1607 lines
38 KiB
C
1607 lines
38 KiB
C
|
/*
|
||
|
* linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
|
||
|
*
|
||
|
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
|
||
|
* Copyright (C) 2010 ST-Ericsson SA
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/moduleparam.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/ioport.h>
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/highmem.h>
|
||
|
#include <linux/log2.h>
|
||
|
#include <linux/mmc/host.h>
|
||
|
#include <linux/mmc/card.h>
|
||
|
#include <linux/amba/bus.h>
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/scatterlist.h>
|
||
|
#include <linux/gpio.h>
|
||
|
#include <linux/regulator/consumer.h>
|
||
|
#include <linux/dmaengine.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/amba/mmci.h>
|
||
|
#include <linux/pm_runtime.h>
|
||
|
#include <linux/types.h>
|
||
|
|
||
|
#include <asm/div64.h>
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/sizes.h>
|
||
|
|
||
|
#include "mmci.h"
|
||
|
|
||
|
#define DRIVER_NAME "mmci-pl18x"
|
||
|
|
||
|
static unsigned int fmax = 515633;
|
||
|
|
||
|
/**
|
||
|
* struct variant_data - MMCI variant-specific quirks
|
||
|
* @clkreg: default value for MCICLOCK register
|
||
|
* @clkreg_enable: enable value for MMCICLOCK register
|
||
|
* @datalength_bits: number of bits in the MMCIDATALENGTH register
|
||
|
* @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
|
||
|
* is asserted (likewise for RX)
|
||
|
* @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
|
||
|
* is asserted (likewise for RX)
|
||
|
* @sdio: variant supports SDIO
|
||
|
* @st_clkdiv: true if using a ST-specific clock divider algorithm
|
||
|
* @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
|
||
|
* @pwrreg_powerup: power up value for MMCIPOWER register
|
||
|
* @signal_direction: input/out direction of bus signals can be indicated
|
||
|
*/
|
||
|
struct variant_data {
|
||
|
unsigned int clkreg;
|
||
|
unsigned int clkreg_enable;
|
||
|
unsigned int datalength_bits;
|
||
|
unsigned int fifosize;
|
||
|
unsigned int fifohalfsize;
|
||
|
bool sdio;
|
||
|
bool st_clkdiv;
|
||
|
bool blksz_datactrl16;
|
||
|
u32 pwrreg_powerup;
|
||
|
bool signal_direction;
|
||
|
};
|
||
|
|
||
|
static struct variant_data variant_arm = {
|
||
|
.fifosize = 16 * 4,
|
||
|
.fifohalfsize = 8 * 4,
|
||
|
.datalength_bits = 16,
|
||
|
.pwrreg_powerup = MCI_PWR_UP,
|
||
|
};
|
||
|
|
||
|
static struct variant_data variant_arm_extended_fifo = {
|
||
|
.fifosize = 128 * 4,
|
||
|
.fifohalfsize = 64 * 4,
|
||
|
.datalength_bits = 16,
|
||
|
.pwrreg_powerup = MCI_PWR_UP,
|
||
|
};
|
||
|
|
||
|
static struct variant_data variant_u300 = {
|
||
|
.fifosize = 16 * 4,
|
||
|
.fifohalfsize = 8 * 4,
|
||
|
.clkreg_enable = MCI_ST_U300_HWFCEN,
|
||
|
.datalength_bits = 16,
|
||
|
.sdio = true,
|
||
|
.pwrreg_powerup = MCI_PWR_ON,
|
||
|
.signal_direction = true,
|
||
|
};
|
||
|
|
||
|
static struct variant_data variant_ux500 = {
|
||
|
.fifosize = 30 * 4,
|
||
|
.fifohalfsize = 8 * 4,
|
||
|
.clkreg = MCI_CLK_ENABLE,
|
||
|
.clkreg_enable = MCI_ST_UX500_HWFCEN,
|
||
|
.datalength_bits = 24,
|
||
|
.sdio = true,
|
||
|
.st_clkdiv = true,
|
||
|
.pwrreg_powerup = MCI_PWR_ON,
|
||
|
.signal_direction = true,
|
||
|
};
|
||
|
|
||
|
static struct variant_data variant_ux500v2 = {
|
||
|
.fifosize = 30 * 4,
|
||
|
.fifohalfsize = 8 * 4,
|
||
|
.clkreg = MCI_CLK_ENABLE,
|
||
|
.clkreg_enable = MCI_ST_UX500_HWFCEN,
|
||
|
.datalength_bits = 24,
|
||
|
.sdio = true,
|
||
|
.st_clkdiv = true,
|
||
|
.blksz_datactrl16 = true,
|
||
|
.pwrreg_powerup = MCI_PWR_ON,
|
||
|
.signal_direction = true,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* This must be called with host->lock held
|
||
|
*/
|
||
|
static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
|
||
|
{
|
||
|
if (host->clk_reg != clk) {
|
||
|
host->clk_reg = clk;
|
||
|
writel(clk, host->base + MMCICLOCK);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This must be called with host->lock held
|
||
|
*/
|
||
|
static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
|
||
|
{
|
||
|
if (host->pwr_reg != pwr) {
|
||
|
host->pwr_reg = pwr;
|
||
|
writel(pwr, host->base + MMCIPOWER);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This must be called with host->lock held
|
||
|
*/
|
||
|
static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
|
||
|
{
|
||
|
struct variant_data *variant = host->variant;
|
||
|
u32 clk = variant->clkreg;
|
||
|
|
||
|
if (desired) {
|
||
|
if (desired >= host->mclk) {
|
||
|
clk = MCI_CLK_BYPASS;
|
||
|
if (variant->st_clkdiv)
|
||
|
clk |= MCI_ST_UX500_NEG_EDGE;
|
||
|
host->cclk = host->mclk;
|
||
|
} else if (variant->st_clkdiv) {
|
||
|
/*
|
||
|
* DB8500 TRM says f = mclk / (clkdiv + 2)
|
||
|
* => clkdiv = (mclk / f) - 2
|
||
|
* Round the divider up so we don't exceed the max
|
||
|
* frequency
|
||
|
*/
|
||
|
clk = DIV_ROUND_UP(host->mclk, desired) - 2;
|
||
|
if (clk >= 256)
|
||
|
clk = 255;
|
||
|
host->cclk = host->mclk / (clk + 2);
|
||
|
} else {
|
||
|
/*
|
||
|
* PL180 TRM says f = mclk / (2 * (clkdiv + 1))
|
||
|
* => clkdiv = mclk / (2 * f) - 1
|
||
|
*/
|
||
|
clk = host->mclk / (2 * desired) - 1;
|
||
|
if (clk >= 256)
|
||
|
clk = 255;
|
||
|
host->cclk = host->mclk / (2 * (clk + 1));
|
||
|
}
|
||
|
|
||
|
clk |= variant->clkreg_enable;
|
||
|
clk |= MCI_CLK_ENABLE;
|
||
|
/* This hasn't proven to be worthwhile */
|
||
|
/* clk |= MCI_CLK_PWRSAVE; */
|
||
|
}
|
||
|
|
||
|
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
|
||
|
clk |= MCI_4BIT_BUS;
|
||
|
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
|
||
|
clk |= MCI_ST_8BIT_BUS;
|
||
|
|
||
|
mmci_write_clkreg(host, clk);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
|
||
|
{
|
||
|
writel(0, host->base + MMCICOMMAND);
|
||
|
|
||
|
BUG_ON(host->data);
|
||
|
|
||
|
host->mrq = NULL;
|
||
|
host->cmd = NULL;
|
||
|
|
||
|
mmc_request_done(host->mmc, mrq);
|
||
|
|
||
|
pm_runtime_mark_last_busy(mmc_dev(host->mmc));
|
||
|
pm_runtime_put_autosuspend(mmc_dev(host->mmc));
|
||
|
}
|
||
|
|
||
|
static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
|
||
|
{
|
||
|
void __iomem *base = host->base;
|
||
|
|
||
|
if (host->singleirq) {
|
||
|
unsigned int mask0 = readl(base + MMCIMASK0);
|
||
|
|
||
|
mask0 &= ~MCI_IRQ1MASK;
|
||
|
mask0 |= mask;
|
||
|
|
||
|
writel(mask0, base + MMCIMASK0);
|
||
|
}
|
||
|
|
||
|
writel(mask, base + MMCIMASK1);
|
||
|
}
|
||
|
|
||
|
static void mmci_stop_data(struct mmci_host *host)
|
||
|
{
|
||
|
writel(0, host->base + MMCIDATACTRL);
|
||
|
mmci_set_mask1(host, 0);
|
||
|
host->data = NULL;
|
||
|
}
|
||
|
|
||
|
static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
|
||
|
{
|
||
|
unsigned int flags = SG_MITER_ATOMIC;
|
||
|
|
||
|
if (data->flags & MMC_DATA_READ)
|
||
|
flags |= SG_MITER_TO_SG;
|
||
|
else
|
||
|
flags |= SG_MITER_FROM_SG;
|
||
|
|
||
|
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* All the DMA operation mode stuff goes inside this ifdef.
|
||
|
* This assumes that you have a generic DMA device interface,
|
||
|
* no custom DMA interfaces are supported.
|
||
|
*/
|
||
|
#ifdef CONFIG_DMA_ENGINE
|
||
|
static void __devinit mmci_dma_setup(struct mmci_host *host)
|
||
|
{
|
||
|
struct mmci_platform_data *plat = host->plat;
|
||
|
const char *rxname, *txname;
|
||
|
dma_cap_mask_t mask;
|
||
|
|
||
|
if (!plat || !plat->dma_filter) {
|
||
|
dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* initialize pre request cookie */
|
||
|
host->next_data.cookie = 1;
|
||
|
|
||
|
/* Try to acquire a generic DMA engine slave channel */
|
||
|
dma_cap_zero(mask);
|
||
|
dma_cap_set(DMA_SLAVE, mask);
|
||
|
|
||
|
/*
|
||
|
* If only an RX channel is specified, the driver will
|
||
|
* attempt to use it bidirectionally, however if it is
|
||
|
* is specified but cannot be located, DMA will be disabled.
|
||
|
*/
|
||
|
if (plat->dma_rx_param) {
|
||
|
host->dma_rx_channel = dma_request_channel(mask,
|
||
|
plat->dma_filter,
|
||
|
plat->dma_rx_param);
|
||
|
/* E.g if no DMA hardware is present */
|
||
|
if (!host->dma_rx_channel)
|
||
|
dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
|
||
|
}
|
||
|
|
||
|
if (plat->dma_tx_param) {
|
||
|
host->dma_tx_channel = dma_request_channel(mask,
|
||
|
plat->dma_filter,
|
||
|
plat->dma_tx_param);
|
||
|
if (!host->dma_tx_channel)
|
||
|
dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
|
||
|
} else {
|
||
|
host->dma_tx_channel = host->dma_rx_channel;
|
||
|
}
|
||
|
|
||
|
if (host->dma_rx_channel)
|
||
|
rxname = dma_chan_name(host->dma_rx_channel);
|
||
|
else
|
||
|
rxname = "none";
|
||
|
|
||
|
if (host->dma_tx_channel)
|
||
|
txname = dma_chan_name(host->dma_tx_channel);
|
||
|
else
|
||
|
txname = "none";
|
||
|
|
||
|
dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
|
||
|
rxname, txname);
|
||
|
|
||
|
/*
|
||
|
* Limit the maximum segment size in any SG entry according to
|
||
|
* the parameters of the DMA engine device.
|
||
|
*/
|
||
|
if (host->dma_tx_channel) {
|
||
|
struct device *dev = host->dma_tx_channel->device->dev;
|
||
|
unsigned int max_seg_size = dma_get_max_seg_size(dev);
|
||
|
|
||
|
if (max_seg_size < host->mmc->max_seg_size)
|
||
|
host->mmc->max_seg_size = max_seg_size;
|
||
|
}
|
||
|
if (host->dma_rx_channel) {
|
||
|
struct device *dev = host->dma_rx_channel->device->dev;
|
||
|
unsigned int max_seg_size = dma_get_max_seg_size(dev);
|
||
|
|
||
|
if (max_seg_size < host->mmc->max_seg_size)
|
||
|
host->mmc->max_seg_size = max_seg_size;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This is used in __devinit or __devexit so inline it
|
||
|
* so it can be discarded.
|
||
|
*/
|
||
|
static inline void mmci_dma_release(struct mmci_host *host)
|
||
|
{
|
||
|
struct mmci_platform_data *plat = host->plat;
|
||
|
|
||
|
if (host->dma_rx_channel)
|
||
|
dma_release_channel(host->dma_rx_channel);
|
||
|
if (host->dma_tx_channel && plat->dma_tx_param)
|
||
|
dma_release_channel(host->dma_tx_channel);
|
||
|
host->dma_rx_channel = host->dma_tx_channel = NULL;
|
||
|
}
|
||
|
|
||
|
static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
|
||
|
{
|
||
|
struct dma_chan *chan = host->dma_current;
|
||
|
enum dma_data_direction dir;
|
||
|
u32 status;
|
||
|
int i;
|
||
|
|
||
|
/* Wait up to 1ms for the DMA to complete */
|
||
|
for (i = 0; ; i++) {
|
||
|
status = readl(host->base + MMCISTATUS);
|
||
|
if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
|
||
|
break;
|
||
|
udelay(10);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check to see whether we still have some data left in the FIFO -
|
||
|
* this catches DMA controllers which are unable to monitor the
|
||
|
* DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
|
||
|
* contiguous buffers. On TX, we'll get a FIFO underrun error.
|
||
|
*/
|
||
|
if (status & MCI_RXDATAAVLBLMASK) {
|
||
|
dmaengine_terminate_all(chan);
|
||
|
if (!data->error)
|
||
|
data->error = -EIO;
|
||
|
}
|
||
|
|
||
|
if (data->flags & MMC_DATA_WRITE) {
|
||
|
dir = DMA_TO_DEVICE;
|
||
|
} else {
|
||
|
dir = DMA_FROM_DEVICE;
|
||
|
}
|
||
|
|
||
|
if (!data->host_cookie)
|
||
|
dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
|
||
|
|
||
|
/*
|
||
|
* Use of DMA with scatter-gather is impossible.
|
||
|
* Give up with DMA and switch back to PIO mode.
|
||
|
*/
|
||
|
if (status & MCI_RXDATAAVLBLMASK) {
|
||
|
dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
|
||
|
mmci_dma_release(host);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void mmci_dma_data_error(struct mmci_host *host)
|
||
|
{
|
||
|
dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
|
||
|
dmaengine_terminate_all(host->dma_current);
|
||
|
}
|
||
|
|
||
|
static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
|
||
|
struct mmci_host_next *next)
|
||
|
{
|
||
|
struct variant_data *variant = host->variant;
|
||
|
struct dma_slave_config conf = {
|
||
|
.src_addr = host->phybase + MMCIFIFO,
|
||
|
.dst_addr = host->phybase + MMCIFIFO,
|
||
|
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
|
||
|
.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
|
||
|
.src_maxburst = variant->fifohalfsize >> 2, /* # of words */
|
||
|
.dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
|
||
|
.device_fc = false,
|
||
|
};
|
||
|
struct dma_chan *chan;
|
||
|
struct dma_device *device;
|
||
|
struct dma_async_tx_descriptor *desc;
|
||
|
enum dma_data_direction buffer_dirn;
|
||
|
int nr_sg;
|
||
|
|
||
|
/* Check if next job is already prepared */
|
||
|
if (data->host_cookie && !next &&
|
||
|
host->dma_current && host->dma_desc_current)
|
||
|
return 0;
|
||
|
|
||
|
if (!next) {
|
||
|
host->dma_current = NULL;
|
||
|
host->dma_desc_current = NULL;
|
||
|
}
|
||
|
|
||
|
if (data->flags & MMC_DATA_READ) {
|
||
|
conf.direction = DMA_DEV_TO_MEM;
|
||
|
buffer_dirn = DMA_FROM_DEVICE;
|
||
|
chan = host->dma_rx_channel;
|
||
|
} else {
|
||
|
conf.direction = DMA_MEM_TO_DEV;
|
||
|
buffer_dirn = DMA_TO_DEVICE;
|
||
|
chan = host->dma_tx_channel;
|
||
|
}
|
||
|
|
||
|
/* If there's no DMA channel, fall back to PIO */
|
||
|
if (!chan)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* If less than or equal to the fifo size, don't bother with DMA */
|
||
|
if (data->blksz * data->blocks <= variant->fifosize)
|
||
|
return -EINVAL;
|
||
|
|
||
|
device = chan->device;
|
||
|
nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
|
||
|
if (nr_sg == 0)
|
||
|
return -EINVAL;
|
||
|
|
||
|
dmaengine_slave_config(chan, &conf);
|
||
|
desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
|
||
|
conf.direction, DMA_CTRL_ACK);
|
||
|
if (!desc)
|
||
|
goto unmap_exit;
|
||
|
|
||
|
if (next) {
|
||
|
next->dma_chan = chan;
|
||
|
next->dma_desc = desc;
|
||
|
} else {
|
||
|
host->dma_current = chan;
|
||
|
host->dma_desc_current = desc;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
unmap_exit:
|
||
|
if (!next)
|
||
|
dmaengine_terminate_all(chan);
|
||
|
dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
|
||
|
{
|
||
|
int ret;
|
||
|
struct mmc_data *data = host->data;
|
||
|
|
||
|
ret = mmci_dma_prep_data(host, host->data, NULL);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/* Okay, go for it. */
|
||
|
dev_vdbg(mmc_dev(host->mmc),
|
||
|
"Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
|
||
|
data->sg_len, data->blksz, data->blocks, data->flags);
|
||
|
dmaengine_submit(host->dma_desc_current);
|
||
|
dma_async_issue_pending(host->dma_current);
|
||
|
|
||
|
datactrl |= MCI_DPSM_DMAENABLE;
|
||
|
|
||
|
/* Trigger the DMA transfer */
|
||
|
writel(datactrl, host->base + MMCIDATACTRL);
|
||
|
|
||
|
/*
|
||
|
* Let the MMCI say when the data is ended and it's time
|
||
|
* to fire next DMA request. When that happens, MMCI will
|
||
|
* call mmci_data_end()
|
||
|
*/
|
||
|
writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
|
||
|
host->base + MMCIMASK0);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
|
||
|
{
|
||
|
struct mmci_host_next *next = &host->next_data;
|
||
|
|
||
|
if (data->host_cookie && data->host_cookie != next->cookie) {
|
||
|
pr_warning("[%s] invalid cookie: data->host_cookie %d"
|
||
|
" host->next_data.cookie %d\n",
|
||
|
__func__, data->host_cookie, host->next_data.cookie);
|
||
|
data->host_cookie = 0;
|
||
|
}
|
||
|
|
||
|
if (!data->host_cookie)
|
||
|
return;
|
||
|
|
||
|
host->dma_desc_current = next->dma_desc;
|
||
|
host->dma_current = next->dma_chan;
|
||
|
|
||
|
next->dma_desc = NULL;
|
||
|
next->dma_chan = NULL;
|
||
|
}
|
||
|
|
||
|
static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
|
||
|
bool is_first_req)
|
||
|
{
|
||
|
struct mmci_host *host = mmc_priv(mmc);
|
||
|
struct mmc_data *data = mrq->data;
|
||
|
struct mmci_host_next *nd = &host->next_data;
|
||
|
|
||
|
if (!data)
|
||
|
return;
|
||
|
|
||
|
if (data->host_cookie) {
|
||
|
data->host_cookie = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* if config for dma */
|
||
|
if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
|
||
|
((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
|
||
|
if (mmci_dma_prep_data(host, data, nd))
|
||
|
data->host_cookie = 0;
|
||
|
else
|
||
|
data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
|
||
|
int err)
|
||
|
{
|
||
|
struct mmci_host *host = mmc_priv(mmc);
|
||
|
struct mmc_data *data = mrq->data;
|
||
|
struct dma_chan *chan;
|
||
|
enum dma_data_direction dir;
|
||
|
|
||
|
if (!data)
|
||
|
return;
|
||
|
|
||
|
if (data->flags & MMC_DATA_READ) {
|
||
|
dir = DMA_FROM_DEVICE;
|
||
|
chan = host->dma_rx_channel;
|
||
|
} else {
|
||
|
dir = DMA_TO_DEVICE;
|
||
|
chan = host->dma_tx_channel;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* if config for dma */
|
||
|
if (chan) {
|
||
|
if (err)
|
||
|
dmaengine_terminate_all(chan);
|
||
|
if (data->host_cookie)
|
||
|
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
|
||
|
data->sg_len, dir);
|
||
|
mrq->data->host_cookie = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
/* Blank functions if the DMA engine is not available */
|
||
|
static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
|
||
|
{
|
||
|
}
|
||
|
static inline void mmci_dma_setup(struct mmci_host *host)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline void mmci_dma_release(struct mmci_host *host)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline void mmci_dma_data_error(struct mmci_host *host)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
|
||
|
{
|
||
|
return -ENOSYS;
|
||
|
}
|
||
|
|
||
|
#define mmci_pre_request NULL
|
||
|
#define mmci_post_request NULL
|
||
|
|
||
|
#endif
|
||
|
|
||
|
static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
|
||
|
{
|
||
|
struct variant_data *variant = host->variant;
|
||
|
unsigned int datactrl, timeout, irqmask;
|
||
|
unsigned long long clks;
|
||
|
void __iomem *base;
|
||
|
int blksz_bits;
|
||
|
|
||
|
dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
|
||
|
data->blksz, data->blocks, data->flags);
|
||
|
|
||
|
host->data = data;
|
||
|
host->size = data->blksz * data->blocks;
|
||
|
data->bytes_xfered = 0;
|
||
|
|
||
|
clks = (unsigned long long)data->timeout_ns * host->cclk;
|
||
|
do_div(clks, 1000000000UL);
|
||
|
|
||
|
timeout = data->timeout_clks + (unsigned int)clks;
|
||
|
|
||
|
base = host->base;
|
||
|
writel(timeout, base + MMCIDATATIMER);
|
||
|
writel(host->size, base + MMCIDATALENGTH);
|
||
|
|
||
|
blksz_bits = ffs(data->blksz) - 1;
|
||
|
BUG_ON(1 << blksz_bits != data->blksz);
|
||
|
|
||
|
if (variant->blksz_datactrl16)
|
||
|
datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
|
||
|
else
|
||
|
datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
|
||
|
|
||
|
if (data->flags & MMC_DATA_READ)
|
||
|
datactrl |= MCI_DPSM_DIRECTION;
|
||
|
|
||
|
/* The ST Micro variants has a special bit to enable SDIO */
|
||
|
if (variant->sdio && host->mmc->card)
|
||
|
if (mmc_card_sdio(host->mmc->card))
|
||
|
datactrl |= MCI_ST_DPSM_SDIOEN;
|
||
|
|
||
|
/*
|
||
|
* Attempt to use DMA operation mode, if this
|
||
|
* should fail, fall back to PIO mode
|
||
|
*/
|
||
|
if (!mmci_dma_start_data(host, datactrl))
|
||
|
return;
|
||
|
|
||
|
/* IRQ mode, map the SG list for CPU reading/writing */
|
||
|
mmci_init_sg(host, data);
|
||
|
|
||
|
if (data->flags & MMC_DATA_READ) {
|
||
|
irqmask = MCI_RXFIFOHALFFULLMASK;
|
||
|
|
||
|
/*
|
||
|
* If we have less than the fifo 'half-full' threshold to
|
||
|
* transfer, trigger a PIO interrupt as soon as any data
|
||
|
* is available.
|
||
|
*/
|
||
|
if (host->size < variant->fifohalfsize)
|
||
|
irqmask |= MCI_RXDATAAVLBLMASK;
|
||
|
} else {
|
||
|
/*
|
||
|
* We don't actually need to include "FIFO empty" here
|
||
|
* since its implicit in "FIFO half empty".
|
||
|
*/
|
||
|
irqmask = MCI_TXFIFOHALFEMPTYMASK;
|
||
|
}
|
||
|
|
||
|
writel(datactrl, base + MMCIDATACTRL);
|
||
|
writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
|
||
|
mmci_set_mask1(host, irqmask);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
|
||
|
{
|
||
|
void __iomem *base = host->base;
|
||
|
|
||
|
dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
|
||
|
cmd->opcode, cmd->arg, cmd->flags);
|
||
|
|
||
|
if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
|
||
|
writel(0, base + MMCICOMMAND);
|
||
|
udelay(1);
|
||
|
}
|
||
|
|
||
|
c |= cmd->opcode | MCI_CPSM_ENABLE;
|
||
|
if (cmd->flags & MMC_RSP_PRESENT) {
|
||
|
if (cmd->flags & MMC_RSP_136)
|
||
|
c |= MCI_CPSM_LONGRSP;
|
||
|
c |= MCI_CPSM_RESPONSE;
|
||
|
}
|
||
|
if (/*interrupt*/0)
|
||
|
c |= MCI_CPSM_INTERRUPT;
|
||
|
|
||
|
host->cmd = cmd;
|
||
|
|
||
|
writel(cmd->arg, base + MMCIARGUMENT);
|
||
|
writel(c, base + MMCICOMMAND);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
|
||
|
unsigned int status)
|
||
|
{
|
||
|
/* First check for errors */
|
||
|
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
|
||
|
MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
|
||
|
u32 remain, success;
|
||
|
|
||
|
/* Terminate the DMA transfer */
|
||
|
if (dma_inprogress(host))
|
||
|
mmci_dma_data_error(host);
|
||
|
|
||
|
/*
|
||
|
* Calculate how far we are into the transfer. Note that
|
||
|
* the data counter gives the number of bytes transferred
|
||
|
* on the MMC bus, not on the host side. On reads, this
|
||
|
* can be as much as a FIFO-worth of data ahead. This
|
||
|
* matters for FIFO overruns only.
|
||
|
*/
|
||
|
remain = readl(host->base + MMCIDATACNT);
|
||
|
success = data->blksz * data->blocks - remain;
|
||
|
|
||
|
dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
|
||
|
status, success);
|
||
|
if (status & MCI_DATACRCFAIL) {
|
||
|
/* Last block was not successful */
|
||
|
success -= 1;
|
||
|
data->error = -EILSEQ;
|
||
|
} else if (status & MCI_DATATIMEOUT) {
|
||
|
data->error = -ETIMEDOUT;
|
||
|
} else if (status & MCI_STARTBITERR) {
|
||
|
data->error = -ECOMM;
|
||
|
} else if (status & MCI_TXUNDERRUN) {
|
||
|
data->error = -EIO;
|
||
|
} else if (status & MCI_RXOVERRUN) {
|
||
|
if (success > host->variant->fifosize)
|
||
|
success -= host->variant->fifosize;
|
||
|
else
|
||
|
success = 0;
|
||
|
data->error = -EIO;
|
||
|
}
|
||
|
data->bytes_xfered = round_down(success, data->blksz);
|
||
|
}
|
||
|
|
||
|
if (status & MCI_DATABLOCKEND)
|
||
|
dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
|
||
|
|
||
|
if (status & MCI_DATAEND || data->error) {
|
||
|
if (dma_inprogress(host))
|
||
|
mmci_dma_unmap(host, data);
|
||
|
mmci_stop_data(host);
|
||
|
|
||
|
if (!data->error)
|
||
|
/* The error clause is handled above, success! */
|
||
|
data->bytes_xfered = data->blksz * data->blocks;
|
||
|
|
||
|
if (!data->stop) {
|
||
|
mmci_request_end(host, data->mrq);
|
||
|
} else {
|
||
|
mmci_start_command(host, data->stop, 0);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
|
||
|
unsigned int status)
|
||
|
{
|
||
|
void __iomem *base = host->base;
|
||
|
|
||
|
host->cmd = NULL;
|
||
|
|
||
|
if (status & MCI_CMDTIMEOUT) {
|
||
|
cmd->error = -ETIMEDOUT;
|
||
|
} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
|
||
|
cmd->error = -EILSEQ;
|
||
|
} else {
|
||
|
cmd->resp[0] = readl(base + MMCIRESPONSE0);
|
||
|
cmd->resp[1] = readl(base + MMCIRESPONSE1);
|
||
|
cmd->resp[2] = readl(base + MMCIRESPONSE2);
|
||
|
cmd->resp[3] = readl(base + MMCIRESPONSE3);
|
||
|
}
|
||
|
|
||
|
if (!cmd->data || cmd->error) {
|
||
|
if (host->data) {
|
||
|
/* Terminate the DMA transfer */
|
||
|
if (dma_inprogress(host))
|
||
|
mmci_dma_data_error(host);
|
||
|
mmci_stop_data(host);
|
||
|
}
|
||
|
mmci_request_end(host, cmd->mrq);
|
||
|
} else if (!(cmd->data->flags & MMC_DATA_READ)) {
|
||
|
mmci_start_data(host, cmd->data);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
|
||
|
{
|
||
|
void __iomem *base = host->base;
|
||
|
char *ptr = buffer;
|
||
|
u32 status;
|
||
|
int host_remain = host->size;
|
||
|
|
||
|
do {
|
||
|
int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
|
||
|
|
||
|
if (count > remain)
|
||
|
count = remain;
|
||
|
|
||
|
if (count <= 0)
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* SDIO especially may want to send something that is
|
||
|
* not divisible by 4 (as opposed to card sectors
|
||
|
* etc). Therefore make sure to always read the last bytes
|
||
|
* while only doing full 32-bit reads towards the FIFO.
|
||
|
*/
|
||
|
if (unlikely(count & 0x3)) {
|
||
|
if (count < 4) {
|
||
|
unsigned char buf[4];
|
||
|
readsl(base + MMCIFIFO, buf, 1);
|
||
|
memcpy(ptr, buf, count);
|
||
|
} else {
|
||
|
readsl(base + MMCIFIFO, ptr, count >> 2);
|
||
|
count &= ~0x3;
|
||
|
}
|
||
|
} else {
|
||
|
readsl(base + MMCIFIFO, ptr, count >> 2);
|
||
|
}
|
||
|
|
||
|
ptr += count;
|
||
|
remain -= count;
|
||
|
host_remain -= count;
|
||
|
|
||
|
if (remain == 0)
|
||
|
break;
|
||
|
|
||
|
status = readl(base + MMCISTATUS);
|
||
|
} while (status & MCI_RXDATAAVLBL);
|
||
|
|
||
|
return ptr - buffer;
|
||
|
}
|
||
|
|
||
|
static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
|
||
|
{
|
||
|
struct variant_data *variant = host->variant;
|
||
|
void __iomem *base = host->base;
|
||
|
char *ptr = buffer;
|
||
|
|
||
|
do {
|
||
|
unsigned int count, maxcnt;
|
||
|
|
||
|
maxcnt = status & MCI_TXFIFOEMPTY ?
|
||
|
variant->fifosize : variant->fifohalfsize;
|
||
|
count = min(remain, maxcnt);
|
||
|
|
||
|
/*
|
||
|
* The ST Micro variant for SDIO transfer sizes
|
||
|
* less then 8 bytes should have clock H/W flow
|
||
|
* control disabled.
|
||
|
*/
|
||
|
if (variant->sdio &&
|
||
|
mmc_card_sdio(host->mmc->card)) {
|
||
|
u32 clk;
|
||
|
if (count < 8)
|
||
|
clk = host->clk_reg & ~variant->clkreg_enable;
|
||
|
else
|
||
|
clk = host->clk_reg | variant->clkreg_enable;
|
||
|
|
||
|
mmci_write_clkreg(host, clk);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* SDIO especially may want to send something that is
|
||
|
* not divisible by 4 (as opposed to card sectors
|
||
|
* etc), and the FIFO only accept full 32-bit writes.
|
||
|
* So compensate by adding +3 on the count, a single
|
||
|
* byte become a 32bit write, 7 bytes will be two
|
||
|
* 32bit writes etc.
|
||
|
*/
|
||
|
writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
|
||
|
|
||
|
ptr += count;
|
||
|
remain -= count;
|
||
|
|
||
|
if (remain == 0)
|
||
|
break;
|
||
|
|
||
|
status = readl(base + MMCISTATUS);
|
||
|
} while (status & MCI_TXFIFOHALFEMPTY);
|
||
|
|
||
|
return ptr - buffer;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* PIO data transfer IRQ handler.
|
||
|
*/
|
||
|
static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
|
||
|
{
|
||
|
struct mmci_host *host = dev_id;
|
||
|
struct sg_mapping_iter *sg_miter = &host->sg_miter;
|
||
|
struct variant_data *variant = host->variant;
|
||
|
void __iomem *base = host->base;
|
||
|
unsigned long flags;
|
||
|
u32 status;
|
||
|
|
||
|
status = readl(base + MMCISTATUS);
|
||
|
|
||
|
dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
|
||
|
do {
|
||
|
unsigned int remain, len;
|
||
|
char *buffer;
|
||
|
|
||
|
/*
|
||
|
* For write, we only need to test the half-empty flag
|
||
|
* here - if the FIFO is completely empty, then by
|
||
|
* definition it is more than half empty.
|
||
|
*
|
||
|
* For read, check for data available.
|
||
|
*/
|
||
|
if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
|
||
|
break;
|
||
|
|
||
|
if (!sg_miter_next(sg_miter))
|
||
|
break;
|
||
|
|
||
|
buffer = sg_miter->addr;
|
||
|
remain = sg_miter->length;
|
||
|
|
||
|
len = 0;
|
||
|
if (status & MCI_RXACTIVE)
|
||
|
len = mmci_pio_read(host, buffer, remain);
|
||
|
if (status & MCI_TXACTIVE)
|
||
|
len = mmci_pio_write(host, buffer, remain, status);
|
||
|
|
||
|
sg_miter->consumed = len;
|
||
|
|
||
|
host->size -= len;
|
||
|
remain -= len;
|
||
|
|
||
|
if (remain)
|
||
|
break;
|
||
|
|
||
|
status = readl(base + MMCISTATUS);
|
||
|
} while (1);
|
||
|
|
||
|
sg_miter_stop(sg_miter);
|
||
|
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
/*
|
||
|
* If we have less than the fifo 'half-full' threshold to transfer,
|
||
|
* trigger a PIO interrupt as soon as any data is available.
|
||
|
*/
|
||
|
if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
|
||
|
mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
|
||
|
|
||
|
/*
|
||
|
* If we run out of data, disable the data IRQs; this
|
||
|
* prevents a race where the FIFO becomes empty before
|
||
|
* the chip itself has disabled the data path, and
|
||
|
* stops us racing with our data end IRQ.
|
||
|
*/
|
||
|
if (host->size == 0) {
|
||
|
mmci_set_mask1(host, 0);
|
||
|
writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
|
||
|
}
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Handle completion of command and data transfers.
|
||
|
*/
|
||
|
static irqreturn_t mmci_irq(int irq, void *dev_id)
|
||
|
{
|
||
|
struct mmci_host *host = dev_id;
|
||
|
u32 status;
|
||
|
int ret = 0;
|
||
|
|
||
|
spin_lock(&host->lock);
|
||
|
|
||
|
do {
|
||
|
struct mmc_command *cmd;
|
||
|
struct mmc_data *data;
|
||
|
|
||
|
status = readl(host->base + MMCISTATUS);
|
||
|
|
||
|
if (host->singleirq) {
|
||
|
if (status & readl(host->base + MMCIMASK1))
|
||
|
mmci_pio_irq(irq, dev_id);
|
||
|
|
||
|
status &= ~MCI_IRQ1MASK;
|
||
|
}
|
||
|
|
||
|
status &= readl(host->base + MMCIMASK0);
|
||
|
writel(status, host->base + MMCICLEAR);
|
||
|
|
||
|
dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
|
||
|
|
||
|
data = host->data;
|
||
|
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
|
||
|
MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
|
||
|
MCI_DATABLOCKEND) && data)
|
||
|
mmci_data_irq(host, data, status);
|
||
|
|
||
|
cmd = host->cmd;
|
||
|
if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
|
||
|
mmci_cmd_irq(host, cmd, status);
|
||
|
|
||
|
ret = 1;
|
||
|
} while (status);
|
||
|
|
||
|
spin_unlock(&host->lock);
|
||
|
|
||
|
return IRQ_RETVAL(ret);
|
||
|
}
|
||
|
|
||
|
static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
|
||
|
{
|
||
|
struct mmci_host *host = mmc_priv(mmc);
|
||
|
unsigned long flags;
|
||
|
|
||
|
WARN_ON(host->mrq != NULL);
|
||
|
|
||
|
if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
|
||
|
dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
|
||
|
mrq->data->blksz);
|
||
|
mrq->cmd->error = -EINVAL;
|
||
|
mmc_request_done(mmc, mrq);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
pm_runtime_get_sync(mmc_dev(mmc));
|
||
|
|
||
|
spin_lock_irqsave(&host->lock, flags);
|
||
|
|
||
|
host->mrq = mrq;
|
||
|
|
||
|
if (mrq->data)
|
||
|
mmci_get_next_data(host, mrq->data);
|
||
|
|
||
|
if (mrq->data && mrq->data->flags & MMC_DATA_READ)
|
||
|
mmci_start_data(host, mrq->data);
|
||
|
|
||
|
mmci_start_command(host, mrq->cmd, 0);
|
||
|
|
||
|
spin_unlock_irqrestore(&host->lock, flags);
|
||
|
}
|
||
|
|
||
|
static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
|
||
|
{
|
||
|
struct mmci_host *host = mmc_priv(mmc);
|
||
|
struct variant_data *variant = host->variant;
|
||
|
u32 pwr = 0;
|
||
|
unsigned long flags;
|
||
|
int ret;
|
||
|
|
||
|
pm_runtime_get_sync(mmc_dev(mmc));
|
||
|
|
||
|
if (host->plat->ios_handler &&
|
||
|
host->plat->ios_handler(mmc_dev(mmc), ios))
|
||
|
dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
|
||
|
|
||
|
switch (ios->power_mode) {
|
||
|
case MMC_POWER_OFF:
|
||
|
if (host->vcc)
|
||
|
ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
|
||
|
break;
|
||
|
case MMC_POWER_UP:
|
||
|
if (host->vcc) {
|
||
|
ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
|
||
|
if (ret) {
|
||
|
dev_err(mmc_dev(mmc), "unable to set OCR\n");
|
||
|
/*
|
||
|
* The .set_ios() function in the mmc_host_ops
|
||
|
* struct return void, and failing to set the
|
||
|
* power should be rare so we print an error
|
||
|
* and return here.
|
||
|
*/
|
||
|
goto out;
|
||
|
}
|
||
|
}
|
||
|
/*
|
||
|
* The ST Micro variant doesn't have the PL180s MCI_PWR_UP
|
||
|
* and instead uses MCI_PWR_ON so apply whatever value is
|
||
|
* configured in the variant data.
|
||
|
*/
|
||
|
pwr |= variant->pwrreg_powerup;
|
||
|
|
||
|
break;
|
||
|
case MMC_POWER_ON:
|
||
|
pwr |= MCI_PWR_ON;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
|
||
|
/*
|
||
|
* The ST Micro variant has some additional bits
|
||
|
* indicating signal direction for the signals in
|
||
|
* the SD/MMC bus and feedback-clock usage.
|
||
|
*/
|
||
|
pwr |= host->plat->sigdir;
|
||
|
|
||
|
if (ios->bus_width == MMC_BUS_WIDTH_4)
|
||
|
pwr &= ~MCI_ST_DATA74DIREN;
|
||
|
else if (ios->bus_width == MMC_BUS_WIDTH_1)
|
||
|
pwr &= (~MCI_ST_DATA74DIREN &
|
||
|
~MCI_ST_DATA31DIREN &
|
||
|
~MCI_ST_DATA2DIREN);
|
||
|
}
|
||
|
|
||
|
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
|
||
|
if (host->hw_designer != AMBA_VENDOR_ST)
|
||
|
pwr |= MCI_ROD;
|
||
|
else {
|
||
|
/*
|
||
|
* The ST Micro variant use the ROD bit for something
|
||
|
* else and only has OD (Open Drain).
|
||
|
*/
|
||
|
pwr |= MCI_OD;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&host->lock, flags);
|
||
|
|
||
|
mmci_set_clkreg(host, ios->clock);
|
||
|
mmci_write_pwrreg(host, pwr);
|
||
|
|
||
|
spin_unlock_irqrestore(&host->lock, flags);
|
||
|
|
||
|
out:
|
||
|
pm_runtime_mark_last_busy(mmc_dev(mmc));
|
||
|
pm_runtime_put_autosuspend(mmc_dev(mmc));
|
||
|
}
|
||
|
|
||
|
static int mmci_get_ro(struct mmc_host *mmc)
|
||
|
{
|
||
|
struct mmci_host *host = mmc_priv(mmc);
|
||
|
|
||
|
if (host->gpio_wp == -ENOSYS)
|
||
|
return -ENOSYS;
|
||
|
|
||
|
return gpio_get_value_cansleep(host->gpio_wp);
|
||
|
}
|
||
|
|
||
|
static int mmci_get_cd(struct mmc_host *mmc)
|
||
|
{
|
||
|
struct mmci_host *host = mmc_priv(mmc);
|
||
|
struct mmci_platform_data *plat = host->plat;
|
||
|
unsigned int status;
|
||
|
|
||
|
if (host->gpio_cd == -ENOSYS) {
|
||
|
if (!plat->status)
|
||
|
return 1; /* Assume always present */
|
||
|
|
||
|
status = plat->status(mmc_dev(host->mmc));
|
||
|
} else
|
||
|
status = !!gpio_get_value_cansleep(host->gpio_cd)
|
||
|
^ plat->cd_invert;
|
||
|
|
||
|
/*
|
||
|
* Use positive logic throughout - status is zero for no card,
|
||
|
* non-zero for card inserted.
|
||
|
*/
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
|
||
|
{
|
||
|
struct mmci_host *host = dev_id;
|
||
|
|
||
|
mmc_detect_change(host->mmc, msecs_to_jiffies(500));
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static const struct mmc_host_ops mmci_ops = {
|
||
|
.request = mmci_request,
|
||
|
.pre_req = mmci_pre_request,
|
||
|
.post_req = mmci_post_request,
|
||
|
.set_ios = mmci_set_ios,
|
||
|
.get_ro = mmci_get_ro,
|
||
|
.get_cd = mmci_get_cd,
|
||
|
};
|
||
|
|
||
|
static int __devinit mmci_probe(struct amba_device *dev,
|
||
|
const struct amba_id *id)
|
||
|
{
|
||
|
struct mmci_platform_data *plat = dev->dev.platform_data;
|
||
|
struct variant_data *variant = id->data;
|
||
|
struct mmci_host *host;
|
||
|
struct mmc_host *mmc;
|
||
|
int ret;
|
||
|
|
||
|
/* must have platform data */
|
||
|
if (!plat) {
|
||
|
ret = -EINVAL;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
ret = amba_request_regions(dev, DRIVER_NAME);
|
||
|
if (ret)
|
||
|
goto out;
|
||
|
|
||
|
mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
|
||
|
if (!mmc) {
|
||
|
ret = -ENOMEM;
|
||
|
goto rel_regions;
|
||
|
}
|
||
|
|
||
|
host = mmc_priv(mmc);
|
||
|
host->mmc = mmc;
|
||
|
|
||
|
host->gpio_wp = -ENOSYS;
|
||
|
host->gpio_cd = -ENOSYS;
|
||
|
host->gpio_cd_irq = -1;
|
||
|
|
||
|
host->hw_designer = amba_manf(dev);
|
||
|
host->hw_revision = amba_rev(dev);
|
||
|
dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
|
||
|
dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
|
||
|
|
||
|
host->clk = clk_get(&dev->dev, NULL);
|
||
|
if (IS_ERR(host->clk)) {
|
||
|
ret = PTR_ERR(host->clk);
|
||
|
host->clk = NULL;
|
||
|
goto host_free;
|
||
|
}
|
||
|
|
||
|
ret = clk_prepare(host->clk);
|
||
|
if (ret)
|
||
|
goto clk_free;
|
||
|
|
||
|
ret = clk_enable(host->clk);
|
||
|
if (ret)
|
||
|
goto clk_unprep;
|
||
|
|
||
|
host->plat = plat;
|
||
|
host->variant = variant;
|
||
|
host->mclk = clk_get_rate(host->clk);
|
||
|
/*
|
||
|
* According to the spec, mclk is max 100 MHz,
|
||
|
* so we try to adjust the clock down to this,
|
||
|
* (if possible).
|
||
|
*/
|
||
|
if (host->mclk > 100000000) {
|
||
|
ret = clk_set_rate(host->clk, 100000000);
|
||
|
if (ret < 0)
|
||
|
goto clk_disable;
|
||
|
host->mclk = clk_get_rate(host->clk);
|
||
|
dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
|
||
|
host->mclk);
|
||
|
}
|
||
|
host->phybase = dev->res.start;
|
||
|
host->base = ioremap(dev->res.start, resource_size(&dev->res));
|
||
|
if (!host->base) {
|
||
|
ret = -ENOMEM;
|
||
|
goto clk_disable;
|
||
|
}
|
||
|
|
||
|
mmc->ops = &mmci_ops;
|
||
|
/*
|
||
|
* The ARM and ST versions of the block have slightly different
|
||
|
* clock divider equations which means that the minimum divider
|
||
|
* differs too.
|
||
|
*/
|
||
|
if (variant->st_clkdiv)
|
||
|
mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
|
||
|
else
|
||
|
mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
|
||
|
/*
|
||
|
* If the platform data supplies a maximum operating
|
||
|
* frequency, this takes precedence. Else, we fall back
|
||
|
* to using the module parameter, which has a (low)
|
||
|
* default value in case it is not specified. Either
|
||
|
* value must not exceed the clock rate into the block,
|
||
|
* of course.
|
||
|
*/
|
||
|
if (plat->f_max)
|
||
|
mmc->f_max = min(host->mclk, plat->f_max);
|
||
|
else
|
||
|
mmc->f_max = min(host->mclk, fmax);
|
||
|
dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
|
||
|
|
||
|
#ifdef CONFIG_REGULATOR
|
||
|
/* If we're using the regulator framework, try to fetch a regulator */
|
||
|
host->vcc = regulator_get(&dev->dev, "vmmc");
|
||
|
if (IS_ERR(host->vcc))
|
||
|
host->vcc = NULL;
|
||
|
else {
|
||
|
int mask = mmc_regulator_get_ocrmask(host->vcc);
|
||
|
|
||
|
if (mask < 0)
|
||
|
dev_err(&dev->dev, "error getting OCR mask (%d)\n",
|
||
|
mask);
|
||
|
else {
|
||
|
host->mmc->ocr_avail = (u32) mask;
|
||
|
if (plat->ocr_mask)
|
||
|
dev_warn(&dev->dev,
|
||
|
"Provided ocr_mask/setpower will not be used "
|
||
|
"(using regulator instead)\n");
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
/* Fall back to platform data if no regulator is found */
|
||
|
if (host->vcc == NULL)
|
||
|
mmc->ocr_avail = plat->ocr_mask;
|
||
|
mmc->caps = plat->capabilities;
|
||
|
mmc->caps2 = plat->capabilities2;
|
||
|
|
||
|
/*
|
||
|
* We can do SGIO
|
||
|
*/
|
||
|
mmc->max_segs = NR_SG;
|
||
|
|
||
|
/*
|
||
|
* Since only a certain number of bits are valid in the data length
|
||
|
* register, we must ensure that we don't exceed 2^num-1 bytes in a
|
||
|
* single request.
|
||
|
*/
|
||
|
mmc->max_req_size = (1 << variant->datalength_bits) - 1;
|
||
|
|
||
|
/*
|
||
|
* Set the maximum segment size. Since we aren't doing DMA
|
||
|
* (yet) we are only limited by the data length register.
|
||
|
*/
|
||
|
mmc->max_seg_size = mmc->max_req_size;
|
||
|
|
||
|
/*
|
||
|
* Block size can be up to 2048 bytes, but must be a power of two.
|
||
|
*/
|
||
|
mmc->max_blk_size = 1 << 11;
|
||
|
|
||
|
/*
|
||
|
* Limit the number of blocks transferred so that we don't overflow
|
||
|
* the maximum request size.
|
||
|
*/
|
||
|
mmc->max_blk_count = mmc->max_req_size >> 11;
|
||
|
|
||
|
spin_lock_init(&host->lock);
|
||
|
|
||
|
writel(0, host->base + MMCIMASK0);
|
||
|
writel(0, host->base + MMCIMASK1);
|
||
|
writel(0xfff, host->base + MMCICLEAR);
|
||
|
|
||
|
if (gpio_is_valid(plat->gpio_cd)) {
|
||
|
ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
|
||
|
if (ret == 0)
|
||
|
ret = gpio_direction_input(plat->gpio_cd);
|
||
|
if (ret == 0)
|
||
|
host->gpio_cd = plat->gpio_cd;
|
||
|
else if (ret != -ENOSYS)
|
||
|
goto err_gpio_cd;
|
||
|
|
||
|
/*
|
||
|
* A gpio pin that will detect cards when inserted and removed
|
||
|
* will most likely want to trigger on the edges if it is
|
||
|
* 0 when ejected and 1 when inserted (or mutatis mutandis
|
||
|
* for the inverted case) so we request triggers on both
|
||
|
* edges.
|
||
|
*/
|
||
|
ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
|
||
|
mmci_cd_irq,
|
||
|
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
|
||
|
DRIVER_NAME " (cd)", host);
|
||
|
if (ret >= 0)
|
||
|
host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
|
||
|
}
|
||
|
if (gpio_is_valid(plat->gpio_wp)) {
|
||
|
ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
|
||
|
if (ret == 0)
|
||
|
ret = gpio_direction_input(plat->gpio_wp);
|
||
|
if (ret == 0)
|
||
|
host->gpio_wp = plat->gpio_wp;
|
||
|
else if (ret != -ENOSYS)
|
||
|
goto err_gpio_wp;
|
||
|
}
|
||
|
|
||
|
if ((host->plat->status || host->gpio_cd != -ENOSYS)
|
||
|
&& host->gpio_cd_irq < 0)
|
||
|
mmc->caps |= MMC_CAP_NEEDS_POLL;
|
||
|
|
||
|
ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
|
||
|
if (ret)
|
||
|
goto unmap;
|
||
|
|
||
|
if (dev->irq[1] == NO_IRQ || !dev->irq[1])
|
||
|
host->singleirq = true;
|
||
|
else {
|
||
|
ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
|
||
|
DRIVER_NAME " (pio)", host);
|
||
|
if (ret)
|
||
|
goto irq0_free;
|
||
|
}
|
||
|
|
||
|
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
|
||
|
|
||
|
amba_set_drvdata(dev, mmc);
|
||
|
|
||
|
dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
|
||
|
mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
|
||
|
amba_rev(dev), (unsigned long long)dev->res.start,
|
||
|
dev->irq[0], dev->irq[1]);
|
||
|
|
||
|
mmci_dma_setup(host);
|
||
|
|
||
|
pm_runtime_set_autosuspend_delay(&dev->dev, 50);
|
||
|
pm_runtime_use_autosuspend(&dev->dev);
|
||
|
pm_runtime_put(&dev->dev);
|
||
|
|
||
|
mmc_add_host(mmc);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
irq0_free:
|
||
|
free_irq(dev->irq[0], host);
|
||
|
unmap:
|
||
|
if (host->gpio_wp != -ENOSYS)
|
||
|
gpio_free(host->gpio_wp);
|
||
|
err_gpio_wp:
|
||
|
if (host->gpio_cd_irq >= 0)
|
||
|
free_irq(host->gpio_cd_irq, host);
|
||
|
if (host->gpio_cd != -ENOSYS)
|
||
|
gpio_free(host->gpio_cd);
|
||
|
err_gpio_cd:
|
||
|
iounmap(host->base);
|
||
|
clk_disable:
|
||
|
clk_disable(host->clk);
|
||
|
clk_unprep:
|
||
|
clk_unprepare(host->clk);
|
||
|
clk_free:
|
||
|
clk_put(host->clk);
|
||
|
host_free:
|
||
|
mmc_free_host(mmc);
|
||
|
rel_regions:
|
||
|
amba_release_regions(dev);
|
||
|
out:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int __devexit mmci_remove(struct amba_device *dev)
|
||
|
{
|
||
|
struct mmc_host *mmc = amba_get_drvdata(dev);
|
||
|
|
||
|
amba_set_drvdata(dev, NULL);
|
||
|
|
||
|
if (mmc) {
|
||
|
struct mmci_host *host = mmc_priv(mmc);
|
||
|
|
||
|
/*
|
||
|
* Undo pm_runtime_put() in probe. We use the _sync
|
||
|
* version here so that we can access the primecell.
|
||
|
*/
|
||
|
pm_runtime_get_sync(&dev->dev);
|
||
|
|
||
|
mmc_remove_host(mmc);
|
||
|
|
||
|
writel(0, host->base + MMCIMASK0);
|
||
|
writel(0, host->base + MMCIMASK1);
|
||
|
|
||
|
writel(0, host->base + MMCICOMMAND);
|
||
|
writel(0, host->base + MMCIDATACTRL);
|
||
|
|
||
|
mmci_dma_release(host);
|
||
|
free_irq(dev->irq[0], host);
|
||
|
if (!host->singleirq)
|
||
|
free_irq(dev->irq[1], host);
|
||
|
|
||
|
if (host->gpio_wp != -ENOSYS)
|
||
|
gpio_free(host->gpio_wp);
|
||
|
if (host->gpio_cd_irq >= 0)
|
||
|
free_irq(host->gpio_cd_irq, host);
|
||
|
if (host->gpio_cd != -ENOSYS)
|
||
|
gpio_free(host->gpio_cd);
|
||
|
|
||
|
iounmap(host->base);
|
||
|
clk_disable(host->clk);
|
||
|
clk_unprepare(host->clk);
|
||
|
clk_put(host->clk);
|
||
|
|
||
|
if (host->vcc)
|
||
|
mmc_regulator_set_ocr(mmc, host->vcc, 0);
|
||
|
regulator_put(host->vcc);
|
||
|
|
||
|
mmc_free_host(mmc);
|
||
|
|
||
|
amba_release_regions(dev);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_SUSPEND
|
||
|
static int mmci_suspend(struct device *dev)
|
||
|
{
|
||
|
struct amba_device *adev = to_amba_device(dev);
|
||
|
struct mmc_host *mmc = amba_get_drvdata(adev);
|
||
|
int ret = 0;
|
||
|
|
||
|
if (mmc) {
|
||
|
struct mmci_host *host = mmc_priv(mmc);
|
||
|
|
||
|
ret = mmc_suspend_host(mmc);
|
||
|
if (ret == 0) {
|
||
|
pm_runtime_get_sync(dev);
|
||
|
writel(0, host->base + MMCIMASK0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int mmci_resume(struct device *dev)
|
||
|
{
|
||
|
struct amba_device *adev = to_amba_device(dev);
|
||
|
struct mmc_host *mmc = amba_get_drvdata(adev);
|
||
|
int ret = 0;
|
||
|
|
||
|
if (mmc) {
|
||
|
struct mmci_host *host = mmc_priv(mmc);
|
||
|
|
||
|
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
|
||
|
pm_runtime_put(dev);
|
||
|
|
||
|
ret = mmc_resume_host(mmc);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static const struct dev_pm_ops mmci_dev_pm_ops = {
|
||
|
SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
|
||
|
};
|
||
|
|
||
|
static struct amba_id mmci_ids[] = {
|
||
|
{
|
||
|
.id = 0x00041180,
|
||
|
.mask = 0xff0fffff,
|
||
|
.data = &variant_arm,
|
||
|
},
|
||
|
{
|
||
|
.id = 0x01041180,
|
||
|
.mask = 0xff0fffff,
|
||
|
.data = &variant_arm_extended_fifo,
|
||
|
},
|
||
|
{
|
||
|
.id = 0x00041181,
|
||
|
.mask = 0x000fffff,
|
||
|
.data = &variant_arm,
|
||
|
},
|
||
|
/* ST Micro variants */
|
||
|
{
|
||
|
.id = 0x00180180,
|
||
|
.mask = 0x00ffffff,
|
||
|
.data = &variant_u300,
|
||
|
},
|
||
|
{
|
||
|
.id = 0x00280180,
|
||
|
.mask = 0x00ffffff,
|
||
|
.data = &variant_u300,
|
||
|
},
|
||
|
{
|
||
|
.id = 0x00480180,
|
||
|
.mask = 0xf0ffffff,
|
||
|
.data = &variant_ux500,
|
||
|
},
|
||
|
{
|
||
|
.id = 0x10480180,
|
||
|
.mask = 0xf0ffffff,
|
||
|
.data = &variant_ux500v2,
|
||
|
},
|
||
|
{ 0, 0 },
|
||
|
};
|
||
|
|
||
|
MODULE_DEVICE_TABLE(amba, mmci_ids);
|
||
|
|
||
|
static struct amba_driver mmci_driver = {
|
||
|
.drv = {
|
||
|
.name = DRIVER_NAME,
|
||
|
.pm = &mmci_dev_pm_ops,
|
||
|
},
|
||
|
.probe = mmci_probe,
|
||
|
.remove = __devexit_p(mmci_remove),
|
||
|
.id_table = mmci_ids,
|
||
|
};
|
||
|
|
||
|
module_amba_driver(mmci_driver);
|
||
|
|
||
|
module_param(fmax, uint, 0444);
|
||
|
|
||
|
MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
|
||
|
MODULE_LICENSE("GPL");
|