M7350/kernel/drivers/gpu/msm/kgsl_iommu.c

2038 lines
56 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/types.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/spinlock.h>
#include <linux/genalloc.h>
#include <linux/slab.h>
#include <linux/iommu.h>
#include <linux/msm_kgsl.h>
#include <mach/socinfo.h>
#include <mach/msm_iomap.h>
#include <mach/board.h>
#include <mach/iommu_domains.h>
#include <stddef.h>
#include "kgsl.h"
#include "kgsl_device.h"
#include "kgsl_mmu.h"
#include "kgsl_sharedmem.h"
#include "kgsl_iommu.h"
#include "adreno_pm4types.h"
#include "adreno.h"
#include "kgsl_trace.h"
#include "z180.h"
#include "kgsl_cffdump.h"
static struct kgsl_iommu_register_list kgsl_iommuv0_reg[KGSL_IOMMU_REG_MAX] = {
{ 0, 0 }, /* GLOBAL_BASE */
{ 0x10, 1 }, /* TTBR0 */
{ 0x14, 1 }, /* TTBR1 */
{ 0x20, 1 }, /* FSR */
{ 0x800, 1 }, /* TLBIALL */
{ 0x820, 1 }, /* RESUME */
{ 0x03C, 1 }, /* TLBLKCR */
{ 0x818, 1 }, /* V2PUR */
{ 0x2C, 1 }, /* FSYNR0 */
{ 0x30, 1 }, /* FSYNR1 */
{ 0, 0 }, /* TLBSYNC, not in v0 */
{ 0, 0 }, /* TLBSTATUS, not in v0 */
{ 0, 0 } /* IMPLDEF_MICRO_MMU_CRTL, not in v0 */
};
static struct kgsl_iommu_register_list kgsl_iommuv1_reg[KGSL_IOMMU_REG_MAX] = {
{ 0, 0 }, /* GLOBAL_BASE */
{ 0x20, 1 }, /* TTBR0 */
{ 0x28, 1 }, /* TTBR1 */
{ 0x58, 1 }, /* FSR */
{ 0x618, 1 }, /* TLBIALL */
{ 0x008, 1 }, /* RESUME */
{ 0, 0 }, /* TLBLKCR not in V1 */
{ 0, 0 }, /* V2PUR not in V1 */
{ 0x68, 0 }, /* FSYNR0 */
{ 0x6C, 0 }, /* FSYNR1 */
{ 0x7F0, 1 }, /* TLBSYNC */
{ 0x7F4, 1 }, /* TLBSTATUS */
{ 0x2000, 0 } /* IMPLDEF_MICRO_MMU_CRTL */
};
static struct iommu_access_ops *iommu_access_ops;
static void _iommu_lock(void)
{
if (iommu_access_ops && iommu_access_ops->iommu_lock_acquire)
iommu_access_ops->iommu_lock_acquire();
}
static void _iommu_unlock(void)
{
if (iommu_access_ops && iommu_access_ops->iommu_lock_release)
iommu_access_ops->iommu_lock_release();
}
struct remote_iommu_petersons_spinlock kgsl_iommu_sync_lock_vars;
/*
* One page allocation for a guard region to protect against over-zealous
* GPU pre-fetch
*/
static struct page *kgsl_guard_page;
static int get_iommu_unit(struct device *dev, struct kgsl_mmu **mmu_out,
struct kgsl_iommu_unit **iommu_unit_out)
{
int i, j, k;
for (i = 0; i < KGSL_DEVICE_MAX; i++) {
struct kgsl_mmu *mmu;
struct kgsl_iommu *iommu;
if (kgsl_driver.devp[i] == NULL)
continue;
mmu = kgsl_get_mmu(kgsl_driver.devp[i]);
if (mmu == NULL || mmu->priv == NULL)
continue;
iommu = mmu->priv;
for (j = 0; j < iommu->unit_count; j++) {
struct kgsl_iommu_unit *iommu_unit =
&iommu->iommu_units[j];
for (k = 0; k < iommu_unit->dev_count; k++) {
if (iommu_unit->dev[k].dev == dev) {
*mmu_out = mmu;
*iommu_unit_out = iommu_unit;
return 0;
}
}
}
}
return -EINVAL;
}
static struct kgsl_iommu_device *get_iommu_device(struct kgsl_iommu_unit *unit,
struct device *dev)
{
int k;
for (k = 0; unit && k < unit->dev_count; k++) {
if (unit->dev[k].dev == dev)
return &(unit->dev[k]);
}
return NULL;
}
/* These functions help find the nearest allocated memory entries on either side
* of a faulting address. If we know the nearby allocations memory we can
* get a better determination of what we think should have been located in the
* faulting region
*/
/*
* A local structure to make it easy to store the interesting bits for the
* memory entries on either side of the faulting address
*/
struct _mem_entry {
unsigned int gpuaddr;
unsigned int size;
unsigned int flags;
unsigned int priv;
pid_t pid;
};
/*
* Find the closest alloated memory block with an smaller GPU address then the
* given address
*/
static void _prev_entry(struct kgsl_process_private *priv,
unsigned int faultaddr, struct _mem_entry *ret)
{
struct rb_node *node;
struct kgsl_mem_entry *entry;
for (node = rb_first(&priv->mem_rb); node; ) {
entry = rb_entry(node, struct kgsl_mem_entry, node);
if (entry->memdesc.gpuaddr > faultaddr)
break;
/*
* If this is closer to the faulting address, then copy
* the entry
*/
if (entry->memdesc.gpuaddr > ret->gpuaddr) {
ret->gpuaddr = entry->memdesc.gpuaddr;
ret->size = entry->memdesc.size;
ret->flags = entry->memdesc.flags;
ret->priv = entry->memdesc.priv;
ret->pid = priv->pid;
}
node = rb_next(&entry->node);
}
}
/*
* Find the closest alloated memory block with a greater starting GPU address
* then the given address
*/
static void _next_entry(struct kgsl_process_private *priv,
unsigned int faultaddr, struct _mem_entry *ret)
{
struct rb_node *node;
struct kgsl_mem_entry *entry;
for (node = rb_last(&priv->mem_rb); node; ) {
entry = rb_entry(node, struct kgsl_mem_entry, node);
if (entry->memdesc.gpuaddr < faultaddr)
break;
/*
* If this is closer to the faulting address, then copy
* the entry
*/
if (entry->memdesc.gpuaddr < ret->gpuaddr) {
ret->gpuaddr = entry->memdesc.gpuaddr;
ret->size = entry->memdesc.size;
ret->flags = entry->memdesc.flags;
ret->priv = entry->memdesc.priv;
ret->pid = priv->pid;
}
node = rb_prev(&entry->node);
}
}
static void _find_mem_entries(struct kgsl_mmu *mmu, unsigned int faultaddr,
unsigned int ptbase, struct _mem_entry *preventry,
struct _mem_entry *nextentry)
{
struct kgsl_process_private *private;
int id = kgsl_mmu_get_ptname_from_ptbase(mmu, ptbase);
memset(preventry, 0, sizeof(*preventry));
memset(nextentry, 0, sizeof(*nextentry));
/* Set the maximum possible size as an initial value */
nextentry->gpuaddr = 0xFFFFFFFF;
mutex_lock(&kgsl_driver.process_mutex);
list_for_each_entry(private, &kgsl_driver.process_list, list) {
if (private->pagetable && (private->pagetable->name != id))
continue;
spin_lock(&private->mem_lock);
_prev_entry(private, faultaddr, preventry);
_next_entry(private, faultaddr, nextentry);
spin_unlock(&private->mem_lock);
}
mutex_unlock(&kgsl_driver.process_mutex);
}
static void _print_entry(struct kgsl_device *device, struct _mem_entry *entry)
{
char name[32];
memset(name, 0, sizeof(name));
kgsl_get_memory_usage(name, sizeof(name) - 1, entry->flags);
KGSL_LOG_DUMP(device,
"[%8.8X - %8.8X] %s (pid = %d) (%s)\n",
entry->gpuaddr,
entry->gpuaddr + entry->size,
entry->priv & KGSL_MEMDESC_GUARD_PAGE ? "(+guard)" : "",
entry->pid, name);
}
static void _check_if_freed(struct kgsl_iommu_device *iommu_dev,
unsigned long addr, unsigned int pid)
{
void *base = kgsl_driver.memfree_hist.base_hist_rb;
struct kgsl_memfree_hist_elem *wptr;
struct kgsl_memfree_hist_elem *p;
char name[32];
memset(name, 0, sizeof(name));
mutex_lock(&kgsl_driver.memfree_hist_mutex);
wptr = kgsl_driver.memfree_hist.wptr;
p = wptr;
for (;;) {
if (p->size && p->pid == pid)
if (addr >= p->gpuaddr &&
addr < (p->gpuaddr + p->size)) {
kgsl_get_memory_usage(name, sizeof(name) - 1,
p->flags),
KGSL_LOG_DUMP(iommu_dev->kgsldev,
"---- premature free ----\n");
KGSL_LOG_DUMP(iommu_dev->kgsldev,
"[%8.8X-%8.8X] (%s) was already freed by pid %d\n",
p->gpuaddr,
p->gpuaddr + p->size,
name,
p->pid);
}
p++;
if ((void *)p >= base + kgsl_driver.memfree_hist.size)
p = (struct kgsl_memfree_hist_elem *) base;
if (p == kgsl_driver.memfree_hist.wptr)
break;
}
mutex_unlock(&kgsl_driver.memfree_hist_mutex);
}
static int kgsl_iommu_fault_handler(struct iommu_domain *domain,
struct device *dev, unsigned long addr, int flags, void *token)
{
int ret = 0;
struct kgsl_mmu *mmu;
struct kgsl_iommu *iommu;
struct kgsl_iommu_unit *iommu_unit;
struct kgsl_iommu_device *iommu_dev;
unsigned int ptbase, fsr;
unsigned int pid;
struct _mem_entry prev, next;
unsigned int fsynr0, fsynr1;
int write;
struct kgsl_device *device;
struct adreno_device *adreno_dev;
unsigned int no_page_fault_log = 0;
unsigned int curr_context_id = 0;
unsigned int curr_global_ts = 0;
static struct adreno_context *curr_context;
static struct kgsl_context *context;
ret = get_iommu_unit(dev, &mmu, &iommu_unit);
if (ret)
goto done;
iommu_dev = get_iommu_device(iommu_unit, dev);
if (!iommu_dev) {
KGSL_CORE_ERR("Invalid IOMMU device %p\n", dev);
ret = -ENOSYS;
goto done;
}
iommu = mmu->priv;
device = mmu->device;
adreno_dev = ADRENO_DEVICE(device);
ptbase = KGSL_IOMMU_GET_CTX_REG(iommu, iommu_unit,
iommu_dev->ctx_id, TTBR0);
fsr = KGSL_IOMMU_GET_CTX_REG(iommu, iommu_unit,
iommu_dev->ctx_id, FSR);
fsynr0 = KGSL_IOMMU_GET_CTX_REG(iommu, iommu_unit,
iommu_dev->ctx_id, FSYNR0);
fsynr1 = KGSL_IOMMU_GET_CTX_REG(iommu, iommu_unit,
iommu_dev->ctx_id, FSYNR1);
if (msm_soc_version_supports_iommu_v0())
write = ((fsynr1 & (KGSL_IOMMU_FSYNR1_AWRITE_MASK <<
KGSL_IOMMU_FSYNR1_AWRITE_SHIFT)) ? 1 : 0);
else
write = ((fsynr0 & (KGSL_IOMMU_V1_FSYNR0_WNR_MASK <<
KGSL_IOMMU_V1_FSYNR0_WNR_SHIFT)) ? 1 : 0);
pid = kgsl_mmu_get_ptname_from_ptbase(mmu, ptbase);
if (adreno_dev->ft_pf_policy & KGSL_FT_PAGEFAULT_LOG_ONE_PER_PAGE)
no_page_fault_log = kgsl_mmu_log_fault_addr(mmu, ptbase, addr);
if (!no_page_fault_log) {
KGSL_MEM_CRIT(iommu_dev->kgsldev,
"GPU PAGE FAULT: addr = %lX pid = %d\n", addr, pid);
KGSL_MEM_CRIT(iommu_dev->kgsldev,
"context = %d FSR = %X FSYNR0 = %X FSYNR1 = %X(%s fault)\n",
iommu_dev->ctx_id, fsr, fsynr0, fsynr1,
write ? "write" : "read");
_check_if_freed(iommu_dev, addr, pid);
KGSL_LOG_DUMP(iommu_dev->kgsldev, "---- nearby memory ----\n");
_find_mem_entries(mmu, addr, ptbase, &prev, &next);
if (prev.gpuaddr)
_print_entry(iommu_dev->kgsldev, &prev);
else
KGSL_LOG_DUMP(iommu_dev->kgsldev, "*EMPTY*\n");
KGSL_LOG_DUMP(iommu_dev->kgsldev, " <- fault @ %8.8lX\n", addr);
if (next.gpuaddr != 0xFFFFFFFF)
_print_entry(iommu_dev->kgsldev, &next);
else
KGSL_LOG_DUMP(iommu_dev->kgsldev, "*EMPTY*\n");
}
mmu->fault = 1;
iommu_dev->fault = 1;
kgsl_sharedmem_readl(&device->memstore, &curr_context_id,
KGSL_MEMSTORE_OFFSET(KGSL_MEMSTORE_GLOBAL, current_context));
context = idr_find(&device->context_idr, curr_context_id);
if (context != NULL) {
curr_context = context->devctxt;
kgsl_sharedmem_readl(&device->memstore, &curr_global_ts,
KGSL_MEMSTORE_OFFSET(KGSL_MEMSTORE_GLOBAL,
eoptimestamp));
/*
* Store pagefault's timestamp in adreno context,
* this information will be used in GFT
*/
curr_context->pagefault = 1;
curr_context->pagefault_ts = curr_global_ts;
}
trace_kgsl_mmu_pagefault(iommu_dev->kgsldev, addr,
kgsl_mmu_get_ptname_from_ptbase(mmu, ptbase),
write ? "write" : "read");
/*
* We do not want the h/w to resume fetching data from an iommu unit
* that has faulted, this is better for debugging as it will stall
* the GPU and trigger a snapshot. To stall the transaction return
* EBUSY error.
*/
if (adreno_dev->ft_pf_policy & KGSL_FT_PAGEFAULT_GPUHALT_ENABLE)
ret = -EBUSY;
done:
return ret;
}
/*
* kgsl_iommu_disable_clk - Disable iommu clocks
* @mmu - Pointer to mmu structure
*
* Disables iommu clocks
* Return - void
*/
static void kgsl_iommu_disable_clk(struct kgsl_mmu *mmu)
{
struct kgsl_iommu *iommu = mmu->priv;
struct msm_iommu_drvdata *iommu_drvdata;
int i, j;
for (i = 0; i < iommu->unit_count; i++) {
struct kgsl_iommu_unit *iommu_unit = &iommu->iommu_units[i];
for (j = 0; j < iommu_unit->dev_count; j++) {
if (!iommu_unit->dev[j].clk_enabled)
continue;
iommu_drvdata = dev_get_drvdata(
iommu_unit->dev[j].dev->parent);
if (iommu_drvdata->aclk)
clk_disable_unprepare(iommu_drvdata->aclk);
if (iommu_drvdata->clk)
clk_disable_unprepare(iommu_drvdata->clk);
clk_disable_unprepare(iommu_drvdata->pclk);
iommu_unit->dev[j].clk_enabled = false;
}
}
}
/*
* kgsl_iommu_disable_clk_event - An event function that is executed when
* the required timestamp is reached. It disables the IOMMU clocks if
* the timestamp on which the clocks can be disabled has expired.
* @device - The kgsl device pointer
* @data - The data passed during event creation, it is the MMU pointer
* @id - Context ID, should always be KGSL_MEMSTORE_GLOBAL
* @ts - The current timestamp that has expired for the device
*
* Disables IOMMU clocks if timestamp has expired
* Return - void
*/
static void kgsl_iommu_clk_disable_event(struct kgsl_device *device, void *data,
unsigned int id, unsigned int ts)
{
struct kgsl_mmu *mmu = data;
struct kgsl_iommu *iommu = mmu->priv;
if (!iommu->clk_event_queued) {
if (0 > timestamp_cmp(ts, iommu->iommu_last_cmd_ts))
KGSL_DRV_ERR(device,
"IOMMU disable clock event being cancelled, "
"iommu_last_cmd_ts: %x, retired ts: %x\n",
iommu->iommu_last_cmd_ts, ts);
return;
}
if (0 <= timestamp_cmp(ts, iommu->iommu_last_cmd_ts)) {
kgsl_iommu_disable_clk(mmu);
iommu->clk_event_queued = false;
} else {
/* add new event to fire when ts is reached, this can happen
* if we queued an event and someone requested the clocks to
* be disbaled on a later timestamp */
if (kgsl_add_event(device, id, iommu->iommu_last_cmd_ts,
kgsl_iommu_clk_disable_event, mmu, mmu)) {
KGSL_DRV_ERR(device,
"Failed to add IOMMU disable clk event\n");
iommu->clk_event_queued = false;
}
}
}
/*
* kgsl_iommu_disable_clk_on_ts - Sets up event to disable IOMMU clocks
* @mmu - The kgsl MMU pointer
* @ts - Timestamp on which the clocks should be disabled
* @ts_valid - Indicates whether ts parameter is valid, if this parameter
* is false then it means that the calling function wants to disable the
* IOMMU clocks immediately without waiting for any timestamp
*
* Creates an event to disable the IOMMU clocks on timestamp and if event
* already exists then updates the timestamp of disabling the IOMMU clocks
* with the passed in ts if it is greater than the current value at which
* the clocks will be disabled
* Return - void
*/
static void
kgsl_iommu_disable_clk_on_ts(struct kgsl_mmu *mmu, unsigned int ts,
bool ts_valid)
{
struct kgsl_iommu *iommu = mmu->priv;
if (iommu->clk_event_queued) {
if (ts_valid && (0 <
timestamp_cmp(ts, iommu->iommu_last_cmd_ts)))
iommu->iommu_last_cmd_ts = ts;
} else {
if (ts_valid) {
iommu->iommu_last_cmd_ts = ts;
iommu->clk_event_queued = true;
if (kgsl_add_event(mmu->device, KGSL_MEMSTORE_GLOBAL,
ts, kgsl_iommu_clk_disable_event, mmu, mmu)) {
KGSL_DRV_ERR(mmu->device,
"Failed to add IOMMU disable clk event\n");
iommu->clk_event_queued = false;
}
} else {
kgsl_iommu_disable_clk(mmu);
}
}
}
/*
* kgsl_iommu_enable_clk - Enable iommu clocks
* @mmu - Pointer to mmu structure
* @ctx_id - The context bank whose clocks are to be turned on
*
* Enables iommu clocks of a given context
* Return: 0 on success else error code
*/
static int kgsl_iommu_enable_clk(struct kgsl_mmu *mmu,
int ctx_id)
{
int ret = 0;
int i, j;
struct kgsl_iommu *iommu = mmu->priv;
struct msm_iommu_drvdata *iommu_drvdata;
for (i = 0; i < iommu->unit_count; i++) {
struct kgsl_iommu_unit *iommu_unit = &iommu->iommu_units[i];
for (j = 0; j < iommu_unit->dev_count; j++) {
if (iommu_unit->dev[j].clk_enabled ||
ctx_id != iommu_unit->dev[j].ctx_id)
continue;
iommu_drvdata =
dev_get_drvdata(iommu_unit->dev[j].dev->parent);
ret = clk_prepare_enable(iommu_drvdata->pclk);
if (ret)
goto done;
if (iommu_drvdata->clk) {
ret = clk_prepare_enable(iommu_drvdata->clk);
if (ret) {
clk_disable_unprepare(
iommu_drvdata->pclk);
goto done;
}
}
if (iommu_drvdata->aclk) {
ret = clk_prepare_enable(iommu_drvdata->aclk);
if (ret) {
if (iommu_drvdata->clk)
clk_disable_unprepare(
iommu_drvdata->clk);
clk_disable_unprepare(
iommu_drvdata->pclk);
goto done;
}
}
iommu_unit->dev[j].clk_enabled = true;
}
}
done:
if (ret)
kgsl_iommu_disable_clk(mmu);
return ret;
}
/*
* kgsl_iommu_pt_equal - Check if pagetables are equal
* @mmu - Pointer to mmu structure
* @pt - Pointer to pagetable
* @pt_base - Address of a pagetable that the IOMMU register is
* programmed with
*
* Checks whether the pt_base is equal to the base address of
* the pagetable which is contained in the pt structure
* Return - Non-zero if the pagetable addresses are equal else 0
*/
static int kgsl_iommu_pt_equal(struct kgsl_mmu *mmu,
struct kgsl_pagetable *pt,
phys_addr_t pt_base)
{
struct kgsl_iommu_pt *iommu_pt = pt ? pt->priv : NULL;
phys_addr_t domain_ptbase = iommu_pt ?
iommu_get_pt_base_addr(iommu_pt->domain) : 0;
/* Only compare the valid address bits of the pt_base */
domain_ptbase &= KGSL_IOMMU_CTX_TTBR0_ADDR_MASK;
pt_base &= KGSL_IOMMU_CTX_TTBR0_ADDR_MASK;
return domain_ptbase && pt_base &&
(domain_ptbase == pt_base);
}
/*
* kgsl_iommu_destroy_pagetable - Free up reaources help by a pagetable
* @mmu_specific_pt - Pointer to pagetable which is to be freed
*
* Return - void
*/
static void kgsl_iommu_destroy_pagetable(struct kgsl_pagetable *pt)
{
struct kgsl_iommu_pt *iommu_pt = pt->priv;
if (iommu_pt->domain)
msm_unregister_domain(iommu_pt->domain);
kfree(iommu_pt);
iommu_pt = NULL;
}
/*
* kgsl_iommu_create_pagetable - Create a IOMMU pagetable
*
* Allocate memory to hold a pagetable and allocate the IOMMU
* domain which is the actual IOMMU pagetable
* Return - void
*/
void *kgsl_iommu_create_pagetable(void)
{
int domain_num;
struct kgsl_iommu_pt *iommu_pt;
struct msm_iova_partition kgsl_partition = {
.start = 0,
.size = 0xFFFFFFFF,
};
struct msm_iova_layout kgsl_layout = {
.partitions = &kgsl_partition,
.npartitions = 1,
.client_name = "kgsl",
.domain_flags = 0,
};
iommu_pt = kzalloc(sizeof(struct kgsl_iommu_pt), GFP_KERNEL);
if (!iommu_pt) {
KGSL_CORE_ERR("kzalloc(%d) failed\n",
sizeof(struct kgsl_iommu_pt));
return NULL;
}
/* L2 redirect is not stable on IOMMU v1 */
if (msm_soc_version_supports_iommu_v0())
kgsl_layout.domain_flags = MSM_IOMMU_DOMAIN_PT_CACHEABLE;
domain_num = msm_register_domain(&kgsl_layout);
if (domain_num >= 0) {
iommu_pt->domain = msm_get_iommu_domain(domain_num);
if (iommu_pt->domain) {
iommu_set_fault_handler(iommu_pt->domain,
kgsl_iommu_fault_handler, NULL);
return iommu_pt;
}
}
KGSL_CORE_ERR("Failed to create iommu domain\n");
kfree(iommu_pt);
return NULL;
}
/*
* kgsl_detach_pagetable_iommu_domain - Detach the IOMMU unit from a
* pagetable
* @mmu - Pointer to the device mmu structure
* @priv - Flag indicating whether the private or user context is to be
* detached
*
* Detach the IOMMU unit with the domain that is contained in the
* hwpagetable of the given mmu. After detaching the IOMMU unit is not
* in use because the PTBR will not be set after a detach
* Return - void
*/
static void kgsl_detach_pagetable_iommu_domain(struct kgsl_mmu *mmu)
{
struct kgsl_iommu_pt *iommu_pt;
struct kgsl_iommu *iommu = mmu->priv;
int i, j;
for (i = 0; i < iommu->unit_count; i++) {
struct kgsl_iommu_unit *iommu_unit = &iommu->iommu_units[i];
iommu_pt = mmu->defaultpagetable->priv;
for (j = 0; j < iommu_unit->dev_count; j++) {
/*
* If there is a 2nd default pagetable then priv domain
* is attached with this pagetable
*/
if (mmu->priv_bank_table &&
(KGSL_IOMMU_CONTEXT_PRIV == j))
iommu_pt = mmu->priv_bank_table->priv;
if (iommu_unit->dev[j].attached) {
iommu_detach_device(iommu_pt->domain,
iommu_unit->dev[j].dev);
iommu_unit->dev[j].attached = false;
KGSL_MEM_INFO(mmu->device, "iommu %p detached "
"from user dev of MMU: %p\n",
iommu_pt->domain, mmu);
}
}
}
}
/*
* kgsl_attach_pagetable_iommu_domain - Attach the IOMMU unit to a
* pagetable, i.e set the IOMMU's PTBR to the pagetable address and
* setup other IOMMU registers for the device so that it becomes
* active
* @mmu - Pointer to the device mmu structure
* @priv - Flag indicating whether the private or user context is to be
* attached
*
* Attach the IOMMU unit with the domain that is contained in the
* hwpagetable of the given mmu.
* Return - 0 on success else error code
*/
static int kgsl_attach_pagetable_iommu_domain(struct kgsl_mmu *mmu)
{
struct kgsl_iommu_pt *iommu_pt;
struct kgsl_iommu *iommu = mmu->priv;
int i, j, ret = 0;
/*
* Loop through all the iommu devcies under all iommu units and
* attach the domain
*/
for (i = 0; i < iommu->unit_count; i++) {
struct kgsl_iommu_unit *iommu_unit = &iommu->iommu_units[i];
iommu_pt = mmu->defaultpagetable->priv;
for (j = 0; j < iommu_unit->dev_count; j++) {
/*
* If there is a 2nd default pagetable then priv domain
* is attached to this pagetable
*/
if (mmu->priv_bank_table &&
(KGSL_IOMMU_CONTEXT_PRIV == j))
iommu_pt = mmu->priv_bank_table->priv;
if (!iommu_unit->dev[j].attached) {
ret = iommu_attach_device(iommu_pt->domain,
iommu_unit->dev[j].dev);
if (ret) {
KGSL_MEM_ERR(mmu->device,
"Failed to attach device, err %d\n",
ret);
goto done;
}
iommu_unit->dev[j].attached = true;
KGSL_MEM_INFO(mmu->device,
"iommu pt %p attached to dev %p, ctx_id %d\n",
iommu_pt->domain, iommu_unit->dev[j].dev,
iommu_unit->dev[j].ctx_id);
}
}
}
done:
return ret;
}
/*
* _get_iommu_ctxs - Get device pointer to IOMMU contexts
* @mmu - Pointer to mmu device
* data - Pointer to the platform data containing information about
* iommu devices for one iommu unit
* unit_id - The IOMMU unit number. This is not a specific ID but just
* a serial number. The serial numbers are treated as ID's of the
* IOMMU units
*
* Return - 0 on success else error code
*/
static int _get_iommu_ctxs(struct kgsl_mmu *mmu,
struct kgsl_device_iommu_data *data, unsigned int unit_id)
{
struct kgsl_iommu *iommu = mmu->priv;
struct kgsl_iommu_unit *iommu_unit = &iommu->iommu_units[unit_id];
int i, j;
int found_ctx;
for (j = 0; j < KGSL_IOMMU_MAX_DEVS_PER_UNIT; j++) {
found_ctx = 0;
for (i = 0; i < data->iommu_ctx_count; i++) {
if (j == data->iommu_ctxs[i].ctx_id) {
found_ctx = 1;
break;
}
}
if (!found_ctx)
break;
if (!data->iommu_ctxs[i].iommu_ctx_name) {
KGSL_CORE_ERR("Context name invalid\n");
return -EINVAL;
}
iommu_unit->dev[iommu_unit->dev_count].dev =
msm_iommu_get_ctx(data->iommu_ctxs[i].iommu_ctx_name);
if (iommu_unit->dev[iommu_unit->dev_count].dev == NULL) {
KGSL_CORE_ERR("Failed to get iommu dev handle for "
"device %s\n", data->iommu_ctxs[i].iommu_ctx_name);
return -EINVAL;
}
iommu_unit->dev[iommu_unit->dev_count].ctx_id =
data->iommu_ctxs[i].ctx_id;
iommu_unit->dev[iommu_unit->dev_count].kgsldev = mmu->device;
KGSL_DRV_INFO(mmu->device,
"Obtained dev handle %p for iommu context %s\n",
iommu_unit->dev[iommu_unit->dev_count].dev,
data->iommu_ctxs[i].iommu_ctx_name);
iommu_unit->dev_count++;
}
if (!j) {
KGSL_CORE_ERR("No ctxts initialized, user ctxt absent\n ");
return -EINVAL;
}
return 0;
}
/*
* kgsl_iommu_start_sync_lock - Initialize some variables during MMU start up
* for GPU CPU synchronization
* @mmu - Pointer to mmu device
*
* Return - 0 on success else error code
*/
static int kgsl_iommu_start_sync_lock(struct kgsl_mmu *mmu)
{
struct kgsl_iommu *iommu = mmu->priv;
uint32_t lock_gpu_addr = 0;
if (KGSL_DEVICE_3D0 != mmu->device->id ||
!msm_soc_version_supports_iommu_v0() ||
!kgsl_mmu_is_perprocess(mmu) ||
iommu->sync_lock_vars)
return 0;
if (!(mmu->flags & KGSL_MMU_FLAGS_IOMMU_SYNC)) {
KGSL_DRV_ERR(mmu->device,
"The GPU microcode does not support IOMMUv1 sync opcodes\n");
return -ENXIO;
}
/* Store Lock variables GPU address */
lock_gpu_addr = (iommu->sync_lock_desc.gpuaddr +
iommu->sync_lock_offset);
kgsl_iommu_sync_lock_vars.flag[PROC_APPS] = (lock_gpu_addr +
(offsetof(struct remote_iommu_petersons_spinlock,
flag[PROC_APPS])));
kgsl_iommu_sync_lock_vars.flag[PROC_GPU] = (lock_gpu_addr +
(offsetof(struct remote_iommu_petersons_spinlock,
flag[PROC_GPU])));
kgsl_iommu_sync_lock_vars.turn = (lock_gpu_addr +
(offsetof(struct remote_iommu_petersons_spinlock, turn)));
iommu->sync_lock_vars = &kgsl_iommu_sync_lock_vars;
return 0;
}
/*
* kgsl_get_sync_lock - Init Sync Lock between GPU and CPU
* @mmu - Pointer to mmu device
*
* Return - 0 on success else error code
*/
static int kgsl_iommu_init_sync_lock(struct kgsl_mmu *mmu)
{
struct kgsl_iommu *iommu = mmu->priv;
int status = 0;
uint32_t lock_phy_addr = 0;
uint32_t page_offset = 0;
if (!msm_soc_version_supports_iommu_v0() ||
!kgsl_mmu_is_perprocess(mmu))
return status;
/*
* For 2D devices cpu side sync lock is required. For 3D device,
* since we only have a single 3D core and we always ensure that
* 3D core is idle while writing to IOMMU register using CPU this
* lock is not required
*/
if (KGSL_DEVICE_2D0 == mmu->device->id ||
KGSL_DEVICE_2D1 == mmu->device->id) {
return status;
}
/* Return if already initialized */
if (iommu->sync_lock_initialized)
return status;
iommu_access_ops = msm_get_iommu_access_ops();
if (iommu_access_ops && iommu_access_ops->iommu_lock_initialize) {
lock_phy_addr = (uint32_t)
iommu_access_ops->iommu_lock_initialize();
if (!lock_phy_addr) {
iommu_access_ops = NULL;
return status;
}
lock_phy_addr = lock_phy_addr - (uint32_t)MSM_SHARED_RAM_BASE +
(uint32_t)msm_shared_ram_phys;
}
/* Align the physical address to PAGE boundary and store the offset */
page_offset = (lock_phy_addr & (PAGE_SIZE - 1));
lock_phy_addr = (lock_phy_addr & ~(PAGE_SIZE - 1));
iommu->sync_lock_desc.physaddr = (unsigned int)lock_phy_addr;
iommu->sync_lock_offset = page_offset;
iommu->sync_lock_desc.size =
PAGE_ALIGN(sizeof(kgsl_iommu_sync_lock_vars));
status = memdesc_sg_phys(&iommu->sync_lock_desc,
iommu->sync_lock_desc.physaddr,
iommu->sync_lock_desc.size);
if (status) {
iommu_access_ops = NULL;
return status;
}
/* Flag Sync Lock is Initialized */
iommu->sync_lock_initialized = 1;
return status;
}
/*
* kgsl_iommu_sync_lock - Acquire Sync Lock between GPU and CPU
* @mmu - Pointer to mmu device
* @cmds - Pointer to array of commands
*
* Return - int - number of commands.
*/
inline unsigned int kgsl_iommu_sync_lock(struct kgsl_mmu *mmu,
unsigned int *cmds)
{
struct kgsl_device *device = mmu->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct kgsl_iommu *iommu = mmu->device->mmu.priv;
struct remote_iommu_petersons_spinlock *lock_vars =
iommu->sync_lock_vars;
unsigned int *start = cmds;
if (!iommu->sync_lock_initialized)
return 0;
*cmds++ = cp_type3_packet(CP_MEM_WRITE, 2);
*cmds++ = lock_vars->flag[PROC_GPU];
*cmds++ = 1;
cmds += adreno_add_idle_cmds(adreno_dev, cmds);
*cmds++ = cp_type3_packet(CP_WAIT_REG_MEM, 5);
/* MEM SPACE = memory, FUNCTION = equals */
*cmds++ = 0x13;
*cmds++ = lock_vars->flag[PROC_GPU];
*cmds++ = 0x1;
*cmds++ = 0x1;
*cmds++ = 0x1;
/* WAIT_REG_MEM turns back on protected mode - push it off */
*cmds++ = cp_type3_packet(CP_SET_PROTECTED_MODE, 1);
*cmds++ = 0;
*cmds++ = cp_type3_packet(CP_MEM_WRITE, 2);
*cmds++ = lock_vars->turn;
*cmds++ = 0;
cmds += adreno_add_idle_cmds(adreno_dev, cmds);
*cmds++ = cp_type3_packet(CP_WAIT_REG_MEM, 5);
/* MEM SPACE = memory, FUNCTION = equals */
*cmds++ = 0x13;
*cmds++ = lock_vars->flag[PROC_GPU];
*cmds++ = 0x1;
*cmds++ = 0x1;
*cmds++ = 0x1;
/* WAIT_REG_MEM turns back on protected mode - push it off */
*cmds++ = cp_type3_packet(CP_SET_PROTECTED_MODE, 1);
*cmds++ = 0;
*cmds++ = cp_type3_packet(CP_TEST_TWO_MEMS, 3);
*cmds++ = lock_vars->flag[PROC_APPS];
*cmds++ = lock_vars->turn;
*cmds++ = 0;
/* TEST_TWO_MEMS turns back on protected mode - push it off */
*cmds++ = cp_type3_packet(CP_SET_PROTECTED_MODE, 1);
*cmds++ = 0;
cmds += adreno_add_idle_cmds(adreno_dev, cmds);
return cmds - start;
}
/*
* kgsl_iommu_sync_lock - Release Sync Lock between GPU and CPU
* @mmu - Pointer to mmu device
* @cmds - Pointer to array of commands
*
* Return - int - number of commands.
*/
inline unsigned int kgsl_iommu_sync_unlock(struct kgsl_mmu *mmu,
unsigned int *cmds)
{
struct kgsl_device *device = mmu->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct kgsl_iommu *iommu = mmu->device->mmu.priv;
struct remote_iommu_petersons_spinlock *lock_vars =
iommu->sync_lock_vars;
unsigned int *start = cmds;
if (!iommu->sync_lock_initialized)
return 0;
*cmds++ = cp_type3_packet(CP_MEM_WRITE, 2);
*cmds++ = lock_vars->flag[PROC_GPU];
*cmds++ = 0;
*cmds++ = cp_type3_packet(CP_WAIT_REG_MEM, 5);
/* MEM SPACE = memory, FUNCTION = equals */
*cmds++ = 0x13;
*cmds++ = lock_vars->flag[PROC_GPU];
*cmds++ = 0x0;
*cmds++ = 0x1;
*cmds++ = 0x1;
/* WAIT_REG_MEM turns back on protected mode - push it off */
*cmds++ = cp_type3_packet(CP_SET_PROTECTED_MODE, 1);
*cmds++ = 0;
cmds += adreno_add_idle_cmds(adreno_dev, cmds);
return cmds - start;
}
/*
* kgsl_get_iommu_ctxt - Get device pointer to IOMMU contexts
* @mmu - Pointer to mmu device
*
* Get the device pointers for the IOMMU user and priv contexts of the
* kgsl device
* Return - 0 on success else error code
*/
static int kgsl_get_iommu_ctxt(struct kgsl_mmu *mmu)
{
struct platform_device *pdev =
container_of(mmu->device->parentdev, struct platform_device,
dev);
struct kgsl_device_platform_data *pdata_dev = pdev->dev.platform_data;
struct kgsl_iommu *iommu = mmu->device->mmu.priv;
int i, ret = 0;
/* Go through the IOMMU data and get all the context devices */
if (KGSL_IOMMU_MAX_UNITS < pdata_dev->iommu_count) {
KGSL_CORE_ERR("Too many IOMMU units defined\n");
ret = -EINVAL;
goto done;
}
for (i = 0; i < pdata_dev->iommu_count; i++) {
ret = _get_iommu_ctxs(mmu, &pdata_dev->iommu_data[i], i);
if (ret)
break;
}
iommu->unit_count = pdata_dev->iommu_count;
done:
return ret;
}
/*
* kgsl_set_register_map - Map the IOMMU regsiters in the memory descriptors
* of the respective iommu units
* @mmu - Pointer to mmu structure
*
* Return - 0 on success else error code
*/
static int kgsl_set_register_map(struct kgsl_mmu *mmu)
{
struct platform_device *pdev =
container_of(mmu->device->parentdev, struct platform_device,
dev);
struct kgsl_device_platform_data *pdata_dev = pdev->dev.platform_data;
struct kgsl_iommu *iommu = mmu->device->mmu.priv;
struct kgsl_iommu_unit *iommu_unit;
int i = 0, ret = 0;
for (; i < pdata_dev->iommu_count; i++) {
struct kgsl_device_iommu_data data = pdata_dev->iommu_data[i];
iommu_unit = &iommu->iommu_units[i];
/* set up the IOMMU register map for the given IOMMU unit */
if (!data.physstart || !data.physend) {
KGSL_CORE_ERR("The register range for IOMMU unit not"
" specified\n");
ret = -EINVAL;
goto err;
}
iommu_unit->reg_map.hostptr = ioremap(data.physstart,
data.physend - data.physstart + 1);
if (!iommu_unit->reg_map.hostptr) {
KGSL_CORE_ERR("Failed to map SMMU register address "
"space from %x to %x\n", data.physstart,
data.physend - data.physstart + 1);
ret = -ENOMEM;
i--;
goto err;
}
iommu_unit->reg_map.size = data.physend - data.physstart + 1;
iommu_unit->reg_map.physaddr = data.physstart;
ret = memdesc_sg_phys(&iommu_unit->reg_map, data.physstart,
iommu_unit->reg_map.size);
if (ret)
goto err;
iommu_unit->iommu_halt_enable = data.iommu_halt_enable;
iommu_unit->ahb_base = data.physstart - mmu->device->reg_phys;
}
iommu->unit_count = pdata_dev->iommu_count;
return ret;
err:
/* Unmap any mapped IOMMU regions */
for (; i >= 0; i--) {
iommu_unit = &iommu->iommu_units[i];
iounmap(iommu_unit->reg_map.hostptr);
iommu_unit->reg_map.size = 0;
iommu_unit->reg_map.physaddr = 0;
}
return ret;
}
/*
* kgsl_iommu_get_pt_base_addr - Get the address of the pagetable that the
* IOMMU ttbr0 register is programmed with
* @mmu - Pointer to mmu
* @pt - kgsl pagetable pointer that contains the IOMMU domain pointer
*
* Return - actual pagetable address that the ttbr0 register is programmed
* with
*/
static phys_addr_t kgsl_iommu_get_pt_base_addr(struct kgsl_mmu *mmu,
struct kgsl_pagetable *pt)
{
struct kgsl_iommu_pt *iommu_pt = pt->priv;
return iommu_get_pt_base_addr(iommu_pt->domain) &
KGSL_IOMMU_CTX_TTBR0_ADDR_MASK;
}
/*
* kgsl_iommu_get_default_ttbr0 - Return the ttbr0 value programmed by
* iommu driver
* @mmu - Pointer to mmu structure
* @hostptr - Pointer to the IOMMU register map. This is used to match
* the iommu device whose lsb value is to be returned
* @ctx_id - The context bank whose lsb valus is to be returned
* Return - returns the ttbr0 value programmed by iommu driver
*/
static phys_addr_t kgsl_iommu_get_default_ttbr0(struct kgsl_mmu *mmu,
unsigned int unit_id,
enum kgsl_iommu_context_id ctx_id)
{
struct kgsl_iommu *iommu = mmu->priv;
int i, j;
for (i = 0; i < iommu->unit_count; i++) {
struct kgsl_iommu_unit *iommu_unit = &iommu->iommu_units[i];
for (j = 0; j < iommu_unit->dev_count; j++)
if (unit_id == i &&
ctx_id == iommu_unit->dev[j].ctx_id)
return iommu_unit->dev[j].default_ttbr0;
}
return 0;
}
static void kgsl_iommu_setstate(struct kgsl_mmu *mmu,
struct kgsl_pagetable *pagetable,
unsigned int context_id)
{
if (mmu->flags & KGSL_FLAGS_STARTED) {
/* page table not current, then setup mmu to use new
* specified page table
*/
if (mmu->hwpagetable != pagetable) {
unsigned int flags = 0;
mmu->hwpagetable = pagetable;
flags |= kgsl_mmu_pt_get_flags(mmu->hwpagetable,
mmu->device->id) |
KGSL_MMUFLAGS_TLBFLUSH;
kgsl_setstate(mmu, context_id,
KGSL_MMUFLAGS_PTUPDATE | flags);
}
}
}
/*
* kgsl_iommu_setup_regs - map iommu registers into a pagetable
* @mmu: Pointer to mmu structure
* @pt: the pagetable
*
* To do pagetable switches from the GPU command stream, the IOMMU
* registers need to be mapped into the GPU's pagetable. This function
* is used differently on different targets. On 8960, the registers
* are mapped into every pagetable during kgsl_setup_pt(). On
* all other targets, the registers are mapped only into the second
* context bank.
*
* Return - 0 on success else error code
*/
static int kgsl_iommu_setup_regs(struct kgsl_mmu *mmu,
struct kgsl_pagetable *pt)
{
int status;
int i = 0;
struct kgsl_iommu *iommu = mmu->priv;
if (!msm_soc_version_supports_iommu_v0())
return 0;
for (i = 0; i < iommu->unit_count; i++) {
status = kgsl_mmu_map_global(pt,
&(iommu->iommu_units[i].reg_map));
if (status)
goto err;
}
/* Map Lock variables to GPU pagetable */
if (iommu->sync_lock_initialized) {
status = kgsl_mmu_map_global(pt, &iommu->sync_lock_desc);
if (status)
goto err;
}
return 0;
err:
for (i--; i >= 0; i--)
kgsl_mmu_unmap(pt,
&(iommu->iommu_units[i].reg_map));
return status;
}
/*
* kgsl_iommu_cleanup_regs - unmap iommu registers from a pagetable
* @mmu: Pointer to mmu structure
* @pt: the pagetable
*
* Removes mappings created by kgsl_iommu_setup_regs().
*
* Return - 0 on success else error code
*/
static void kgsl_iommu_cleanup_regs(struct kgsl_mmu *mmu,
struct kgsl_pagetable *pt)
{
struct kgsl_iommu *iommu = mmu->priv;
int i;
for (i = 0; i < iommu->unit_count; i++)
kgsl_mmu_unmap(pt, &(iommu->iommu_units[i].reg_map));
if (iommu->sync_lock_desc.gpuaddr)
kgsl_mmu_unmap(pt, &iommu->sync_lock_desc);
}
/*
* kgsl_iommu_get_reg_ahbaddr - Returns the ahb address of the register
* @mmu - Pointer to mmu structure
* @iommu_unit - The iommu unit for which base address is requested
* @ctx_id - The context ID of the IOMMU ctx
* @reg - The register for which address is required
*
* Return - The address of register which can be used in type0 packet
*/
static unsigned int kgsl_iommu_get_reg_ahbaddr(struct kgsl_mmu *mmu,
int iommu_unit, int ctx_id,
enum kgsl_iommu_reg_map reg)
{
struct kgsl_iommu *iommu = mmu->priv;
if (iommu->iommu_reg_list[reg].ctx_reg)
return iommu->iommu_units[iommu_unit].ahb_base +
iommu->iommu_reg_list[reg].reg_offset +
(ctx_id << KGSL_IOMMU_CTX_SHIFT) + iommu->ctx_offset;
else
return iommu->iommu_units[iommu_unit].ahb_base +
iommu->iommu_reg_list[reg].reg_offset;
}
static int kgsl_iommu_init(struct kgsl_mmu *mmu)
{
/*
* intialize device mmu
*
* call this with the global lock held
*/
int status = 0;
struct kgsl_iommu *iommu;
iommu = kzalloc(sizeof(struct kgsl_iommu), GFP_KERNEL);
if (!iommu) {
KGSL_CORE_ERR("kzalloc(%d) failed\n",
sizeof(struct kgsl_iommu));
return -ENOMEM;
}
mmu->priv = iommu;
status = kgsl_get_iommu_ctxt(mmu);
if (status)
goto done;
status = kgsl_set_register_map(mmu);
if (status)
goto done;
/*
* IOMMU-v1 requires hardware halt support to do in stream
* pagetable switching. This check assumes that if there are
* multiple units, they will be matching hardware.
*/
mmu->pt_per_process = KGSL_MMU_USE_PER_PROCESS_PT &&
(msm_soc_version_supports_iommu_v0() ||
iommu->iommu_units[0].iommu_halt_enable);
/*
* For IOMMU per-process pagetables, the allocatable range
* and the kernel global range must both be outside
* the userspace address range. There is a 1Mb gap
* between these address ranges to make overrun
* detection easier.
* For the shared pagetable case use 2GB and because
* mirroring the CPU address space is not possible and
* we're better off with extra room.
*/
if (mmu->pt_per_process) {
#ifndef CONFIG_MSM_KGSL_CFF_DUMP
mmu->pt_base = PAGE_OFFSET;
mmu->pt_size = KGSL_IOMMU_GLOBAL_MEM_BASE
- kgsl_mmu_get_base_addr(mmu) - SZ_1M;
mmu->use_cpu_map = true;
#else
mmu->pt_base = KGSL_PAGETABLE_BASE;
mmu->pt_size = KGSL_IOMMU_GLOBAL_MEM_BASE +
KGSL_IOMMU_GLOBAL_MEM_SIZE -
KGSL_PAGETABLE_BASE;
mmu->use_cpu_map = false;
#endif
} else {
mmu->pt_base = KGSL_PAGETABLE_BASE;
#ifndef CONFIG_MSM_KGSL_CFF_DUMP
mmu->pt_size = SZ_2G;
#else
mmu->pt_size = KGSL_IOMMU_GLOBAL_MEM_BASE +
KGSL_IOMMU_GLOBAL_MEM_SIZE -
KGSL_PAGETABLE_BASE;
#endif
mmu->use_cpu_map = false;
}
status = kgsl_iommu_init_sync_lock(mmu);
if (status)
goto done;
iommu->iommu_reg_list = kgsl_iommuv0_reg;
iommu->ctx_offset = KGSL_IOMMU_CTX_OFFSET_V0;
if (msm_soc_version_supports_iommu_v0()) {
iommu->iommu_reg_list = kgsl_iommuv0_reg;
iommu->ctx_offset = KGSL_IOMMU_CTX_OFFSET_V0;
} else {
iommu->iommu_reg_list = kgsl_iommuv1_reg;
iommu->ctx_offset = KGSL_IOMMU_CTX_OFFSET_V1;
}
/* A nop is required in an indirect buffer when switching
* pagetables in-stream */
kgsl_sharedmem_writel(mmu->device, &mmu->setstate_memory,
KGSL_IOMMU_SETSTATE_NOP_OFFSET,
cp_nop_packet(1));
if (cpu_is_msm8960()) {
/*
* 8960 doesn't have a second context bank, so the IOMMU
* registers must be mapped into every pagetable.
*/
iommu_ops.mmu_setup_pt = kgsl_iommu_setup_regs;
iommu_ops.mmu_cleanup_pt = kgsl_iommu_cleanup_regs;
}
if (kgsl_guard_page == NULL) {
kgsl_guard_page = alloc_page(GFP_KERNEL | __GFP_ZERO |
__GFP_HIGHMEM);
if (kgsl_guard_page == NULL) {
status = -ENOMEM;
goto done;
}
}
dev_info(mmu->device->dev, "|%s| MMU type set for device is IOMMU\n",
__func__);
done:
if (status) {
kfree(iommu);
mmu->priv = NULL;
}
return status;
}
/*
* kgsl_iommu_setup_defaultpagetable - Setup the initial defualtpagetable
* for iommu. This function is only called once during first start, successive
* start do not call this funciton.
* @mmu - Pointer to mmu structure
*
* Create the initial defaultpagetable and setup the iommu mappings to it
* Return - 0 on success else error code
*/
static int kgsl_iommu_setup_defaultpagetable(struct kgsl_mmu *mmu)
{
int status = 0;
/* If chip is not 8960 then we use the 2nd context bank for pagetable
* switching on the 3D side for which a separate table is allocated */
if (!cpu_is_msm8960() && msm_soc_version_supports_iommu_v0()) {
mmu->priv_bank_table =
kgsl_mmu_getpagetable(mmu,
KGSL_MMU_PRIV_BANK_TABLE_NAME);
if (mmu->priv_bank_table == NULL) {
status = -ENOMEM;
goto err;
}
status = kgsl_iommu_setup_regs(mmu, mmu->priv_bank_table);
if (status)
goto err;
}
mmu->defaultpagetable = kgsl_mmu_getpagetable(mmu, KGSL_MMU_GLOBAL_PT);
/* Return error if the default pagetable doesn't exist */
if (mmu->defaultpagetable == NULL) {
status = -ENOMEM;
goto err;
}
return status;
err:
if (mmu->priv_bank_table) {
kgsl_iommu_cleanup_regs(mmu, mmu->priv_bank_table);
kgsl_mmu_putpagetable(mmu->priv_bank_table);
mmu->priv_bank_table = NULL;
}
if (mmu->defaultpagetable) {
kgsl_mmu_putpagetable(mmu->defaultpagetable);
mmu->defaultpagetable = NULL;
}
return status;
}
/*
* kgsl_iommu_lock_rb_in_tlb - Allocates tlb entries and locks the
* virtual to physical address translation of ringbuffer for 3D
* device into tlb.
* @mmu - Pointer to mmu structure
*
* Return - void
*/
static void kgsl_iommu_lock_rb_in_tlb(struct kgsl_mmu *mmu)
{
struct kgsl_device *device = mmu->device;
struct adreno_device *adreno_dev = ADRENO_DEVICE(device);
struct adreno_ringbuffer *rb;
struct kgsl_iommu *iommu = mmu->priv;
unsigned int num_tlb_entries;
unsigned int tlblkcr = 0;
unsigned int v2pxx = 0;
unsigned int vaddr = 0;
int i, j, k, l;
if (!iommu->sync_lock_initialized)
return;
rb = &adreno_dev->ringbuffer;
num_tlb_entries = rb->buffer_desc.size / PAGE_SIZE;
for (i = 0; i < iommu->unit_count; i++) {
struct kgsl_iommu_unit *iommu_unit = &iommu->iommu_units[i];
for (j = 0; j < iommu_unit->dev_count; j++) {
tlblkcr = 0;
if (cpu_is_msm8960())
tlblkcr |= ((num_tlb_entries &
KGSL_IOMMU_TLBLKCR_FLOOR_MASK) <<
KGSL_IOMMU_TLBLKCR_FLOOR_SHIFT);
else
tlblkcr |= (((num_tlb_entries *
iommu_unit->dev_count) &
KGSL_IOMMU_TLBLKCR_FLOOR_MASK) <<
KGSL_IOMMU_TLBLKCR_FLOOR_SHIFT);
/* Do not invalidate locked entries on tlbiall flush */
tlblkcr |= ((1 & KGSL_IOMMU_TLBLKCR_TLBIALLCFG_MASK)
<< KGSL_IOMMU_TLBLKCR_TLBIALLCFG_SHIFT);
tlblkcr |= ((1 & KGSL_IOMMU_TLBLKCR_TLBIASIDCFG_MASK)
<< KGSL_IOMMU_TLBLKCR_TLBIASIDCFG_SHIFT);
tlblkcr |= ((1 & KGSL_IOMMU_TLBLKCR_TLBIVAACFG_MASK)
<< KGSL_IOMMU_TLBLKCR_TLBIVAACFG_SHIFT);
/* Enable tlb locking */
tlblkcr |= ((1 & KGSL_IOMMU_TLBLKCR_LKE_MASK)
<< KGSL_IOMMU_TLBLKCR_LKE_SHIFT);
KGSL_IOMMU_SET_CTX_REG(iommu, iommu_unit,
iommu_unit->dev[j].ctx_id,
TLBLKCR, tlblkcr);
}
for (j = 0; j < iommu_unit->dev_count; j++) {
/* skip locking entries for private bank on 8960 */
if (cpu_is_msm8960() && KGSL_IOMMU_CONTEXT_PRIV == j)
continue;
/* Lock the ringbuffer virtual address into tlb */
vaddr = rb->buffer_desc.gpuaddr;
for (k = 0; k < num_tlb_entries; k++) {
v2pxx = 0;
v2pxx |= (((k + j * num_tlb_entries) &
KGSL_IOMMU_V2PXX_INDEX_MASK)
<< KGSL_IOMMU_V2PXX_INDEX_SHIFT);
v2pxx |= vaddr & (KGSL_IOMMU_V2PXX_VA_MASK <<
KGSL_IOMMU_V2PXX_VA_SHIFT);
KGSL_IOMMU_SET_CTX_REG(iommu, iommu_unit,
iommu_unit->dev[j].ctx_id,
V2PUR, v2pxx);
vaddr += PAGE_SIZE;
for (l = 0; l < iommu_unit->dev_count; l++) {
tlblkcr = KGSL_IOMMU_GET_CTX_REG(iommu,
iommu_unit,
iommu_unit->dev[l].ctx_id,
TLBLKCR);
mb();
tlblkcr &=
~(KGSL_IOMMU_TLBLKCR_VICTIM_MASK
<< KGSL_IOMMU_TLBLKCR_VICTIM_SHIFT);
tlblkcr |= (((k + 1 +
(j * num_tlb_entries)) &
KGSL_IOMMU_TLBLKCR_VICTIM_MASK) <<
KGSL_IOMMU_TLBLKCR_VICTIM_SHIFT);
KGSL_IOMMU_SET_CTX_REG(iommu,
iommu_unit,
iommu_unit->dev[l].ctx_id,
TLBLKCR, tlblkcr);
}
}
}
for (j = 0; j < iommu_unit->dev_count; j++) {
tlblkcr = KGSL_IOMMU_GET_CTX_REG(iommu, iommu_unit,
iommu_unit->dev[j].ctx_id,
TLBLKCR);
mb();
/* Disable tlb locking */
tlblkcr &= ~(KGSL_IOMMU_TLBLKCR_LKE_MASK
<< KGSL_IOMMU_TLBLKCR_LKE_SHIFT);
KGSL_IOMMU_SET_CTX_REG(iommu, iommu_unit,
iommu_unit->dev[j].ctx_id, TLBLKCR, tlblkcr);
}
}
}
static int kgsl_iommu_start(struct kgsl_mmu *mmu)
{
int status;
struct kgsl_iommu *iommu = mmu->priv;
int i, j;
if (mmu->flags & KGSL_FLAGS_STARTED)
return 0;
if (mmu->defaultpagetable == NULL) {
status = kgsl_iommu_setup_defaultpagetable(mmu);
if (status)
return -ENOMEM;
}
status = kgsl_iommu_start_sync_lock(mmu);
if (status)
return status;
/* We use the GPU MMU to control access to IOMMU registers on 8960 with
* a225, hence we still keep the MMU active on 8960 */
if (cpu_is_msm8960() && KGSL_DEVICE_3D0 == mmu->device->id) {
struct kgsl_mh *mh = &(mmu->device->mh);
BUG_ON(iommu->iommu_units[0].reg_map.gpuaddr != 0 &&
mh->mpu_base > iommu->iommu_units[0].reg_map.gpuaddr);
kgsl_regwrite(mmu->device, MH_MMU_CONFIG, 0x00000001);
kgsl_regwrite(mmu->device, MH_MMU_MPU_END,
mh->mpu_base + mh->mpu_range);
}
mmu->hwpagetable = mmu->defaultpagetable;
status = kgsl_attach_pagetable_iommu_domain(mmu);
if (status) {
mmu->hwpagetable = NULL;
goto done;
}
status = kgsl_iommu_enable_clk(mmu, KGSL_IOMMU_CONTEXT_USER);
if (status) {
KGSL_CORE_ERR("clk enable failed\n");
goto done;
}
status = kgsl_iommu_enable_clk(mmu, KGSL_IOMMU_CONTEXT_PRIV);
if (status) {
KGSL_CORE_ERR("clk enable failed\n");
goto done;
}
/* Get the lsb value of pagetables set in the IOMMU ttbr0 register as
* that value should not change when we change pagetables, so while
* changing pagetables we can use this lsb value of the pagetable w/o
* having to read it again
*/
_iommu_lock();
for (i = 0; i < iommu->unit_count; i++) {
struct kgsl_iommu_unit *iommu_unit = &iommu->iommu_units[i];
for (j = 0; j < iommu_unit->dev_count; j++) {
if (sizeof(phys_addr_t) > sizeof(unsigned long)) {
iommu_unit->dev[j].default_ttbr0 =
KGSL_IOMMU_GET_CTX_REG_LL(iommu,
iommu_unit,
iommu_unit->dev[j].ctx_id,
TTBR0);
} else {
iommu_unit->dev[j].default_ttbr0 =
KGSL_IOMMU_GET_CTX_REG(iommu,
iommu_unit,
iommu_unit->dev[j].ctx_id,
TTBR0);
}
}
}
kgsl_iommu_lock_rb_in_tlb(mmu);
_iommu_unlock();
/* For complete CFF */
kgsl_cffdump_setmem(mmu->device, mmu->setstate_memory.gpuaddr +
KGSL_IOMMU_SETSTATE_NOP_OFFSET,
cp_nop_packet(1), sizeof(unsigned int));
kgsl_iommu_disable_clk_on_ts(mmu, 0, false);
mmu->flags |= KGSL_FLAGS_STARTED;
done:
if (status) {
kgsl_iommu_disable_clk_on_ts(mmu, 0, false);
kgsl_detach_pagetable_iommu_domain(mmu);
}
return status;
}
static int
kgsl_iommu_unmap(struct kgsl_pagetable *pt,
struct kgsl_memdesc *memdesc,
unsigned int *tlb_flags)
{
int ret;
unsigned int range = memdesc->size;
struct kgsl_iommu_pt *iommu_pt = pt->priv;
/* All GPU addresses as assigned are page aligned, but some
functions purturb the gpuaddr with an offset, so apply the
mask here to make sure we have the right address */
unsigned int gpuaddr = memdesc->gpuaddr & KGSL_MMU_ALIGN_MASK;
if (range == 0 || gpuaddr == 0)
return 0;
if (kgsl_memdesc_has_guard_page(memdesc))
range += PAGE_SIZE;
ret = iommu_unmap_range(iommu_pt->domain, gpuaddr, range);
if (ret)
KGSL_CORE_ERR("iommu_unmap_range(%p, %x, %d) failed "
"with err: %d\n", iommu_pt->domain, gpuaddr,
range, ret);
/*
* Flushing only required if per process pagetables are used. With
* global case, flushing will happen inside iommu_map function
*/
if (!ret && kgsl_mmu_is_perprocess(pt->mmu))
*tlb_flags = UINT_MAX;
return 0;
}
static int
kgsl_iommu_map(struct kgsl_pagetable *pt,
struct kgsl_memdesc *memdesc,
unsigned int protflags,
unsigned int *tlb_flags)
{
int ret;
unsigned int iommu_virt_addr;
struct kgsl_iommu_pt *iommu_pt = pt->priv;
int size = memdesc->size;
BUG_ON(NULL == iommu_pt);
iommu_virt_addr = memdesc->gpuaddr;
ret = iommu_map_range(iommu_pt->domain, iommu_virt_addr, memdesc->sg,
size, protflags);
if (ret) {
KGSL_CORE_ERR("iommu_map_range(%p, %x, %p, %d, %x) err: %d\n",
iommu_pt->domain, iommu_virt_addr, memdesc->sg, size,
protflags, ret);
return ret;
}
if (kgsl_memdesc_has_guard_page(memdesc)) {
ret = iommu_map(iommu_pt->domain, iommu_virt_addr + size,
page_to_phys(kgsl_guard_page), PAGE_SIZE,
protflags & ~IOMMU_WRITE);
if (ret) {
KGSL_CORE_ERR("iommu_map(%p, %x, guard, %x) err: %d\n",
iommu_pt->domain, iommu_virt_addr + size,
protflags & ~IOMMU_WRITE,
ret);
/* cleanup the partial mapping */
iommu_unmap_range(iommu_pt->domain, iommu_virt_addr,
size);
}
}
return ret;
}
void kgsl_iommu_pagefault_resume(struct kgsl_mmu *mmu)
{
struct kgsl_iommu *iommu = mmu->priv;
int i, j;
if (mmu->fault) {
for (i = 0; i < iommu->unit_count; i++) {
struct kgsl_iommu_unit *iommu_unit =
&iommu->iommu_units[i];
for (j = 0; j < iommu_unit->dev_count; j++) {
if (iommu_unit->dev[j].fault) {
kgsl_iommu_enable_clk(mmu, j);
_iommu_lock();
KGSL_IOMMU_SET_CTX_REG(iommu,
iommu_unit,
iommu_unit->dev[j].ctx_id,
RESUME, 1);
_iommu_unlock();
iommu_unit->dev[j].fault = 0;
}
}
}
mmu->fault = 0;
}
}
static void kgsl_iommu_stop(struct kgsl_mmu *mmu)
{
struct kgsl_iommu *iommu = mmu->priv;
/*
* stop device mmu
*
* call this with the global lock held
*/
if (mmu->flags & KGSL_FLAGS_STARTED) {
/* detach iommu attachment */
kgsl_detach_pagetable_iommu_domain(mmu);
mmu->hwpagetable = NULL;
mmu->flags &= ~KGSL_FLAGS_STARTED;
kgsl_iommu_pagefault_resume(mmu);
}
/* switch off MMU clocks and cancel any events it has queued */
iommu->clk_event_queued = false;
kgsl_cancel_events(mmu->device, mmu);
kgsl_iommu_disable_clk(mmu);
}
static int kgsl_iommu_close(struct kgsl_mmu *mmu)
{
struct kgsl_iommu *iommu = mmu->priv;
int i;
if (mmu->priv_bank_table != NULL) {
kgsl_iommu_cleanup_regs(mmu, mmu->priv_bank_table);
kgsl_mmu_putpagetable(mmu->priv_bank_table);
}
if (mmu->defaultpagetable != NULL)
kgsl_mmu_putpagetable(mmu->defaultpagetable);
for (i = 0; i < iommu->unit_count; i++) {
struct kgsl_memdesc *reg_map = &iommu->iommu_units[i].reg_map;
if (reg_map->hostptr)
iounmap(reg_map->hostptr);
kgsl_sg_free(reg_map->sg, reg_map->sglen);
reg_map->priv &= ~KGSL_MEMDESC_GLOBAL;
}
/* clear IOMMU GPU CPU sync structures */
kgsl_sg_free(iommu->sync_lock_desc.sg, iommu->sync_lock_desc.sglen);
memset(&iommu->sync_lock_desc, 0, sizeof(iommu->sync_lock_desc));
iommu->sync_lock_vars = NULL;
kfree(iommu);
if (kgsl_guard_page != NULL) {
__free_page(kgsl_guard_page);
kgsl_guard_page = NULL;
}
return 0;
}
static phys_addr_t
kgsl_iommu_get_current_ptbase(struct kgsl_mmu *mmu)
{
phys_addr_t pt_base;
struct kgsl_iommu *iommu = mmu->priv;
/* We cannot enable or disable the clocks in interrupt context, this
function is called from interrupt context if there is an axi error */
if (in_interrupt())
return 0;
/* Return the current pt base by reading IOMMU pt_base register */
kgsl_iommu_enable_clk(mmu, KGSL_IOMMU_CONTEXT_USER);
pt_base = KGSL_IOMMU_GET_CTX_REG(iommu, (&iommu->iommu_units[0]),
KGSL_IOMMU_CONTEXT_USER,
TTBR0);
kgsl_iommu_disable_clk_on_ts(mmu, 0, false);
return pt_base & KGSL_IOMMU_CTX_TTBR0_ADDR_MASK;
}
/*
* kgsl_iommu_default_setstate - Change the IOMMU pagetable or flush IOMMU tlb
* of the primary context bank
* @mmu - Pointer to mmu structure
* @flags - Flags indicating whether pagetable has to chnage or tlb is to be
* flushed or both
*
* Based on flags set the new pagetable fo the IOMMU unit or flush it's tlb or
* do both by doing direct register writes to the IOMMu registers through the
* cpu
* Return - void
*/
static void kgsl_iommu_default_setstate(struct kgsl_mmu *mmu,
uint32_t flags)
{
struct kgsl_iommu *iommu = mmu->priv;
int temp;
int i;
phys_addr_t pt_base = kgsl_iommu_get_pt_base_addr(mmu,
mmu->hwpagetable);
phys_addr_t pt_val;
if (kgsl_iommu_enable_clk(mmu, KGSL_IOMMU_CONTEXT_USER)) {
KGSL_DRV_ERR(mmu->device, "Failed to enable iommu clocks\n");
return;
}
/* For v0 SMMU GPU needs to be idle for tlb invalidate as well */
if (msm_soc_version_supports_iommu_v0())
kgsl_idle(mmu->device);
/* Acquire GPU-CPU sync Lock here */
_iommu_lock();
if (flags & KGSL_MMUFLAGS_PTUPDATE) {
if (!msm_soc_version_supports_iommu_v0())
kgsl_idle(mmu->device);
for (i = 0; i < iommu->unit_count; i++) {
/* get the lsb value which should not change when
* changing ttbr0 */
pt_val = kgsl_iommu_get_default_ttbr0(mmu, i,
KGSL_IOMMU_CONTEXT_USER);
pt_base &= KGSL_IOMMU_CTX_TTBR0_ADDR_MASK;
pt_val &= ~KGSL_IOMMU_CTX_TTBR0_ADDR_MASK;
pt_val |= pt_base;
if (sizeof(phys_addr_t) > sizeof(unsigned long)) {
KGSL_IOMMU_SET_CTX_REG_LL(iommu,
(&iommu->iommu_units[i]),
KGSL_IOMMU_CONTEXT_USER, TTBR0, pt_val);
} else {
KGSL_IOMMU_SET_CTX_REG(iommu,
(&iommu->iommu_units[i]),
KGSL_IOMMU_CONTEXT_USER, TTBR0, pt_val);
}
mb();
temp = KGSL_IOMMU_GET_CTX_REG(iommu,
(&iommu->iommu_units[i]),
KGSL_IOMMU_CONTEXT_USER, TTBR0);
}
}
/* Flush tlb */
if (flags & KGSL_MMUFLAGS_TLBFLUSH) {
unsigned long wait_for_flush;
for (i = 0; i < iommu->unit_count; i++) {
KGSL_IOMMU_SET_CTX_REG(iommu, (&iommu->iommu_units[i]),
KGSL_IOMMU_CONTEXT_USER, TLBIALL, 1);
mb();
/*
* Wait for flush to complete by polling the flush
* status bit of TLBSTATUS register for not more than
* 2 s. After 2s just exit, at that point the SMMU h/w
* may be stuck and will eventually cause GPU to hang
* or bring the system down.
*/
if (!msm_soc_version_supports_iommu_v0()) {
wait_for_flush = jiffies +
msecs_to_jiffies(2000);
KGSL_IOMMU_SET_CTX_REG(iommu,
(&iommu->iommu_units[i]),
KGSL_IOMMU_CONTEXT_USER, TLBSYNC, 0);
while (KGSL_IOMMU_GET_CTX_REG(iommu,
(&iommu->iommu_units[i]),
KGSL_IOMMU_CONTEXT_USER, TLBSTATUS) &
(KGSL_IOMMU_CTX_TLBSTATUS_SACTIVE)) {
if (time_after(jiffies,
wait_for_flush)) {
KGSL_DRV_ERR(mmu->device,
"Wait limit reached for IOMMU tlb flush\n");
break;
}
cpu_relax();
}
}
}
}
/* Release GPU-CPU sync Lock here */
_iommu_unlock();
/* Disable smmu clock */
kgsl_iommu_disable_clk_on_ts(mmu, 0, false);
}
/*
* kgsl_iommu_get_reg_gpuaddr - Returns the gpu address of IOMMU regsiter
* @mmu - Pointer to mmu structure
* @iommu_unit - The iommu unit for which base address is requested
* @ctx_id - The context ID of the IOMMU ctx
* @reg - The register for which address is required
*
* Return - The gpu address of register which can be used in type3 packet
*/
static unsigned int kgsl_iommu_get_reg_gpuaddr(struct kgsl_mmu *mmu,
int iommu_unit, int ctx_id, int reg)
{
struct kgsl_iommu *iommu = mmu->priv;
if (KGSL_IOMMU_GLOBAL_BASE == reg)
return iommu->iommu_units[iommu_unit].reg_map.gpuaddr;
if (iommu->iommu_reg_list[reg].ctx_reg)
return iommu->iommu_units[iommu_unit].reg_map.gpuaddr +
iommu->iommu_reg_list[reg].reg_offset +
(ctx_id << KGSL_IOMMU_CTX_SHIFT) + iommu->ctx_offset;
else
return iommu->iommu_units[iommu_unit].reg_map.gpuaddr +
iommu->iommu_reg_list[reg].reg_offset;
}
/*
* kgsl_iommu_hw_halt_supported - Returns whether IOMMU halt command is
* supported
* @mmu - Pointer to mmu structure
* @iommu_unit - The iommu unit for which the property is requested
*/
static int kgsl_iommu_hw_halt_supported(struct kgsl_mmu *mmu, int iommu_unit)
{
struct kgsl_iommu *iommu = mmu->priv;
return iommu->iommu_units[iommu_unit].iommu_halt_enable;
}
static int kgsl_iommu_get_num_iommu_units(struct kgsl_mmu *mmu)
{
struct kgsl_iommu *iommu = mmu->priv;
return iommu->unit_count;
}
struct kgsl_mmu_ops iommu_ops = {
.mmu_init = kgsl_iommu_init,
.mmu_close = kgsl_iommu_close,
.mmu_start = kgsl_iommu_start,
.mmu_stop = kgsl_iommu_stop,
.mmu_setstate = kgsl_iommu_setstate,
.mmu_device_setstate = kgsl_iommu_default_setstate,
.mmu_pagefault = NULL,
.mmu_pagefault_resume = kgsl_iommu_pagefault_resume,
.mmu_get_current_ptbase = kgsl_iommu_get_current_ptbase,
.mmu_enable_clk = kgsl_iommu_enable_clk,
.mmu_disable_clk_on_ts = kgsl_iommu_disable_clk_on_ts,
.mmu_get_default_ttbr0 = kgsl_iommu_get_default_ttbr0,
.mmu_get_reg_gpuaddr = kgsl_iommu_get_reg_gpuaddr,
.mmu_get_reg_ahbaddr = kgsl_iommu_get_reg_ahbaddr,
.mmu_get_num_iommu_units = kgsl_iommu_get_num_iommu_units,
.mmu_pt_equal = kgsl_iommu_pt_equal,
.mmu_get_pt_base_addr = kgsl_iommu_get_pt_base_addr,
.mmu_hw_halt_supported = kgsl_iommu_hw_halt_supported,
/* These callbacks will be set on some chipsets */
.mmu_setup_pt = NULL,
.mmu_cleanup_pt = NULL,
.mmu_sync_lock = kgsl_iommu_sync_lock,
.mmu_sync_unlock = kgsl_iommu_sync_unlock,
};
struct kgsl_mmu_pt_ops iommu_pt_ops = {
.mmu_map = kgsl_iommu_map,
.mmu_unmap = kgsl_iommu_unmap,
.mmu_create_pagetable = kgsl_iommu_create_pagetable,
.mmu_destroy_pagetable = kgsl_iommu_destroy_pagetable,
};