M7350/kernel/drivers/media/platform/msm/camera_v1/vb6801.c

1617 lines
41 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/* Copyright (c) 2009, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/i2c.h>
#include <linux/uaccess.h>
#include <linux/miscdevice.h>
#include <media/msm_camera.h>
#include <mach/gpio.h>
#include <mach/camera.h>
#include "vb6801.h"
/*=============================================================
SENSOR REGISTER DEFINES
==============================================================*/
enum {
REG_HOLD = 0x0104,
RELEASE_HOLD = 0x0000,
HOLD = 0x0001,
STANDBY_MODE = 0x0000,
REG_COARSE_INTEGRATION_TIME = 0x0202,
REG_ANALOGUE_GAIN_CODE_GLOBAL = 0x0204,
REG_RAMP_SCALE = 0x3116,
REG_POWER_MAN_ENABLE_3 = 0x3142,
REG_POWER_MAN_ENABLE_4 = 0x3143,
REG_POWER_MAN_ENABLE_5 = 0x3144,
REG_CCP2_DATA_FORMAT = 0x0112,
REG_PRE_PLL_CLK_DIV = 0x0304,
REG_PLL_MULTIPLIER = 0x0306,
REG_VT_SYS_CLK_DIV = 0x0302,
REG_VT_PIX_CLK_DIV = 0x0300,
REG_OP_SYS_CLK_DIV = 0x030A,
REG_OP_PIX_CLK_DIV = 0x0308,
REG_VT_LINE_LENGTH_PCK = 0x0342,
REG_X_OUTPUT_SIZE = 0x034C,
REG_Y_OUTPUT_SIZE = 0x034E,
REG_X_ODD_INC = 0x0382,
REG_Y_ODD_INC = 0x0386,
REG_VT_FRAME_LENGTH_LINES = 0x0340,
REG_ANALOG_TIMING_MODES_2 = 0x3113,
REG_BRUCE_ENABLE = 0x37B0,
REG_OP_CODER_SYNC_CLK_SETUP = 0x3400,
REG_OP_CODER_ENABLE = 0x3401,
REG_OP_CODER_SLOW_PAD_EN = 0x3402,
REG_OP_CODER_AUTO_STARTUP = 0x3414,
REG_SCYTHE_ENABLE = 0x3204,
REG_SCYTHE_WEIGHT = 0x3206,
REG_FRAME_COUNT = 0x0005,
REG_MODE_SELECT = 0x0100,
REG_CCP2_CHANNEL_IDENTIFIER = 0x0110,
REG_CCP2_SIGNALLING_MODE = 0x0111,
REG_BTL_LEVEL_SETUP = 0x311B,
REG_OP_CODER_AUTOMATIC_MODE_ENABLE = 0x3403,
REG_PLL_CTRL = 0x3801,
REG_VCM_DAC_CODE = 0x3860,
REG_VCM_DAC_STROBE = 0x3868,
REG_VCM_DAC_ENABLE = 0x386C,
REG_NVM_T1_ADDR_00 = 0x3600,
REG_NVM_T1_ADDR_01 = 0x3601,
REG_NVM_T1_ADDR_02 = 0x3602,
REG_NVM_T1_ADDR_03 = 0x3603,
REG_NVM_T1_ADDR_04 = 0x3604,
REG_NVM_T1_ADDR_05 = 0x3605,
REG_NVM_T1_ADDR_06 = 0x3606,
REG_NVM_T1_ADDR_07 = 0x3607,
REG_NVM_T1_ADDR_08 = 0x3608,
REG_NVM_T1_ADDR_09 = 0x3609,
REG_NVM_T1_ADDR_0A = 0x360A,
REG_NVM_T1_ADDR_0B = 0x360B,
REG_NVM_T1_ADDR_0C = 0x360C,
REG_NVM_T1_ADDR_0D = 0x360D,
REG_NVM_T1_ADDR_0E = 0x360E,
REG_NVM_T1_ADDR_0F = 0x360F,
REG_NVM_T1_ADDR_10 = 0x3610,
REG_NVM_T1_ADDR_11 = 0x3611,
REG_NVM_T1_ADDR_12 = 0x3612,
REG_NVM_T1_ADDR_13 = 0x3613,
REG_NVM_CTRL = 0x3680,
REG_NVM_PDN = 0x3681,
REG_NVM_PULSE_WIDTH = 0x368B,
};
#define VB6801_LINES_PER_FRAME_PREVIEW 800
#define VB6801_LINES_PER_FRAME_SNAPSHOT 1600
#define VB6801_PIXELS_PER_LINE_PREVIEW 2500
#define VB6801_PIXELS_PER_LINE_SNAPSHOT 2500
/* AF constant */
#define VB6801_TOTAL_STEPS_NEAR_TO_FAR 25
#define VB6801_STEPS_NEAR_TO_CLOSEST_INF 25
/* for 30 fps preview */
#define VB6801_DEFAULT_CLOCK_RATE 12000000
enum vb6801_test_mode_t {
TEST_OFF,
TEST_1,
TEST_2,
TEST_3
};
enum vb6801_resolution_t {
QTR_SIZE,
FULL_SIZE,
INVALID_SIZE
};
enum vb6801_setting_t {
RES_PREVIEW,
RES_CAPTURE
};
struct vb6801_work_t {
struct work_struct work;
};
struct sensor_dynamic_params_t {
uint16_t preview_pixelsPerLine;
uint16_t preview_linesPerFrame;
uint16_t snapshot_pixelsPerLine;
uint16_t snapshot_linesPerFrame;
uint8_t snapshot_changed_fps;
uint32_t pclk;
};
struct vb6801_sensor_info {
/* Sensor Configuration Input Parameters */
uint32_t ext_clk_freq_mhz;
uint32_t target_frame_rate_fps;
uint32_t target_vt_pix_clk_freq_mhz;
uint32_t sub_sampling_factor;
uint32_t analog_binning_allowed;
uint32_t raw_mode;
uint32_t capture_mode;
/* Image Readout Registers */
uint32_t x_odd_inc; /* x pixel array addressing odd increment */
uint32_t y_odd_inc; /* y pixel array addressing odd increment */
uint32_t x_output_size; /* width of output image */
uint32_t y_output_size; /* height of output image */
/* Declare data format */
uint32_t ccp2_data_format;
/* Clock Tree Registers */
uint32_t pre_pll_clk_div;
uint32_t pll_multiplier;
uint32_t vt_sys_clk_div;
uint32_t vt_pix_clk_div;
uint32_t op_sys_clk_div;
uint32_t op_pix_clk_div;
/* Video Timing Registers */
uint32_t vt_line_length_pck;
uint32_t vt_frame_length_lines;
/* Analogue Binning Registers */
uint8_t vtiming_major;
uint8_t analog_timing_modes_4;
/* Fine (pixel) Integration Time Registers */
uint32_t fine_integration_time;
/* Coarse (lines) Integration Time Limit Registers */
uint32_t coarse_integration_time_max;
/* Coarse (lines) Integration Timit Register (16-bit) */
uint32_t coarse_integration_time;
/* Analogue Gain Code Global Registers */
uint32_t analogue_gain_code_global;
/* Digital Gain Code Registers */
uint32_t digital_gain_code;
/* Overall gain (analogue & digital) code
* Note that this is not a real register but just
* an abstraction for the combination of analogue
* and digital gain */
uint32_t gain_code;
/* FMT Test Information */
uint32_t pass_fail;
uint32_t day;
uint32_t month;
uint32_t year;
uint32_t tester;
uint32_t part_number;
/* Autofocus controls */
uint32_t vcm_dac_code;
int vcm_max_dac_code_step;
int vcm_proportional_factor;
int vcm_dac_code_spacing_ms;
/* VCM NVM Characterisation Information */
uint32_t vcm_dac_code_infinity_dn;
uint32_t vcm_dac_code_macro_up;
uint32_t vcm_dac_code_up_dn_delta;
/* Internal Variables */
uint32_t min_vt_frame_length_lines;
};
struct vb6801_work_t *vb6801_sensorw;
struct i2c_client *vb6801_client;
struct vb6801_ctrl_t {
const struct msm_camera_sensor_info *sensordata;
int sensormode;
uint32_t factor_fps; /* init to 1 * 0x00000400 */
uint16_t curr_fps;
uint16_t max_fps;
int8_t pict_exp_update;
int8_t reducel;
uint16_t curr_lens_pos;
uint16_t init_curr_lens_pos;
enum vb6801_resolution_t prev_res;
enum vb6801_resolution_t pict_res;
enum vb6801_resolution_t curr_res;
enum vb6801_test_mode_t set_test;
struct vb6801_sensor_info s_info;
struct sensor_dynamic_params_t s_dynamic_params;
};
static struct vb6801_ctrl_t *vb6801_ctrl;
static DECLARE_WAIT_QUEUE_HEAD(vb6801_wait_queue);
DEFINE_MUTEX(vb6801_mut);
static int vb6801_i2c_rxdata(unsigned short saddr,
unsigned char *rxdata, int length)
{
struct i2c_msg msgs[] = {
{
.addr = saddr,
.flags = 0,
.len = 2,
.buf = rxdata,
},
{
.addr = saddr,
.flags = I2C_M_RD,
.len = 2,
.buf = rxdata,
},
};
if (i2c_transfer(vb6801_client->adapter, msgs, 2) < 0) {
CDBG("vb6801_i2c_rxdata failed!\n");
return -EIO;
}
return 0;
}
static int32_t vb6801_i2c_read(unsigned short raddr,
unsigned short *rdata, int rlen)
{
int32_t rc = 0;
unsigned char buf[2];
if (!rdata)
return -EIO;
memset(buf, 0, sizeof(buf));
buf[0] = (raddr & 0xFF00) >> 8;
buf[1] = (raddr & 0x00FF);
rc = vb6801_i2c_rxdata(vb6801_client->addr, buf, rlen);
if (rc < 0) {
CDBG("vb6801_i2c_read 0x%x failed!\n", raddr);
return rc;
}
*rdata = (rlen == 2 ? buf[0] << 8 | buf[1] : buf[0]);
return rc;
}
static int32_t vb6801_i2c_read_table(struct vb6801_i2c_reg_conf_t *regs,
int items)
{
int i;
int32_t rc = -EFAULT;
for (i = 0; i < items; i++) {
unsigned short *buf =
regs->dlen == D_LEN_BYTE ?
(unsigned short *)&regs->bdata :
(unsigned short *)&regs->wdata;
rc = vb6801_i2c_read(regs->waddr, buf, regs->dlen + 1);
if (rc < 0) {
CDBG("vb6801_i2c_read_table Failed!!!\n");
break;
}
regs++;
}
return rc;
}
static int32_t vb6801_i2c_txdata(unsigned short saddr,
unsigned char *txdata, int length)
{
struct i2c_msg msg[] = {
{
.addr = saddr,
.flags = 0,
.len = length,
.buf = txdata,
},
};
if (i2c_transfer(vb6801_client->adapter, msg, 1) < 0) {
CDBG("vb6801_i2c_txdata faild 0x%x\n", vb6801_client->addr);
return -EIO;
}
return 0;
}
static int32_t vb6801_i2c_write_b(unsigned short waddr, uint8_t bdata)
{
int32_t rc = -EFAULT;
unsigned char buf[3];
memset(buf, 0, sizeof(buf));
buf[0] = (waddr & 0xFF00) >> 8;
buf[1] = (waddr & 0x00FF);
buf[2] = bdata;
CDBG("i2c_write_b addr = %d, val = %d\n", waddr, bdata);
rc = vb6801_i2c_txdata(vb6801_client->addr, buf, 3);
if (rc < 0) {
CDBG("i2c_write_b failed, addr = 0x%x, val = 0x%x!\n",
waddr, bdata);
}
return rc;
}
static int32_t vb6801_i2c_write_w(unsigned short waddr, unsigned short wdata)
{
int32_t rc = -EFAULT;
unsigned char buf[4];
memset(buf, 0, sizeof(buf));
buf[0] = (waddr & 0xFF00) >> 8;
buf[1] = (waddr & 0x00FF);
buf[2] = (wdata & 0xFF00) >> 8;
buf[3] = (wdata & 0x00FF);
CDBG("i2c_write_w addr = %d, val = %d, buf[2] = 0x%x, buf[3] = 0x%x\n",
waddr, wdata, buf[2], buf[3]);
rc = vb6801_i2c_txdata(vb6801_client->addr, buf, 4);
if (rc < 0) {
CDBG("i2c_write_w failed, addr = 0x%x, val = 0x%x!\n",
waddr, wdata);
}
return rc;
}
static int32_t vb6801_i2c_write_table(struct vb6801_i2c_reg_conf_t *regs,
int items)
{
int i;
int32_t rc = -EFAULT;
for (i = 0; i < items; i++) {
rc = ((regs->dlen == D_LEN_BYTE) ?
vb6801_i2c_write_b(regs->waddr, regs->bdata) :
vb6801_i2c_write_w(regs->waddr, regs->wdata));
if (rc < 0) {
CDBG("vb6801_i2c_write_table Failed!!!\n");
break;
}
regs++;
}
return rc;
}
static int32_t vb6801_reset(const struct msm_camera_sensor_info *data)
{
int rc;
rc = gpio_request(data->sensor_reset, "vb6801");
if (!rc) {
CDBG("sensor_reset SUcceeded\n");
gpio_direction_output(data->sensor_reset, 0);
mdelay(50);
gpio_direction_output(data->sensor_reset, 1);
mdelay(13);
} else
CDBG("sensor_reset FAiled\n");
return rc;
}
static int32_t vb6801_set_default_focus(void)
{
int32_t rc = 0;
/* FIXME: Default focus not supported */
return rc;
}
static void vb6801_get_pict_fps(uint16_t fps, uint16_t *pfps)
{
/* input fps is preview fps in Q8 format */
uint32_t divider; /*Q10 */
uint32_t pclk_mult; /*Q10 */
uint32_t d1;
uint32_t d2;
d1 =
(uint32_t)(
(vb6801_ctrl->s_dynamic_params.preview_linesPerFrame *
0x00000400) /
vb6801_ctrl->s_dynamic_params.snapshot_linesPerFrame);
d2 =
(uint32_t)(
(vb6801_ctrl->s_dynamic_params.preview_pixelsPerLine *
0x00000400) /
vb6801_ctrl->s_dynamic_params.snapshot_pixelsPerLine);
divider = (uint32_t) (d1 * d2) / 0x00000400;
pclk_mult = (48 * 0x400) / 60;
/* Verify PCLK settings and frame sizes. */
*pfps = (uint16_t)((((fps * pclk_mult) / 0x00000400) * divider)/
0x00000400);
}
static uint16_t vb6801_get_prev_lines_pf(void)
{
if (vb6801_ctrl->prev_res == QTR_SIZE)
return vb6801_ctrl->s_dynamic_params.preview_linesPerFrame;
else
return vb6801_ctrl->s_dynamic_params.snapshot_linesPerFrame;
}
static uint16_t vb6801_get_prev_pixels_pl(void)
{
if (vb6801_ctrl->prev_res == QTR_SIZE)
return vb6801_ctrl->s_dynamic_params.preview_pixelsPerLine;
else
return vb6801_ctrl->s_dynamic_params.snapshot_pixelsPerLine;
}
static uint16_t vb6801_get_pict_lines_pf(void)
{
return vb6801_ctrl->s_dynamic_params.snapshot_linesPerFrame;
}
static uint16_t vb6801_get_pict_pixels_pl(void)
{
return vb6801_ctrl->s_dynamic_params.snapshot_pixelsPerLine;
}
static uint32_t vb6801_get_pict_max_exp_lc(void)
{
uint16_t snapshot_lines_per_frame;
if (vb6801_ctrl->pict_res == QTR_SIZE) {
snapshot_lines_per_frame =
vb6801_ctrl->s_dynamic_params.preview_linesPerFrame - 3;
} else {
snapshot_lines_per_frame =
vb6801_ctrl->s_dynamic_params.snapshot_linesPerFrame - 3;
}
return snapshot_lines_per_frame;
}
static int32_t vb6801_set_fps(struct fps_cfg *fps)
{
int32_t rc = 0;
/* input is new fps in Q8 format */
switch (fps->fps_div) {
case 7680: /* 30 * Q8 */
vb6801_ctrl->factor_fps = 1;
break;
case 3840: /* 15 * Q8 */
vb6801_ctrl->factor_fps = 2;
break;
case 2560: /* 10 * Q8 */
vb6801_ctrl->factor_fps = 3;
break;
case 1920: /* 7.5 * Q8 */
vb6801_ctrl->factor_fps = 4;
break;
default:
rc = -ENODEV;
break;
}
return rc;
}
static int32_t vb6801_write_exp_gain(uint16_t gain, uint32_t line)
{
int32_t rc = 0;
uint16_t lpf;
if (vb6801_ctrl->curr_res == SENSOR_FULL_SIZE)
lpf = VB6801_LINES_PER_FRAME_SNAPSHOT;
else
lpf = VB6801_LINES_PER_FRAME_PREVIEW;
/* hold */
rc = vb6801_i2c_write_w(REG_HOLD, HOLD);
if (rc < 0)
goto exp_gain_done;
if ((vb6801_ctrl->curr_fps <
vb6801_ctrl->max_fps / vb6801_ctrl->factor_fps) &&
(!vb6801_ctrl->pict_exp_update)) {
if (vb6801_ctrl->reducel) {
rc = vb6801_i2c_write_w(REG_VT_FRAME_LENGTH_LINES,
lpf * vb6801_ctrl->factor_fps);
vb6801_ctrl->curr_fps =
vb6801_ctrl->max_fps / vb6801_ctrl->factor_fps;
} else if (!vb6801_ctrl->reducel) {
rc = vb6801_i2c_write_w(REG_COARSE_INTEGRATION_TIME,
line * vb6801_ctrl->factor_fps);
vb6801_ctrl->reducel = 1;
}
} else if ((vb6801_ctrl->curr_fps >
vb6801_ctrl->max_fps / vb6801_ctrl->factor_fps) &&
(!vb6801_ctrl->pict_exp_update)) {
rc = vb6801_i2c_write_w(REG_VT_FRAME_LENGTH_LINES,
lpf * vb6801_ctrl->factor_fps);
vb6801_ctrl->curr_fps =
vb6801_ctrl->max_fps / vb6801_ctrl->factor_fps;
} else {
/* analogue_gain_code_global */
rc = vb6801_i2c_write_w(REG_ANALOGUE_GAIN_CODE_GLOBAL, gain);
if (rc < 0)
goto exp_gain_done;
/* coarse_integration_time */
rc = vb6801_i2c_write_w(REG_COARSE_INTEGRATION_TIME,
line * vb6801_ctrl->factor_fps);
if (rc < 0)
goto exp_gain_done;
vb6801_ctrl->pict_exp_update = 1;
}
rc = vb6801_i2c_write_w(REG_HOLD, RELEASE_HOLD);
exp_gain_done:
return rc;
}
static int32_t vb6801_set_pict_exp_gain(uint16_t gain, uint32_t line)
{
vb6801_ctrl->pict_exp_update = 1;
return vb6801_write_exp_gain(gain, line);
}
static int32_t vb6801_power_down(void)
{
int32_t rc = 0;
rc = vb6801_i2c_write_b(REG_NVM_PDN, 0);
mdelay(5);
return rc;
}
static int32_t vb6801_go_to_position(uint32_t target_vcm_dac_code,
struct vb6801_sensor_info *ps)
{
/* Prior to running this function the following values must
* be initialised in the sensor data structure, PS
* ps->vcm_dac_code
* ps->vcm_max_dac_code_step
* ps->vcm_dac_code_spacing_ms */
int32_t rc = 0;
ps->vcm_dac_code = target_vcm_dac_code;
/* Restore Strobe to zero state */
rc = vb6801_i2c_write_b(REG_VCM_DAC_STROBE, 0x00);
if (rc < 0)
return rc;
/* Write 9-bit VCM DAC Code */
rc = vb6801_i2c_write_w(REG_VCM_DAC_CODE, ps->vcm_dac_code);
if (rc < 0)
return rc;
/* Generate a rising edge on the dac_strobe to latch
* new DAC value */
rc = vb6801_i2c_write_w(REG_VCM_DAC_STROBE, 0x01);
return rc;
}
static int32_t vb6801_move_focus(int direction, int32_t num_steps)
{
int16_t step_direction;
int16_t actual_step;
int16_t next_position;
uint32_t step_size;
int16_t small_move[4];
uint16_t i;
int32_t rc = 0;
step_size = (vb6801_ctrl->s_info.vcm_dac_code_macro_up -
vb6801_ctrl->s_info.vcm_dac_code_infinity_dn) /
VB6801_TOTAL_STEPS_NEAR_TO_FAR;
if (num_steps > VB6801_TOTAL_STEPS_NEAR_TO_FAR)
num_steps = VB6801_TOTAL_STEPS_NEAR_TO_FAR;
else if (num_steps == 0)
return -EINVAL;
if (direction == MOVE_NEAR)
step_direction = 4;
else if (direction == MOVE_FAR)
step_direction = -4;
else
return -EINVAL;
/* need to decide about default position and power supplied
* at start up and reset */
if (vb6801_ctrl->curr_lens_pos < vb6801_ctrl->init_curr_lens_pos)
vb6801_ctrl->curr_lens_pos = vb6801_ctrl->init_curr_lens_pos;
actual_step = (step_direction * num_steps);
next_position = vb6801_ctrl->curr_lens_pos;
for (i = 0; i < 4; i++) {
if (actual_step >= 0)
small_move[i] =
(i + 1) * actual_step / 4 - i * actual_step / 4;
if (actual_step < 0)
small_move[i] =
(i + 1) * actual_step / 4 - i * actual_step / 4;
}
if (next_position > 511)
next_position = 511;
else if (next_position < 0)
next_position = 0;
/* for damping */
for (i = 0; i < 4; i++) {
next_position =
(int16_t) (vb6801_ctrl->curr_lens_pos + small_move[i]);
/* Writing the digital code for current to the actuator */
CDBG("next_position in damping mode = %d\n", next_position);
rc = vb6801_go_to_position(next_position, &vb6801_ctrl->s_info);
if (rc < 0) {
CDBG("go_to_position Failed!!!\n");
return rc;
}
vb6801_ctrl->curr_lens_pos = next_position;
if (i < 3)
mdelay(5);
}
return rc;
}
static int vb6801_read_nvm_data(struct vb6801_sensor_info *ps)
{
/* +--------+------+------+----------------+---------------+
* | Index | NVM | NVM | Name | Description |
* | | Addr | Byte | | |
* +--------+------+------+----------------+---------------+
* | 0x3600 | 0 | 3 | nvm_t1_addr_00 | {PF[2:0]:Day[4:0]} |
* | 0x3601 | 0 | 2 | nvm_t1_addr_01 | {Month[3:0]:Year[3:0]} |
* | 0x3602 | 0 | 1 | nvm_t1_addr_02 | Tester[7:0] |
* | 0x3603 | 0 | 0 | nvm_t1_addr_03 | Part[15:8] |
* +--------+------+------+----------------+---------------+
* | 0x3604 | 1 | 3 | nvm_t1_addr_04 | Part[7:0] |
* | 0x3605 | 1 | 2 | nvm_t1_addr_05 | StartWPM[7:0] |
* | 0x3606 | 1 | 1 | nvm_t1_addr_06 | Infinity[7:0] |
* | 0x3607 | 1 | 0 | nvm_t1_addr_07 | Macro[7:0] |
* +--------+------+------+----------------+---------------+
* | 0x3608 | 2 | 3 | nvm_t1_addr_08 | Reserved |
* | 0x3609 | 2 | 2 | nvm_t1_addr_09 | Reserved |
* | 0x360A | 2 | 1 | nvm_t1_addr_0A | UpDown[7:0] |
* | 0x360B | 2 | 0 | nvm_t1_addr_0B | Reserved |
* +--------+------+------+----------------+---------------+
* | 0x360C | 3 | 3 | nvm_t1_addr_0C | Reserved |
* | 0x360D | 3 | 2 | nvm_t1_addr_0D | Reserved |
* | 0x360E | 3 | 1 | nvm_t1_addr_0E | Reserved |
* | 0x360F | 3 | 0 | nvm_t1_addr_0F | Reserved |
* +--------+------+------+----------------+---------------+
* | 0x3610 | 4 | 3 | nvm_t1_addr_10 | Reserved |
* | 0x3611 | 4 | 2 | nvm_t1_addr_11 | Reserved |
* | 0x3612 | 4 | 1 | nvm_t1_addr_12 | Reserved |
* | 0x3613 | 4 | 0 | nvm_t1_addr_13 | Reserved |
* +--------+------+------+----------------+---------------+*/
int32_t rc;
struct vb6801_i2c_reg_conf_t rreg[] = {
{REG_NVM_T1_ADDR_00, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_01, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_02, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_03, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_04, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_05, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_06, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_07, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_08, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_09, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_0A, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_0B, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_0C, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_0D, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_0E, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_0F, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_10, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_11, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_12, 0, 0, D_LEN_BYTE},
{REG_NVM_T1_ADDR_13, 0, 0, D_LEN_BYTE},
};
struct vb6801_i2c_reg_conf_t wreg[] = {
/* Enable NVM for Direct Reading */
{REG_NVM_CTRL, 0, 2, D_LEN_BYTE},
/* Power up NVM */
{REG_NVM_PDN, 0, 1, D_LEN_BYTE},
};
rc = vb6801_i2c_write_table(wreg, ARRAY_SIZE(wreg));
if (rc < 0) {
CDBG("I2C Write Table FAILED!!!\n");
return rc;
}
/* NVM Read Pulse Width
* ====================
* nvm_pulse_width_us = nvm_pulse_width_ext_clk / ext_clk_freq_mhz
* Valid Range for Read Pulse Width = 400ns -> 3.0us
* Min ext_clk_freq_mhz = 6MHz => 3.0 * 6 = 18
* Max ext_clk_freq_mhz = 27MHz => 0.4 * 27 = 10.8
* Choose 15 as a common value
* - 15 / 6.0 = 2.5000us
* - 15 / 12.0 = 1.2500us
* - 15 / 27.0 = 0.5555us */
rc = vb6801_i2c_write_w(REG_NVM_PULSE_WIDTH, 15);
if (rc < 0) {
rc = -EBUSY;
goto nv_shutdown;
}
rc = vb6801_i2c_read_table(rreg, ARRAY_SIZE(rreg));
if (rc < 0) {
CDBG("I2C Read Table FAILED!!!\n");
rc = -EBUSY;
goto nv_shutdown;
}
/* Decode and Save FMT Info */
ps->pass_fail = (rreg[0].bdata & 0x00E0) >> 5;
ps->day = (rreg[0].bdata & 0x001F);
ps->month = (rreg[1].bdata & 0x00F0) >> 4;
ps->year = (rreg[1].bdata & 0x000F) + 2000;
ps->tester = rreg[2].bdata;
ps->part_number = (rreg[3].bdata << 8) + rreg[4].bdata;
/* Decode and Save VCM Dac Values in data structure */
ps->vcm_dac_code_infinity_dn = rreg[6].bdata;
ps->vcm_dac_code_macro_up = rreg[7].bdata << 1;
ps->vcm_dac_code_up_dn_delta = rreg[10].bdata;
nv_shutdown:
/* Power Down NVM to extend life time */
rc = vb6801_i2c_write_b(REG_NVM_PDN, 0);
return rc;
}
static int vb6801_config_sensor(int32_t ext_clk_freq_mhz,
int32_t target_frame_rate_fps,
int32_t target_vt_pix_clk_freq_mhz,
uint32_t sub_sampling_factor,
uint32_t analog_binning_allowed,
uint32_t raw_mode, int capture_mode,
enum vb6801_resolution_t res)
{
uint32_t rc;
/* ext_clk_freq_mhz = 6.0 -> 27.0 MHz
* target_frame_rate_fps = 15 fps
* target_vt_pix_clk_freq_mhz = 24.0 -> 64.0MHz
* sub_sampling factor = 1, 2, 3, or 4
* raw_mode factor = 10
*
* capture_mode, 0 = CCP1
* capture_mode, 1 = CCP2
* capture_mode, 2 = 10-bit parallel + hsync + vsync */
/* Declare data format */
uint32_t ccp2_data_format = 0x0A0A;
/* Declare clock tree variables */
int32_t min_pll_ip_freq_mhz = 6;
int32_t max_pll_op_freq_mhz = 640;
uint32_t pre_pll_clk_div = 1;
int32_t pll_ip_freq_mhz = 6;
uint32_t pll_multiplier = 100;
int32_t pll_op_freq_mhz = 600;
uint32_t vt_sys_clk_div = 1;
int32_t vt_sys_clk_freq_mhz = 600;
uint32_t vt_pix_clk_div = 10;
int32_t vt_pix_clk_freq_mhz = 60;
uint32_t op_sys_clk_div = 1;
int32_t op_sys_clk_freq_mhz = 60;
uint32_t op_pix_clk_div = 10;
int32_t op_pix_clk_freq_mhz = 60;
/* Declare pixel array and frame timing variables */
uint32_t x_pixel_array = 2064;
uint32_t y_pixel_array = 1544;
uint32_t x_even_inc = 1;
uint32_t x_odd_inc = 1;
uint32_t y_even_inc = 1;
uint32_t y_odd_inc = 1;
uint32_t x_output_size = 2064;
uint32_t y_output_size = 1544;
uint32_t additional_rows = 2;
uint32_t min_vt_frame_blanking_lines = 16;
uint32_t vt_line_length_pck = 2500;
uint32_t vt_line_length_us = 0;
uint32_t min_vt_frame_length_lines = 1562;
uint32_t vt_frame_length_lines = 1600;
uint32_t target_vt_frame_length_ms; /* 200 * 0x0001000 / 3; */
uint32_t vt_frame_length_ms; /* 200 * 0x0001000 / 3; */
uint32_t frame_rate_fps = 15;
/* Coarse intergration time */
uint32_t coarse_integration_time = 1597;
uint32_t coarse_integration_time_max_margin = 3;
uint16_t frame_count;
int timeout;
struct vb6801_sensor_info *pinfo = &vb6801_ctrl->s_info;
struct vb6801_i2c_reg_conf_t rreg[] = {
{REG_PRE_PLL_CLK_DIV, 0, 0, D_LEN_WORD},
{REG_PLL_MULTIPLIER, 0, 0, D_LEN_WORD},
{REG_VT_SYS_CLK_DIV, 0, 0, D_LEN_WORD},
{REG_VT_PIX_CLK_DIV, 0, 0, D_LEN_WORD},
{REG_OP_SYS_CLK_DIV, 0, 0, D_LEN_WORD},
{REG_OP_PIX_CLK_DIV, 0, 0, D_LEN_WORD},
{REG_FRAME_COUNT, 0, 0, D_LEN_BYTE},
};
struct vb6801_i2c_reg_conf_t wreg2[] = {
{REG_POWER_MAN_ENABLE_3, 0, 95, D_LEN_BYTE},
{REG_POWER_MAN_ENABLE_4, 0, 142, D_LEN_BYTE},
{REG_POWER_MAN_ENABLE_5, 0, 7, D_LEN_BYTE},
};
/* VIDEO TIMING CALCULATIONS
* ========================= */
/* Pixel Array Size */
x_pixel_array = 2064;
y_pixel_array = 1544;
/* set current resolution */
vb6801_ctrl->curr_res = res;
/* Analogue binning setup */
if (pinfo->analog_binning_allowed > 0 &&
pinfo->sub_sampling_factor == 4) {
pinfo->vtiming_major = 1;
pinfo->analog_timing_modes_4 = 32;
} else if (pinfo->analog_binning_allowed > 0 &&
pinfo->sub_sampling_factor == 2) {
pinfo->vtiming_major = 1;
pinfo->analog_timing_modes_4 = 0;
} else {
pinfo->vtiming_major = 0;
pinfo->analog_timing_modes_4 = 0;
}
/* Sub-Sampling X & Y Odd Increments: valid values 1, 3, 5, 7 */
x_even_inc = 1;
y_even_inc = 1;
x_odd_inc = (sub_sampling_factor << 1) - x_even_inc;
y_odd_inc = (sub_sampling_factor << 1) - y_even_inc;
/* Output image size
* Must always be a multiple of 2 - round down */
x_output_size = ((x_pixel_array / sub_sampling_factor) >> 1) << 1;
y_output_size = ((y_pixel_array / sub_sampling_factor) >> 1) << 1;
/* Output data format */
ccp2_data_format = (raw_mode << 8) + raw_mode;
/* Pre PLL clock divider : valid values 1, 2 or 4
* The 1st step is to ensure that PLL input frequency is as close
* as possible to the min allowed PLL input frequency.
* This yields the smallest step size in the PLL output frequency. */
pre_pll_clk_div =
((int)(ext_clk_freq_mhz / min_pll_ip_freq_mhz) >> 1) << 1;
if (pre_pll_clk_div < 2)
pre_pll_clk_div = 1;
pll_ip_freq_mhz = ext_clk_freq_mhz / pre_pll_clk_div;
/* Video Timing System Clock divider: valid values 1, 2, 4
* Now need to work backwards through the clock tree to determine the
* 1st pass estimates for vt_sys_clk_freq_mhz and then the PLL output
* frequency.*/
vt_sys_clk_freq_mhz = vt_pix_clk_div * target_vt_pix_clk_freq_mhz;
vt_sys_clk_div = max_pll_op_freq_mhz / vt_sys_clk_freq_mhz;
if (vt_sys_clk_div < 2)
vt_sys_clk_div = 1;
/* PLL Mulitplier: min , max 106 */
pll_op_freq_mhz = vt_sys_clk_div * vt_sys_clk_freq_mhz;
pll_multiplier = (pll_op_freq_mhz * 0x0001000) / pll_ip_freq_mhz;
/* Calculate the acutal pll output frequency
* - the pll_multiplier calculation introduces a quantisation error
* due the integer nature of the pll multiplier */
pll_op_freq_mhz = (pll_ip_freq_mhz * pll_multiplier) / 0x0001000;
/* Re-calculate video timing clock frequencies based
* on actual PLL freq */
vt_sys_clk_freq_mhz = pll_op_freq_mhz / vt_sys_clk_div;
vt_pix_clk_freq_mhz = ((vt_sys_clk_freq_mhz * 0x0001000) /
vt_pix_clk_div)/0x0001000;
/* Output System Clock Divider: valid value 1, 2, 4, 6, 8
* op_sys_clk_div = vt_sys_clk_div;*/
op_sys_clk_div = (vt_sys_clk_div * sub_sampling_factor);
if (op_sys_clk_div < 2)
op_sys_clk_div = 1;
/* Calculate output timing clock frequencies */
op_sys_clk_freq_mhz = pll_op_freq_mhz / op_sys_clk_div;
op_pix_clk_freq_mhz =
(op_sys_clk_freq_mhz * 0x0001000) / (op_pix_clk_div * 0x0001000);
/* Line length in pixels and us */
vt_line_length_pck = 2500;
vt_line_length_us =
vt_line_length_pck * 0x0001000 / vt_pix_clk_freq_mhz;
/* Target vt_frame_length_ms */
target_vt_frame_length_ms = (1000 * 0x0001000 / target_frame_rate_fps);
/* Frame length in lines */
min_vt_frame_length_lines =
additional_rows + y_output_size + min_vt_frame_blanking_lines;
vt_frame_length_lines =
((1000 * target_vt_frame_length_ms) / vt_line_length_us);
if (vt_frame_length_lines <= min_vt_frame_length_lines)
vt_frame_length_lines = min_vt_frame_length_lines;
/* Calcuate the actual frame length in ms */
vt_frame_length_ms = (vt_frame_length_lines * vt_line_length_us / 1000);
/* Frame Rate in fps */
frame_rate_fps = (1000 * 0x0001000 / vt_frame_length_ms);
/* Set coarse integration to max */
coarse_integration_time =
vt_frame_length_lines - coarse_integration_time_max_margin;
CDBG("SENSOR VIDEO TIMING SUMMARY:\n");
CDBG(" ============================\n");
CDBG("ext_clk_freq_mhz = %d\n", ext_clk_freq_mhz);
CDBG("pre_pll_clk_div = %d\n", pre_pll_clk_div);
CDBG("pll_ip_freq_mhz = %d\n", pll_ip_freq_mhz);
CDBG("pll_multiplier = %d\n", pll_multiplier);
CDBG("pll_op_freq_mhz = %d\n", pll_op_freq_mhz);
CDBG("vt_sys_clk_div = %d\n", vt_sys_clk_div);
CDBG("vt_sys_clk_freq_mhz = %d\n", vt_sys_clk_freq_mhz);
CDBG("vt_pix_clk_div = %d\n", vt_pix_clk_div);
CDBG("vt_pix_clk_freq_mhz = %d\n", vt_pix_clk_freq_mhz);
CDBG("op_sys_clk_div = %d\n", op_sys_clk_div);
CDBG("op_sys_clk_freq_mhz = %d\n", op_sys_clk_freq_mhz);
CDBG("op_pix_clk_div = %d\n", op_pix_clk_div);
CDBG("op_pix_clk_freq_mhz = %d\n", op_pix_clk_freq_mhz);
CDBG("vt_line_length_pck = %d\n", vt_line_length_pck);
CDBG("vt_line_length_us = %d\n", vt_line_length_us/0x0001000);
CDBG("vt_frame_length_lines = %d\n", vt_frame_length_lines);
CDBG("vt_frame_length_ms = %d\n", vt_frame_length_ms/0x0001000);
CDBG("frame_rate_fps = %d\n", frame_rate_fps);
CDBG("ccp2_data_format = %d\n", ccp2_data_format);
CDBG("x_output_size = %d\n", x_output_size);
CDBG("y_output_size = %d\n", y_output_size);
CDBG("x_odd_inc = %d\n", x_odd_inc);
CDBG("y_odd_inc = %d\n", y_odd_inc);
CDBG("(vt_frame_length_lines * frame_rate_factor ) = %d\n",
(vt_frame_length_lines * vb6801_ctrl->factor_fps));
CDBG("coarse_integration_time = %d\n", coarse_integration_time);
CDBG("pinfo->vcm_dac_code = %d\n", pinfo->vcm_dac_code);
CDBG("capture_mode = %d\n", capture_mode);
/* RE-CONFIGURE SENSOR WITH NEW TIMINGS
* ====================================
* Enter Software Standby Mode */
rc = vb6801_i2c_write_b(REG_MODE_SELECT, 0);
if (rc < 0) {
CDBG("I2C vb6801_i2c_write_b FAILED!!!\n");
return rc;
}
/* Wait 100ms */
mdelay(100);
if (capture_mode == 0) {
rc = vb6801_i2c_write_b(REG_CCP2_CHANNEL_IDENTIFIER, 0);
rc = vb6801_i2c_write_b(REG_CCP2_SIGNALLING_MODE, 0);
} else if (capture_mode == 1) {
rc = vb6801_i2c_write_b(REG_CCP2_CHANNEL_IDENTIFIER, 0);
rc = vb6801_i2c_write_b(REG_CCP2_SIGNALLING_MODE, 1);
}
{
struct vb6801_i2c_reg_conf_t wreg[] = {
/* Re-configure Sensor */
{REG_CCP2_DATA_FORMAT, ccp2_data_format, 0,
D_LEN_WORD},
{REG_ANALOGUE_GAIN_CODE_GLOBAL, 128, 0, D_LEN_WORD},
{REG_PRE_PLL_CLK_DIV, pre_pll_clk_div, 0, D_LEN_WORD},
{REG_VT_SYS_CLK_DIV, vt_sys_clk_div, 0, D_LEN_WORD},
{REG_VT_PIX_CLK_DIV, vt_pix_clk_div, 0, D_LEN_WORD},
{REG_OP_SYS_CLK_DIV, vt_sys_clk_div, 0, D_LEN_WORD},
{REG_OP_PIX_CLK_DIV, vt_pix_clk_div, 0, D_LEN_WORD},
{REG_VT_LINE_LENGTH_PCK, vt_line_length_pck, 0,
D_LEN_WORD},
{REG_X_OUTPUT_SIZE, x_output_size, 0, D_LEN_WORD},
{REG_Y_OUTPUT_SIZE, y_output_size, 0, D_LEN_WORD},
{REG_X_ODD_INC, x_odd_inc, 0, D_LEN_WORD},
{REG_Y_ODD_INC, y_odd_inc, 0, D_LEN_WORD},
{REG_VT_FRAME_LENGTH_LINES,
vt_frame_length_lines * vb6801_ctrl->factor_fps, 0,
D_LEN_WORD},
{REG_COARSE_INTEGRATION_TIME,
coarse_integration_time, 0, D_LEN_WORD},
/* Analogue Settings */
{REG_ANALOG_TIMING_MODES_2, 0, 132, D_LEN_BYTE},
{REG_RAMP_SCALE, 0, 5, D_LEN_BYTE},
{REG_BTL_LEVEL_SETUP, 0, 11, D_LEN_BYTE},
/* Enable Defect Correction */
{REG_SCYTHE_ENABLE, 0, 1, D_LEN_BYTE},
{REG_SCYTHE_WEIGHT, 0, 16, D_LEN_BYTE},
{REG_BRUCE_ENABLE, 0, 1, D_LEN_BYTE},
/* Auto Focus Configuration
* Please note that the DAC Code is a written as a
* 16-bit value 0 = infinity (no DAC current) */
{REG_VCM_DAC_CODE, pinfo->vcm_dac_code, 0, D_LEN_WORD},
{REG_VCM_DAC_STROBE, 0, 0, D_LEN_BYTE},
{REG_VCM_DAC_ENABLE, 0, 1, D_LEN_BYTE},
};
rc = vb6801_i2c_write_table(wreg, ARRAY_SIZE(wreg));
if (rc < 0) {
CDBG("I2C Write Table FAILED!!!\n");
return rc;
}
}
/* Parallel Interface Configuration */
if (capture_mode >= 2) {
struct vb6801_i2c_reg_conf_t wreg1[] = {
{REG_OP_CODER_SYNC_CLK_SETUP, 0, 15, D_LEN_BYTE},
{REG_OP_CODER_ENABLE, 0, 3, D_LEN_BYTE},
{REG_OP_CODER_SLOW_PAD_EN, 0, 1, D_LEN_BYTE},
{REG_OP_CODER_AUTOMATIC_MODE_ENABLE, 0, 3, D_LEN_BYTE},
{REG_OP_CODER_AUTO_STARTUP, 0, 2, D_LEN_BYTE},
};
rc = vb6801_i2c_write_table(wreg1, ARRAY_SIZE(wreg1));
if (rc < 0) {
CDBG("I2C Write Table FAILED!!!\n");
return rc;
}
}
/* Enter Streaming Mode */
rc = vb6801_i2c_write_b(REG_MODE_SELECT, 1);
if (rc < 0) {
CDBG("I2C Write Table FAILED!!!\n");
return rc;
}
/* Wait until the sensor starts streaming
* Poll until the reported frame_count value is != 0xFF */
frame_count = 0xFF;
timeout = 2000;
while (frame_count == 0xFF && timeout > 0) {
rc = vb6801_i2c_read(REG_FRAME_COUNT, &frame_count, 1);
if (rc < 0)
return rc;
CDBG("REG_FRAME_COUNT = 0x%x\n", frame_count);
timeout--;
}
/* Post Streaming Configuration */
rc = vb6801_i2c_write_table(wreg2, ARRAY_SIZE(wreg2));
if (rc < 0) {
CDBG("I2C Write Table FAILED!!!\n");
return rc;
}
rc = vb6801_i2c_read_table(rreg, ARRAY_SIZE(rreg));
if (rc < 0) {
CDBG("I2C Read Table FAILED!!!\n");
return rc;
}
CDBG("REG_PRE_PLL_CLK_DIV = 0x%x\n", rreg[0].wdata);
CDBG("REG_PLL_MULTIPLIER = 0x%x\n", rreg[1].wdata);
CDBG("REG_VT_SYS_CLK_DIV = 0x%x\n", rreg[2].wdata);
CDBG("REG_VT_PIX_CLK_DIV = 0x%x\n", rreg[3].wdata);
CDBG("REG_OP_SYS_CLK_DIV = 0x%x\n", rreg[4].wdata);
CDBG("REG_OP_PIX_CLK_DIV = 0x%x\n", rreg[5].wdata);
CDBG("REG_FRAME_COUNT = 0x%x\n", rreg[6].bdata);
mdelay(50);
frame_count = 0;
rc = vb6801_i2c_read(REG_FRAME_COUNT, &frame_count, 1);
CDBG("REG_FRAME_COUNT1 = 0x%x\n", frame_count);
mdelay(150);
frame_count = 0;
rc = vb6801_i2c_read(REG_FRAME_COUNT, &frame_count, 1);
CDBG("REG_FRAME_COUNT2 = 0x%x\n", frame_count);
mdelay(100);
frame_count = 0;
rc = vb6801_i2c_read(REG_FRAME_COUNT, &frame_count, 1);
CDBG("REG_FRAME_COUNT3 = 0x%x\n", frame_count);
mdelay(250);
frame_count = 0;
rc = vb6801_i2c_read(REG_FRAME_COUNT, &frame_count, 1);
CDBG("REG_FRAME_COUNT4 = 0x%x\n", frame_count);
return rc;
}
static int vb6801_sensor_init_done(const struct msm_camera_sensor_info *data)
{
gpio_direction_output(data->sensor_reset, 0);
gpio_free(data->sensor_reset);
return 0;
}
static int vb6801_init_client(struct i2c_client *client)
{
/* Initialize the MSM_CAMI2C Chip */
init_waitqueue_head(&vb6801_wait_queue);
return 0;
}
static int32_t vb6801_video_config(int mode, int res)
{
int32_t rc = 0;
vb6801_ctrl->prev_res = res;
vb6801_ctrl->curr_res = res;
vb6801_ctrl->sensormode = mode;
rc = vb6801_config_sensor(12, 30, 60, 2, 1, 10, 2, RES_PREVIEW);
if (rc < 0)
return rc;
rc = vb6801_i2c_read(REG_VT_LINE_LENGTH_PCK,
&vb6801_ctrl->s_dynamic_params.
preview_pixelsPerLine, 2);
if (rc < 0)
return rc;
rc = vb6801_i2c_read(REG_VT_LINE_LENGTH_PCK,
&vb6801_ctrl->s_dynamic_params.
preview_linesPerFrame, 2);
return rc;
}
static int32_t vb6801_snapshot_config(int mode, int res)
{
int32_t rc = 0;
vb6801_ctrl->curr_res = vb6801_ctrl->pict_res;
vb6801_ctrl->sensormode = mode;
rc = vb6801_config_sensor(12, 12, 48, 1, 1, 10, 2, RES_CAPTURE);
if (rc < 0)
return rc;
rc = vb6801_i2c_read(REG_VT_LINE_LENGTH_PCK,
&vb6801_ctrl->s_dynamic_params.
snapshot_pixelsPerLine, 2);
if (rc < 0)
return rc;
rc = vb6801_i2c_read(REG_VT_LINE_LENGTH_PCK,
&vb6801_ctrl->s_dynamic_params.
snapshot_linesPerFrame, 2);
return rc;
}
static int32_t vb6801_set_sensor_mode(int mode, int res)
{
int32_t rc = 0;
switch (mode) {
case SENSOR_PREVIEW_MODE:
rc = vb6801_video_config(mode, res);
break;
case SENSOR_SNAPSHOT_MODE:
case SENSOR_RAW_SNAPSHOT_MODE:
rc = vb6801_snapshot_config(mode, res);
break;
default:
rc = -EINVAL;
break;
}
return rc;
}
int vb6801_sensor_config(void __user *argp)
{
struct sensor_cfg_data cdata;
long rc = 0;
if (copy_from_user(&cdata,
(void *)argp, sizeof(struct sensor_cfg_data)))
return -EFAULT;
mutex_lock(&vb6801_mut);
CDBG("vb6801_sensor_config, cfgtype = %d\n", cdata.cfgtype);
switch (cdata.cfgtype) {
case CFG_GET_PICT_FPS:
vb6801_get_pict_fps(cdata.cfg.gfps.prevfps,
&(cdata.cfg.gfps.pictfps));
if (copy_to_user((void *)argp,
&cdata, sizeof(struct sensor_cfg_data)))
rc = -EFAULT;
break;
case CFG_GET_PREV_L_PF:
cdata.cfg.prevl_pf = vb6801_get_prev_lines_pf();
if (copy_to_user((void *)argp,
&cdata, sizeof(struct sensor_cfg_data)))
rc = -EFAULT;
break;
case CFG_GET_PREV_P_PL:
cdata.cfg.prevp_pl = vb6801_get_prev_pixels_pl();
if (copy_to_user((void *)argp,
&cdata, sizeof(struct sensor_cfg_data)))
rc = -EFAULT;
break;
case CFG_GET_PICT_L_PF:
cdata.cfg.pictl_pf = vb6801_get_pict_lines_pf();
if (copy_to_user((void *)argp,
&cdata, sizeof(struct sensor_cfg_data)))
rc = -EFAULT;
break;
case CFG_GET_PICT_P_PL:
cdata.cfg.pictp_pl = vb6801_get_pict_pixels_pl();
if (copy_to_user((void *)argp,
&cdata, sizeof(struct sensor_cfg_data)))
rc = -EFAULT;
break;
case CFG_GET_PICT_MAX_EXP_LC:
cdata.cfg.pict_max_exp_lc = vb6801_get_pict_max_exp_lc();
if (copy_to_user((void *)argp,
&cdata, sizeof(struct sensor_cfg_data)))
rc = -EFAULT;
break;
case CFG_SET_FPS:
case CFG_SET_PICT_FPS:
rc = vb6801_set_fps(&(cdata.cfg.fps));
break;
case CFG_SET_EXP_GAIN:
rc = vb6801_write_exp_gain(cdata.cfg.exp_gain.gain,
cdata.cfg.exp_gain.line);
break;
case CFG_SET_PICT_EXP_GAIN:
rc = vb6801_set_pict_exp_gain(cdata.cfg.exp_gain.gain,
cdata.cfg.exp_gain.line);
break;
case CFG_SET_MODE:
rc = vb6801_set_sensor_mode(cdata.mode, cdata.rs);
break;
case CFG_PWR_DOWN:
rc = vb6801_power_down();
break;
case CFG_MOVE_FOCUS:
rc = vb6801_move_focus(cdata.cfg.focus.dir,
cdata.cfg.focus.steps);
break;
case CFG_SET_DEFAULT_FOCUS:
rc = vb6801_set_default_focus();
break;
default:
rc = -EFAULT;
break;
}
mutex_unlock(&vb6801_mut);
return rc;
}
static int vb6801_sensor_release(void)
{
int rc = -EBADF;
mutex_lock(&vb6801_mut);
vb6801_power_down();
vb6801_sensor_init_done(vb6801_ctrl->sensordata);
kfree(vb6801_ctrl);
mutex_unlock(&vb6801_mut);
return rc;
}
static int vb6801_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int rc = 0;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
rc = -ENOTSUPP;
goto probe_failure;
}
vb6801_sensorw = kzalloc(sizeof(struct vb6801_work_t), GFP_KERNEL);
if (!vb6801_sensorw) {
rc = -ENOMEM;
goto probe_failure;
}
i2c_set_clientdata(client, vb6801_sensorw);
vb6801_init_client(client);
vb6801_client = client;
vb6801_client->addr = vb6801_client->addr >> 1;
return 0;
probe_failure:
if (vb6801_sensorw != NULL) {
kfree(vb6801_sensorw);
vb6801_sensorw = NULL;
}
return rc;
}
static int __exit vb6801_i2c_remove(struct i2c_client *client)
{
struct vb6801_work_t *sensorw = i2c_get_clientdata(client);
free_irq(client->irq, sensorw);
vb6801_client = NULL;
kfree(sensorw);
return 0;
}
static const struct i2c_device_id vb6801_i2c_id[] = {
{"vb6801", 0},
{}
};
static struct i2c_driver vb6801_i2c_driver = {
.id_table = vb6801_i2c_id,
.probe = vb6801_i2c_probe,
.remove = __exit_p(vb6801_i2c_remove),
.driver = {
.name = "vb6801",
},
};
static int vb6801_probe_init_sensor(const struct msm_camera_sensor_info *data)
{
int rc;
struct vb6801_i2c_reg_conf_t rreg[] = {
{0x0000, 0, 0, D_LEN_BYTE},
{0x0001, 0, 0, D_LEN_BYTE},
};
rc = vb6801_reset(data);
if (rc < 0)
goto init_probe_done;
mdelay(20);
rc = vb6801_i2c_read_table(rreg, ARRAY_SIZE(rreg));
if (rc < 0) {
CDBG("I2C Read Table FAILED!!!\n");
goto init_probe_fail;
}
/* 4. Compare sensor ID to VB6801 ID: */
if (rreg[0].bdata != 0x03 || rreg[1].bdata != 0x53) {
CDBG("vb6801_sensor_init: sensor ID don't match!\n");
goto init_probe_fail;
}
goto init_probe_done;
init_probe_fail:
vb6801_sensor_init_done(data);
init_probe_done:
return rc;
}
int vb6801_sensor_open_init(const struct msm_camera_sensor_info *data)
{
int32_t rc;
struct vb6801_i2c_reg_conf_t wreg[] = {
{REG_MODE_SELECT, 0, STANDBY_MODE, D_LEN_BYTE},
{0x0113, 0, 0x0A, D_LEN_BYTE},
};
vb6801_ctrl = kzalloc(sizeof(struct vb6801_ctrl_t), GFP_KERNEL);
if (!vb6801_ctrl) {
rc = -ENOMEM;
goto open_init_fail1;
}
vb6801_ctrl->factor_fps = 1 /** 0x00000400*/ ;
vb6801_ctrl->curr_fps = 7680; /* 30 * Q8 */ ;
vb6801_ctrl->max_fps = 7680; /* 30 * Q8 */ ;
vb6801_ctrl->pict_exp_update = 0; /* 30 * Q8 */ ;
vb6801_ctrl->reducel = 0; /* 30 * Q8 */ ;
vb6801_ctrl->set_test = TEST_OFF;
vb6801_ctrl->prev_res = QTR_SIZE;
vb6801_ctrl->pict_res = FULL_SIZE;
vb6801_ctrl->s_dynamic_params.preview_linesPerFrame =
VB6801_LINES_PER_FRAME_PREVIEW;
vb6801_ctrl->s_dynamic_params.preview_pixelsPerLine =
VB6801_PIXELS_PER_LINE_PREVIEW;
vb6801_ctrl->s_dynamic_params.snapshot_linesPerFrame =
VB6801_LINES_PER_FRAME_SNAPSHOT;
vb6801_ctrl->s_dynamic_params.snapshot_pixelsPerLine =
VB6801_PIXELS_PER_LINE_SNAPSHOT;
if (data)
vb6801_ctrl->sensordata = data;
/* enable mclk first */
msm_camio_clk_rate_set(VB6801_DEFAULT_CLOCK_RATE);
mdelay(20);
rc = vb6801_reset(data);
if (rc < 0)
goto open_init_fail1;
rc = vb6801_i2c_write_table(wreg, ARRAY_SIZE(wreg));
if (rc < 0) {
CDBG("I2C Write Table FAILED!!!\n");
goto open_init_fail2;
}
rc = vb6801_read_nvm_data(&vb6801_ctrl->s_info);
if (rc < 0) {
CDBG("vb6801_read_nvm_data FAILED!!!\n");
goto open_init_fail2;
}
mdelay(66);
rc = vb6801_config_sensor(12, 30, 60, 2, 1, 10, 2, RES_PREVIEW);
if (rc < 0)
goto open_init_fail2;
goto open_init_done;
open_init_fail2:
vb6801_sensor_init_done(data);
open_init_fail1:
kfree(vb6801_ctrl);
open_init_done:
return rc;
}
static int vb6801_sensor_probe(const struct msm_camera_sensor_info *info,
struct msm_sensor_ctrl *s)
{
int rc = i2c_add_driver(&vb6801_i2c_driver);
if (rc < 0 || vb6801_client == NULL) {
rc = -ENOTSUPP;
goto probe_done;
}
/* enable mclk first */
msm_camio_clk_rate_set(VB6801_DEFAULT_CLOCK_RATE);
mdelay(20);
rc = vb6801_probe_init_sensor(info);
if (rc < 0)
goto probe_done;
s->s_init = vb6801_sensor_open_init;
s->s_release = vb6801_sensor_release;
s->s_config = vb6801_sensor_config;
s->s_mount_angle = 0;
vb6801_sensor_init_done(info);
probe_done:
return rc;
}
static int __vb6801_probe(struct platform_device *pdev)
{
return msm_camera_drv_start(pdev, vb6801_sensor_probe);
}
static struct platform_driver msm_camera_driver = {
.probe = __vb6801_probe,
.driver = {
.name = "msm_camera_vb6801",
.owner = THIS_MODULE,
},
};
static int __init vb6801_init(void)
{
return platform_driver_register(&msm_camera_driver);
}
module_init(vb6801_init);
void vb6801_exit(void)
{
i2c_del_driver(&vb6801_i2c_driver);
}