M7350/kernel/drivers/power/pm8xxx-ccadc.c

878 lines
22 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/errno.h>
#include <linux/mfd/pm8xxx/core.h>
#include <linux/mfd/pm8xxx/pm8xxx-adc.h>
#include <linux/mfd/pm8xxx/ccadc.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/ioport.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/rtc.h>
#define CCADC_ANA_PARAM 0x240
#define CCADC_DIG_PARAM 0x241
#define CCADC_RSV 0x242
#define CCADC_DATA0 0x244
#define CCADC_DATA1 0x245
#define CCADC_OFFSET_TRIM1 0x34A
#define CCADC_OFFSET_TRIM0 0x34B
#define CCADC_FULLSCALE_TRIM1 0x34C
#define CCADC_FULLSCALE_TRIM0 0x34D
/* note : TRIM1 is the msb and TRIM0 is the lsb */
#define ADC_ARB_SECP_CNTRL 0x190
#define ADC_ARB_SECP_AMUX_CNTRL 0x191
#define ADC_ARB_SECP_ANA_PARAM 0x192
#define ADC_ARB_SECP_DIG_PARAM 0x193
#define ADC_ARB_SECP_RSV 0x194
#define ADC_ARB_SECP_DATA1 0x195
#define ADC_ARB_SECP_DATA0 0x196
#define ADC_ARB_BMS_CNTRL 0x18D
#define START_CONV_BIT BIT(7)
#define EOC_CONV_BIT BIT(6)
#define SEL_CCADC_BIT BIT(1)
#define EN_ARB_BIT BIT(0)
#define CCADC_CALIB_DIG_PARAM 0xE3
#define CCADC_CALIB_RSV_GND 0x40
#define CCADC_CALIB_RSV_25MV 0x80
#define CCADC_CALIB_ANA_PARAM 0x1B
#define SAMPLE_COUNT 16
#define ADC_WAIT_COUNT 10
#define CCADC_MAX_25MV 30000
#define CCADC_MIN_25MV 20000
#define CCADC_MAX_0UV -4000
#define CCADC_MIN_0UV -7000
#define CCADC_INTRINSIC_OFFSET 0xC000
struct pm8xxx_ccadc_chip {
struct device *dev;
struct dentry *dent;
unsigned int batt_temp_channel;
u16 ccadc_offset;
int ccadc_gain_uv;
unsigned int revision;
unsigned int calib_delay_ms;
unsigned long last_calib_time;
int last_calib_temp;
int eoc_irq;
int r_sense_uohm;
struct delayed_work calib_ccadc_work;
struct mutex calib_mutex;
bool periodic_wakeup;
};
static struct pm8xxx_ccadc_chip *the_chip;
#ifdef DEBUG
static s64 microvolt_to_ccadc_reading(struct pm8xxx_ccadc_chip *chip, s64 cc)
{
return div_s64(uv * CCADC_READING_RESOLUTION_D,
CCADC_READING_RESOLUTION_N);
}
#endif
static int cc_adjust_for_offset(u16 raw)
{
/* this has the intrinsic offset */
return (int)raw - the_chip->ccadc_offset;
}
#define GAIN_REFERENCE_UV 25000
/*
* gain compensation for ccadc readings - common for vsense based and
* couloumb counter based readings
*/
s64 pm8xxx_cc_adjust_for_gain(s64 uv)
{
if (the_chip == NULL || the_chip->ccadc_gain_uv == 0)
return uv;
return div_s64(uv * GAIN_REFERENCE_UV, the_chip->ccadc_gain_uv);
}
EXPORT_SYMBOL(pm8xxx_cc_adjust_for_gain);
static int pm_ccadc_masked_write(struct pm8xxx_ccadc_chip *chip, u16 addr,
u8 mask, u8 val)
{
int rc;
u8 reg;
rc = pm8xxx_readb(chip->dev->parent, addr, &reg);
if (rc) {
pr_err("read failed addr = %03X, rc = %d\n", addr, rc);
return rc;
}
reg &= ~mask;
reg |= val & mask;
rc = pm8xxx_writeb(chip->dev->parent, addr, reg);
if (rc) {
pr_err("write failed addr = %03X, rc = %d\n", addr, rc);
return rc;
}
return 0;
}
#define REG_SBI_CONFIG 0x04F
#define PAGE3_ENABLE_MASK 0x6
static int calib_ccadc_enable_trim_access(struct pm8xxx_ccadc_chip *chip,
u8 *sbi_config)
{
u8 reg;
int rc;
rc = pm8xxx_readb(chip->dev->parent, REG_SBI_CONFIG, sbi_config);
if (rc) {
pr_err("error = %d reading sbi config reg\n", rc);
return rc;
}
reg = *sbi_config | PAGE3_ENABLE_MASK;
return pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, reg);
}
static int calib_ccadc_restore_trim_access(struct pm8xxx_ccadc_chip *chip,
u8 sbi_config)
{
return pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, sbi_config);
}
static int calib_ccadc_enable_arbiter(struct pm8xxx_ccadc_chip *chip)
{
int rc;
/* enable Arbiter, must be sent twice */
rc = pm_ccadc_masked_write(chip, ADC_ARB_SECP_CNTRL,
SEL_CCADC_BIT | EN_ARB_BIT, SEL_CCADC_BIT | EN_ARB_BIT);
if (rc < 0) {
pr_err("error = %d enabling arbiter for offset\n", rc);
return rc;
}
rc = pm_ccadc_masked_write(chip, ADC_ARB_SECP_CNTRL,
SEL_CCADC_BIT | EN_ARB_BIT, SEL_CCADC_BIT | EN_ARB_BIT);
if (rc < 0) {
pr_err("error = %d writing ADC_ARB_SECP_CNTRL\n", rc);
return rc;
}
return 0;
}
static int calib_start_conv(struct pm8xxx_ccadc_chip *chip,
u16 *result)
{
int rc, i;
u8 data_msb, data_lsb, reg;
/* Start conversion */
rc = pm_ccadc_masked_write(chip, ADC_ARB_SECP_CNTRL,
START_CONV_BIT, START_CONV_BIT);
if (rc < 0) {
pr_err("error = %d starting offset meas\n", rc);
return rc;
}
/* Wait for End of conversion */
for (i = 0; i < ADC_WAIT_COUNT; i++) {
rc = pm8xxx_readb(chip->dev->parent,
ADC_ARB_SECP_CNTRL, &reg);
if (rc < 0) {
pr_err("error = %d read eoc for offset\n", rc);
return rc;
}
if ((reg & (START_CONV_BIT | EOC_CONV_BIT)) != EOC_CONV_BIT)
msleep(20);
else
break;
}
if (i == ADC_WAIT_COUNT) {
pr_err("waited too long for offset eoc returning -EBUSY\n");
return -EBUSY;
}
rc = pm8xxx_readb(chip->dev->parent, ADC_ARB_SECP_DATA0, &data_lsb);
if (rc < 0) {
pr_err("error = %d reading offset lsb\n", rc);
return rc;
}
rc = pm8xxx_readb(chip->dev->parent, ADC_ARB_SECP_DATA1, &data_msb);
if (rc < 0) {
pr_err("error = %d reading offset msb\n", rc);
return rc;
}
*result = (data_msb << 8) | data_lsb;
return 0;
}
static int calib_ccadc_read_trim(struct pm8xxx_ccadc_chip *chip,
int addr, u8 *data_msb, u8 *data_lsb)
{
int rc;
u8 sbi_config;
calib_ccadc_enable_trim_access(chip, &sbi_config);
rc = pm8xxx_readb(chip->dev->parent, addr, data_msb);
if (rc < 0) {
pr_err("error = %d read msb\n", rc);
return rc;
}
rc = pm8xxx_readb(chip->dev->parent, addr + 1, data_lsb);
if (rc < 0) {
pr_err("error = %d read lsb\n", rc);
return rc;
}
calib_ccadc_restore_trim_access(chip, sbi_config);
return 0;
}
static void calib_ccadc_read_offset_and_gain(struct pm8xxx_ccadc_chip *chip,
int *gain, u16 *offset)
{
u8 data_msb;
u8 data_lsb;
int rc;
rc = calib_ccadc_read_trim(chip, CCADC_FULLSCALE_TRIM1,
&data_msb, &data_lsb);
*gain = (data_msb << 8) | data_lsb;
rc = calib_ccadc_read_trim(chip, CCADC_OFFSET_TRIM1,
&data_msb, &data_lsb);
*offset = (data_msb << 8) | data_lsb;
pr_debug("raw gain trim = 0x%x offset trim =0x%x\n", *gain, *offset);
*gain = pm8xxx_ccadc_reading_to_microvolt(chip->revision,
(s64)*gain - *offset);
pr_debug("gain uv = %duV offset=0x%x\n", *gain, *offset);
}
#define CCADC_PROGRAM_TRIM_COUNT 2
#define ADC_ARB_BMS_CNTRL_CCADC_SHIFT 4
#define ADC_ARB_BMS_CNTRL_CONV_MASK 0x03
#define BMS_CONV_IN_PROGRESS 0x2
static int calib_ccadc_program_trim(struct pm8xxx_ccadc_chip *chip,
int addr, u8 data_msb, u8 data_lsb,
int wait)
{
int i, rc, loop;
u8 cntrl, sbi_config;
bool in_progress = 0;
loop = wait ? CCADC_PROGRAM_TRIM_COUNT : 0;
calib_ccadc_enable_trim_access(chip, &sbi_config);
for (i = 0; i < loop; i++) {
rc = pm8xxx_readb(chip->dev->parent, ADC_ARB_BMS_CNTRL, &cntrl);
if (rc < 0) {
pr_err("error = %d reading ADC_ARB_BMS_CNTRL\n", rc);
return rc;
}
/* break if a ccadc conversion is not happening */
in_progress = (((cntrl >> ADC_ARB_BMS_CNTRL_CCADC_SHIFT)
& ADC_ARB_BMS_CNTRL_CONV_MASK) == BMS_CONV_IN_PROGRESS);
if (!in_progress)
break;
}
if (in_progress) {
pr_debug("conv in progress cannot write trim,returing EBUSY\n");
return -EBUSY;
}
rc = pm8xxx_writeb(chip->dev->parent, addr, data_msb);
if (rc < 0) {
pr_err("error = %d write msb = 0x%x\n", rc, data_msb);
return rc;
}
rc = pm8xxx_writeb(chip->dev->parent, addr + 1, data_lsb);
if (rc < 0) {
pr_err("error = %d write lsb = 0x%x\n", rc, data_lsb);
return rc;
}
calib_ccadc_restore_trim_access(chip, sbi_config);
return 0;
}
static int get_batt_temp(struct pm8xxx_ccadc_chip *chip, int *batt_temp)
{
int rc;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading batt_temp_channel = %d, rc = %d\n",
chip->batt_temp_channel, rc);
return rc;
}
*batt_temp = result.physical;
pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
return 0;
}
static int get_current_time(unsigned long *now_tm_sec)
{
struct rtc_time tm;
struct rtc_device *rtc;
int rc;
rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
if (rtc == NULL) {
pr_err("%s: unable to open rtc device (%s)\n",
__FILE__, CONFIG_RTC_HCTOSYS_DEVICE);
return -EINVAL;
}
rc = rtc_read_time(rtc, &tm);
if (rc) {
pr_err("Error reading rtc device (%s) : %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
return rc;
}
rc = rtc_valid_tm(&tm);
if (rc) {
pr_err("Invalid RTC time (%s): %d\n",
CONFIG_RTC_HCTOSYS_DEVICE, rc);
return rc;
}
rtc_tm_to_time(&tm, now_tm_sec);
return 0;
}
static void __pm8xxx_calib_ccadc(int sample_count)
{
u8 data_msb, data_lsb, sec_cntrl;
int result_offset, result_gain;
u16 result;
int i, rc;
if (!the_chip) {
pr_err("chip not initialized\n");
return;
}
pr_debug("sample_count = %d\n", sample_count);
mutex_lock(&the_chip->calib_mutex);
rc = pm8xxx_readb(the_chip->dev->parent,
ADC_ARB_SECP_CNTRL, &sec_cntrl);
if (rc < 0) {
pr_err("error = %d reading ADC_ARB_SECP_CNTRL\n", rc);
goto calibration_unlock;
}
rc = calib_ccadc_enable_arbiter(the_chip);
if (rc < 0) {
pr_err("error = %d enabling arbiter for offset\n", rc);
goto bail;
}
/*
* Set decimation ratio to 4k, lower ratio may be used in order to speed
* up, pending verification through bench
*/
rc = pm8xxx_writeb(the_chip->dev->parent, ADC_ARB_SECP_DIG_PARAM,
CCADC_CALIB_DIG_PARAM);
if (rc < 0) {
pr_err("error = %d writing ADC_ARB_SECP_DIG_PARAM\n", rc);
goto bail;
}
result_offset = 0;
for (i = 0; i < sample_count; i++) {
/* Short analog inputs to CCADC internally to ground */
rc = pm8xxx_writeb(the_chip->dev->parent, ADC_ARB_SECP_RSV,
CCADC_CALIB_RSV_GND);
if (rc < 0) {
pr_err("error = %d selecting gnd voltage\n", rc);
goto bail;
}
/* Enable CCADC */
rc = pm8xxx_writeb(the_chip->dev->parent,
ADC_ARB_SECP_ANA_PARAM, CCADC_CALIB_ANA_PARAM);
if (rc < 0) {
pr_err("error = %d enabling ccadc\n", rc);
goto bail;
}
rc = calib_start_conv(the_chip, &result);
if (rc < 0) {
pr_err("error = %d for zero volt measurement\n", rc);
goto bail;
}
result_offset += result;
}
result_offset = result_offset / sample_count;
pr_debug("offset result_offset = 0x%x, voltage = %llduV\n",
result_offset,
pm8xxx_ccadc_reading_to_microvolt(the_chip->revision,
((s64)result_offset - CCADC_INTRINSIC_OFFSET)));
the_chip->ccadc_offset = result_offset;
data_msb = the_chip->ccadc_offset >> 8;
data_lsb = the_chip->ccadc_offset;
rc = calib_ccadc_program_trim(the_chip, CCADC_OFFSET_TRIM1,
data_msb, data_lsb, 1);
if (rc) {
pr_debug("error = %d programming offset trim 0x%02x 0x%02x\n",
rc, data_msb, data_lsb);
/* enable the interrupt and write it when it fires */
enable_irq(the_chip->eoc_irq);
}
rc = calib_ccadc_enable_arbiter(the_chip);
if (rc < 0) {
pr_err("error = %d enabling arbiter for gain\n", rc);
goto bail;
}
/*
* Set decimation ratio to 4k, lower ratio may be used in order to speed
* up, pending verification through bench
*/
rc = pm8xxx_writeb(the_chip->dev->parent, ADC_ARB_SECP_DIG_PARAM,
CCADC_CALIB_DIG_PARAM);
if (rc < 0) {
pr_err("error = %d enabling decimation ration for gain\n", rc);
goto bail;
}
result_gain = 0;
for (i = 0; i < sample_count; i++) {
rc = pm8xxx_writeb(the_chip->dev->parent,
ADC_ARB_SECP_RSV, CCADC_CALIB_RSV_25MV);
if (rc < 0) {
pr_err("error = %d selecting 25mV for gain\n", rc);
goto bail;
}
/* Enable CCADC */
rc = pm8xxx_writeb(the_chip->dev->parent,
ADC_ARB_SECP_ANA_PARAM, CCADC_CALIB_ANA_PARAM);
if (rc < 0) {
pr_err("error = %d enabling ccadc\n", rc);
goto bail;
}
rc = calib_start_conv(the_chip, &result);
if (rc < 0) {
pr_err("error = %d for adc reading 25mV\n", rc);
goto bail;
}
result_gain += result;
}
result_gain = result_gain / sample_count;
/*
* result_offset includes INTRINSIC OFFSET
* the_chip->ccadc_gain_uv will be the actual voltage
* measured for 25000UV
*/
the_chip->ccadc_gain_uv = pm8xxx_ccadc_reading_to_microvolt(
the_chip->revision,
((s64)result_gain - result_offset));
pr_debug("gain result_gain = 0x%x, voltage = %d microVolts\n",
result_gain, the_chip->ccadc_gain_uv);
data_msb = result_gain >> 8;
data_lsb = result_gain;
rc = calib_ccadc_program_trim(the_chip, CCADC_FULLSCALE_TRIM1,
data_msb, data_lsb, 0);
if (rc)
pr_debug("error = %d programming gain trim\n", rc);
bail:
pm8xxx_writeb(the_chip->dev->parent, ADC_ARB_SECP_CNTRL, sec_cntrl);
calibration_unlock:
mutex_unlock(&the_chip->calib_mutex);
}
static void pm8xxx_calib_ccadc_quick(void)
{
__pm8xxx_calib_ccadc(2);
}
void pm8xxx_calib_ccadc(void)
{
__pm8xxx_calib_ccadc(SAMPLE_COUNT);
}
EXPORT_SYMBOL(pm8xxx_calib_ccadc);
static void calibrate_ccadc_work(struct work_struct *work)
{
struct pm8xxx_ccadc_chip *chip = container_of(work,
struct pm8xxx_ccadc_chip, calib_ccadc_work.work);
pm8xxx_calib_ccadc();
schedule_delayed_work(&chip->calib_ccadc_work,
round_jiffies_relative(msecs_to_jiffies
(chip->calib_delay_ms)));
}
static irqreturn_t pm8921_bms_ccadc_eoc_handler(int irq, void *data)
{
u8 data_msb, data_lsb;
struct pm8xxx_ccadc_chip *chip = data;
int rc;
if (!the_chip)
goto out;
pr_debug("irq = %d triggered\n", irq);
data_msb = chip->ccadc_offset >> 8;
data_lsb = chip->ccadc_offset;
rc = calib_ccadc_program_trim(chip, CCADC_OFFSET_TRIM1,
data_msb, data_lsb, 0);
disable_irq_nosync(chip->eoc_irq);
out:
return IRQ_HANDLED;
}
#define CCADC_IBAT_DIG_PARAM 0xA3
#define CCADC_IBAT_RSV 0x10
#define CCADC_IBAT_ANA_PARAM 0x1A
static int ccadc_get_rsense_voltage(int *voltage_uv)
{
u16 raw;
int result;
int rc = 0;
rc = calib_ccadc_enable_arbiter(the_chip);
if (rc < 0) {
pr_err("error = %d enabling arbiter for offset\n", rc);
return rc;
}
rc = pm8xxx_writeb(the_chip->dev->parent, ADC_ARB_SECP_DIG_PARAM,
CCADC_IBAT_DIG_PARAM);
if (rc < 0) {
pr_err("error = %d writing ADC_ARB_SECP_DIG_PARAM\n", rc);
return rc;
}
rc = pm8xxx_writeb(the_chip->dev->parent, ADC_ARB_SECP_RSV,
CCADC_IBAT_RSV);
if (rc < 0) {
pr_err("error = %d selecting rsense\n", rc);
return rc;
}
rc = pm8xxx_writeb(the_chip->dev->parent,
ADC_ARB_SECP_ANA_PARAM, CCADC_IBAT_ANA_PARAM);
if (rc < 0) {
pr_err("error = %d enabling ccadc\n", rc);
return rc;
}
rc = calib_start_conv(the_chip, &raw);
if (rc < 0) {
pr_err("error = %d for zero volt measurement\n", rc);
return rc;
}
pr_debug("Vsense raw = 0x%x\n", raw);
result = cc_adjust_for_offset(raw);
pr_debug("Vsense after offset raw = 0x%x offset=0x%x\n",
result,
the_chip->ccadc_offset);
*voltage_uv = pm8xxx_ccadc_reading_to_microvolt(the_chip->revision,
((s64)result));
pr_debug("Vsense before gain of %d = %d uV\n", the_chip->ccadc_gain_uv,
*voltage_uv);
*voltage_uv = pm8xxx_cc_adjust_for_gain(*voltage_uv);
pr_debug("Vsense = %d uV\n", *voltage_uv);
return 0;
}
int pm8xxx_ccadc_get_battery_current(int *bat_current_ua)
{
int voltage_uv = 0, rc;
rc = ccadc_get_rsense_voltage(&voltage_uv);
if (rc) {
pr_err("cant get voltage across rsense rc = %d\n", rc);
return rc;
}
*bat_current_ua = div_s64((s64)voltage_uv * 1000000LL,
the_chip->r_sense_uohm);
/*
* ccadc reads +ve current when the battery is charging
* We need to return -ve if the battery is charging
*/
*bat_current_ua = -1 * (*bat_current_ua);
pr_debug("bat current = %d ma\n", *bat_current_ua);
return 0;
}
EXPORT_SYMBOL(pm8xxx_ccadc_get_battery_current);
static int get_reg(void *data, u64 * val)
{
int addr = (int)data;
int ret;
u8 temp;
ret = pm8xxx_readb(the_chip->dev->parent, addr, &temp);
if (ret) {
pr_err("pm8xxx_readb to %x value = %d errored = %d\n",
addr, temp, ret);
return -EAGAIN;
}
*val = temp;
return 0;
}
static int set_reg(void *data, u64 val)
{
int addr = (int)data;
int ret;
u8 temp;
temp = (u8) val;
ret = pm8xxx_writeb(the_chip->dev->parent, addr, temp);
if (ret) {
pr_err("pm8xxx_writeb to %x value = %d errored = %d\n",
addr, temp, ret);
return -EAGAIN;
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(reg_fops, get_reg, set_reg, "0x%02llx\n");
static int get_calc(void *data, u64 * val)
{
int ibat, rc;
rc = pm8xxx_ccadc_get_battery_current(&ibat);
*val = ibat;
return rc;
}
DEFINE_SIMPLE_ATTRIBUTE(calc_fops, get_calc, NULL, "%lld\n");
static void create_debugfs_entries(struct pm8xxx_ccadc_chip *chip)
{
chip->dent = debugfs_create_dir("pm8xxx-ccadc", NULL);
if (IS_ERR(chip->dent)) {
pr_err("ccadc couldnt create debugfs dir\n");
return;
}
debugfs_create_file("CCADC_ANA_PARAM", 0644, chip->dent,
(void *)CCADC_ANA_PARAM, &reg_fops);
debugfs_create_file("CCADC_DIG_PARAM", 0644, chip->dent,
(void *)CCADC_DIG_PARAM, &reg_fops);
debugfs_create_file("CCADC_RSV", 0644, chip->dent,
(void *)CCADC_RSV, &reg_fops);
debugfs_create_file("CCADC_DATA0", 0644, chip->dent,
(void *)CCADC_DATA0, &reg_fops);
debugfs_create_file("CCADC_DATA1", 0644, chip->dent,
(void *)CCADC_DATA1, &reg_fops);
debugfs_create_file("CCADC_OFFSET_TRIM1", 0644, chip->dent,
(void *)CCADC_OFFSET_TRIM1, &reg_fops);
debugfs_create_file("CCADC_OFFSET_TRIM0", 0644, chip->dent,
(void *)CCADC_OFFSET_TRIM0, &reg_fops);
debugfs_create_file("CCADC_FULLSCALE_TRIM1", 0644, chip->dent,
(void *)CCADC_FULLSCALE_TRIM1, &reg_fops);
debugfs_create_file("CCADC_FULLSCALE_TRIM0", 0644, chip->dent,
(void *)CCADC_FULLSCALE_TRIM0, &reg_fops);
debugfs_create_file("show_ibatt", 0644, chip->dent,
(void *)0, &calc_fops);
}
static int __devinit pm8xxx_ccadc_probe(struct platform_device *pdev)
{
int rc = 0;
struct pm8xxx_ccadc_chip *chip;
struct resource *res;
const struct pm8xxx_ccadc_platform_data *pdata
= pdev->dev.platform_data;
if (!pdata) {
pr_err("missing platform data\n");
return -EINVAL;
}
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
"PM8921_BMS_CCADC_EOC");
if (!res) {
pr_err("failed to get irq\n");
return -EINVAL;
}
chip = kzalloc(sizeof(struct pm8xxx_ccadc_chip), GFP_KERNEL);
if (!chip) {
pr_err("Cannot allocate pm_bms_chip\n");
return -ENOMEM;
}
chip->dev = &pdev->dev;
chip->revision = pm8xxx_get_revision(chip->dev->parent);
chip->eoc_irq = res->start;
chip->r_sense_uohm = pdata->r_sense_uohm;
chip->calib_delay_ms = pdata->calib_delay_ms;
chip->batt_temp_channel = pdata->ccadc_cdata.batt_temp_channel;
chip->periodic_wakeup = pdata->periodic_wakeup;
mutex_init(&chip->calib_mutex);
calib_ccadc_read_offset_and_gain(chip,
&chip->ccadc_gain_uv,
&chip->ccadc_offset);
irq_set_status_flags(chip->eoc_irq, IRQ_NOAUTOEN);
rc = request_irq(chip->eoc_irq,
pm8921_bms_ccadc_eoc_handler, IRQF_TRIGGER_RISING,
"bms_eoc_ccadc", chip);
if (rc) {
pr_err("failed to request %d irq rc= %d\n", chip->eoc_irq, rc);
goto free_chip;
}
platform_set_drvdata(pdev, chip);
the_chip = chip;
INIT_DELAYED_WORK(&chip->calib_ccadc_work, calibrate_ccadc_work);
schedule_delayed_work(&chip->calib_ccadc_work, 0);
create_debugfs_entries(chip);
return 0;
free_chip:
mutex_destroy(&chip->calib_mutex);
kfree(chip);
return rc;
}
static int __devexit pm8xxx_ccadc_remove(struct platform_device *pdev)
{
struct pm8xxx_ccadc_chip *chip = platform_get_drvdata(pdev);
debugfs_remove_recursive(chip->dent);
the_chip = NULL;
kfree(chip);
return 0;
}
static int pm8xxx_ccadc_suspend(struct device *dev)
{
struct pm8xxx_ccadc_chip *chip = dev_get_drvdata(dev);
cancel_delayed_work_sync(&chip->calib_ccadc_work);
return 0;
}
#define CCADC_CALIB_TEMP_THRESH 20
static int pm8xxx_ccadc_resume(struct device *dev)
{
int rc, batt_temp, delta_temp;
unsigned long current_time_sec;
unsigned long time_since_last_calib;
rc = get_batt_temp(the_chip, &batt_temp);
if (rc) {
pr_err("unable to get batt_temp: %d\n", rc);
return 0;
}
rc = get_current_time(&current_time_sec);
if (rc) {
pr_err("unable to get current time: %d\n", rc);
return 0;
}
if (the_chip->periodic_wakeup) {
pm8xxx_calib_ccadc_quick();
return 0;
}
if (current_time_sec > the_chip->last_calib_time) {
time_since_last_calib = current_time_sec -
the_chip->last_calib_time;
delta_temp = abs(batt_temp - the_chip->last_calib_temp);
pr_debug("time since last calib: %lu, delta_temp = %d\n",
time_since_last_calib, delta_temp);
if (time_since_last_calib >= the_chip->calib_delay_ms/1000
|| delta_temp > CCADC_CALIB_TEMP_THRESH) {
the_chip->last_calib_time = current_time_sec;
the_chip->last_calib_temp = batt_temp;
schedule_delayed_work(&the_chip->calib_ccadc_work, 0);
} else {
schedule_delayed_work(&the_chip->calib_ccadc_work,
msecs_to_jiffies(the_chip->calib_delay_ms -
(time_since_last_calib * 1000)));
}
}
return 0;
}
static const struct dev_pm_ops pm8xxx_ccadc_pm_ops = {
.suspend = pm8xxx_ccadc_suspend,
.resume = pm8xxx_ccadc_resume,
};
static struct platform_driver pm8xxx_ccadc_driver = {
.probe = pm8xxx_ccadc_probe,
.remove = __devexit_p(pm8xxx_ccadc_remove),
.driver = {
.name = PM8XXX_CCADC_DEV_NAME,
.owner = THIS_MODULE,
.pm = &pm8xxx_ccadc_pm_ops,
},
};
static int __init pm8xxx_ccadc_init(void)
{
return platform_driver_register(&pm8xxx_ccadc_driver);
}
static void __exit pm8xxx_ccadc_exit(void)
{
platform_driver_unregister(&pm8xxx_ccadc_driver);
}
module_init(pm8xxx_ccadc_init);
module_exit(pm8xxx_ccadc_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8XXX ccadc driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:" PM8XXX_CCADC_DEV_NAME);