
|
struct mutex bms_output_lock;
|
||
|
struct mutex last_ocv_uv_mutex;
|
||
|
struct mutex vbat_monitor_mutex;
|
||
|
struct mutex soc_invalidation_mutex;
|
||
|
struct mutex last_soc_mutex;
|
||
|
|
||
|
bool use_external_rsense;
|
||
|
bool use_ocv_thresholds;
|
||
|
|
||
|
bool ignore_shutdown_soc;
|
||
|
bool shutdown_soc_invalid;
|
||
|
int shutdown_soc;
|
||
|
int shutdown_iavg_ma;
|
||
|
|
||
|
struct wake_lock low_voltage_wake_lock;
|
||
|
int low_voltage_threshold;
|
||
|
int low_soc_calc_threshold;
|
||
|
int low_soc_calculate_soc_ms;
|
||
|
int calculate_soc_ms;
|
||
|
struct wake_lock soc_wake_lock;
|
||
|
struct wake_lock cv_wake_lock;
|
||
|
|
||
|
uint16_t ocv_reading_at_100;
|
||
|
uint16_t prev_last_good_ocv_raw;
|
||
|
int last_ocv_uv;
|
||
|
int charging_adjusted_ocv;
|
||
|
int last_ocv_temp;
|
||
|
int last_cc_uah;
|
||
|
unsigned long last_soc_change_sec;
|
||
|
unsigned long tm_sec;
|
||
|
unsigned long report_tm_sec;
|
||
|
bool first_time_calc_soc;
|
||
|
bool first_time_calc_uuc;
|
||
|
int64_t software_cc_uah;
|
||
|
|
||
|
int iavg_samples_ma[IAVG_SAMPLES];
|
||
|
int iavg_index;
|
||
|
int iavg_num_samples;
|
||
|
struct timespec t_soc_queried;
|
||
|
int last_soc;
|
||
|
int last_soc_est;
|
||
|
int last_soc_unbound;
|
||
|
bool was_charging_at_sleep;
|
||
|
int charge_start_tm_sec;
|
||
|
int catch_up_time_sec;
|
||
|
struct single_row_lut *adjusted_fcc_temp_lut;
|
||
|
|
||
|
struct qpnp_adc_tm_btm_param vbat_monitor_params;
|
||
|
struct qpnp_adc_tm_btm_param die_temp_monitor_params;
|
||
|
int temperature_margin;
|
||
|
unsigned int vadc_v0625;
|
||
|
unsigned int vadc_v1250;
|
||
|
|
||
|
int prev_uuc_iavg_ma;
|
||
|
int prev_pc_unusable;
|
||
|
int ibat_at_cv_ua;
|
||
|
int soc_at_cv;
|
||
|
int prev_chg_soc;
|
||
|
int calculated_soc;
|
||
|
int prev_voltage_based_soc;
|
||
|
bool use_voltage_soc;
|
||
|
bool in_cv_range;
|
||
|
|
||
|
int prev_batt_terminal_uv;
|
||
|
int high_ocv_correction_limit_uv;
|
||
|
int low_ocv_correction_limit_uv;
|
||
|
int flat_ocv_threshold_uv;
|
||
|
int hold_soc_est;
|
||
|
|
||
|
int ocv_high_threshold_uv;
|
||
|
int ocv_low_threshold_uv;
|
||
|
unsigned long last_recalc_time;
|
||
|
};
|
||
|
|
||
|
static struct of_device_id qpnp_bms_match_table[] = {
|
||
|
{ .compatible = QPNP_BMS_DEV_NAME },
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static char *qpnp_bms_supplicants[] = {
|
||
|
"battery"
|
||
|
};
|
||
|
|
||
|
static enum power_supply_property msm_bms_power_props[] = {
|
||
|
POWER_SUPPLY_PROP_CAPACITY,
|
||
|
POWER_SUPPLY_PROP_CURRENT_NOW,
|
||
|
POWER_SUPPLY_PROP_RESISTANCE,
|
||
|
POWER_SUPPLY_PROP_CHARGE_COUNTER,
|
||
|
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
|
||
|
};
|
||
|
|
||
|
static bool bms_reset;
|
||
|
|
||
|
static int qpnp_read_wrapper(struct qpnp_bms_chip *chip, u8 *val,
|
||
|
u16 base, int count)
|
||
|
{
|
||
|
int rc;
|
||
|
struct spmi_device *spmi = chip->spmi;
|
||
|
|
||
|
rc = spmi_ext_register_readl(spmi->ctrl, spmi->sid, base, val, count);
|
||
|
if (rc) {
|
||
|
pr_err("SPMI read failed rc=%d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int qpnp_write_wrapper(struct qpnp_bms_chip *chip, u8 *val,
|
||
|
u16 base, int count)
|
||
|
{
|
||
|
int rc;
|
||
|
struct spmi_device *spmi = chip->spmi;
|
||
|
|
||
|
rc = spmi_ext_register_writel(spmi->ctrl, spmi->sid, base, val, count);
|
||
|
if (rc) {
|
||
|
pr_err("SPMI write failed rc=%d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int qpnp_masked_write_base(struct qpnp_bms_chip *chip, u16 addr,
|
||
|
u8 mask, u8 val)
|
||
|
{
|
||
|
int rc;
|
||
|
u8 reg;
|
||
|
|
||
|
rc = qpnp_read_wrapper(chip, ®, addr, 1);
|
||
|
if (rc) {
|
||
|
pr_err("read failed addr = %03X, rc = %d\n", addr, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
reg &= ~mask;
|
||
|
reg |= val & mask;
|
||
|
rc = qpnp_write_wrapper(chip, ®, addr, 1);
|
||
|
if (rc) {
|
||
|
pr_err("write failed addr = %03X, val = %02x, mask = %02x, reg = %02x, rc = %d\n",
|
||
|
addr, val, mask, reg, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int qpnp_masked_write_iadc(struct qpnp_bms_chip *chip, u16 addr,
|
||
|
u8 mask, u8 val)
|
||
|
{
|
||
|
return qpnp_masked_write_base(chip, chip->iadc_base + addr, mask, val);
|
||
|
}
|
||
|
|
||
|
static int qpnp_masked_write(struct qpnp_bms_chip *chip, u16 addr,
|
||
|
u8 mask, u8 val)
|
||
|
{
|
||
|
return qpnp_masked_write_base(chip, chip->base + addr, mask, val);
|
||
|
}
|
||
|
|
||
|
#define HOLD_OREG_DATA BIT(0)
|
||
|
static int lock_output_data(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL,
|
||
|
HOLD_OREG_DATA, HOLD_OREG_DATA);
|
||
|
if (rc) {
|
||
|
pr_err("couldnt lock bms output rc = %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int unlock_output_data(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
rc = qpnp_masked_write(chip, BMS1_CC_DATA_CTL, HOLD_OREG_DATA, 0);
|
||
|
if (rc) {
|
||
|
pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define V_PER_BIT_MUL_FACTOR 97656
|
||
|
#define V_PER_BIT_DIV_FACTOR 1000
|
||
|
#define VADC_INTRINSIC_OFFSET 0x6000
|
||
|
|
||
|
static int vadc_reading_to_uv(int reading)
|
||
|
{
|
||
|
if (reading <= VADC_INTRINSIC_OFFSET)
|
||
|
return 0;
|
||
|
|
||
|
return (reading - VADC_INTRINSIC_OFFSET)
|
||
|
* V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR;
|
||
|
}
|
||
|
|
||
|
#define VADC_CALIB_UV 625000
|
||
|
#define VBATT_MUL_FACTOR 3
|
||
|
|
||
|
static int adjust_vbatt_reading(struct qpnp_bms_chip *chip, int reading_uv)
|
||
|
{
|
||
|
s64 numerator, denominator;
|
||
|
|
||
|
if (reading_uv == 0)
|
||
|
return 0;
|
||
|
|
||
|
/* don't adjust if not calibrated */
|
||
|
if (chip->vadc_v0625 == 0 || chip->vadc_v1250 == 0) {
|
||
|
pr_debug("No cal yet return %d\n",
|
||
|
VBATT_MUL_FACTOR * reading_uv);
|
||
|
return VBATT_MUL_FACTOR * reading_uv;
|
||
|
}
|
||
|
|
||
|
numerator = ((s64)reading_uv - chip->vadc_v0625) * VADC_CALIB_UV;
|
||
|
denominator = (s64)chip->vadc_v1250 - chip->vadc_v0625;
|
||
|
if (denominator == 0)
|
||
|
return reading_uv * VBATT_MUL_FACTOR;
|
||
|
return (VADC_CALIB_UV + div_s64(numerator, denominator))
|
||
|
* VBATT_MUL_FACTOR;
|
||
|
}
|
||
|
|
||
|
static int convert_vbatt_uv_to_raw(struct qpnp_bms_chip *chip,
|
||
|
int unadjusted_vbatt)
|
||
|
{
|
||
|
int scaled_vbatt = unadjusted_vbatt / VBATT_MUL_FACTOR;
|
||
|
|
||
|
if (scaled_vbatt <= 0)
|
||
|
return VADC_INTRINSIC_OFFSET;
|
||
|
return ((scaled_vbatt * V_PER_BIT_DIV_FACTOR) / V_PER_BIT_MUL_FACTOR)
|
||
|
+ VADC_INTRINSIC_OFFSET;
|
||
|
}
|
||
|
|
||
|
static inline int convert_vbatt_raw_to_uv(struct qpnp_bms_chip *chip,
|
||
|
uint16_t reading)
|
||
|
{
|
||
|
int64_t uv;
|
||
|
int rc;
|
||
|
|
||
|
uv = vadc_reading_to_uv(reading);
|
||
|
pr_debug("%u raw converted into %lld uv\n", reading, uv);
|
||
|
uv = adjust_vbatt_reading(chip, uv);
|
||
|
pr_debug("adjusted into %lld uv\n", uv);
|
||
|
rc = qpnp_vbat_sns_comp_result(&uv);
|
||
|
if (rc)
|
||
|
pr_debug("could not compensate vbatt\n");
|
||
|
pr_debug("compensated into %lld uv\n", uv);
|
||
|
return uv;
|
||
|
}
|
||
|
|
||
|
#define CC_READING_RESOLUTION_N 542535
|
||
|
#define CC_READING_RESOLUTION_D 100000
|
||
|
static s64 cc_reading_to_uv(s64 reading)
|
||
|
{
|
||
|
return div_s64(reading * CC_READING_RESOLUTION_N,
|
||
|
CC_READING_RESOLUTION_D);
|
||
|
}
|
||
|
|
||
|
#define QPNP_ADC_GAIN_IDEAL 3291LL
|
||
|
static s64 cc_adjust_for_gain(s64 uv, uint16_t gain)
|
||
|
{
|
||
|
s64 result_uv;
|
||
|
|
||
|
pr_debug("adjusting_uv = %lld\n", uv);
|
||
|
if (gain == 0) {
|
||
|
pr_debug("gain is %d, not adjusting\n", gain);
|
||
|
return uv;
|
||
|
}
|
||
|
pr_debug("adjusting by factor: %lld/%hu = %lld%%\n",
|
||
|
QPNP_ADC_GAIN_IDEAL, gain,
|
||
|
div_s64(QPNP_ADC_GAIN_IDEAL * 100LL, (s64)gain));
|
||
|
|
||
|
result_uv = div_s64(uv * QPNP_ADC_GAIN_IDEAL, (s64)gain);
|
||
|
pr_debug("result_uv = %lld\n", result_uv);
|
||
|
return result_uv;
|
||
|
}
|
||
|
|
||
|
static int convert_vsense_to_uv(struct qpnp_bms_chip *chip,
|
||
|
int16_t reading)
|
||
|
{
|
||
|
struct qpnp_iadc_calib calibration;
|
||
|
|
||
|
qpnp_iadc_get_gain_and_offset(&calibration);
|
||
|
return cc_adjust_for_gain(cc_reading_to_uv(reading),
|
||
|
calibration.gain_raw - calibration.offset_raw);
|
||
|
}
|
||
|
|
||
|
static int read_vsense_avg(struct qpnp_bms_chip *chip, int *result_uv)
|
||
|
{
|
||
|
int rc;
|
||
|
int16_t reading;
|
||
|
|
||
|
rc = qpnp_read_wrapper(chip, (u8 *)&reading,
|
||
|
chip->base + BMS1_VSENSE_AVG_DATA0, 2);
|
||
|
|
||
|
if (rc) {
|
||
|
pr_err("fail to read VSENSE_AVG rc = %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
*result_uv = convert_vsense_to_uv(chip, reading);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int get_battery_current(struct qpnp_bms_chip *chip, int *result_ua)
|
||
|
{
|
||
|
int rc, vsense_uv = 0;
|
||
|
int64_t temp_current;
|
||
|
|
||
|
if (chip->r_sense_uohm == 0) {
|
||
|
pr_err("r_sense is zero\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
mutex_lock(&chip->bms_output_lock);
|
||
|
lock_output_data(chip);
|
||
|
read_vsense_avg(chip, &vsense_uv);
|
||
|
unlock_output_data(chip);
|
||
|
mutex_unlock(&chip->bms_output_lock);
|
||
|
|
||
|
pr_debug("vsense_uv=%duV\n", vsense_uv);
|
||
|
/* cast for signed division */
|
||
|
temp_current = div_s64((vsense_uv * 1000000LL),
|
||
|
(int)chip->r_sense_uohm);
|
||
|
|
||
|
rc = qpnp_iadc_comp_result(&temp_current);
|
||
|
if (rc)
|
||
|
pr_debug("error compensation failed: %d\n", rc);
|
||
|
|
||
|
*result_ua = temp_current;
|
||
|
pr_debug("err compensated ibat=%duA\n", *result_ua);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int get_battery_voltage(int *result_uv)
|
||
|
{
|
||
|
int rc;
|
||
|
struct qpnp_vadc_result adc_result;
|
||
|
|
||
|
rc = qpnp_vadc_read(VBAT_SNS, &adc_result);
|
||
|
if (rc) {
|
||
|
pr_err("error reading adc channel = %d, rc = %d\n",
|
||
|
VBAT_SNS, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
pr_debug("mvolts phy = %lld meas = 0x%llx\n", adc_result.physical,
|
||
|
adc_result.measurement);
|
||
|
*result_uv = (int)adc_result.physical;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define CC_36_BIT_MASK 0xFFFFFFFFFLL
|
||
|
|
||
|
static int read_cc_raw(struct qpnp_bms_chip *chip, int64_t *reading)
|
||
|
{
|
||
|
int64_t raw_reading;
|
||
|
int rc;
|
||
|
|
||
|
rc = qpnp_read_wrapper(chip, (u8 *)&raw_reading,
|
||
|
chip->base + BMS1_CC_DATA0, 5);
|
||
|
if (rc) {
|
||
|
pr_err("Error reading cc: rc = %d\n", rc);
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
raw_reading = raw_reading & CC_36_BIT_MASK;
|
||
|
/* convert 36 bit signed value into 64 signed value */
|
||
|
*reading = (raw_reading >> 35) == 0LL ?
|
||
|
raw_reading : ((-1LL ^ CC_36_BIT_MASK) | raw_reading);
|
||
|
pr_debug("before conversion: %llx, after conversion: %llx\n",
|
||
|
raw_reading, *reading);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int calib_vadc(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc, raw_0625, raw_1250;
|
||
|
struct qpnp_vadc_result result;
|
||
|
|
||
|
rc = qpnp_vadc_read(REF_625MV, &result);
|
||
|
if (rc) {
|
||
|
pr_debug("vadc read failed with rc = %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
raw_0625 = result.adc_code;
|
||
|
|
||
|
rc = qpnp_vadc_read(REF_125V, &result);
|
||
|
if (rc) {
|
||
|
pr_debug("vadc read failed with rc = %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
raw_1250 = result.adc_code;
|
||
|
chip->vadc_v0625 = vadc_reading_to_uv(raw_0625);
|
||
|
chip->vadc_v1250 = vadc_reading_to_uv(raw_1250);
|
||
|
pr_debug("vadc calib: 0625 = %d raw (%d uv), 1250 = %d raw (%d uv)\n",
|
||
|
raw_0625, chip->vadc_v0625,
|
||
|
raw_1250, chip->vadc_v1250);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void convert_and_store_ocv(struct qpnp_bms_chip *chip,
|
||
|
struct raw_soc_params *raw,
|
||
|
int batt_temp)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
pr_debug("prev_last_good_ocv_raw = %d, last_good_ocv_raw = %d\n",
|
||
|
chip->prev_last_good_ocv_raw,
|
||
|
raw->last_good_ocv_raw);
|
||
|
rc = calib_vadc(chip);
|
||
|
if (rc)
|
||
|
pr_err("Vadc reference voltage read failed, rc = %d\n", rc);
|
||
|
chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw;
|
||
|
raw->last_good_ocv_uv = convert_vbatt_raw_to_uv(chip,
|
||
|
raw->last_good_ocv_raw);
|
||
|
chip->last_ocv_uv = raw->last_good_ocv_uv;
|
||
|
chip->last_ocv_temp = batt_temp;
|
||
|
chip->software_cc_uah = 0;
|
||
|
pr_debug("last_good_ocv_uv = %d\n", raw->last_good_ocv_uv);
|
||
|
}
|
||
|
|
||
|
#define CLEAR_CC BIT(7)
|
||
|
#define CLEAR_SW_CC BIT(6)
|
||
|
/**
|
||
|
* reset both cc and sw-cc.
|
||
|
* note: this should only be ever called from one thread
|
||
|
* or there may be a race condition where CC is never enabled
|
||
|
* again
|
||
|
*/
|
||
|
static void reset_cc(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
pr_debug("resetting cc manually\n");
|
||
|
rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL,
|
||
|
CLEAR_CC | CLEAR_SW_CC,
|
||
|
CLEAR_CC | CLEAR_SW_CC);
|
||
|
if (rc)
|
||
|
pr_err("cc reset failed: %d\n", rc);
|
||
|
|
||
|
/* wait for 100us for cc to reset */
|
||
|
udelay(100);
|
||
|
|
||
|
rc = qpnp_masked_write(chip, BMS1_CC_CLEAR_CTL,
|
||
|
CLEAR_CC | CLEAR_SW_CC, 0);
|
||
|
if (rc)
|
||
|
pr_err("cc reenable failed: %d\n", rc);
|
||
|
}
|
||
|
|
||
|
static int get_battery_status(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
union power_supply_propval ret = {0,};
|
||
|
|
||
|
if (chip->batt_psy == NULL)
|
||
|
chip->batt_psy = power_supply_get_by_name("battery");
|
||
|
if (chip->batt_psy) {
|
||
|
/* if battery has been registered, use the status property */
|
||
|
chip->batt_psy->get_property(chip->batt_psy,
|
||
|
POWER_SUPPLY_PROP_STATUS, &ret);
|
||
|
return ret.intval;
|
||
|
}
|
||
|
|
||
|
/* Default to false if the battery power supply is not registered. */
|
||
|
pr_debug("battery power supply is not registered\n");
|
||
|
return POWER_SUPPLY_STATUS_UNKNOWN;
|
||
|
}
|
||
|
|
||
|
static bool is_battery_charging(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
return get_battery_status(chip) == POWER_SUPPLY_STATUS_CHARGING;
|
||
|
}
|
||
|
|
||
|
static bool is_battery_present(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
union power_supply_propval ret = {0,};
|
||
|
|
||
|
if (chip->batt_psy == NULL)
|
||
|
chip->batt_psy = power_supply_get_by_name("battery");
|
||
|
if (chip->batt_psy) {
|
||
|
/* if battery has been registered, use the status property */
|
||
|
chip->batt_psy->get_property(chip->batt_psy,
|
||
|
POWER_SUPPLY_PROP_PRESENT, &ret);
|
||
|
return ret.intval;
|
||
|
}
|
||
|
|
||
|
/* Default to false if the battery power supply is not registered. */
|
||
|
pr_debug("battery power supply is not registered\n");
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool is_battery_full(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
return get_battery_status(chip) == POWER_SUPPLY_STATUS_FULL;
|
||
|
}
|
||
|
|
||
|
static int get_simultaneous_batt_v_and_i(struct qpnp_bms_chip *chip,
|
||
|
int *ibat_ua, int *vbat_uv)
|
||
|
{
|
||
|
struct qpnp_iadc_result i_result;
|
||
|
struct qpnp_vadc_result v_result;
|
||
|
enum qpnp_iadc_channels iadc_channel;
|
||
|
int rc;
|
||
|
|
||
|
iadc_channel = chip->use_external_rsense ?
|
||
|
EXTERNAL_RSENSE : INTERNAL_RSENSE;
|
||
|
if (is_battery_full(chip)) {
|
||
|
rc = get_battery_current(chip, ibat_ua);
|
||
|
if (rc) {
|
||
|
pr_err("bms current read failed with rc: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
rc = qpnp_vadc_read(VBAT_SNS, &v_result);
|
||
|
if (rc) {
|
||
|
pr_err("vadc read failed with rc: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
*vbat_uv = (int)v_result.physical;
|
||
|
} else {
|
||
|
rc = qpnp_iadc_vadc_sync_read(iadc_channel, &i_result,
|
||
|
VBAT_SNS, &v_result);
|
||
|
if (rc) {
|
||
|
pr_err("adc sync read failed with rc: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
/*
|
||
|
* reverse the current read by the iadc, since the bms uses
|
||
|
* flipped battery current polarity.
|
||
|
*/
|
||
|
*ibat_ua = -1 * (int)i_result.result_ua;
|
||
|
*vbat_uv = (int)v_result.physical;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int estimate_ocv(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int ibat_ua, vbat_uv, ocv_est_uv;
|
||
|
int rc;
|
||
|
int rbatt_mohm = chip->default_rbatt_mohm + chip->r_conn_mohm
|
||
|
+ chip->rbatt_capacitive_mohm;
|
||
|
|
||
|
rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
|
||
|
if (rc) {
|
||
|
pr_err("simultaneous failed rc = %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
ocv_est_uv = vbat_uv + (ibat_ua * rbatt_mohm) / 1000;
|
||
|
pr_debug("estimated pon ocv = %d\n", ocv_est_uv);
|
||
|
return ocv_est_uv;
|
||
|
}
|
||
|
|
||
|
static void reset_for_new_battery(struct qpnp_bms_chip *chip, int batt_temp)
|
||
|
{
|
||
|
chip->last_ocv_uv = estimate_ocv(chip);
|
||
|
mutex_lock(&chip->last_soc_mutex);
|
||
|
chip->last_soc = -EINVAL;
|
||
|
chip->last_soc_invalid = true;
|
||
|
mutex_unlock(&chip->last_soc_mutex);
|
||
|
chip->soc_at_cv = -EINVAL;
|
||
|
chip->shutdown_soc_invalid = true;
|
||
|
chip->shutdown_soc = 0;
|
||
|
chip->shutdown_iavg_ma = 0;
|
||
|
chip->prev_pc_unusable = -EINVAL;
|
||
|
reset_cc(chip);
|
||
|
chip->software_cc_uah = 0;
|
||
|
chip->last_cc_uah = INT_MIN;
|
||
|
chip->last_ocv_temp = batt_temp;
|
||
|
chip->prev_batt_terminal_uv = 0;
|
||
|
}
|
||
|
|
||
|
#define OCV_RAW_UNINITIALIZED 0xFFFF
|
||
|
#define MIN_OCV_UV 2000000
|
||
|
static int read_soc_params_raw(struct qpnp_bms_chip *chip,
|
||
|
struct raw_soc_params *raw,
|
||
|
int batt_temp)
|
||
|
{
|
||
|
bool warm_reset = false;
|
||
|
int rc;
|
||
|
|
||
|
mutex_lock(&chip->bms_output_lock);
|
||
|
|
||
|
if (chip->prev_last_good_ocv_raw == OCV_RAW_UNINITIALIZED) {
|
||
|
/* software workaround for BMS 1.0
|
||
|
* The coulomb counter does not reset upon PON, so reset it
|
||
|
* manually upon probe. */
|
||
|
if (chip->revision1 == 0 && chip->revision2 == 0)
|
||
|
reset_cc(chip);
|
||
|
}
|
||
|
|
||
|
lock_output_data(chip);
|
||
|
|
||
|
rc = qpnp_read_wrapper(chip, (u8 *)&raw->last_good_ocv_raw,
|
||
|
chip->base + BMS1_OCV_FOR_SOC_DATA0, 2);
|
||
|
if (rc) {
|
||
|
pr_err("Error reading ocv: rc = %d\n", rc);
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
rc = read_cc_raw(chip, &raw->cc);
|
||
|
if (rc) {
|
||
|
pr_err("Failed to read raw cc data, rc = %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
unlock_output_data(chip);
|
||
|
mutex_unlock(&chip->bms_output_lock);
|
||
|
|
||
|
if (chip->prev_last_good_ocv_raw == OCV_RAW_UNINITIALIZED) {
|
||
|
convert_and_store_ocv(chip, raw, batt_temp);
|
||
|
pr_debug("PON_OCV_UV = %d, cc = %llx\n",
|
||
|
chip->last_ocv_uv, raw->cc);
|
||
|
warm_reset = qpnp_pon_is_warm_reset();
|
||
|
if (raw->last_good_ocv_uv < MIN_OCV_UV
|
||
|
|| warm_reset > 0) {
|
||
|
pr_debug("OCV is stale or bad, estimating new OCV.\n");
|
||
|
chip->last_ocv_uv = estimate_ocv(chip);
|
||
|
raw->last_good_ocv_uv = chip->last_ocv_uv;
|
||
|
reset_cc(chip);
|
||
|
pr_debug("New PON_OCV_UV = %d, cc = %llx\n",
|
||
|
chip->last_ocv_uv, raw->cc);
|
||
|
}
|
||
|
} else if (chip->new_battery) {
|
||
|
/* if a new battery was inserted, estimate the ocv */
|
||
|
reset_for_new_battery(chip, batt_temp);
|
||
|
raw->cc = 0;
|
||
|
raw->last_good_ocv_uv = chip->last_ocv_uv;
|
||
|
chip->new_battery = false;
|
||
|
} else if (chip->done_charging) {
|
||
|
chip->done_charging = false;
|
||
|
/* if we just finished charging, reset CC and fake 100% */
|
||
|
chip->ocv_reading_at_100 = raw->last_good_ocv_raw;
|
||
|
chip->last_ocv_uv = chip->max_voltage_uv;
|
||
|
raw->last_good_ocv_uv = chip->max_voltage_uv;
|
||
|
raw->cc = 0;
|
||
|
reset_cc(chip);
|
||
|
chip->last_ocv_temp = batt_temp;
|
||
|
chip->software_cc_uah = 0;
|
||
|
chip->last_cc_uah = INT_MIN;
|
||
|
pr_debug("EOC Battery full ocv_reading = 0x%x\n",
|
||
|
chip->ocv_reading_at_100);
|
||
|
} else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) {
|
||
|
convert_and_store_ocv(chip, raw, batt_temp);
|
||
|
/* forget the old cc value upon ocv */
|
||
|
chip->last_cc_uah = INT_MIN;
|
||
|
} else {
|
||
|
raw->last_good_ocv_uv = chip->last_ocv_uv;
|
||
|
}
|
||
|
|
||
|
/* stop faking a high OCV if we get a new OCV */
|
||
|
if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw)
|
||
|
chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED;
|
||
|
|
||
|
pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n",
|
||
|
raw->last_good_ocv_raw, raw->last_good_ocv_uv);
|
||
|
pr_debug("cc_raw= 0x%llx\n", raw->cc);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int calculate_pc(struct qpnp_bms_chip *chip, int ocv_uv,
|
||
|
int batt_temp)
|
||
|
{
|
||
|
int pc;
|
||
|
|
||
|
pc = interpolate_pc(chip->pc_temp_ocv_lut,
|
||
|
batt_temp / 10, ocv_uv / 1000);
|
||
|
pr_debug("pc = %u %% for ocv = %d uv batt_temp = %d\n",
|
||
|
pc, ocv_uv, batt_temp);
|
||
|
/* Multiply the initial FCC value by the scale factor. */
|
||
|
return pc;
|
||
|
}
|
||
|
|
||
|
static int calculate_fcc(struct qpnp_bms_chip *chip, int batt_temp)
|
||
|
{
|
||
|
int fcc_uah;
|
||
|
|
||
|
if (chip->adjusted_fcc_temp_lut == NULL) {
|
||
|
/* interpolate_fcc returns a mv value. */
|
||
|
fcc_uah = interpolate_fcc(chip->fcc_temp_lut,
|
||
|
batt_temp) * 1000;
|
||
|
pr_debug("fcc = %d uAh\n", fcc_uah);
|
||
|
return fcc_uah;
|
||
|
} else {
|
||
|
return 1000 * interpolate_fcc(chip->adjusted_fcc_temp_lut,
|
||
|
batt_temp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* calculate remaining charge at the time of ocv */
|
||
|
static int calculate_ocv_charge(struct qpnp_bms_chip *chip,
|
||
|
struct raw_soc_params *raw,
|
||
|
int fcc_uah)
|
||
|
{
|
||
|
int ocv_uv, pc;
|
||
|
|
||
|
ocv_uv = raw->last_good_ocv_uv;
|
||
|
pc = calculate_pc(chip, ocv_uv, chip->last_ocv_temp);
|
||
|
pr_debug("ocv_uv = %d pc = %d\n", ocv_uv, pc);
|
||
|
return (fcc_uah * pc) / 100;
|
||
|
}
|
||
|
|
||
|
#define CC_READING_TICKS 56
|
||
|
#define SLEEP_CLK_HZ 32764
|
||
|
#define SECONDS_PER_HOUR 3600
|
||
|
|
||
|
static s64 cc_uv_to_pvh(s64 cc_uv)
|
||
|
{
|
||
|
/* Note that it is necessary need to multiply by 1000000 to convert
|
||
|
* from uvh to pvh here.
|
||
|
* However, the maximum Coulomb Counter value is 2^35, which can cause
|
||
|
* an over flow.
|
||
|
* Multiply by 100000 first to perserve as much precision as possible
|
||
|
* then multiply by 10 after doing the division in order to avoid
|
||
|
* overflow on the maximum Coulomb Counter value.
|
||
|
*/
|
||
|
return div_s64(cc_uv * CC_READING_TICKS * 100000,
|
||
|
SLEEP_CLK_HZ * SECONDS_PER_HOUR) * 10;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* calculate_cc() - converts a hardware coulomb counter reading into uah
|
||
|
* @chip: the bms chip pointer
|
||
|
* @cc: the cc reading from bms h/w
|
||
|
* @clear_cc: whether this function should clear the hardware counter
|
||
|
* after reading
|
||
|
*
|
||
|
* Converts the 64 bit hardware coulomb counter into microamp-hour by taking
|
||
|
* into account hardware resolution and adc errors.
|
||
|
*
|
||
|
* Return: the coulomb counter based charge in uAh (micro-amp hour)
|
||
|
*/
|
||
|
static int calculate_cc(struct qpnp_bms_chip *chip, int64_t cc, bool clear_cc)
|
||
|
{
|
||
|
struct qpnp_iadc_calib calibration;
|
||
|
struct qpnp_vadc_result result;
|
||
|
int64_t cc_voltage_uv, cc_pvh, cc_uah;
|
||
|
int rc;
|
||
|
|
||
|
rc = qpnp_vadc_read(DIE_TEMP, &result);
|
||
|
if (rc) {
|
||
|
pr_err("could not read pmic die temperature: %d\n", rc);
|
||
|
return chip->software_cc_uah;
|
||
|
}
|
||
|
|
||
|
qpnp_iadc_get_gain_and_offset(&calibration);
|
||
|
pr_debug("cc = %lld, die_temp = %lld\n", cc, result.physical);
|
||
|
cc_voltage_uv = cc_reading_to_uv(cc);
|
||
|
cc_voltage_uv = cc_adjust_for_gain(cc_voltage_uv,
|
||
|
calibration.gain_raw
|
||
|
- calibration.offset_raw);
|
||
|
pr_debug("cc_voltage_uv = %lld uv\n", cc_voltage_uv);
|
||
|
cc_pvh = cc_uv_to_pvh(cc_voltage_uv);
|
||
|
pr_debug("cc_pvh = %lld pvh\n", cc_pvh);
|
||
|
cc_uah = div_s64(cc_pvh, chip->r_sense_uohm);
|
||
|
rc = qpnp_iadc_comp_result(&cc_uah);
|
||
|
if (rc)
|
||
|
pr_debug("error compensation failed: %d\n", rc);
|
||
|
|
||
|
if (clear_cc) {
|
||
|
chip->software_cc_uah += cc_uah;
|
||
|
reset_cc(chip);
|
||
|
return (int)chip->software_cc_uah;
|
||
|
} else {
|
||
|
return chip->software_cc_uah + cc_uah;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int get_rbatt(struct qpnp_bms_chip *chip,
|
||
|
int soc_rbatt_mohm, int batt_temp)
|
||
|
{
|
||
|
int rbatt_mohm, scalefactor;
|
||
|
|
||
|
rbatt_mohm = chip->default_rbatt_mohm;
|
||
|
if (chip->rbatt_sf_lut == NULL) {
|
||
|
pr_debug("RBATT = %d\n", rbatt_mohm);
|
||
|
return rbatt_mohm;
|
||
|
}
|
||
|
/* Convert the batt_temp to DegC from deciDegC */
|
||
|
batt_temp = batt_temp / 10;
|
||
|
scalefactor = interpolate_scalingfactor(chip->rbatt_sf_lut,
|
||
|
batt_temp, soc_rbatt_mohm);
|
||
|
rbatt_mohm = (rbatt_mohm * scalefactor) / 100;
|
||
|
|
||
|
rbatt_mohm += chip->r_conn_mohm;
|
||
|
rbatt_mohm += chip->rbatt_capacitive_mohm;
|
||
|
return rbatt_mohm;
|
||
|
}
|
||
|
|
||
|
#define IAVG_MINIMAL_TIME 2
|
||
|
static void calculate_iavg(struct qpnp_bms_chip *chip, int cc_uah,
|
||
|
int *iavg_ua, int delta_time_s)
|
||
|
{
|
||
|
int delta_cc_uah = 0;
|
||
|
|
||
|
/*
|
||
|
* use the battery current if called too quickly
|
||
|
*/
|
||
|
if (delta_time_s < IAVG_MINIMAL_TIME
|
||
|
|| chip->last_cc_uah == INT_MIN) {
|
||
|
get_battery_current(chip, iavg_ua);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
delta_cc_uah = cc_uah - chip->last_cc_uah;
|
||
|
|
||
|
*iavg_ua = div_s64((s64)delta_cc_uah * 3600, delta_time_s);
|
||
|
|
||
|
out:
|
||
|
pr_debug("delta_cc = %d iavg_ua = %d\n", delta_cc_uah, (int)*iavg_ua);
|
||
|
|
||
|
/* remember cc_uah */
|
||
|
chip->last_cc_uah = cc_uah;
|
||
|
}
|
||
|
|
||
|
static int calculate_termination_uuc(struct qpnp_bms_chip *chip,
|
||
|
struct soc_params *params,
|
||
|
int batt_temp, int uuc_iavg_ma,
|
||
|
int *ret_pc_unusable)
|
||
|
{
|
||
|
int unusable_uv, pc_unusable, uuc_uah;
|
||
|
int i = 0;
|
||
|
int ocv_mv;
|
||
|
int batt_temp_degc = batt_temp / 10;
|
||
|
int rbatt_mohm;
|
||
|
int delta_uv;
|
||
|
int prev_delta_uv = 0;
|
||
|
int prev_rbatt_mohm = 0;
|
||
|
int uuc_rbatt_mohm;
|
||
|
|
||
|
for (i = 0; i <= 100; i++) {
|
||
|
ocv_mv = interpolate_ocv(chip->pc_temp_ocv_lut,
|
||
|
batt_temp_degc, i);
|
||
|
rbatt_mohm = get_rbatt(chip, i, batt_temp);
|
||
|
unusable_uv = (rbatt_mohm * uuc_iavg_ma)
|
||
|
+ (chip->v_cutoff_uv);
|
||
|
delta_uv = ocv_mv * 1000 - unusable_uv;
|
||
|
|
||
|
if (delta_uv > 0)
|
||
|
break;
|
||
|
|
||
|
prev_delta_uv = delta_uv;
|
||
|
prev_rbatt_mohm = rbatt_mohm;
|
||
|
}
|
||
|
|
||
|
uuc_rbatt_mohm = linear_interpolate(rbatt_mohm, delta_uv,
|
||
|
prev_rbatt_mohm, prev_delta_uv,
|
||
|
0);
|
||
|
|
||
|
unusable_uv = (uuc_rbatt_mohm * uuc_iavg_ma) + (chip->v_cutoff_uv);
|
||
|
|
||
|
pc_unusable = calculate_pc(chip, unusable_uv, batt_temp);
|
||
|
uuc_uah = (params->fcc_uah * pc_unusable) / 100;
|
||
|
pr_debug("For uuc_iavg_ma = %d, unusable_rbatt = %d unusable_uv = %d unusable_pc = %d rbatt_pc = %d uuc = %d\n",
|
||
|
uuc_iavg_ma,
|
||
|
uuc_rbatt_mohm, unusable_uv,
|
||
|
pc_unusable, i, uuc_uah);
|
||
|
*ret_pc_unusable = pc_unusable;
|
||
|
return uuc_uah;
|
||
|
}
|
||
|
|
||
|
#define TIME_PER_PERCENT_UUC 60
|
||
|
static int adjust_uuc(struct qpnp_bms_chip *chip,
|
||
|
struct soc_params *params,
|
||
|
int new_pc_unusable,
|
||
|
int new_uuc_uah,
|
||
|
int batt_temp)
|
||
|
{
|
||
|
int new_unusable_mv, new_iavg_ma;
|
||
|
int batt_temp_degc = batt_temp / 10;
|
||
|
int max_percent_change;
|
||
|
|
||
|
max_percent_change = max(params->delta_time_s
|
||
|
/ TIME_PER_PERCENT_UUC, 1);
|
||
|
|
||
|
if (chip->prev_pc_unusable == -EINVAL
|
||
|
|| abs(chip->prev_pc_unusable - new_pc_unusable)
|
||
|
<= max_percent_change) {
|
||
|
chip->prev_pc_unusable = new_pc_unusable;
|
||
|
return new_uuc_uah;
|
||
|
}
|
||
|
|
||
|
/* the uuc is trying to change more than 1% restrict it */
|
||
|
if (new_pc_unusable > chip->prev_pc_unusable)
|
||
|
chip->prev_pc_unusable += max_percent_change;
|
||
|
else
|
||
|
chip->prev_pc_unusable -= max_percent_change;
|
||
|
|
||
|
new_uuc_uah = (params->fcc_uah * chip->prev_pc_unusable) / 100;
|
||
|
|
||
|
/* also find update the iavg_ma accordingly */
|
||
|
new_unusable_mv = interpolate_ocv(chip->pc_temp_ocv_lut,
|
||
|
batt_temp_degc, chip->prev_pc_unusable);
|
||
|
if (new_unusable_mv < chip->v_cutoff_uv/1000)
|
||
|
new_unusable_mv = chip->v_cutoff_uv/1000;
|
||
|
|
||
|
new_iavg_ma = (new_unusable_mv * 1000 - chip->v_cutoff_uv)
|
||
|
/ params->rbatt_mohm;
|
||
|
if (new_iavg_ma == 0)
|
||
|
new_iavg_ma = 1;
|
||
|
chip->prev_uuc_iavg_ma = new_iavg_ma;
|
||
|
pr_debug("Restricting UUC to %d (%d%%) unusable_mv = %d iavg_ma = %d\n",
|
||
|
new_uuc_uah, chip->prev_pc_unusable,
|
||
|
new_unusable_mv, new_iavg_ma);
|
||
|
|
||
|
return new_uuc_uah;
|
||
|
}
|
||
|
|
||
|
#define MIN_IAVG_MA 250
|
||
|
#define MIN_SECONDS_FOR_VALID_SAMPLE 20
|
||
|
static int calculate_unusable_charge_uah(struct qpnp_bms_chip *chip,
|
||
|
struct soc_params *params,
|
||
|
int batt_temp)
|
||
|
{
|
||
|
int uuc_uah_iavg;
|
||
|
int i;
|
||
|
int uuc_iavg_ma = params->iavg_ua / 1000;
|
||
|
int pc_unusable;
|
||
|
|
||
|
/*
|
||
|
* if called first time, fill all the samples with
|
||
|
* the shutdown_iavg_ma
|
||
|
*/
|
||
|
if (chip->first_time_calc_uuc && chip->shutdown_iavg_ma != 0) {
|
||
|
pr_debug("Using shutdown_iavg_ma = %d in all samples\n",
|
||
|
chip->shutdown_iavg_ma);
|
||
|
for (i = 0; i < IAVG_SAMPLES; i++)
|
||
|
chip->iavg_samples_ma[i] = chip->shutdown_iavg_ma;
|
||
|
|
||
|
chip->iavg_index = 0;
|
||
|
chip->iavg_num_samples = IAVG_SAMPLES;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* if charging use a nominal avg current to keep
|
||
|
* a reasonable UUC while charging
|
||
|
*/
|
||
|
if (uuc_iavg_ma < MIN_IAVG_MA)
|
||
|
uuc_iavg_ma = MIN_IAVG_MA;
|
||
|
chip->iavg_samples_ma[chip->iavg_index] = uuc_iavg_ma;
|
||
|
chip->iavg_index = (chip->iavg_index + 1) % IAVG_SAMPLES;
|
||
|
chip->iavg_num_samples++;
|
||
|
if (chip->iavg_num_samples >= IAVG_SAMPLES)
|
||
|
chip->iavg_num_samples = IAVG_SAMPLES;
|
||
|
|
||
|
/* now that this sample is added calcualte the average */
|
||
|
uuc_iavg_ma = 0;
|
||
|
if (chip->iavg_num_samples != 0) {
|
||
|
for (i = 0; i < chip->iavg_num_samples; i++) {
|
||
|
pr_debug("iavg_samples_ma[%d] = %d\n", i,
|
||
|
chip->iavg_samples_ma[i]);
|
||
|
uuc_iavg_ma += chip->iavg_samples_ma[i];
|
||
|
}
|
||
|
|
||
|
uuc_iavg_ma = DIV_ROUND_CLOSEST(uuc_iavg_ma,
|
||
|
chip->iavg_num_samples);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* if we're in bms reset mode, force uuc to be 3% of fcc
|
||
|
*/
|
||
|
if (bms_reset)
|
||
|
return (params->fcc_uah * 3) / 100;
|
||
|
|
||
|
uuc_uah_iavg = calculate_termination_uuc(chip, params, batt_temp,
|
||
|
uuc_iavg_ma, &pc_unusable);
|
||
|
pr_debug("uuc_iavg_ma = %d uuc with iavg = %d\n",
|
||
|
uuc_iavg_ma, uuc_uah_iavg);
|
||
|
|
||
|
chip->prev_uuc_iavg_ma = uuc_iavg_ma;
|
||
|
/* restrict the uuc such that it can increase only by one percent */
|
||
|
uuc_uah_iavg = adjust_uuc(chip, params, pc_unusable,
|
||
|
uuc_uah_iavg, batt_temp);
|
||
|
|
||
|
chip->first_time_calc_uuc = 0;
|
||
|
return uuc_uah_iavg;
|
||
|
}
|
||
|
|
||
|
static void find_ocv_for_soc(struct qpnp_bms_chip *chip,
|
||
|
struct soc_params *params,
|
||
|
int batt_temp,
|
||
|
int shutdown_soc,
|
||
|
int *ret_ocv_uv)
|
||
|
{
|
||
|
s64 ocv_charge_uah;
|
||
|
int pc, new_pc;
|
||
|
int batt_temp_degc = batt_temp / 10;
|
||
|
int ocv_uv;
|
||
|
|
||
|
ocv_charge_uah = (s64)shutdown_soc
|
||
|
* (params->fcc_uah - params->uuc_uah);
|
||
|
ocv_charge_uah = div_s64(ocv_charge_uah, 100)
|
||
|
+ params->cc_uah + params->uuc_uah;
|
||
|
pc = DIV_ROUND_CLOSEST((int)ocv_charge_uah * 100, params->fcc_uah);
|
||
|
pc = clamp(pc, 0, 100);
|
||
|
|
||
|
ocv_uv = interpolate_ocv(chip->pc_temp_ocv_lut, batt_temp_degc, pc);
|
||
|
|
||
|
pr_debug("s_soc = %d, fcc = %d uuc = %d rc = %d, pc = %d, ocv mv = %d\n",
|
||
|
shutdown_soc, params->fcc_uah,
|
||
|
params->uuc_uah, (int)ocv_charge_uah,
|
||
|
pc, ocv_uv);
|
||
|
new_pc = interpolate_pc(chip->pc_temp_ocv_lut, batt_temp_degc, ocv_uv);
|
||
|
pr_debug("test revlookup pc = %d for ocv = %d\n", new_pc, ocv_uv);
|
||
|
|
||
|
while (abs(new_pc - pc) > 1) {
|
||
|
int delta_mv = 5;
|
||
|
|
||
|
if (new_pc > pc)
|
||
|
delta_mv = -1 * delta_mv;
|
||
|
|
||
|
ocv_uv = ocv_uv + delta_mv;
|
||
|
new_pc = interpolate_pc(chip->pc_temp_ocv_lut,
|
||
|
batt_temp_degc, ocv_uv);
|
||
|
pr_debug("test revlookup pc = %d for ocv = %d\n",
|
||
|
new_pc, ocv_uv);
|
||
|
}
|
||
|
|
||
|
*ret_ocv_uv = ocv_uv * 1000;
|
||
|
params->ocv_charge_uah = (int)ocv_charge_uah;
|
||
|
}
|
||
|
|
||
|
static int get_current_time(unsigned long *now_tm_sec)
|
||
|
{
|
||
|
struct rtc_time tm;
|
||
|
struct rtc_device *rtc;
|
||
|
int rc;
|
||
|
|
||
|
rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
|
||
|
if (rtc == NULL) {
|
||
|
pr_err("%s: unable to open rtc device (%s)\n",
|
||
|
__FILE__, CONFIG_RTC_HCTOSYS_DEVICE);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
rc = rtc_read_time(rtc, &tm);
|
||
|
if (rc) {
|
||
|
pr_err("Error reading rtc device (%s) : %d\n",
|
||
|
CONFIG_RTC_HCTOSYS_DEVICE, rc);
|
||
|
goto close_time;
|
||
|
}
|
||
|
|
||
|
rc = rtc_valid_tm(&tm);
|
||
|
if (rc) {
|
||
|
pr_err("Invalid RTC time (%s): %d\n",
|
||
|
CONFIG_RTC_HCTOSYS_DEVICE, rc);
|
||
|
goto close_time;
|
||
|
}
|
||
|
rtc_tm_to_time(&tm, now_tm_sec);
|
||
|
|
||
|
close_time:
|
||
|
rtc_class_close(rtc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int calculate_delta_time(unsigned long *time_stamp, int *delta_time_s)
|
||
|
{
|
||
|
unsigned long now_tm_sec = 0;
|
||
|
|
||
|
/* default to delta time = 0 if anything fails */
|
||
|
*delta_time_s = 0;
|
||
|
|
||
|
if (get_current_time(&now_tm_sec)) {
|
||
|
pr_err("RTC read failed\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
*delta_time_s = (now_tm_sec - *time_stamp);
|
||
|
|
||
|
/* remember this time */
|
||
|
*time_stamp = now_tm_sec;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void calculate_soc_params(struct qpnp_bms_chip *chip,
|
||
|
struct raw_soc_params *raw,
|
||
|
struct soc_params *params,
|
||
|
int batt_temp)
|
||
|
{
|
||
|
int soc_rbatt;
|
||
|
|
||
|
calculate_delta_time(&chip->tm_sec, ¶ms->delta_time_s);
|
||
|
pr_debug("tm_sec = %ld, delta_s = %d\n",
|
||
|
chip->tm_sec, params->delta_time_s);
|
||
|
params->fcc_uah = calculate_fcc(chip, batt_temp);
|
||
|
pr_debug("FCC = %uuAh batt_temp = %d\n", params->fcc_uah, batt_temp);
|
||
|
|
||
|
/* calculate remainging charge */
|
||
|
params->ocv_charge_uah = calculate_ocv_charge(
|
||
|
chip, raw,
|
||
|
params->fcc_uah);
|
||
|
pr_debug("ocv_charge_uah = %uuAh\n", params->ocv_charge_uah);
|
||
|
|
||
|
/* calculate cc micro_volt_hour */
|
||
|
params->cc_uah = calculate_cc(chip, raw->cc, true);
|
||
|
pr_debug("cc_uah = %duAh raw->cc = %llx\n", params->cc_uah, raw->cc);
|
||
|
|
||
|
soc_rbatt = ((params->ocv_charge_uah - params->cc_uah) * 100)
|
||
|
/ params->fcc_uah;
|
||
|
if (soc_rbatt < 0)
|
||
|
soc_rbatt = 0;
|
||
|
params->rbatt_mohm = get_rbatt(chip, soc_rbatt, batt_temp);
|
||
|
pr_debug("rbatt_mohm = %d\n", params->rbatt_mohm);
|
||
|
|
||
|
if (params->rbatt_mohm != chip->rbatt_mohm) {
|
||
|
chip->rbatt_mohm = params->rbatt_mohm;
|
||
|
if (chip->bms_psy.name != NULL)
|
||
|
power_supply_changed(&chip->bms_psy);
|
||
|
}
|
||
|
|
||
|
calculate_iavg(chip, params->cc_uah, ¶ms->iavg_ua,
|
||
|
params->delta_time_s);
|
||
|
|
||
|
params->uuc_uah = calculate_unusable_charge_uah(chip, params,
|
||
|
batt_temp);
|
||
|
pr_debug("UUC = %uuAh\n", params->uuc_uah);
|
||
|
}
|
||
|
|
||
|
static bool is_shutdown_soc_within_limits(struct qpnp_bms_chip *chip, int soc)
|
||
|
{
|
||
|
if (chip->shutdown_soc_invalid) {
|
||
|
pr_debug("NOT forcing shutdown soc = %d\n", chip->shutdown_soc);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (abs(chip->shutdown_soc - soc) > chip->shutdown_soc_valid_limit) {
|
||
|
pr_debug("rejecting shutdown soc = %d, soc = %d limit = %d\n",
|
||
|
chip->shutdown_soc, soc,
|
||
|
chip->shutdown_soc_valid_limit);
|
||
|
chip->shutdown_soc_invalid = true;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int bound_soc(int soc)
|
||
|
{
|
||
|
soc = max(0, soc);
|
||
|
soc = min(100, soc);
|
||
|
return soc;
|
||
|
}
|
||
|
|
||
|
#define IBAT_TOL_MASK 0x0F
|
||
|
#define OCV_TOL_MASK 0xF0
|
||
|
#define IBAT_TOL_DEFAULT 0x03
|
||
|
#define IBAT_TOL_NOCHG 0x0F
|
||
|
#define OCV_TOL_DEFAULT 0x20
|
||
|
#define OCV_TOL_NO_OCV 0x00
|
||
|
static int stop_ocv_updates(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
pr_debug("stopping ocv updates\n");
|
||
|
return qpnp_masked_write(chip, BMS1_TOL_CTL,
|
||
|
OCV_TOL_MASK, OCV_TOL_NO_OCV);
|
||
|
}
|
||
|
|
||
|
static int reset_bms_for_test(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int ibat_ua = 0, vbat_uv = 0, rc;
|
||
|
int ocv_est_uv;
|
||
|
|
||
|
if (!chip) {
|
||
|
pr_err("BMS driver has not been initialized yet!\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
|
||
|
|
||
|
/*
|
||
|
* Don't include rbatt and rbatt_capacitative since we expect this to
|
||
|
* be used with a fake battery which does not have internal resistances
|
||
|
*/
|
||
|
ocv_est_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000;
|
||
|
pr_debug("forcing ocv to be %d due to bms reset mode\n", ocv_est_uv);
|
||
|
chip->last_ocv_uv = ocv_est_uv;
|
||
|
mutex_lock(&chip->last_soc_mutex);
|
||
|
chip->last_soc = -EINVAL;
|
||
|
chip->last_soc_invalid = true;
|
||
|
mutex_unlock(&chip->last_soc_mutex);
|
||
|
reset_cc(chip);
|
||
|
chip->software_cc_uah = 0;
|
||
|
chip->last_cc_uah = INT_MIN;
|
||
|
stop_ocv_updates(chip);
|
||
|
|
||
|
pr_debug("bms reset to ocv = %duv vbat_ua = %d ibat_ua = %d\n",
|
||
|
chip->last_ocv_uv, vbat_uv, ibat_ua);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int bms_reset_set(const char *val, const struct kernel_param *kp)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
rc = param_set_bool(val, kp);
|
||
|
if (rc) {
|
||
|
pr_err("Unable to set bms_reset: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
if (*(bool *)kp->arg) {
|
||
|
struct power_supply *bms_psy = power_supply_get_by_name("bms");
|
||
|
struct qpnp_bms_chip *chip = container_of(bms_psy,
|
||
|
struct qpnp_bms_chip, bms_psy);
|
||
|
|
||
|
rc = reset_bms_for_test(chip);
|
||
|
if (rc) {
|
||
|
pr_err("Unable to modify bms_reset: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct kernel_param_ops bms_reset_ops = {
|
||
|
.set = bms_reset_set,
|
||
|
.get = param_get_bool,
|
||
|
};
|
||
|
|
||
|
module_param_cb(bms_reset, &bms_reset_ops, &bms_reset, 0644);
|
||
|
|
||
|
static void backup_soc_and_iavg(struct qpnp_bms_chip *chip, int batt_temp,
|
||
|
int soc)
|
||
|
{
|
||
|
u8 temp;
|
||
|
int rc;
|
||
|
int iavg_ma = chip->prev_uuc_iavg_ma;
|
||
|
|
||
|
if (iavg_ma > IAVG_START)
|
||
|
temp = (iavg_ma - IAVG_START) / IAVG_STEP_SIZE_MA;
|
||
|
else
|
||
|
temp = 0;
|
||
|
|
||
|
rc = qpnp_write_wrapper(chip, &temp,
|
||
|
chip->base + IAVG_STORAGE_REG, 1);
|
||
|
|
||
|
temp = soc;
|
||
|
|
||
|
/* don't store soc if temperature is below 5degC */
|
||
|
if (batt_temp > IGNORE_SOC_TEMP_DECIDEG)
|
||
|
rc = qpnp_write_wrapper(chip, &temp,
|
||
|
chip->base + SOC_STORAGE_REG, 1);
|
||
|
}
|
||
|
|
||
|
static int scale_soc_while_chg(struct qpnp_bms_chip *chip, int chg_time_sec,
|
||
|
int catch_up_sec, int new_soc, int prev_soc)
|
||
|
{
|
||
|
int scaled_soc;
|
||
|
int numerator;
|
||
|
|
||
|
/*
|
||
|
* Don't report a high value immediately slowly scale the
|
||
|
* value from prev_soc to the new soc based on a charge time
|
||
|
* weighted average
|
||
|
*/
|
||
|
pr_debug("cts = %d catch_up_sec = %d\n", chg_time_sec, catch_up_sec);
|
||
|
if (catch_up_sec == 0)
|
||
|
return new_soc;
|
||
|
|
||
|
if (chg_time_sec > catch_up_sec)
|
||
|
return new_soc;
|
||
|
|
||
|
numerator = (catch_up_sec - chg_time_sec) * prev_soc
|
||
|
+ chg_time_sec * new_soc;
|
||
|
scaled_soc = numerator / catch_up_sec;
|
||
|
|
||
|
pr_debug("cts = %d new_soc = %d prev_soc = %d scaled_soc = %d\n",
|
||
|
chg_time_sec, new_soc, prev_soc, scaled_soc);
|
||
|
|
||
|
return scaled_soc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* bms_fake_battery is set in setups where a battery emulator is used instead
|
||
|
* of a real battery. This makes the bms driver report a different/fake value
|
||
|
* regardless of the calculated state of charge.
|
||
|
*/
|
||
|
static int bms_fake_battery = -EINVAL;
|
||
|
module_param(bms_fake_battery, int, 0644);
|
||
|
|
||
|
static int report_voltage_based_soc(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
pr_debug("Reported voltage based soc = %d\n",
|
||
|
chip->prev_voltage_based_soc);
|
||
|
return chip->prev_voltage_based_soc;
|
||
|
}
|
||
|
|
||
|
#define SOC_CATCHUP_SEC_MAX 600
|
||
|
#define SOC_CATCHUP_SEC_PER_PERCENT 60
|
||
|
#define MAX_CATCHUP_SOC (SOC_CATCHUP_SEC_MAX / SOC_CATCHUP_SEC_PER_PERCENT)
|
||
|
#define SOC_CHANGE_PER_SEC 20
|
||
|
static int report_cc_based_soc(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int soc, soc_change;
|
||
|
int time_since_last_change_sec, charge_time_sec = 0;
|
||
|
unsigned long last_change_sec;
|
||
|
struct timespec now;
|
||
|
struct qpnp_vadc_result result;
|
||
|
int batt_temp;
|
||
|
int rc;
|
||
|
bool charging, charging_since_last_report;
|
||
|
|
||
|
rc = qpnp_vadc_read(LR_MUX1_BATT_THERM, &result);
|
||
|
|
||
|
if (rc) {
|
||
|
pr_err("error reading adc channel = %d, rc = %d\n",
|
||
|
LR_MUX1_BATT_THERM, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
|
||
|
result.measurement);
|
||
|
batt_temp = (int)result.physical;
|
||
|
|
||
|
mutex_lock(&chip->last_soc_mutex);
|
||
|
soc = chip->calculated_soc;
|
||
|
|
||
|
last_change_sec = chip->last_soc_change_sec;
|
||
|
calculate_delta_time(&last_change_sec, &time_since_last_change_sec);
|
||
|
|
||
|
charging = is_battery_charging(chip);
|
||
|
charging_since_last_report = charging || (chip->last_soc_unbound
|
||
|
&& chip->was_charging_at_sleep);
|
||
|
/*
|
||
|
* account for charge time - limit it to SOC_CATCHUP_SEC to
|
||
|
* avoid overflows when charging continues for extended periods
|
||
|
*/
|
||
|
if (charging) {
|
||
|
if (chip->charge_start_tm_sec == 0) {
|
||
|
/*
|
||
|
* calculating soc for the first time
|
||
|
* after start of chg. Initialize catchup time
|
||
|
*/
|
||
|
if (abs(soc - chip->last_soc) < MAX_CATCHUP_SOC)
|
||
|
chip->catch_up_time_sec =
|
||
|
(soc - chip->last_soc)
|
||
|
* SOC_CATCHUP_SEC_PER_PERCENT;
|
||
|
else
|
||
|
chip->catch_up_time_sec = SOC_CATCHUP_SEC_MAX;
|
||
|
|
||
|
if (chip->catch_up_time_sec < 0)
|
||
|
chip->catch_up_time_sec = 0;
|
||
|
chip->charge_start_tm_sec = last_change_sec;
|
||
|
}
|
||
|
|
||
|
charge_time_sec = min(SOC_CATCHUP_SEC_MAX, (int)last_change_sec
|
||
|
- chip->charge_start_tm_sec);
|
||
|
|
||
|
/* end catchup if calculated soc and last soc are same */
|
||
|
if (chip->last_soc == soc)
|
||
|
chip->catch_up_time_sec = 0;
|
||
|
}
|
||
|
|
||
|
if (chip->last_soc != -EINVAL) {
|
||
|
/*
|
||
|
* last_soc < soc ... if we have not been charging at all
|
||
|
* since the last time this was called, report previous SoC.
|
||
|
* Otherwise, scale and catch up.
|
||
|
*/
|
||
|
if (chip->last_soc < soc && !charging_since_last_report)
|
||
|
soc = chip->last_soc;
|
||
|
else if (chip->last_soc < soc && soc != 100)
|
||
|
soc = scale_soc_while_chg(chip, charge_time_sec,
|
||
|
chip->catch_up_time_sec,
|
||
|
soc, chip->last_soc);
|
||
|
|
||
|
soc_change = min((int)abs(chip->last_soc - soc),
|
||
|
time_since_last_change_sec / SOC_CHANGE_PER_SEC);
|
||
|
if (chip->last_soc_unbound) {
|
||
|
chip->last_soc_unbound = false;
|
||
|
} else {
|
||
|
/*
|
||
|
* if soc have not been unbound by resume,
|
||
|
* only change reported SoC by 1.
|
||
|
*/
|
||
|
soc_change = min(1, soc_change);
|
||
|
}
|
||
|
|
||
|
if (soc < chip->last_soc && soc != 0)
|
||
|
soc = chip->last_soc - soc_change;
|
||
|
if (soc > chip->last_soc && soc != 100)
|
||
|
soc = chip->last_soc + soc_change;
|
||
|
}
|
||
|
|
||
|
if (chip->last_soc != soc && !chip->last_soc_unbound)
|
||
|
chip->last_soc_change_sec = last_change_sec;
|
||
|
|
||
|
pr_debug("last_soc = %d, calculated_soc = %d, soc = %d, time since last change = %d\n",
|
||
|
chip->last_soc, chip->calculated_soc,
|
||
|
soc, time_since_last_change_sec);
|
||
|
chip->last_soc = bound_soc(soc);
|
||
|
backup_soc_and_iavg(chip, batt_temp, chip->last_soc);
|
||
|
pr_debug("Reported SOC = %d\n", chip->last_soc);
|
||
|
chip->t_soc_queried = now;
|
||
|
mutex_unlock(&chip->last_soc_mutex);
|
||
|
|
||
|
return soc;
|
||
|
}
|
||
|
|
||
|
static int report_state_of_charge(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
if (bms_fake_battery != -EINVAL) {
|
||
|
pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery);
|
||
|
return bms_fake_battery;
|
||
|
} else if (chip->use_voltage_soc)
|
||
|
return report_voltage_based_soc(chip);
|
||
|
else
|
||
|
return report_cc_based_soc(chip);
|
||
|
}
|
||
|
|
||
|
#define VDD_MAX_ERR 5000
|
||
|
#define VDD_STEP_SIZE 10000
|
||
|
static int charging_adjustments(struct qpnp_bms_chip *chip,
|
||
|
struct soc_params *params, int soc,
|
||
|
int vbat_uv, int ibat_ua, int batt_temp)
|
||
|
{
|
||
|
int chg_soc, soc_ibat, batt_terminal_uv, weight_ibat, weight_cc;
|
||
|
|
||
|
batt_terminal_uv = vbat_uv + (ibat_ua * chip->r_conn_mohm) / 1000;
|
||
|
|
||
|
if (chip->soc_at_cv == -EINVAL) {
|
||
|
if (batt_terminal_uv >= chip->max_voltage_uv - VDD_MAX_ERR) {
|
||
|
chip->soc_at_cv = soc;
|
||
|
chip->prev_chg_soc = soc;
|
||
|
chip->ibat_at_cv_ua = ibat_ua;
|
||
|
pr_debug("CC_TO_CV ibat_ua = %d CHG SOC %d\n",
|
||
|
ibat_ua, soc);
|
||
|
} else {
|
||
|
/* In constant current charging return the calc soc */
|
||
|
pr_debug("CC CHG SOC %d\n", soc);
|
||
|
}
|
||
|
|
||
|
chip->prev_batt_terminal_uv = batt_terminal_uv;
|
||
|
return soc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* battery is in CV phase - begin linear interpolation of soc based on
|
||
|
* battery charge current
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* if voltage lessened (possibly because of a system load)
|
||
|
* keep reporting the prev chg soc
|
||
|
*/
|
||
|
if (batt_terminal_uv <= chip->prev_batt_terminal_uv - VDD_STEP_SIZE) {
|
||
|
pr_debug("batt_terminal_uv %d < (max = %d - 10000); CC CHG SOC %d\n",
|
||
|
batt_terminal_uv, chip->prev_batt_terminal_uv,
|
||
|
chip->prev_chg_soc);
|
||
|
chip->prev_batt_terminal_uv = batt_terminal_uv;
|
||
|
return chip->prev_chg_soc;
|
||
|
}
|
||
|
|
||
|
soc_ibat = bound_soc(linear_interpolate(chip->soc_at_cv,
|
||
|
chip->ibat_at_cv_ua,
|
||
|
100, -1 * chip->chg_term_ua,
|
||
|
ibat_ua));
|
||
|
weight_ibat = bound_soc(linear_interpolate(1, chip->soc_at_cv,
|
||
|
100, 100, chip->prev_chg_soc));
|
||
|
weight_cc = 100 - weight_ibat;
|
||
|
chg_soc = bound_soc(DIV_ROUND_CLOSEST(soc_ibat * weight_ibat
|
||
|
+ weight_cc * soc, 100));
|
||
|
|
||
|
pr_debug("weight_ibat = %d, weight_cc = %d, soc_ibat = %d, soc_cc = %d\n",
|
||
|
weight_ibat, weight_cc, soc_ibat, soc);
|
||
|
|
||
|
/* always report a higher soc */
|
||
|
if (chg_soc > chip->prev_chg_soc) {
|
||
|
int new_ocv_uv;
|
||
|
|
||
|
chip->prev_chg_soc = chg_soc;
|
||
|
|
||
|
find_ocv_for_soc(chip, params, batt_temp, chg_soc, &new_ocv_uv);
|
||
|
chip->charging_adjusted_ocv = new_ocv_uv;
|
||
|
pr_debug("CC CHG ADJ OCV = %d CHG SOC %d\n", new_ocv_uv,
|
||
|
chip->prev_chg_soc);
|
||
|
}
|
||
|
|
||
|
pr_debug("Reporting CHG SOC %d\n", chip->prev_chg_soc);
|
||
|
chip->prev_batt_terminal_uv = batt_terminal_uv;
|
||
|
return chip->prev_chg_soc;
|
||
|
}
|
||
|
|
||
|
static void very_low_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv)
|
||
|
{
|
||
|
/*
|
||
|
* if battery is very low (v_cutoff voltage + 20mv) hold
|
||
|
* a wakelock untill soc = 0%
|
||
|
*/
|
||
|
if (vbat_uv <= chip->low_voltage_threshold
|
||
|
&& !wake_lock_active(&chip->low_voltage_wake_lock)) {
|
||
|
pr_debug("voltage = %d low holding wakelock\n", vbat_uv);
|
||
|
wake_lock(&chip->low_voltage_wake_lock);
|
||
|
} else if (vbat_uv > chip->low_voltage_threshold
|
||
|
&& wake_lock_active(&chip->low_voltage_wake_lock)) {
|
||
|
pr_debug("voltage = %d releasing wakelock\n", vbat_uv);
|
||
|
wake_unlock(&chip->low_voltage_wake_lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define VBATT_ERROR_MARGIN 20000
|
||
|
static void cv_voltage_check(struct qpnp_bms_chip *chip, int vbat_uv)
|
||
|
{
|
||
|
/*
|
||
|
* if battery is very low (v_cutoff voltage + 20mv) hold
|
||
|
* a wakelock untill soc = 0%
|
||
|
*/
|
||
|
if (wake_lock_active(&chip->cv_wake_lock)) {
|
||
|
if (chip->soc_at_cv != -EINVAL) {
|
||
|
pr_debug("hit CV, releasing cv wakelock\n");
|
||
|
wake_unlock(&chip->cv_wake_lock);
|
||
|
} else if (!is_battery_charging(chip)) {
|
||
|
pr_debug("charging stopped, releasing cv wakelock\n");
|
||
|
wake_unlock(&chip->cv_wake_lock);
|
||
|
}
|
||
|
} else if (vbat_uv > chip->max_voltage_uv - VBATT_ERROR_MARGIN
|
||
|
&& chip->soc_at_cv == -EINVAL
|
||
|
&& is_battery_charging(chip)
|
||
|
&& !wake_lock_active(&chip->cv_wake_lock)) {
|
||
|
pr_debug("voltage = %d holding cv wakelock\n", vbat_uv);
|
||
|
wake_lock(&chip->cv_wake_lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define NO_ADJUST_HIGH_SOC_THRESHOLD 90
|
||
|
static int adjust_soc(struct qpnp_bms_chip *chip, struct soc_params *params,
|
||
|
int soc, int batt_temp)
|
||
|
{
|
||
|
int ibat_ua = 0, vbat_uv = 0;
|
||
|
int ocv_est_uv = 0, soc_est = 0, pc_est = 0, pc = 0;
|
||
|
int delta_ocv_uv = 0;
|
||
|
int n = 0;
|
||
|
int rc_new_uah = 0;
|
||
|
int pc_new = 0;
|
||
|
int soc_new = 0;
|
||
|
int slope = 0;
|
||
|
int rc = 0;
|
||
|
int delta_ocv_uv_limit = 0;
|
||
|
int correction_limit_uv = 0;
|
||
|
|
||
|
rc = get_simultaneous_batt_v_and_i(chip, &ibat_ua, &vbat_uv);
|
||
|
if (rc < 0) {
|
||
|
pr_err("simultaneous vbat ibat failed err = %d\n", rc);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
very_low_voltage_check(chip, vbat_uv);
|
||
|
cv_voltage_check(chip, vbat_uv);
|
||
|
|
||
|
delta_ocv_uv_limit = DIV_ROUND_CLOSEST(ibat_ua, 1000);
|
||
|
|
||
|
ocv_est_uv = vbat_uv + (ibat_ua * params->rbatt_mohm)/1000;
|
||
|
|
||
|
pc_est = calculate_pc(chip, ocv_est_uv, batt_temp);
|
||
|
soc_est = div_s64((s64)params->fcc_uah * pc_est - params->uuc_uah*100,
|
||
|
(s64)params->fcc_uah - params->uuc_uah);
|
||
|
soc_est = bound_soc(soc_est);
|
||
|
|
||
|
/* never adjust during bms reset mode */
|
||
|
if (bms_reset) {
|
||
|
pr_debug("bms reset mode, SOC adjustment skipped\n");
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (ibat_ua < 0 && !is_battery_full(chip)) {
|
||
|
soc = charging_adjustments(chip, params, soc, vbat_uv, ibat_ua,
|
||
|
batt_temp);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* do not adjust
|
||
|
* if soc_est is same as what bms calculated
|
||
|
* OR if soc_est > adjust_soc_low_threshold
|
||
|
* OR if soc is above 90
|
||
|
* because we might pull it low
|
||
|
* and cause a bad user experience
|
||
|
*/
|
||
|
if (soc_est == soc
|
||
|
|| soc_est > chip->adjust_soc_low_threshold
|
||
|
|| soc >= NO_ADJUST_HIGH_SOC_THRESHOLD)
|
||
|
goto out;
|
||
|
|
||
|
if (chip->last_soc_est == -EINVAL)
|
||
|
chip->last_soc_est = soc;
|
||
|
|
||
|
n = min(200, max(1 , soc + soc_est + chip->last_soc_est));
|
||
|
chip->last_soc_est = soc_est;
|
||
|
|
||
|
pc = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp);
|
||
|
if (pc > 0) {
|
||
|
pc_new = calculate_pc(chip,
|
||
|
chip->last_ocv_uv - (++slope * 1000),
|
||
|
chip->last_ocv_temp);
|
||
|
while (pc_new == pc) {
|
||
|
/* start taking 10mV steps */
|
||
|
slope = slope + 10;
|
||
|
pc_new = calculate_pc(chip,
|
||
|
chip->last_ocv_uv - (slope * 1000),
|
||
|
chip->last_ocv_temp);
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* pc is already at the lowest point,
|
||
|
* assume 1 millivolt translates to 1% pc
|
||
|
*/
|
||
|
pc = 1;
|
||
|
pc_new = 0;
|
||
|
slope = 1;
|
||
|
}
|
||
|
|
||
|
delta_ocv_uv = div_s64((soc - soc_est) * (s64)slope * 1000,
|
||
|
n * (pc - pc_new));
|
||
|
|
||
|
if (abs(delta_ocv_uv) > delta_ocv_uv_limit) {
|
||
|
pr_debug("limiting delta ocv %d limit = %d\n", delta_ocv_uv,
|
||
|
delta_ocv_uv_limit);
|
||
|
|
||
|
if (delta_ocv_uv > 0)
|
||
|
delta_ocv_uv = delta_ocv_uv_limit;
|
||
|
else
|
||
|
delta_ocv_uv = -1 * delta_ocv_uv_limit;
|
||
|
pr_debug("new delta ocv = %d\n", delta_ocv_uv);
|
||
|
}
|
||
|
|
||
|
if (chip->last_ocv_uv > chip->flat_ocv_threshold_uv)
|
||
|
correction_limit_uv = chip->high_ocv_correction_limit_uv;
|
||
|
else
|
||
|
correction_limit_uv = chip->low_ocv_correction_limit_uv;
|
||
|
|
||
|
if (abs(delta_ocv_uv) > correction_limit_uv) {
|
||
|
pr_debug("limiting delta ocv %d limit = %d\n",
|
||
|
delta_ocv_uv, correction_limit_uv);
|
||
|
if (delta_ocv_uv > 0)
|
||
|
delta_ocv_uv = correction_limit_uv;
|
||
|
else
|
||
|
delta_ocv_uv = -correction_limit_uv;
|
||
|
pr_debug("new delta ocv = %d\n", delta_ocv_uv);
|
||
|
}
|
||
|
|
||
|
chip->last_ocv_uv -= delta_ocv_uv;
|
||
|
|
||
|
if (chip->last_ocv_uv >= chip->max_voltage_uv)
|
||
|
chip->last_ocv_uv = chip->max_voltage_uv;
|
||
|
|
||
|
/* calculate the soc based on this new ocv */
|
||
|
pc_new = calculate_pc(chip, chip->last_ocv_uv, chip->last_ocv_temp);
|
||
|
rc_new_uah = (params->fcc_uah * pc_new) / 100;
|
||
|
soc_new = (rc_new_uah - params->cc_uah - params->uuc_uah)*100
|
||
|
/ (params->fcc_uah - params->uuc_uah);
|
||
|
soc_new = bound_soc(soc_new);
|
||
|
|
||
|
/*
|
||
|
* if soc_new is ZERO force it higher so that phone doesnt report soc=0
|
||
|
* soc = 0 should happen only when soc_est is above a set value
|
||
|
*/
|
||
|
if (soc_new == 0 && soc_est >= chip->hold_soc_est)
|
||
|
soc_new = 1;
|
||
|
|
||
|
soc = soc_new;
|
||
|
|
||
|
out:
|
||
|
pr_debug("ibat_ua = %d, vbat_uv = %d, ocv_est_uv = %d, pc_est = %d, soc_est = %d, n = %d, delta_ocv_uv = %d, last_ocv_uv = %d, pc_new = %d, soc_new = %d, rbatt = %d, slope = %d\n",
|
||
|
ibat_ua, vbat_uv, ocv_est_uv, pc_est,
|
||
|
soc_est, n, delta_ocv_uv, chip->last_ocv_uv,
|
||
|
pc_new, soc_new, params->rbatt_mohm, slope);
|
||
|
|
||
|
return soc;
|
||
|
}
|
||
|
|
||
|
static int clamp_soc_based_on_voltage(struct qpnp_bms_chip *chip, int soc)
|
||
|
{
|
||
|
int rc, vbat_uv;
|
||
|
|
||
|
rc = get_battery_voltage(&vbat_uv);
|
||
|
if (rc < 0) {
|
||
|
pr_err("adc vbat failed err = %d\n", rc);
|
||
|
return soc;
|
||
|
}
|
||
|
if (soc == 0 && vbat_uv > chip->v_cutoff_uv) {
|
||
|
pr_debug("clamping soc to 1, vbat (%d) > cutoff (%d)\n",
|
||
|
vbat_uv, chip->v_cutoff_uv);
|
||
|
return 1;
|
||
|
} else {
|
||
|
pr_debug("not clamping, using soc = %d, vbat = %d and cutoff = %d\n",
|
||
|
soc, vbat_uv, chip->v_cutoff_uv);
|
||
|
return soc;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define SLEEP_RECALC_INTERVAL 3
|
||
|
static int calculate_state_of_charge(struct qpnp_bms_chip *chip,
|
||
|
struct raw_soc_params *raw,
|
||
|
int batt_temp)
|
||
|
{
|
||
|
int soc, new_ocv_uv;
|
||
|
int shutdown_soc, new_calculated_soc, remaining_usable_charge_uah;
|
||
|
struct soc_params params;
|
||
|
|
||
|
if (!is_battery_present(chip)) {
|
||
|
pr_debug("battery gone, reporting 100\n");
|
||
|
new_calculated_soc = 100;
|
||
|
goto done_calculating;
|
||
|
}
|
||
|
calculate_soc_params(chip, raw, ¶ms, batt_temp);
|
||
|
/* calculate remaining usable charge */
|
||
|
remaining_usable_charge_uah = params.ocv_charge_uah
|
||
|
- params.cc_uah
|
||
|
- params.uuc_uah;
|
||
|
|
||
|
pr_debug("RUC = %duAh\n", remaining_usable_charge_uah);
|
||
|
if (params.fcc_uah - params.uuc_uah <= 0) {
|
||
|
pr_debug("FCC = %duAh, UUC = %duAh forcing soc = 0\n",
|
||
|
params.fcc_uah,
|
||
|
params.uuc_uah);
|
||
|
new_calculated_soc = 0;
|
||
|
goto done_calculating;
|
||
|
}
|
||
|
|
||
|
soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
|
||
|
(params.fcc_uah - params.uuc_uah));
|
||
|
|
||
|
if (chip->first_time_calc_soc && soc < 0) {
|
||
|
/*
|
||
|
* first time calcualtion and the pon ocv is too low resulting
|
||
|
* in a bad soc. Adjust ocv to get 0 soc
|
||
|
*/
|
||
|
pr_debug("soc is %d, adjusting pon ocv to make it 0\n", soc);
|
||
|
find_ocv_for_soc(chip, ¶ms, batt_temp, 0, &new_ocv_uv);
|
||
|
chip->last_ocv_uv = new_ocv_uv;
|
||
|
|
||
|
remaining_usable_charge_uah = params.ocv_charge_uah
|
||
|
- params.cc_uah
|
||
|
- params.uuc_uah;
|
||
|
|
||
|
soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
|
||
|
(params.fcc_uah
|
||
|
- params.uuc_uah));
|
||
|
pr_debug("DONE for O soc is %d, pon ocv adjusted to %duV\n",
|
||
|
soc, chip->last_ocv_uv);
|
||
|
}
|
||
|
|
||
|
if (soc > 100)
|
||
|
soc = 100;
|
||
|
|
||
|
if (soc < 0) {
|
||
|
pr_debug("bad rem_usb_chg = %d rem_chg %d, cc_uah %d, unusb_chg %d\n",
|
||
|
remaining_usable_charge_uah,
|
||
|
params.ocv_charge_uah,
|
||
|
params.cc_uah, params.uuc_uah);
|
||
|
|
||
|
pr_debug("for bad rem_usb_chg last_ocv_uv = %d batt_temp = %d fcc = %d soc =%d\n",
|
||
|
chip->last_ocv_uv, batt_temp,
|
||
|
params.fcc_uah, soc);
|
||
|
soc = 0;
|
||
|
}
|
||
|
|
||
|
mutex_lock(&chip->soc_invalidation_mutex);
|
||
|
shutdown_soc = chip->shutdown_soc;
|
||
|
|
||
|
if (chip->first_time_calc_soc && soc != shutdown_soc
|
||
|
&& is_shutdown_soc_within_limits(chip, soc)) {
|
||
|
/*
|
||
|
* soc for the first time - use shutdown soc
|
||
|
* to adjust pon ocv since it is a small percent away from
|
||
|
* the real soc
|
||
|
*/
|
||
|
pr_debug("soc = %d before forcing shutdown_soc = %d\n",
|
||
|
soc, shutdown_soc);
|
||
|
find_ocv_for_soc(chip, ¶ms, batt_temp,
|
||
|
shutdown_soc, &new_ocv_uv);
|
||
|
chip->last_ocv_uv = new_ocv_uv;
|
||
|
|
||
|
remaining_usable_charge_uah = params.ocv_charge_uah
|
||
|
- params.cc_uah
|
||
|
- params.uuc_uah;
|
||
|
|
||
|
soc = DIV_ROUND_CLOSEST((remaining_usable_charge_uah * 100),
|
||
|
(params.fcc_uah
|
||
|
- params.uuc_uah));
|
||
|
|
||
|
pr_debug("DONE for shutdown_soc = %d soc is %d, adjusted ocv to %duV\n",
|
||
|
shutdown_soc, soc, chip->last_ocv_uv);
|
||
|
}
|
||
|
mutex_unlock(&chip->soc_invalidation_mutex);
|
||
|
|
||
|
pr_debug("SOC before adjustment = %d\n", soc);
|
||
|
new_calculated_soc = adjust_soc(chip, ¶ms, soc, batt_temp);
|
||
|
|
||
|
/* always clamp soc due to BMS hw/sw immaturities */
|
||
|
new_calculated_soc = clamp_soc_based_on_voltage(chip,
|
||
|
new_calculated_soc);
|
||
|
|
||
|
done_calculating:
|
||
|
mutex_lock(&chip->last_soc_mutex);
|
||
|
chip->calculated_soc = new_calculated_soc;
|
||
|
pr_debug("CC based calculated SOC = %d\n", chip->calculated_soc);
|
||
|
if (chip->last_soc_invalid) {
|
||
|
chip->last_soc_invalid = false;
|
||
|
chip->last_soc = -EINVAL;
|
||
|
}
|
||
|
/*
|
||
|
* Check if more than a long time has passed since the last
|
||
|
* calculation (more than n times compared to the soc recalculation
|
||
|
* rate, where n is defined by SLEEP_RECALC_INTERVAL). If this is true,
|
||
|
* then the system must have gone through a long sleep, and SoC can be
|
||
|
* allowed to become unbounded by the last reported SoC
|
||
|
*/
|
||
|
if (params.delta_time_s * 1000 >
|
||
|
chip->calculate_soc_ms * SLEEP_RECALC_INTERVAL
|
||
|
&& !chip->first_time_calc_soc) {
|
||
|
chip->last_soc_unbound = true;
|
||
|
chip->last_soc_change_sec = chip->last_recalc_time;
|
||
|
pr_debug("last_soc unbound because elapsed time = %d\n",
|
||
|
params.delta_time_s);
|
||
|
}
|
||
|
mutex_unlock(&chip->last_soc_mutex);
|
||
|
|
||
|
if (new_calculated_soc != chip->calculated_soc
|
||
|
&& chip->bms_psy.name != NULL) {
|
||
|
power_supply_changed(&chip->bms_psy);
|
||
|
pr_debug("power supply changed\n");
|
||
|
} else {
|
||
|
/*
|
||
|
* Call report state of charge anyways to periodically update
|
||
|
* reported SoC. This prevents reported SoC from being stuck
|
||
|
* when calculated soc doesn't change.
|
||
|
*/
|
||
|
report_state_of_charge(chip);
|
||
|
}
|
||
|
|
||
|
get_current_time(&chip->last_recalc_time);
|
||
|
chip->first_time_calc_soc = 0;
|
||
|
return chip->calculated_soc;
|
||
|
}
|
||
|
|
||
|
static int calculate_soc_from_voltage(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int voltage_range_uv, voltage_remaining_uv, voltage_based_soc;
|
||
|
int rc, vbat_uv;
|
||
|
|
||
|
rc = get_battery_voltage(&vbat_uv);
|
||
|
if (rc < 0) {
|
||
|
pr_err("adc vbat failed err = %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
voltage_range_uv = chip->max_voltage_uv - chip->v_cutoff_uv;
|
||
|
voltage_remaining_uv = vbat_uv - chip->v_cutoff_uv;
|
||
|
voltage_based_soc = voltage_remaining_uv * 100 / voltage_range_uv;
|
||
|
|
||
|
voltage_based_soc = clamp(voltage_based_soc, 0, 100);
|
||
|
|
||
|
if (chip->prev_voltage_based_soc != voltage_based_soc
|
||
|
&& chip->bms_psy.name != NULL) {
|
||
|
power_supply_changed(&chip->bms_psy);
|
||
|
pr_debug("power supply changed\n");
|
||
|
}
|
||
|
chip->prev_voltage_based_soc = voltage_based_soc;
|
||
|
|
||
|
pr_debug("vbat used = %duv\n", vbat_uv);
|
||
|
pr_debug("Calculated voltage based soc = %d\n", voltage_based_soc);
|
||
|
return voltage_based_soc;
|
||
|
}
|
||
|
|
||
|
static int recalculate_soc(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int batt_temp, rc, soc;
|
||
|
struct qpnp_vadc_result result;
|
||
|
struct raw_soc_params raw;
|
||
|
|
||
|
if (!wake_lock_active(&chip->soc_wake_lock))
|
||
|
wake_lock(&chip->soc_wake_lock);
|
||
|
mutex_lock(&chip->vbat_monitor_mutex);
|
||
|
qpnp_adc_tm_channel_measure(&chip->vbat_monitor_params);
|
||
|
mutex_unlock(&chip->vbat_monitor_mutex);
|
||
|
if (chip->use_voltage_soc) {
|
||
|
soc = calculate_soc_from_voltage(chip);
|
||
|
} else {
|
||
|
qpnp_iadc_calibrate_for_trim();
|
||
|
rc = qpnp_vadc_read(LR_MUX1_BATT_THERM, &result);
|
||
|
if (rc) {
|
||
|
pr_err("error reading vadc LR_MUX1_BATT_THERM = %d, rc = %d\n",
|
||
|
LR_MUX1_BATT_THERM, rc);
|
||
|
soc = chip->calculated_soc;
|
||
|
} else {
|
||
|
pr_debug("batt_temp phy = %lld meas = 0x%llx\n",
|
||
|
result.physical,
|
||
|
result.measurement);
|
||
|
batt_temp = (int)result.physical;
|
||
|
|
||
|
mutex_lock(&chip->last_ocv_uv_mutex);
|
||
|
read_soc_params_raw(chip, &raw, batt_temp);
|
||
|
soc = calculate_state_of_charge(chip, &raw, batt_temp);
|
||
|
mutex_unlock(&chip->last_ocv_uv_mutex);
|
||
|
}
|
||
|
}
|
||
|
wake_unlock(&chip->soc_wake_lock);
|
||
|
return soc;
|
||
|
}
|
||
|
|
||
|
static void recalculate_work(struct work_struct *work)
|
||
|
{
|
||
|
struct qpnp_bms_chip *chip = container_of(work,
|
||
|
struct qpnp_bms_chip,
|
||
|
recalc_work);
|
||
|
|
||
|
recalculate_soc(chip);
|
||
|
}
|
||
|
|
||
|
static void calculate_soc_work(struct work_struct *work)
|
||
|
{
|
||
|
struct qpnp_bms_chip *chip = container_of(work,
|
||
|
struct qpnp_bms_chip,
|
||
|
calculate_soc_delayed_work.work);
|
||
|
int soc = recalculate_soc(chip);
|
||
|
|
||
|
if (soc < chip->low_soc_calc_threshold
|
||
|
|| wake_lock_active(&chip->low_voltage_wake_lock))
|
||
|
schedule_delayed_work(&chip->calculate_soc_delayed_work,
|
||
|
round_jiffies_relative(msecs_to_jiffies
|
||
|
(chip->low_soc_calculate_soc_ms)));
|
||
|
else
|
||
|
schedule_delayed_work(&chip->calculate_soc_delayed_work,
|
||
|
round_jiffies_relative(msecs_to_jiffies
|
||
|
(chip->calculate_soc_ms)));
|
||
|
}
|
||
|
|
||
|
static void configure_vbat_monitor_low(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
mutex_lock(&chip->vbat_monitor_mutex);
|
||
|
if (chip->vbat_monitor_params.state_request
|
||
|
== ADC_TM_HIGH_LOW_THR_ENABLE) {
|
||
|
/*
|
||
|
* Battery is now around or below v_cutoff
|
||
|
*/
|
||
|
pr_debug("battery entered cutoff range\n");
|
||
|
if (!wake_lock_active(&chip->low_voltage_wake_lock)) {
|
||
|
pr_debug("voltage low, holding wakelock\n");
|
||
|
wake_lock(&chip->low_voltage_wake_lock);
|
||
|
cancel_delayed_work_sync(
|
||
|
&chip->calculate_soc_delayed_work);
|
||
|
schedule_delayed_work(
|
||
|
&chip->calculate_soc_delayed_work, 0);
|
||
|
}
|
||
|
chip->vbat_monitor_params.state_request =
|
||
|
ADC_TM_HIGH_THR_ENABLE;
|
||
|
chip->vbat_monitor_params.high_thr =
|
||
|
(chip->low_voltage_threshold + VBATT_ERROR_MARGIN);
|
||
|
pr_debug("set low thr to %d and high to %d\n",
|
||
|
chip->vbat_monitor_params.low_thr,
|
||
|
chip->vbat_monitor_params.high_thr);
|
||
|
chip->vbat_monitor_params.low_thr = 0;
|
||
|
} else if (chip->vbat_monitor_params.state_request
|
||
|
== ADC_TM_LOW_THR_ENABLE) {
|
||
|
/*
|
||
|
* Battery is in normal operation range.
|
||
|
*/
|
||
|
pr_debug("battery entered normal range\n");
|
||
|
if (wake_lock_active(&chip->cv_wake_lock)) {
|
||
|
wake_unlock(&chip->cv_wake_lock);
|
||
|
pr_debug("releasing cv wake lock\n");
|
||
|
}
|
||
|
chip->in_cv_range = false;
|
||
|
chip->vbat_monitor_params.state_request =
|
||
|
ADC_TM_HIGH_LOW_THR_ENABLE;
|
||
|
chip->vbat_monitor_params.high_thr = chip->max_voltage_uv
|
||
|
- VBATT_ERROR_MARGIN;
|
||
|
chip->vbat_monitor_params.low_thr =
|
||
|
chip->low_voltage_threshold;
|
||
|
pr_debug("set low thr to %d and high to %d\n",
|
||
|
chip->vbat_monitor_params.low_thr,
|
||
|
chip->vbat_monitor_params.high_thr);
|
||
|
}
|
||
|
qpnp_adc_tm_channel_measure(&chip->vbat_monitor_params);
|
||
|
mutex_unlock(&chip->vbat_monitor_mutex);
|
||
|
}
|
||
|
|
||
|
#define CV_LOW_THRESHOLD_HYST_UV 100000
|
||
|
static void configure_vbat_monitor_high(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
mutex_lock(&chip->vbat_monitor_mutex);
|
||
|
if (chip->vbat_monitor_params.state_request
|
||
|
== ADC_TM_HIGH_LOW_THR_ENABLE) {
|
||
|
/*
|
||
|
* Battery is around vddmax
|
||
|
*/
|
||
|
pr_debug("battery entered vddmax range\n");
|
||
|
chip->in_cv_range = true;
|
||
|
if (!wake_lock_active(&chip->cv_wake_lock)) {
|
||
|
wake_lock(&chip->cv_wake_lock);
|
||
|
pr_debug("holding cv wake lock\n");
|
||
|
}
|
||
|
schedule_work(&chip->recalc_work);
|
||
|
chip->vbat_monitor_params.state_request =
|
||
|
ADC_TM_LOW_THR_ENABLE;
|
||
|
chip->vbat_monitor_params.low_thr =
|
||
|
(chip->max_voltage_uv - CV_LOW_THRESHOLD_HYST_UV);
|
||
|
chip->vbat_monitor_params.high_thr = chip->max_voltage_uv * 2;
|
||
|
pr_debug("set low thr to %d and high to %d\n",
|
||
|
chip->vbat_monitor_params.low_thr,
|
||
|
chip->vbat_monitor_params.high_thr);
|
||
|
} else if (chip->vbat_monitor_params.state_request
|
||
|
== ADC_TM_HIGH_THR_ENABLE) {
|
||
|
/*
|
||
|
* Battery is in normal operation range.
|
||
|
*/
|
||
|
pr_debug("battery entered normal range\n");
|
||
|
if (wake_lock_active(&chip->low_voltage_wake_lock)) {
|
||
|
pr_debug("voltage high, releasing wakelock\n");
|
||
|
wake_unlock(&chip->low_voltage_wake_lock);
|
||
|
}
|
||
|
chip->vbat_monitor_params.state_request =
|
||
|
ADC_TM_HIGH_LOW_THR_ENABLE;
|
||
|
chip->vbat_monitor_params.high_thr =
|
||
|
chip->max_voltage_uv - VBATT_ERROR_MARGIN;
|
||
|
chip->vbat_monitor_params.low_thr =
|
||
|
chip->low_voltage_threshold;
|
||
|
pr_debug("set low thr to %d and high to %d\n",
|
||
|
chip->vbat_monitor_params.low_thr,
|
||
|
chip->vbat_monitor_params.high_thr);
|
||
|
}
|
||
|
qpnp_adc_tm_channel_measure(&chip->vbat_monitor_params);
|
||
|
mutex_unlock(&chip->vbat_monitor_mutex);
|
||
|
}
|
||
|
|
||
|
static void btm_notify_vbat(enum qpnp_tm_state state, void *ctx)
|
||
|
{
|
||
|
struct qpnp_bms_chip *chip = ctx;
|
||
|
int vbat_uv;
|
||
|
struct qpnp_vadc_result result;
|
||
|
int rc;
|
||
|
|
||
|
rc = qpnp_vadc_read(VBAT_SNS, &result);
|
||
|
pr_debug("vbat = %lld, raw = 0x%x\n", result.physical, result.adc_code);
|
||
|
|
||
|
get_battery_voltage(&vbat_uv);
|
||
|
pr_debug("vbat is at %d, state is at %d\n", vbat_uv, state);
|
||
|
|
||
|
if (state == ADC_TM_LOW_STATE) {
|
||
|
pr_debug("low voltage btm notification triggered\n");
|
||
|
if (vbat_uv - VBATT_ERROR_MARGIN
|
||
|
< chip->vbat_monitor_params.low_thr) {
|
||
|
configure_vbat_monitor_low(chip);
|
||
|
} else {
|
||
|
pr_debug("faulty btm trigger, discarding\n");
|
||
|
qpnp_adc_tm_channel_measure(
|
||
|
&chip->vbat_monitor_params);
|
||
|
}
|
||
|
} else if (state == ADC_TM_HIGH_STATE) {
|
||
|
pr_debug("high voltage btm notification triggered\n");
|
||
|
if (vbat_uv + VBATT_ERROR_MARGIN
|
||
|
> chip->vbat_monitor_params.high_thr) {
|
||
|
configure_vbat_monitor_high(chip);
|
||
|
} else {
|
||
|
pr_debug("faulty btm trigger, discarding\n");
|
||
|
qpnp_adc_tm_channel_measure(
|
||
|
&chip->vbat_monitor_params);
|
||
|
}
|
||
|
} else {
|
||
|
pr_debug("unknown voltage notification state: %d\n", state);
|
||
|
}
|
||
|
power_supply_changed(&chip->bms_psy);
|
||
|
}
|
||
|
|
||
|
static int reset_vbat_monitoring(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
chip->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_DISABLE;
|
||
|
rc = qpnp_adc_tm_channel_measure(&chip->vbat_monitor_params);
|
||
|
if (rc) {
|
||
|
pr_err("tm measure failed: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
mutex_lock(&chip->vbat_monitor_mutex);
|
||
|
if (wake_lock_active(&chip->low_voltage_wake_lock)) {
|
||
|
pr_debug("battery removed, releasing wakelock\n");
|
||
|
wake_unlock(&chip->low_voltage_wake_lock);
|
||
|
}
|
||
|
if (chip->in_cv_range) {
|
||
|
pr_debug("battery removed, removing in_cv_range state\n");
|
||
|
chip->in_cv_range = false;
|
||
|
}
|
||
|
mutex_unlock(&chip->vbat_monitor_mutex);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int setup_vbat_monitoring(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
rc = qpnp_adc_tm_is_ready();
|
||
|
if (rc) {
|
||
|
pr_info("adc tm is not ready yet: %d, defer probe\n", rc);
|
||
|
return -EPROBE_DEFER;
|
||
|
}
|
||
|
|
||
|
if (!is_battery_present(chip)) {
|
||
|
pr_debug("no battery inserted, do not setup vbat monitoring\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
chip->vbat_monitor_params.low_thr = chip->low_voltage_threshold;
|
||
|
chip->vbat_monitor_params.high_thr = chip->max_voltage_uv
|
||
|
- VBATT_ERROR_MARGIN;
|
||
|
chip->vbat_monitor_params.state_request = ADC_TM_HIGH_LOW_THR_ENABLE;
|
||
|
chip->vbat_monitor_params.channel = VBAT_SNS;
|
||
|
chip->vbat_monitor_params.btm_ctx = (void *)chip;
|
||
|
chip->vbat_monitor_params.timer_interval = ADC_MEAS1_INTERVAL_1S;
|
||
|
chip->vbat_monitor_params.threshold_notification = &btm_notify_vbat;
|
||
|
pr_debug("set low thr to %d and high to %d\n",
|
||
|
chip->vbat_monitor_params.low_thr,
|
||
|
chip->vbat_monitor_params.high_thr);
|
||
|
rc = qpnp_adc_tm_channel_measure(&chip->vbat_monitor_params);
|
||
|
if (rc) {
|
||
|
pr_err("tm setup failed: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
pr_debug("setup complete\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void charging_began(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
mutex_lock(&chip->last_soc_mutex);
|
||
|
chip->charge_start_tm_sec = 0;
|
||
|
chip->catch_up_time_sec = 0;
|
||
|
mutex_unlock(&chip->last_soc_mutex);
|
||
|
|
||
|
mutex_lock(&chip->last_ocv_uv_mutex);
|
||
|
chip->soc_at_cv = -EINVAL;
|
||
|
chip->prev_chg_soc = -EINVAL;
|
||
|
mutex_unlock(&chip->last_ocv_uv_mutex);
|
||
|
}
|
||
|
|
||
|
static void charging_ended(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
mutex_lock(&chip->last_soc_mutex);
|
||
|
chip->charge_start_tm_sec = 0;
|
||
|
chip->catch_up_time_sec = 0;
|
||
|
mutex_unlock(&chip->last_soc_mutex);
|
||
|
|
||
|
mutex_lock(&chip->last_ocv_uv_mutex);
|
||
|
chip->soc_at_cv = -EINVAL;
|
||
|
chip->prev_chg_soc = -EINVAL;
|
||
|
if (get_battery_status(chip) == POWER_SUPPLY_STATUS_FULL) {
|
||
|
chip->done_charging = true;
|
||
|
chip->last_soc_invalid = true;
|
||
|
} else if (chip->charging_adjusted_ocv > 0) {
|
||
|
pr_debug("Charging stopped before full, adjusted OCV = %d\n",
|
||
|
chip->charging_adjusted_ocv);
|
||
|
chip->last_ocv_uv = chip->charging_adjusted_ocv;
|
||
|
}
|
||
|
chip->charging_adjusted_ocv = -EINVAL;
|
||
|
|
||
|
mutex_unlock(&chip->last_ocv_uv_mutex);
|
||
|
}
|
||
|
|
||
|
static void battery_status_check(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int status = get_battery_status(chip);
|
||
|
|
||
|
if (chip->battery_status != status) {
|
||
|
if (status == POWER_SUPPLY_STATUS_CHARGING) {
|
||
|
pr_debug("charging started\n");
|
||
|
charging_began(chip);
|
||
|
} else if (chip->battery_status
|
||
|
== POWER_SUPPLY_STATUS_CHARGING) {
|
||
|
pr_debug("charging ended\n");
|
||
|
charging_ended(chip);
|
||
|
}
|
||
|
chip->battery_status = status;
|
||
|
/* a new battery was inserted or removed, so force a soc
|
||
|
* recalculation to update the SoC */
|
||
|
schedule_work(&chip->recalc_work);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void battery_insertion_check(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
bool present = is_battery_present(chip);
|
||
|
|
||
|
mutex_lock(&chip->vbat_monitor_mutex);
|
||
|
if (chip->battery_present != present) {
|
||
|
if (chip->battery_present != -EINVAL) {
|
||
|
if (present) {
|
||
|
setup_vbat_monitoring(chip);
|
||
|
chip->new_battery = true;
|
||
|
} else {
|
||
|
reset_vbat_monitoring(chip);
|
||
|
}
|
||
|
}
|
||
|
chip->battery_present = present;
|
||
|
/* a new battery was inserted or removed, so force a soc
|
||
|
* recalculation to update the SoC */
|
||
|
schedule_work(&chip->recalc_work);
|
||
|
}
|
||
|
mutex_unlock(&chip->vbat_monitor_mutex);
|
||
|
}
|
||
|
|
||
|
/* Returns capacity as a SoC percentage between 0 and 100 */
|
||
|
static int get_prop_bms_capacity(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
return report_state_of_charge(chip);
|
||
|
}
|
||
|
|
||
|
/* Returns estimated battery resistance */
|
||
|
static int get_prop_bms_batt_resistance(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
return chip->rbatt_mohm * 1000;
|
||
|
}
|
||
|
|
||
|
/* Returns instantaneous current in uA */
|
||
|
static int get_prop_bms_current_now(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc, result_ua;
|
||
|
|
||
|
rc = get_battery_current(chip, &result_ua);
|
||
|
if (rc) {
|
||
|
pr_err("failed to get current: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
return result_ua;
|
||
|
}
|
||
|
|
||
|
/* Returns coulomb counter in uAh */
|
||
|
static int get_prop_bms_charge_counter(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int64_t cc_raw;
|
||
|
|
||
|
mutex_lock(&chip->bms_output_lock);
|
||
|
lock_output_data(chip);
|
||
|
read_cc_raw(chip, &cc_raw);
|
||
|
unlock_output_data(chip);
|
||
|
mutex_unlock(&chip->bms_output_lock);
|
||
|
|
||
|
return calculate_cc(chip, cc_raw, false);
|
||
|
}
|
||
|
|
||
|
/* Returns full charge design in uAh */
|
||
|
static int get_prop_bms_charge_full_design(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
return chip->fcc_mah * 1000;
|
||
|
}
|
||
|
|
||
|
static void qpnp_bms_external_power_changed(struct power_supply *psy)
|
||
|
{
|
||
|
struct qpnp_bms_chip *chip = container_of(psy, struct qpnp_bms_chip,
|
||
|
bms_psy);
|
||
|
|
||
|
battery_insertion_check(chip);
|
||
|
battery_status_check(chip);
|
||
|
}
|
||
|
|
||
|
static int qpnp_bms_power_get_property(struct power_supply *psy,
|
||
|
enum power_supply_property psp,
|
||
|
union power_supply_propval *val)
|
||
|
{
|
||
|
struct qpnp_bms_chip *chip = container_of(psy, struct qpnp_bms_chip,
|
||
|
bms_psy);
|
||
|
|
||
|
switch (psp) {
|
||
|
case POWER_SUPPLY_PROP_CAPACITY:
|
||
|
val->intval = get_prop_bms_capacity(chip);
|
||
|
break;
|
||
|
case POWER_SUPPLY_PROP_CURRENT_NOW:
|
||
|
val->intval = get_prop_bms_current_now(chip);
|
||
|
break;
|
||
|
case POWER_SUPPLY_PROP_RESISTANCE:
|
||
|
val->intval = get_prop_bms_batt_resistance(chip);
|
||
|
break;
|
||
|
case POWER_SUPPLY_PROP_CHARGE_COUNTER:
|
||
|
val->intval = get_prop_bms_charge_counter(chip);
|
||
|
break;
|
||
|
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
|
||
|
val->intval = get_prop_bms_charge_full_design(chip);
|
||
|
break;
|
||
|
default:
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define OCV_USE_LIMIT_EN BIT(7)
|
||
|
static int set_ocv_voltage_thresholds(struct qpnp_bms_chip *chip,
|
||
|
int low_voltage_threshold,
|
||
|
int high_voltage_threshold)
|
||
|
{
|
||
|
uint16_t low_voltage_raw, high_voltage_raw;
|
||
|
int rc;
|
||
|
|
||
|
low_voltage_raw = convert_vbatt_uv_to_raw(chip,
|
||
|
low_voltage_threshold);
|
||
|
high_voltage_raw = convert_vbatt_uv_to_raw(chip,
|
||
|
high_voltage_threshold);
|
||
|
rc = qpnp_write_wrapper(chip, (u8 *)&low_voltage_raw,
|
||
|
chip->base + BMS1_OCV_USE_LOW_LIMIT_THR0, 2);
|
||
|
if (rc) {
|
||
|
pr_err("Failed to set ocv low voltage threshold: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
rc = qpnp_write_wrapper(chip, (u8 *)&high_voltage_raw,
|
||
|
chip->base + BMS1_OCV_USE_HIGH_LIMIT_THR0, 2);
|
||
|
if (rc) {
|
||
|
pr_err("Failed to set ocv high voltage threshold: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
rc = qpnp_masked_write(chip, BMS1_OCV_USE_LIMIT_CTL,
|
||
|
OCV_USE_LIMIT_EN, OCV_USE_LIMIT_EN);
|
||
|
if (rc) {
|
||
|
pr_err("Failed to enabled ocv voltage thresholds: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
pr_debug("ocv low threshold set to %d uv or 0x%x raw\n",
|
||
|
low_voltage_threshold, low_voltage_raw);
|
||
|
pr_debug("ocv high threshold set to %d uv or 0x%x raw\n",
|
||
|
high_voltage_threshold, high_voltage_raw);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void read_shutdown_soc_and_iavg(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc;
|
||
|
u8 temp;
|
||
|
|
||
|
if (chip->ignore_shutdown_soc) {
|
||
|
chip->shutdown_soc_invalid = true;
|
||
|
chip->shutdown_soc = 0;
|
||
|
chip->shutdown_iavg_ma = 0;
|
||
|
} else {
|
||
|
rc = qpnp_read_wrapper(chip, &temp,
|
||
|
chip->base + IAVG_STORAGE_REG, 1);
|
||
|
if (rc) {
|
||
|
pr_err("failed to read addr = %d %d assuming %d\n",
|
||
|
chip->base + IAVG_STORAGE_REG, rc,
|
||
|
IAVG_START);
|
||
|
chip->shutdown_iavg_ma = IAVG_START;
|
||
|
} else if (temp == IAVG_INVALID) {
|
||
|
pr_err("invalid iavg read from BMS1_DATA_REG_1, using %d\n",
|
||
|
IAVG_START);
|
||
|
chip->shutdown_iavg_ma = IAVG_START;
|
||
|
} else {
|
||
|
if (temp == 0) {
|
||
|
chip->shutdown_iavg_ma = IAVG_START;
|
||
|
} else {
|
||
|
chip->shutdown_iavg_ma = IAVG_START
|
||
|
+ IAVG_STEP_SIZE_MA * (temp + 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rc = qpnp_read_wrapper(chip, &temp,
|
||
|
chip->base + SOC_STORAGE_REG, 1);
|
||
|
if (rc) {
|
||
|
pr_err("failed to read addr = %d %d\n",
|
||
|
chip->base + SOC_STORAGE_REG, rc);
|
||
|
} else {
|
||
|
chip->shutdown_soc = temp;
|
||
|
|
||
|
if (chip->shutdown_soc == SOC_INVALID) {
|
||
|
pr_debug("No shutdown soc available\n");
|
||
|
chip->shutdown_soc_invalid = true;
|
||
|
chip->shutdown_iavg_ma = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pr_debug("shutdown_soc = %d shutdown_iavg = %d shutdown_soc_invalid = %d\n",
|
||
|
chip->shutdown_soc,
|
||
|
chip->shutdown_iavg_ma,
|
||
|
chip->shutdown_soc_invalid);
|
||
|
}
|
||
|
|
||
|
#define PALLADIUM_ID_MIN 0x7F40
|
||
|
#define PALLADIUM_ID_MAX 0x7F5A
|
||
|
#define DESAY_5200_ID_MIN 0x7F7F
|
||
|
#define DESAY_5200_ID_MAX 0x802F
|
||
|
static int32_t read_battery_id(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc;
|
||
|
struct qpnp_vadc_result result;
|
||
|
|
||
|
rc = qpnp_vadc_read(LR_MUX2_BAT_ID, &result);
|
||
|
if (rc) {
|
||
|
pr_err("error reading batt id channel = %d, rc = %d\n",
|
||
|
LR_MUX2_BAT_ID, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical,
|
||
|
result.measurement);
|
||
|
pr_debug("raw_code = 0x%x\n", result.adc_code);
|
||
|
return result.adc_code;
|
||
|
}
|
||
|
|
||
|
static int set_battery_data(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int64_t battery_id;
|
||
|
struct bms_battery_data *batt_data;
|
||
|
|
||
|
if (chip->batt_type == BATT_DESAY) {
|
||
|
batt_data = &desay_5200_data;
|
||
|
} else if (chip->batt_type == BATT_PALLADIUM) {
|
||
|
batt_data = &palladium_1500_data;
|
||
|
} else if (chip->batt_type == BATT_OEM) {
|
||
|
batt_data = &oem_batt_data;
|
||
|
} else if (chip->batt_type == BATT_QRD_4V35_2000MAH) {
|
||
|
batt_data = &QRD_4v35_2000mAh_data;
|
||
|
} else {
|
||
|
battery_id = read_battery_id(chip);
|
||
|
if (battery_id < 0) {
|
||
|
pr_err("cannot read battery id err = %lld\n",
|
||
|
battery_id);
|
||
|
return battery_id;
|
||
|
}
|
||
|
|
||
|
if (is_between(PALLADIUM_ID_MIN, PALLADIUM_ID_MAX,
|
||
|
battery_id)) {
|
||
|
batt_data = &palladium_1500_data;
|
||
|
} else if (is_between(DESAY_5200_ID_MIN, DESAY_5200_ID_MAX,
|
||
|
battery_id)) {
|
||
|
batt_data = &desay_5200_data;
|
||
|
} else {
|
||
|
pr_warn("invalid battid, palladium 1500 assumed batt_id %llx\n",
|
||
|
battery_id);
|
||
|
batt_data = &palladium_1500_data;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
chip->fcc_mah = batt_data->fcc;
|
||
|
chip->fcc_temp_lut = batt_data->fcc_temp_lut;
|
||
|
chip->fcc_sf_lut = batt_data->fcc_sf_lut;
|
||
|
chip->pc_temp_ocv_lut = batt_data->pc_temp_ocv_lut;
|
||
|
chip->pc_sf_lut = batt_data->pc_sf_lut;
|
||
|
chip->rbatt_sf_lut = batt_data->rbatt_sf_lut;
|
||
|
chip->default_rbatt_mohm = batt_data->default_rbatt_mohm;
|
||
|
chip->rbatt_capacitive_mohm = batt_data->rbatt_capacitive_mohm;
|
||
|
chip->flat_ocv_threshold_uv = batt_data->flat_ocv_threshold_uv;
|
||
|
|
||
|
if (chip->pc_temp_ocv_lut == NULL) {
|
||
|
pr_err("temp ocv lut table is NULL\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define SPMI_PROP_READ(chip_prop, qpnp_spmi_property, retval) \
|
||
|
do { \
|
||
|
retval = of_property_read_u32(chip->spmi->dev.of_node, \
|
||
|
"qcom," qpnp_spmi_property, \
|
||
|
&chip->chip_prop); \
|
||
|
if (retval) { \
|
||
|
pr_err("Error reading " #qpnp_spmi_property \
|
||
|
" property %d\n", rc); \
|
||
|
return -EINVAL; \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
static inline int bms_read_properties(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc;
|
||
|
|
||
|
SPMI_PROP_READ(r_sense_uohm, "r-sense-uohm", rc);
|
||
|
SPMI_PROP_READ(v_cutoff_uv, "v-cutoff-uv", rc);
|
||
|
SPMI_PROP_READ(max_voltage_uv, "max-voltage-uv", rc);
|
||
|
SPMI_PROP_READ(r_conn_mohm, "r-conn-mohm", rc);
|
||
|
SPMI_PROP_READ(chg_term_ua, "chg-term-ua", rc);
|
||
|
SPMI_PROP_READ(shutdown_soc_valid_limit,
|
||
|
"shutdown-soc-valid-limit", rc);
|
||
|
SPMI_PROP_READ(adjust_soc_low_threshold,
|
||
|
"adjust-soc-low-threshold", rc);
|
||
|
SPMI_PROP_READ(batt_type, "batt-type", rc);
|
||
|
SPMI_PROP_READ(low_soc_calc_threshold,
|
||
|
"low-soc-calculate-soc-threshold", rc);
|
||
|
SPMI_PROP_READ(low_soc_calculate_soc_ms,
|
||
|
"low-soc-calculate-soc-ms", rc);
|
||
|
SPMI_PROP_READ(calculate_soc_ms, "calculate-soc-ms", rc);
|
||
|
chip->use_external_rsense = of_property_read_bool(
|
||
|
chip->spmi->dev.of_node,
|
||
|
"qcom,use-external-rsense");
|
||
|
chip->ignore_shutdown_soc = of_property_read_bool(
|
||
|
chip->spmi->dev.of_node,
|
||
|
"qcom,ignore-shutdown-soc");
|
||
|
chip->use_voltage_soc = of_property_read_bool(chip->spmi->dev.of_node,
|
||
|
"qcom,use-voltage-soc");
|
||
|
chip->use_ocv_thresholds = of_property_read_bool(
|
||
|
chip->spmi->dev.of_node,
|
||
|
"qcom,use-ocv-thresholds");
|
||
|
SPMI_PROP_READ(high_ocv_correction_limit_uv,
|
||
|
"high-ocv-correction-limit-uv", rc);
|
||
|
SPMI_PROP_READ(low_ocv_correction_limit_uv,
|
||
|
"low-ocv-correction-limit-uv", rc);
|
||
|
SPMI_PROP_READ(hold_soc_est,
|
||
|
"hold-soc-est", rc);
|
||
|
SPMI_PROP_READ(ocv_high_threshold_uv,
|
||
|
"ocv-voltage-high-threshold-uv", rc);
|
||
|
SPMI_PROP_READ(ocv_low_threshold_uv,
|
||
|
"ocv-voltage-low-threshold-uv", rc);
|
||
|
SPMI_PROP_READ(low_voltage_threshold, "low-voltage-threshold", rc);
|
||
|
SPMI_PROP_READ(temperature_margin, "tm-temp-margin", rc);
|
||
|
|
||
|
if (chip->adjust_soc_low_threshold >= 45)
|
||
|
chip->adjust_soc_low_threshold = 45;
|
||
|
|
||
|
pr_debug("dts data: r_sense_uohm:%d, v_cutoff_uv:%d, max_v:%d\n",
|
||
|
chip->r_sense_uohm, chip->v_cutoff_uv,
|
||
|
chip->max_voltage_uv);
|
||
|
pr_debug("r_conn:%d, shutdown_soc: %d, adjust_soc_low:%d\n",
|
||
|
chip->r_conn_mohm, chip->shutdown_soc_valid_limit,
|
||
|
chip->adjust_soc_low_threshold);
|
||
|
pr_debug("chg_term_ua:%d, batt_type:%d\n",
|
||
|
chip->chg_term_ua,
|
||
|
chip->batt_type);
|
||
|
pr_debug("ignore_shutdown_soc:%d, use_voltage_soc:%d\n",
|
||
|
chip->ignore_shutdown_soc, chip->use_voltage_soc);
|
||
|
pr_debug("use external rsense: %d\n", chip->use_external_rsense);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static inline void bms_initialize_constants(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
chip->prev_pc_unusable = -EINVAL;
|
||
|
chip->soc_at_cv = -EINVAL;
|
||
|
chip->calculated_soc = -EINVAL;
|
||
|
chip->last_soc = -EINVAL;
|
||
|
chip->last_soc_est = -EINVAL;
|
||
|
chip->battery_present = -EINVAL;
|
||
|
chip->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
|
||
|
chip->last_cc_uah = INT_MIN;
|
||
|
chip->ocv_reading_at_100 = OCV_RAW_UNINITIALIZED;
|
||
|
chip->prev_last_good_ocv_raw = OCV_RAW_UNINITIALIZED;
|
||
|
chip->first_time_calc_soc = 1;
|
||
|
chip->first_time_calc_uuc = 1;
|
||
|
}
|
||
|
|
||
|
#define REG_OFFSET_PERP_TYPE 0x04
|
||
|
#define REG_OFFSET_PERP_SUBTYPE 0x05
|
||
|
#define BMS_BMS_TYPE 0xD
|
||
|
#define BMS_BMS1_SUBTYPE 0x1
|
||
|
#define BMS_IADC_TYPE 0x8
|
||
|
#define BMS_IADC1_SUBTYPE 0x3
|
||
|
#define BMS_IADC2_SUBTYPE 0x5
|
||
|
|
||
|
static int register_spmi(struct qpnp_bms_chip *chip, struct spmi_device *spmi)
|
||
|
{
|
||
|
struct spmi_resource *spmi_resource;
|
||
|
struct resource *resource;
|
||
|
int rc;
|
||
|
u8 type, subtype;
|
||
|
|
||
|
chip->dev = &(spmi->dev);
|
||
|
chip->spmi = spmi;
|
||
|
|
||
|
spmi_for_each_container_dev(spmi_resource, spmi) {
|
||
|
if (!spmi_resource) {
|
||
|
pr_err("qpnp_bms: spmi resource absent\n");
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
resource = spmi_get_resource(spmi, spmi_resource,
|
||
|
IORESOURCE_MEM, 0);
|
||
|
if (!(resource && resource->start)) {
|
||
|
pr_err("node %s IO resource absent!\n",
|
||
|
spmi->dev.of_node->full_name);
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
rc = qpnp_read_wrapper(chip, &type,
|
||
|
resource->start + REG_OFFSET_PERP_TYPE, 1);
|
||
|
if (rc) {
|
||
|
pr_err("Peripheral type read failed rc=%d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
rc = qpnp_read_wrapper(chip, &subtype,
|
||
|
resource->start + REG_OFFSET_PERP_SUBTYPE, 1);
|
||
|
if (rc) {
|
||
|
pr_err("Peripheral subtype read failed rc=%d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
if (type == BMS_BMS_TYPE && subtype == BMS_BMS1_SUBTYPE) {
|
||
|
chip->base = resource->start;
|
||
|
} else if (type == BMS_IADC_TYPE
|
||
|
&& (subtype == BMS_IADC1_SUBTYPE
|
||
|
|| subtype == BMS_IADC2_SUBTYPE)) {
|
||
|
chip->iadc_base = resource->start;
|
||
|
} else {
|
||
|
pr_err("Invalid peripheral start=0x%x type=0x%x, subtype=0x%x\n",
|
||
|
resource->start, type, subtype);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (chip->base == 0) {
|
||
|
dev_err(&spmi->dev, "BMS peripheral was not registered\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
if (chip->iadc_base == 0) {
|
||
|
dev_err(&spmi->dev, "BMS_IADC peripheral was not registered\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define ADC_CH_SEL_MASK 0x7
|
||
|
static int read_iadc_channel_select(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
u8 iadc_channel_select;
|
||
|
int32_t rds_rsense_nohm;
|
||
|
int rc;
|
||
|
|
||
|
rc = qpnp_read_wrapper(chip, &iadc_channel_select,
|
||
|
chip->iadc_base + IADC1_BMS_ADC_CH_SEL_CTL, 1);
|
||
|
if (rc) {
|
||
|
pr_err("Error reading bms_iadc channel register %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
iadc_channel_select &= ADC_CH_SEL_MASK;
|
||
|
if (iadc_channel_select != EXTERNAL_RSENSE
|
||
|
&& iadc_channel_select != INTERNAL_RSENSE) {
|
||
|
pr_err("IADC1_BMS_IADC configured incorrectly. Selected channel = %d\n",
|
||
|
iadc_channel_select);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (chip->use_external_rsense) {
|
||
|
pr_debug("External rsense selected\n");
|
||
|
if (iadc_channel_select == INTERNAL_RSENSE) {
|
||
|
pr_debug("Internal rsense detected; Changing rsense to external\n");
|
||
|
rc = qpnp_masked_write_iadc(chip,
|
||
|
IADC1_BMS_ADC_CH_SEL_CTL,
|
||
|
ADC_CH_SEL_MASK,
|
||
|
EXTERNAL_RSENSE);
|
||
|
if (rc) {
|
||
|
pr_err("Unable to set IADC1_BMS channel %x to %x: %d\n",
|
||
|
IADC1_BMS_ADC_CH_SEL_CTL,
|
||
|
EXTERNAL_RSENSE, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
reset_cc(chip);
|
||
|
chip->software_cc_uah = 0;
|
||
|
}
|
||
|
} else {
|
||
|
pr_debug("Internal rsense selected\n");
|
||
|
if (iadc_channel_select == EXTERNAL_RSENSE) {
|
||
|
pr_debug("External rsense detected; Changing rsense to internal\n");
|
||
|
rc = qpnp_masked_write_iadc(chip,
|
||
|
IADC1_BMS_ADC_CH_SEL_CTL,
|
||
|
ADC_CH_SEL_MASK,
|
||
|
INTERNAL_RSENSE);
|
||
|
if (rc) {
|
||
|
pr_err("Unable to set IADC1_BMS channel %x to %x: %d\n",
|
||
|
IADC1_BMS_ADC_CH_SEL_CTL,
|
||
|
INTERNAL_RSENSE, rc);
|
||
|
return rc;
|
||
|
}
|
||
|
reset_cc(chip);
|
||
|
chip->software_cc_uah = 0;
|
||
|
}
|
||
|
|
||
|
rc = qpnp_iadc_get_rsense(&rds_rsense_nohm);
|
||
|
if (rc) {
|
||
|
pr_err("Unable to read RDS resistance value from IADC; rc = %d\n",
|
||
|
rc);
|
||
|
return rc;
|
||
|
}
|
||
|
chip->r_sense_uohm = rds_rsense_nohm/1000;
|
||
|
pr_debug("rds_rsense = %d nOhm, saved as %d uOhm\n",
|
||
|
rds_rsense_nohm, chip->r_sense_uohm);
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int refresh_die_temp_monitor(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
struct qpnp_vadc_result result;
|
||
|
int rc;
|
||
|
|
||
|
rc = qpnp_vadc_read(DIE_TEMP, &result);
|
||
|
|
||
|
pr_debug("low = %lld, high = %lld\n",
|
||
|
result.physical - chip->temperature_margin,
|
||
|
result.physical + chip->temperature_margin);
|
||
|
chip->die_temp_monitor_params.high_temp = result.physical
|
||
|
+ chip->temperature_margin;
|
||
|
chip->die_temp_monitor_params.low_temp = result.physical
|
||
|
- chip->temperature_margin;
|
||
|
chip->die_temp_monitor_params.state_request =
|
||
|
ADC_TM_HIGH_LOW_THR_ENABLE;
|
||
|
return qpnp_adc_tm_channel_measure(&chip->die_temp_monitor_params);
|
||
|
}
|
||
|
|
||
|
static void btm_notify_die_temp(enum qpnp_tm_state state, void *ctx)
|
||
|
{
|
||
|
struct qpnp_bms_chip *chip = ctx;
|
||
|
struct qpnp_vadc_result result;
|
||
|
int rc;
|
||
|
|
||
|
rc = qpnp_vadc_read(DIE_TEMP, &result);
|
||
|
|
||
|
if (state == ADC_TM_LOW_STATE)
|
||
|
pr_debug("low state triggered\n");
|
||
|
else if (state == ADC_TM_HIGH_STATE)
|
||
|
pr_debug("high state triggered\n");
|
||
|
pr_debug("die temp = %lld, raw = 0x%x\n",
|
||
|
result.physical, result.adc_code);
|
||
|
schedule_work(&chip->recalc_work);
|
||
|
refresh_die_temp_monitor(chip);
|
||
|
}
|
||
|
|
||
|
static int setup_die_temp_monitoring(struct qpnp_bms_chip *chip)
|
||
|
{
|
||
|
int rc = qpnp_adc_tm_is_ready();
|
||
|
if (rc) {
|
||
|
pr_info("adc tm is not ready yet: %d, defer probe\n", rc);
|
||
|
return -EPROBE_DEFER;
|
||
|
}
|
||
|
chip->die_temp_monitor_params.channel = DIE_TEMP;
|
||
|
chip->die_temp_monitor_params.btm_ctx = (void *)chip;
|
||
|
chip->die_temp_monitor_params.timer_interval = ADC_MEAS1_INTERVAL_1S;
|
||
|
chip->die_temp_monitor_params.threshold_notification =
|
||
|
&btm_notify_die_temp;
|
||
|
refresh_die_temp_monitor(chip);
|
||
|
if (rc) {
|
||
|
pr_err("tm setup failed: %d\n", rc);
|
||
|
return rc;
|
||
|
}
|
||
|
pr_debug("setup complete\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __devinit qpnp_bms_probe(struct spmi_device *spmi)
|
||
|
{
|
||
|
struct qpnp_bms_chip *chip;
|
||
|
bool warm_reset;
|
||
|
int rc, vbatt;
|
||
|
|
||
|
chip = kzalloc(sizeof *chip, GFP_KERNEL);
|
||
|
|
||
|
if (chip == NULL) {
|
||
|
pr_err("kzalloc() failed.\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
rc = qpnp_vadc_is_ready();
|
||
|
if (rc) {
|
||
|
pr_info("vadc not ready: %d, deferring probe\n", rc);
|
||
|
rc = -EPROBE_DEFER;
|
||
|
goto error_read;
|
||
|
}
|
||
|
|
||
|
rc = qpnp_iadc_is_ready();
|
||
|
if (rc) {
|
||
|
pr_info("iadc not ready: %d, deferring probe\n", rc);
|
||
|
rc = -EPROBE_DEFER;
|
||
|
goto error_read;
|
||
|
}
|
||
|
|
||
|
warm_reset = qpnp_pon_is_warm_reset();
|
||
|
rc = warm_reset;
|
||
|
if (rc < 0)
|
||
|
goto error_read;
|
||
|
|
||
|
rc = register_spmi(chip, spmi);
|
||
|
if (rc) {
|
||
|
pr_err("error registering spmi resource %d\n", rc);
|
||
|
goto error_resource;
|
||
|
}
|
||
|
|
||
|
rc = qpnp_read_wrapper(chip, &chip->revision1,
|
||
|
chip->base + BMS1_REVISION1, 1);
|
||
|
if (rc) {
|
||
|
pr_err("error reading version register %d\n", rc);
|
||
|
goto error_read;
|
||
|
}
|
||
|
|
||
|
rc = qpnp_read_wrapper(chip, &chip->revision2,
|
||
|
chip->base + BMS1_REVISION2, 1);
|
||
|
if (rc) {
|
||
|
pr_err("Error reading version register %d\n", rc);
|
||
|
goto error_read;
|
||
|
}
|
||
|
pr_debug("BMS version: %hhu.%hhu\n", chip->revision2, chip->revision1);
|
||
|
|
||
|
rc = bms_read_properties(chip);
|
||
|
if (rc) {
|
||
|
pr_err("Unable to read all bms properties, rc = %d\n", rc);
|
||
|
goto error_read;
|
||
|
}
|
||
|
|
||
|
rc = read_iadc_channel_select(chip);
|
||
|
if (rc) {
|
||
|
pr_err("Unable to get iadc selected channel = %d\n", rc);
|
||
|
goto error_read;
|
||
|
}
|
||
|
|
||
|
if (chip->use_ocv_thresholds) {
|
||
|
rc = set_ocv_voltage_thresholds(chip,
|
||
|
chip->ocv_low_threshold_uv,
|
||
|
chip->ocv_high_threshold_uv);
|
||
|
if (rc) {
|
||
|
pr_err("Could not set ocv voltage thresholds: %d\n",
|
||
|
rc);
|
||
|
goto error_read;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rc = set_battery_data(chip);
|
||
|
if (rc) {
|
||
|
pr_err("Bad battery data %d\n", rc);
|
||
|
goto error_read;
|
||
|
}
|
||
|
|
||
|
bms_initialize_constants(chip);
|
||
|
|
||
|
mutex_init(&chip->bms_output_lock);
|
||
|
mutex_init(&chip->last_ocv_uv_mutex);
|
||
|
mutex_init(&chip->vbat_monitor_mutex);
|
||
|
mutex_init(&chip->soc_invalidation_mutex);
|
||
|
mutex_init(&chip->last_soc_mutex);
|
||
|
|
||
|
wake_lock_init(&chip->soc_wake_lock, WAKE_LOCK_SUSPEND,
|
||
|
"qpnp_soc_lock");
|
||
|
wake_lock_init(&chip->low_voltage_wake_lock, WAKE_LOCK_SUSPEND,
|
||
|
"qpnp_low_voltage_lock");
|
||
|
wake_lock_init(&chip->cv_wake_lock, WAKE_LOCK_SUSPEND,
|
||
|
"qpnp_cv_lock");
|
||
|
INIT_DELAYED_WORK(&chip->calculate_soc_delayed_work,
|
||
|
calculate_soc_work);
|
||
|
INIT_WORK(&chip->recalc_work, recalculate_work);
|
||
|
|
||
|
read_shutdown_soc_and_iavg(chip);
|
||
|
|
||
|
dev_set_drvdata(&spmi->dev, chip);
|
||
|
device_init_wakeup(&spmi->dev, 1);
|
||
|
|
||
|
rc = setup_vbat_monitoring(chip);
|
||
|
if (rc < 0) {
|
||
|
pr_err("failed to set up voltage notifications: %d\n", rc);
|
||
|
goto error_setup;
|
||
|
}
|
||
|
|
||
|
rc = setup_die_temp_monitoring(chip);
|
||
|
if (rc < 0) {
|
||
|
pr_err("failed to set up die temp notifications: %d\n", rc);
|
||
|
goto error_setup;
|
||
|
}
|
||
|
|
||
|
calculate_soc_work(&(chip->calculate_soc_delayed_work.work));
|
||
|
|
||
|
/* setup & register the battery power supply */
|
||
|
chip->bms_psy.name = "bms";
|
||
|
chip->bms_psy.type = POWER_SUPPLY_TYPE_BMS;
|
||
|
chip->bms_psy.properties = msm_bms_power_props;
|
||
|
chip->bms_psy.num_properties = ARRAY_SIZE(msm_bms_power_props);
|
||
|
chip->bms_psy.get_property = qpnp_bms_power_get_property;
|
||
|
chip->bms_psy.external_power_changed =
|
||
|
qpnp_bms_external_power_changed;
|
||
|
chip->bms_psy.supplied_to = qpnp_bms_supplicants;
|
||
|
chip->bms_psy.num_supplicants = ARRAY_SIZE(qpnp_bms_supplicants);
|
||
|
|
||
|
rc = power_supply_register(chip->dev, &chip->bms_psy);
|
||
|
|
||
|
if (rc < 0) {
|
||
|
pr_err("power_supply_register bms failed rc = %d\n", rc);
|
||
|
goto unregister_dc;
|
||
|
}
|
||
|
|
||
|
vbatt = 0;
|
||
|
rc = get_battery_voltage(&vbatt);
|
||
|
if (rc) {
|
||
|
pr_err("error reading vbat_sns adc channel = %d, rc = %d\n",
|
||
|
VBAT_SNS, rc);
|
||
|
goto unregister_dc;
|
||
|
}
|
||
|
|
||
|
pr_info("probe success: soc =%d vbatt = %d ocv = %d r_sense_uohm = %u warm_reset = %d\n",
|
||
|
get_prop_bms_capacity(chip), vbatt, chip->last_ocv_uv,
|
||
|
chip->r_sense_uohm, warm_reset);
|
||
|
return 0;
|
||
|
|
||
|
unregister_dc:
|
||
|
power_supply_unregister(&chip->bms_psy);
|
||
|
error_setup:
|
||
|
dev_set_drvdata(&spmi->dev, NULL);
|
||
|
wake_lock_destroy(&chip->soc_wake_lock);
|
||
|
wake_lock_destroy(&chip->low_voltage_wake_lock);
|
||
|
wake_lock_destroy(&chip->cv_wake_lock);
|
||
|
error_resource:
|
||
|
error_read:
|
||
|
kfree(chip);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
static int __devexit
|
||
|
qpnp_bms_remove(struct spmi_device *spmi)
|
||
|
{
|
||
|
struct qpnp_bms_chip *chip = dev_get_drvdata(&spmi->dev);
|
||
|
|
||
|
dev_set_drvdata(&spmi->dev, NULL);
|
||
|
kfree(chip);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int bms_suspend(struct device *dev)
|
||
|
{
|
||
|
struct qpnp_bms_chip *chip = dev_get_drvdata(dev);
|
||
|
|
||
|
cancel_delayed_work_sync(&chip->calculate_soc_delayed_work);
|
||
|
chip->was_charging_at_sleep = is_battery_charging(chip);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int bms_resume(struct device *dev)
|
||
|
{
|
||
|
int rc;
|
||
|
int soc_calc_period;
|
||
|
int time_until_next_recalc = 0;
|
||
|
unsigned long time_since_last_recalc;
|
||
|
unsigned long tm_now_sec;
|
||
|
struct qpnp_bms_chip *chip = dev_get_drvdata(dev);
|
||
|
|
||
|
rc = get_current_time(&tm_now_sec);
|
||
|
if (rc) {
|
||
|
pr_err("Could not read current time: %d\n", rc);
|
||
|
} else {
|
||
|
if (chip->calculated_soc < chip->low_soc_calc_threshold)
|
||
|
soc_calc_period = chip->low_soc_calculate_soc_ms;
|
||
|
else
|
||
|
soc_calc_period = chip->calculate_soc_ms;
|
||
|
time_since_last_recalc = tm_now_sec - chip->last_recalc_time;
|
||
|
pr_debug("Time since last recalc: %lu\n",
|
||
|
time_since_last_recalc);
|
||
|
time_until_next_recalc = max(0, soc_calc_period
|
||
|
- (int)(time_since_last_recalc * 1000));
|
||
|
}
|
||
|
|
||
|
if (!wake_lock_active(&chip->soc_wake_lock)
|
||
|
&& time_until_next_recalc == 0)
|
||
|
wake_lock(&chip->soc_wake_lock);
|
||
|
schedule_delayed_work(&chip->calculate_soc_delayed_work,
|
||
|
round_jiffies_relative(msecs_to_jiffies
|
||
|
(time_until_next_recalc)));
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static const struct dev_pm_ops qpnp_bms_pm_ops = {
|
||
|
.resume = bms_resume,
|
||
|
.suspend = bms_suspend,
|
||
|
};
|
||
|
|
||
|
static struct spmi_driver qpnp_bms_driver = {
|
||
|
.probe = qpnp_bms_probe,
|
||
|
.remove = __devexit_p(qpnp_bms_remove),
|
||
|
.driver = {
|
||
|
.name = QPNP_BMS_DEV_NAME,
|
||
|
.owner = THIS_MODULE,
|
||
|
.of_match_table = qpnp_bms_match_table,
|
||
|
.pm = &qpnp_bms_pm_ops,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
static int __init qpnp_bms_init(void)
|
||
|
{
|
||
|
pr_info("QPNP BMS INIT\n");
|
||
|
return spmi_driver_register(&qpnp_bms_driver);
|
||
|
}
|
||
|
|
||
|
static void __exit qpnp_bms_exit(void)
|
||
|
{
|
||
|
pr_info("QPNP BMS EXIT\n");
|
||
|
return spmi_driver_unregister(&qpnp_bms_driver);
|
||
|
}
|
||
|
|
||
|
module_init(qpnp_bms_init);
|
||
|
module_exit(qpnp_bms_exit);
|
||
|
|
||
|
MODULE_DESCRIPTION("QPNP BMS Driver");
|
||
|
MODULE_LICENSE("GPL v2");
|
||
|
MODULE_ALIAS("platform:" QPNP_BMS_DEV_NAME);
|