751 lines
22 KiB
C
751 lines
22 KiB
C
|
/****************************************************************************
|
||
|
* Driver for Solarflare Solarstorm network controllers and boards
|
||
|
* Copyright 2005-2006 Fen Systems Ltd.
|
||
|
* Copyright 2005-2011 Solarflare Communications Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License version 2 as published
|
||
|
* by the Free Software Foundation, incorporated herein by reference.
|
||
|
*/
|
||
|
|
||
|
#include <linux/socket.h>
|
||
|
#include <linux/in.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/ip.h>
|
||
|
#include <linux/tcp.h>
|
||
|
#include <linux/udp.h>
|
||
|
#include <linux/prefetch.h>
|
||
|
#include <linux/moduleparam.h>
|
||
|
#include <net/ip.h>
|
||
|
#include <net/checksum.h>
|
||
|
#include "net_driver.h"
|
||
|
#include "efx.h"
|
||
|
#include "nic.h"
|
||
|
#include "selftest.h"
|
||
|
#include "workarounds.h"
|
||
|
|
||
|
/* Number of RX descriptors pushed at once. */
|
||
|
#define EFX_RX_BATCH 8
|
||
|
|
||
|
/* Maximum size of a buffer sharing a page */
|
||
|
#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
|
||
|
|
||
|
/* Size of buffer allocated for skb header area. */
|
||
|
#define EFX_SKB_HEADERS 64u
|
||
|
|
||
|
/*
|
||
|
* rx_alloc_method - RX buffer allocation method
|
||
|
*
|
||
|
* This driver supports two methods for allocating and using RX buffers:
|
||
|
* each RX buffer may be backed by an skb or by an order-n page.
|
||
|
*
|
||
|
* When GRO is in use then the second method has a lower overhead,
|
||
|
* since we don't have to allocate then free skbs on reassembled frames.
|
||
|
*
|
||
|
* Values:
|
||
|
* - RX_ALLOC_METHOD_AUTO = 0
|
||
|
* - RX_ALLOC_METHOD_SKB = 1
|
||
|
* - RX_ALLOC_METHOD_PAGE = 2
|
||
|
*
|
||
|
* The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
|
||
|
* controlled by the parameters below.
|
||
|
*
|
||
|
* - Since pushing and popping descriptors are separated by the rx_queue
|
||
|
* size, so the watermarks should be ~rxd_size.
|
||
|
* - The performance win by using page-based allocation for GRO is less
|
||
|
* than the performance hit of using page-based allocation of non-GRO,
|
||
|
* so the watermarks should reflect this.
|
||
|
*
|
||
|
* Per channel we maintain a single variable, updated by each channel:
|
||
|
*
|
||
|
* rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO :
|
||
|
* RX_ALLOC_FACTOR_SKB)
|
||
|
* Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
|
||
|
* limits the hysteresis), and update the allocation strategy:
|
||
|
*
|
||
|
* rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ?
|
||
|
* RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
|
||
|
*/
|
||
|
static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
|
||
|
|
||
|
#define RX_ALLOC_LEVEL_GRO 0x2000
|
||
|
#define RX_ALLOC_LEVEL_MAX 0x3000
|
||
|
#define RX_ALLOC_FACTOR_GRO 1
|
||
|
#define RX_ALLOC_FACTOR_SKB (-2)
|
||
|
|
||
|
/* This is the percentage fill level below which new RX descriptors
|
||
|
* will be added to the RX descriptor ring.
|
||
|
*/
|
||
|
static unsigned int rx_refill_threshold = 90;
|
||
|
|
||
|
/* This is the percentage fill level to which an RX queue will be refilled
|
||
|
* when the "RX refill threshold" is reached.
|
||
|
*/
|
||
|
static unsigned int rx_refill_limit = 95;
|
||
|
|
||
|
/*
|
||
|
* RX maximum head room required.
|
||
|
*
|
||
|
* This must be at least 1 to prevent overflow and at least 2 to allow
|
||
|
* pipelined receives.
|
||
|
*/
|
||
|
#define EFX_RXD_HEAD_ROOM 2
|
||
|
|
||
|
/* Offset of ethernet header within page */
|
||
|
static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx,
|
||
|
struct efx_rx_buffer *buf)
|
||
|
{
|
||
|
/* Offset is always within one page, so we don't need to consider
|
||
|
* the page order.
|
||
|
*/
|
||
|
return ((unsigned int) buf->dma_addr & (PAGE_SIZE - 1)) +
|
||
|
efx->type->rx_buffer_hash_size;
|
||
|
}
|
||
|
static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
|
||
|
{
|
||
|
return PAGE_SIZE << efx->rx_buffer_order;
|
||
|
}
|
||
|
|
||
|
static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf)
|
||
|
{
|
||
|
if (buf->flags & EFX_RX_BUF_PAGE)
|
||
|
return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf);
|
||
|
else
|
||
|
return (u8 *)buf->u.skb->data + efx->type->rx_buffer_hash_size;
|
||
|
}
|
||
|
|
||
|
static inline u32 efx_rx_buf_hash(const u8 *eh)
|
||
|
{
|
||
|
/* The ethernet header is always directly after any hash. */
|
||
|
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
|
||
|
return __le32_to_cpup((const __le32 *)(eh - 4));
|
||
|
#else
|
||
|
const u8 *data = eh - 4;
|
||
|
return (u32)data[0] |
|
||
|
(u32)data[1] << 8 |
|
||
|
(u32)data[2] << 16 |
|
||
|
(u32)data[3] << 24;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
|
||
|
*
|
||
|
* @rx_queue: Efx RX queue
|
||
|
*
|
||
|
* This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
|
||
|
* struct efx_rx_buffer for each one. Return a negative error code or 0
|
||
|
* on success. May fail having only inserted fewer than EFX_RX_BATCH
|
||
|
* buffers.
|
||
|
*/
|
||
|
static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
struct net_device *net_dev = efx->net_dev;
|
||
|
struct efx_rx_buffer *rx_buf;
|
||
|
struct sk_buff *skb;
|
||
|
int skb_len = efx->rx_buffer_len;
|
||
|
unsigned index, count;
|
||
|
|
||
|
for (count = 0; count < EFX_RX_BATCH; ++count) {
|
||
|
index = rx_queue->added_count & rx_queue->ptr_mask;
|
||
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
||
|
|
||
|
rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len);
|
||
|
if (unlikely(!skb))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
/* Adjust the SKB for padding */
|
||
|
skb_reserve(skb, NET_IP_ALIGN);
|
||
|
rx_buf->len = skb_len - NET_IP_ALIGN;
|
||
|
rx_buf->flags = 0;
|
||
|
|
||
|
rx_buf->dma_addr = pci_map_single(efx->pci_dev,
|
||
|
skb->data, rx_buf->len,
|
||
|
PCI_DMA_FROMDEVICE);
|
||
|
if (unlikely(pci_dma_mapping_error(efx->pci_dev,
|
||
|
rx_buf->dma_addr))) {
|
||
|
dev_kfree_skb_any(skb);
|
||
|
rx_buf->u.skb = NULL;
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
++rx_queue->added_count;
|
||
|
++rx_queue->alloc_skb_count;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
|
||
|
*
|
||
|
* @rx_queue: Efx RX queue
|
||
|
*
|
||
|
* This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
|
||
|
* and populates struct efx_rx_buffers for each one. Return a negative error
|
||
|
* code or 0 on success. If a single page can be split between two buffers,
|
||
|
* then the page will either be inserted fully, or not at at all.
|
||
|
*/
|
||
|
static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
struct efx_rx_buffer *rx_buf;
|
||
|
struct page *page;
|
||
|
void *page_addr;
|
||
|
struct efx_rx_page_state *state;
|
||
|
dma_addr_t dma_addr;
|
||
|
unsigned index, count;
|
||
|
|
||
|
/* We can split a page between two buffers */
|
||
|
BUILD_BUG_ON(EFX_RX_BATCH & 1);
|
||
|
|
||
|
for (count = 0; count < EFX_RX_BATCH; ++count) {
|
||
|
page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
|
||
|
efx->rx_buffer_order);
|
||
|
if (unlikely(page == NULL))
|
||
|
return -ENOMEM;
|
||
|
dma_addr = pci_map_page(efx->pci_dev, page, 0,
|
||
|
efx_rx_buf_size(efx),
|
||
|
PCI_DMA_FROMDEVICE);
|
||
|
if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
|
||
|
__free_pages(page, efx->rx_buffer_order);
|
||
|
return -EIO;
|
||
|
}
|
||
|
page_addr = page_address(page);
|
||
|
state = page_addr;
|
||
|
state->refcnt = 0;
|
||
|
state->dma_addr = dma_addr;
|
||
|
|
||
|
page_addr += sizeof(struct efx_rx_page_state);
|
||
|
dma_addr += sizeof(struct efx_rx_page_state);
|
||
|
|
||
|
split:
|
||
|
index = rx_queue->added_count & rx_queue->ptr_mask;
|
||
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
||
|
rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
|
||
|
rx_buf->u.page = page;
|
||
|
rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
|
||
|
rx_buf->flags = EFX_RX_BUF_PAGE;
|
||
|
++rx_queue->added_count;
|
||
|
++rx_queue->alloc_page_count;
|
||
|
++state->refcnt;
|
||
|
|
||
|
if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
|
||
|
/* Use the second half of the page */
|
||
|
get_page(page);
|
||
|
dma_addr += (PAGE_SIZE >> 1);
|
||
|
page_addr += (PAGE_SIZE >> 1);
|
||
|
++count;
|
||
|
goto split;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void efx_unmap_rx_buffer(struct efx_nic *efx,
|
||
|
struct efx_rx_buffer *rx_buf)
|
||
|
{
|
||
|
if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
|
||
|
struct efx_rx_page_state *state;
|
||
|
|
||
|
state = page_address(rx_buf->u.page);
|
||
|
if (--state->refcnt == 0) {
|
||
|
pci_unmap_page(efx->pci_dev,
|
||
|
state->dma_addr,
|
||
|
efx_rx_buf_size(efx),
|
||
|
PCI_DMA_FROMDEVICE);
|
||
|
}
|
||
|
} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
|
||
|
pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
|
||
|
rx_buf->len, PCI_DMA_FROMDEVICE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void efx_free_rx_buffer(struct efx_nic *efx,
|
||
|
struct efx_rx_buffer *rx_buf)
|
||
|
{
|
||
|
if ((rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.page) {
|
||
|
__free_pages(rx_buf->u.page, efx->rx_buffer_order);
|
||
|
rx_buf->u.page = NULL;
|
||
|
} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
|
||
|
dev_kfree_skb_any(rx_buf->u.skb);
|
||
|
rx_buf->u.skb = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
|
||
|
struct efx_rx_buffer *rx_buf)
|
||
|
{
|
||
|
efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
|
||
|
efx_free_rx_buffer(rx_queue->efx, rx_buf);
|
||
|
}
|
||
|
|
||
|
/* Attempt to resurrect the other receive buffer that used to share this page,
|
||
|
* which had previously been passed up to the kernel and freed. */
|
||
|
static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
|
||
|
struct efx_rx_buffer *rx_buf)
|
||
|
{
|
||
|
struct efx_rx_page_state *state = page_address(rx_buf->u.page);
|
||
|
struct efx_rx_buffer *new_buf;
|
||
|
unsigned fill_level, index;
|
||
|
|
||
|
/* +1 because efx_rx_packet() incremented removed_count. +1 because
|
||
|
* we'd like to insert an additional descriptor whilst leaving
|
||
|
* EFX_RXD_HEAD_ROOM for the non-recycle path */
|
||
|
fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
|
||
|
if (unlikely(fill_level > rx_queue->max_fill)) {
|
||
|
/* We could place "state" on a list, and drain the list in
|
||
|
* efx_fast_push_rx_descriptors(). For now, this will do. */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
++state->refcnt;
|
||
|
get_page(rx_buf->u.page);
|
||
|
|
||
|
index = rx_queue->added_count & rx_queue->ptr_mask;
|
||
|
new_buf = efx_rx_buffer(rx_queue, index);
|
||
|
new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
|
||
|
new_buf->u.page = rx_buf->u.page;
|
||
|
new_buf->len = rx_buf->len;
|
||
|
new_buf->flags = EFX_RX_BUF_PAGE;
|
||
|
++rx_queue->added_count;
|
||
|
}
|
||
|
|
||
|
/* Recycle the given rx buffer directly back into the rx_queue. There is
|
||
|
* always room to add this buffer, because we've just popped a buffer. */
|
||
|
static void efx_recycle_rx_buffer(struct efx_channel *channel,
|
||
|
struct efx_rx_buffer *rx_buf)
|
||
|
{
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
|
||
|
struct efx_rx_buffer *new_buf;
|
||
|
unsigned index;
|
||
|
|
||
|
rx_buf->flags &= EFX_RX_BUF_PAGE;
|
||
|
|
||
|
if ((rx_buf->flags & EFX_RX_BUF_PAGE) &&
|
||
|
efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
|
||
|
page_count(rx_buf->u.page) == 1)
|
||
|
efx_resurrect_rx_buffer(rx_queue, rx_buf);
|
||
|
|
||
|
index = rx_queue->added_count & rx_queue->ptr_mask;
|
||
|
new_buf = efx_rx_buffer(rx_queue, index);
|
||
|
|
||
|
memcpy(new_buf, rx_buf, sizeof(*new_buf));
|
||
|
rx_buf->u.page = NULL;
|
||
|
++rx_queue->added_count;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* efx_fast_push_rx_descriptors - push new RX descriptors quickly
|
||
|
* @rx_queue: RX descriptor queue
|
||
|
* This will aim to fill the RX descriptor queue up to
|
||
|
* @rx_queue->@fast_fill_limit. If there is insufficient atomic
|
||
|
* memory to do so, a slow fill will be scheduled.
|
||
|
*
|
||
|
* The caller must provide serialisation (none is used here). In practise,
|
||
|
* this means this function must run from the NAPI handler, or be called
|
||
|
* when NAPI is disabled.
|
||
|
*/
|
||
|
void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
||
|
unsigned fill_level;
|
||
|
int space, rc = 0;
|
||
|
|
||
|
/* Calculate current fill level, and exit if we don't need to fill */
|
||
|
fill_level = (rx_queue->added_count - rx_queue->removed_count);
|
||
|
EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries);
|
||
|
if (fill_level >= rx_queue->fast_fill_trigger)
|
||
|
goto out;
|
||
|
|
||
|
/* Record minimum fill level */
|
||
|
if (unlikely(fill_level < rx_queue->min_fill)) {
|
||
|
if (fill_level)
|
||
|
rx_queue->min_fill = fill_level;
|
||
|
}
|
||
|
|
||
|
space = rx_queue->fast_fill_limit - fill_level;
|
||
|
if (space < EFX_RX_BATCH)
|
||
|
goto out;
|
||
|
|
||
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
||
|
"RX queue %d fast-filling descriptor ring from"
|
||
|
" level %d to level %d using %s allocation\n",
|
||
|
efx_rx_queue_index(rx_queue), fill_level,
|
||
|
rx_queue->fast_fill_limit,
|
||
|
channel->rx_alloc_push_pages ? "page" : "skb");
|
||
|
|
||
|
do {
|
||
|
if (channel->rx_alloc_push_pages)
|
||
|
rc = efx_init_rx_buffers_page(rx_queue);
|
||
|
else
|
||
|
rc = efx_init_rx_buffers_skb(rx_queue);
|
||
|
if (unlikely(rc)) {
|
||
|
/* Ensure that we don't leave the rx queue empty */
|
||
|
if (rx_queue->added_count == rx_queue->removed_count)
|
||
|
efx_schedule_slow_fill(rx_queue);
|
||
|
goto out;
|
||
|
}
|
||
|
} while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
|
||
|
|
||
|
netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
|
||
|
"RX queue %d fast-filled descriptor ring "
|
||
|
"to level %d\n", efx_rx_queue_index(rx_queue),
|
||
|
rx_queue->added_count - rx_queue->removed_count);
|
||
|
|
||
|
out:
|
||
|
if (rx_queue->notified_count != rx_queue->added_count)
|
||
|
efx_nic_notify_rx_desc(rx_queue);
|
||
|
}
|
||
|
|
||
|
void efx_rx_slow_fill(unsigned long context)
|
||
|
{
|
||
|
struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
|
||
|
|
||
|
/* Post an event to cause NAPI to run and refill the queue */
|
||
|
efx_nic_generate_fill_event(rx_queue);
|
||
|
++rx_queue->slow_fill_count;
|
||
|
}
|
||
|
|
||
|
static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
|
||
|
struct efx_rx_buffer *rx_buf,
|
||
|
int len, bool *leak_packet)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
|
||
|
|
||
|
if (likely(len <= max_len))
|
||
|
return;
|
||
|
|
||
|
/* The packet must be discarded, but this is only a fatal error
|
||
|
* if the caller indicated it was
|
||
|
*/
|
||
|
rx_buf->flags |= EFX_RX_PKT_DISCARD;
|
||
|
|
||
|
if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
|
||
|
if (net_ratelimit())
|
||
|
netif_err(efx, rx_err, efx->net_dev,
|
||
|
" RX queue %d seriously overlength "
|
||
|
"RX event (0x%x > 0x%x+0x%x). Leaking\n",
|
||
|
efx_rx_queue_index(rx_queue), len, max_len,
|
||
|
efx->type->rx_buffer_padding);
|
||
|
/* If this buffer was skb-allocated, then the meta
|
||
|
* data at the end of the skb will be trashed. So
|
||
|
* we have no choice but to leak the fragment.
|
||
|
*/
|
||
|
*leak_packet = !(rx_buf->flags & EFX_RX_BUF_PAGE);
|
||
|
efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
|
||
|
} else {
|
||
|
if (net_ratelimit())
|
||
|
netif_err(efx, rx_err, efx->net_dev,
|
||
|
" RX queue %d overlength RX event "
|
||
|
"(0x%x > 0x%x)\n",
|
||
|
efx_rx_queue_index(rx_queue), len, max_len);
|
||
|
}
|
||
|
|
||
|
efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
|
||
|
}
|
||
|
|
||
|
/* Pass a received packet up through GRO. GRO can handle pages
|
||
|
* regardless of checksum state and skbs with a good checksum.
|
||
|
*/
|
||
|
static void efx_rx_packet_gro(struct efx_channel *channel,
|
||
|
struct efx_rx_buffer *rx_buf,
|
||
|
const u8 *eh)
|
||
|
{
|
||
|
struct napi_struct *napi = &channel->napi_str;
|
||
|
gro_result_t gro_result;
|
||
|
|
||
|
if (rx_buf->flags & EFX_RX_BUF_PAGE) {
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
struct page *page = rx_buf->u.page;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
rx_buf->u.page = NULL;
|
||
|
|
||
|
skb = napi_get_frags(napi);
|
||
|
if (!skb) {
|
||
|
put_page(page);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (efx->net_dev->features & NETIF_F_RXHASH)
|
||
|
skb->rxhash = efx_rx_buf_hash(eh);
|
||
|
|
||
|
skb_fill_page_desc(skb, 0, page,
|
||
|
efx_rx_buf_offset(efx, rx_buf), rx_buf->len);
|
||
|
|
||
|
skb->len = rx_buf->len;
|
||
|
skb->data_len = rx_buf->len;
|
||
|
skb->truesize += rx_buf->len;
|
||
|
skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
|
||
|
CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
|
||
|
|
||
|
skb_record_rx_queue(skb, channel->channel);
|
||
|
|
||
|
gro_result = napi_gro_frags(napi);
|
||
|
} else {
|
||
|
struct sk_buff *skb = rx_buf->u.skb;
|
||
|
|
||
|
EFX_BUG_ON_PARANOID(!(rx_buf->flags & EFX_RX_PKT_CSUMMED));
|
||
|
rx_buf->u.skb = NULL;
|
||
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
||
|
|
||
|
gro_result = napi_gro_receive(napi, skb);
|
||
|
}
|
||
|
|
||
|
if (gro_result == GRO_NORMAL) {
|
||
|
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
|
||
|
} else if (gro_result != GRO_DROP) {
|
||
|
channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO;
|
||
|
channel->irq_mod_score += 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
|
||
|
unsigned int len, u16 flags)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
|
||
|
struct efx_rx_buffer *rx_buf;
|
||
|
bool leak_packet = false;
|
||
|
|
||
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
||
|
rx_buf->flags |= flags;
|
||
|
|
||
|
/* This allows the refill path to post another buffer.
|
||
|
* EFX_RXD_HEAD_ROOM ensures that the slot we are using
|
||
|
* isn't overwritten yet.
|
||
|
*/
|
||
|
rx_queue->removed_count++;
|
||
|
|
||
|
/* Validate the length encoded in the event vs the descriptor pushed */
|
||
|
efx_rx_packet__check_len(rx_queue, rx_buf, len, &leak_packet);
|
||
|
|
||
|
netif_vdbg(efx, rx_status, efx->net_dev,
|
||
|
"RX queue %d received id %x at %llx+%x %s%s\n",
|
||
|
efx_rx_queue_index(rx_queue), index,
|
||
|
(unsigned long long)rx_buf->dma_addr, len,
|
||
|
(rx_buf->flags & EFX_RX_PKT_CSUMMED) ? " [SUMMED]" : "",
|
||
|
(rx_buf->flags & EFX_RX_PKT_DISCARD) ? " [DISCARD]" : "");
|
||
|
|
||
|
/* Discard packet, if instructed to do so */
|
||
|
if (unlikely(rx_buf->flags & EFX_RX_PKT_DISCARD)) {
|
||
|
if (unlikely(leak_packet))
|
||
|
channel->n_skbuff_leaks++;
|
||
|
else
|
||
|
efx_recycle_rx_buffer(channel, rx_buf);
|
||
|
|
||
|
/* Don't hold off the previous receive */
|
||
|
rx_buf = NULL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* Release card resources - assumes all RX buffers consumed in-order
|
||
|
* per RX queue
|
||
|
*/
|
||
|
efx_unmap_rx_buffer(efx, rx_buf);
|
||
|
|
||
|
/* Prefetch nice and early so data will (hopefully) be in cache by
|
||
|
* the time we look at it.
|
||
|
*/
|
||
|
prefetch(efx_rx_buf_eh(efx, rx_buf));
|
||
|
|
||
|
/* Pipeline receives so that we give time for packet headers to be
|
||
|
* prefetched into cache.
|
||
|
*/
|
||
|
rx_buf->len = len - efx->type->rx_buffer_hash_size;
|
||
|
out:
|
||
|
if (channel->rx_pkt)
|
||
|
__efx_rx_packet(channel, channel->rx_pkt);
|
||
|
channel->rx_pkt = rx_buf;
|
||
|
}
|
||
|
|
||
|
static void efx_rx_deliver(struct efx_channel *channel,
|
||
|
struct efx_rx_buffer *rx_buf)
|
||
|
{
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
/* We now own the SKB */
|
||
|
skb = rx_buf->u.skb;
|
||
|
rx_buf->u.skb = NULL;
|
||
|
|
||
|
/* Set the SKB flags */
|
||
|
skb_checksum_none_assert(skb);
|
||
|
|
||
|
/* Pass the packet up */
|
||
|
netif_receive_skb(skb);
|
||
|
|
||
|
/* Update allocation strategy method */
|
||
|
channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
|
||
|
}
|
||
|
|
||
|
/* Handle a received packet. Second half: Touches packet payload. */
|
||
|
void __efx_rx_packet(struct efx_channel *channel, struct efx_rx_buffer *rx_buf)
|
||
|
{
|
||
|
struct efx_nic *efx = channel->efx;
|
||
|
u8 *eh = efx_rx_buf_eh(efx, rx_buf);
|
||
|
|
||
|
/* If we're in loopback test, then pass the packet directly to the
|
||
|
* loopback layer, and free the rx_buf here
|
||
|
*/
|
||
|
if (unlikely(efx->loopback_selftest)) {
|
||
|
efx_loopback_rx_packet(efx, eh, rx_buf->len);
|
||
|
efx_free_rx_buffer(efx, rx_buf);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!(rx_buf->flags & EFX_RX_BUF_PAGE)) {
|
||
|
struct sk_buff *skb = rx_buf->u.skb;
|
||
|
|
||
|
prefetch(skb_shinfo(skb));
|
||
|
|
||
|
skb_reserve(skb, efx->type->rx_buffer_hash_size);
|
||
|
skb_put(skb, rx_buf->len);
|
||
|
|
||
|
if (efx->net_dev->features & NETIF_F_RXHASH)
|
||
|
skb->rxhash = efx_rx_buf_hash(eh);
|
||
|
|
||
|
/* Move past the ethernet header. rx_buf->data still points
|
||
|
* at the ethernet header */
|
||
|
skb->protocol = eth_type_trans(skb, efx->net_dev);
|
||
|
|
||
|
skb_record_rx_queue(skb, channel->channel);
|
||
|
}
|
||
|
|
||
|
if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM)))
|
||
|
rx_buf->flags &= ~EFX_RX_PKT_CSUMMED;
|
||
|
|
||
|
if (likely(rx_buf->flags & (EFX_RX_BUF_PAGE | EFX_RX_PKT_CSUMMED)))
|
||
|
efx_rx_packet_gro(channel, rx_buf, eh);
|
||
|
else
|
||
|
efx_rx_deliver(channel, rx_buf);
|
||
|
}
|
||
|
|
||
|
void efx_rx_strategy(struct efx_channel *channel)
|
||
|
{
|
||
|
enum efx_rx_alloc_method method = rx_alloc_method;
|
||
|
|
||
|
/* Only makes sense to use page based allocation if GRO is enabled */
|
||
|
if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
|
||
|
method = RX_ALLOC_METHOD_SKB;
|
||
|
} else if (method == RX_ALLOC_METHOD_AUTO) {
|
||
|
/* Constrain the rx_alloc_level */
|
||
|
if (channel->rx_alloc_level < 0)
|
||
|
channel->rx_alloc_level = 0;
|
||
|
else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
|
||
|
channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
|
||
|
|
||
|
/* Decide on the allocation method */
|
||
|
method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ?
|
||
|
RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
|
||
|
}
|
||
|
|
||
|
/* Push the option */
|
||
|
channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
|
||
|
}
|
||
|
|
||
|
int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
unsigned int entries;
|
||
|
int rc;
|
||
|
|
||
|
/* Create the smallest power-of-two aligned ring */
|
||
|
entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
|
||
|
EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
|
||
|
rx_queue->ptr_mask = entries - 1;
|
||
|
|
||
|
netif_dbg(efx, probe, efx->net_dev,
|
||
|
"creating RX queue %d size %#x mask %#x\n",
|
||
|
efx_rx_queue_index(rx_queue), efx->rxq_entries,
|
||
|
rx_queue->ptr_mask);
|
||
|
|
||
|
/* Allocate RX buffers */
|
||
|
rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
|
||
|
GFP_KERNEL);
|
||
|
if (!rx_queue->buffer)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
rc = efx_nic_probe_rx(rx_queue);
|
||
|
if (rc) {
|
||
|
kfree(rx_queue->buffer);
|
||
|
rx_queue->buffer = NULL;
|
||
|
}
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
struct efx_nic *efx = rx_queue->efx;
|
||
|
unsigned int max_fill, trigger, limit;
|
||
|
|
||
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
||
|
"initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
|
||
|
|
||
|
/* Initialise ptr fields */
|
||
|
rx_queue->added_count = 0;
|
||
|
rx_queue->notified_count = 0;
|
||
|
rx_queue->removed_count = 0;
|
||
|
rx_queue->min_fill = -1U;
|
||
|
|
||
|
/* Initialise limit fields */
|
||
|
max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
|
||
|
trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
|
||
|
limit = max_fill * min(rx_refill_limit, 100U) / 100U;
|
||
|
|
||
|
rx_queue->max_fill = max_fill;
|
||
|
rx_queue->fast_fill_trigger = trigger;
|
||
|
rx_queue->fast_fill_limit = limit;
|
||
|
|
||
|
/* Set up RX descriptor ring */
|
||
|
rx_queue->enabled = true;
|
||
|
efx_nic_init_rx(rx_queue);
|
||
|
}
|
||
|
|
||
|
void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
int i;
|
||
|
struct efx_rx_buffer *rx_buf;
|
||
|
|
||
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
||
|
"shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
|
||
|
|
||
|
/* A flush failure might have left rx_queue->enabled */
|
||
|
rx_queue->enabled = false;
|
||
|
|
||
|
del_timer_sync(&rx_queue->slow_fill);
|
||
|
efx_nic_fini_rx(rx_queue);
|
||
|
|
||
|
/* Release RX buffers NB start at index 0 not current HW ptr */
|
||
|
if (rx_queue->buffer) {
|
||
|
for (i = 0; i <= rx_queue->ptr_mask; i++) {
|
||
|
rx_buf = efx_rx_buffer(rx_queue, i);
|
||
|
efx_fini_rx_buffer(rx_queue, rx_buf);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
|
||
|
{
|
||
|
netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
|
||
|
"destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
|
||
|
|
||
|
efx_nic_remove_rx(rx_queue);
|
||
|
|
||
|
kfree(rx_queue->buffer);
|
||
|
rx_queue->buffer = NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
module_param(rx_alloc_method, int, 0644);
|
||
|
MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
|
||
|
|
||
|
module_param(rx_refill_threshold, uint, 0444);
|
||
|
MODULE_PARM_DESC(rx_refill_threshold,
|
||
|
"RX descriptor ring fast/slow fill threshold (%)");
|
||
|
|