M7350/kernel/arch/arm/mach-msm/qdsp5/adsp.c

1510 lines
39 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/* arch/arm/mach-msm/qdsp5/adsp.c
*
* Register/Interrupt access for userspace aDSP library.
*
* Copyright (C) 2008 Google, Inc.
* Copyright (c) 2008-2012, The Linux Foundation. All rights reserved.
* Author: Iliyan Malchev <ibm@android.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
/* TODO:
* - move shareable rpc code outside of adsp.c
* - general solution for virt->phys patchup
* - queue IDs should be relative to modules
* - disallow access to non-associated queues
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/uaccess.h>
#include <linux/wait.h>
#include <linux/wakelock.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <mach/debug_mm.h>
#include <linux/debugfs.h>
#ifdef CONFIG_DEBUG_FS
static struct dentry *dentry_adsp;
static struct dentry *dentry_wdata;
static struct dentry *dentry_rdata;
static int wdump, rdump;
#endif /* CONFIG_DEBUG_FS */
static struct wake_lock adsp_wake_lock;
static inline void prevent_suspend(void)
{
wake_lock(&adsp_wake_lock);
}
static inline void allow_suspend(void)
{
wake_unlock(&adsp_wake_lock);
}
#include <linux/io.h>
#include <mach/msm_iomap.h>
#include <mach/msm_adsp.h>
#include "adsp.h"
static struct adsp_info adsp_info;
static struct msm_rpc_endpoint *rpc_cb_server_client;
static struct msm_adsp_module *adsp_modules;
static int adsp_open_count;
static uint32_t rpc_adsp_rtos_atom_prog;
static uint32_t rpc_adsp_rtos_atom_vers;
static uint32_t rpc_adsp_rtos_atom_vers_comp;
static uint32_t rpc_adsp_rtos_mtoa_prog;
static uint32_t rpc_adsp_rtos_mtoa_vers;
static uint32_t rpc_adsp_rtos_mtoa_vers_comp;
static DEFINE_MUTEX(adsp_open_lock);
static struct workqueue_struct *msm_adsp_probe_work_queue;
static void adsp_probe_work(struct work_struct *work);
static DECLARE_WORK(msm_adsp_probe_work, adsp_probe_work);
/* protect interactions with the ADSP command/message queue */
static spinlock_t adsp_cmd_lock;
static spinlock_t adsp_write_lock;
static uint32_t current_image = -1;
void adsp_set_image(struct adsp_info *info, uint32_t image)
{
current_image = image;
}
/*
* Checks whether the module_id is available in the
* module_entries table.If module_id is available returns `0`.
* If module_id is not available returns `-ENXIO`.
*/
static int32_t adsp_validate_module(uint32_t module_id)
{
uint32_t *ptr;
uint32_t module_index;
uint32_t num_mod_entries;
ptr = adsp_info.init_info_ptr->module_entries;
num_mod_entries = adsp_info.init_info_ptr->module_table_size;
for (module_index = 0; module_index < num_mod_entries; module_index++)
if (module_id == ptr[module_index])
return 0;
return -ENXIO;
}
static int32_t adsp_validate_queue(uint32_t mod_id, unsigned q_idx,
uint32_t size)
{
int32_t i;
struct adsp_rtos_mp_mtoa_init_info_type *sptr;
sptr = adsp_info.init_info_ptr;
for (i = 0; i < sptr->mod_to_q_entries; i++)
if (mod_id == sptr->mod_to_q_tbl[i].module)
if (q_idx == sptr->mod_to_q_tbl[i].q_type) {
if (size <= sptr->mod_to_q_tbl[i].q_max_len)
return 0;
MM_ERR("q_idx: %d is not a valid queue \
for module %x\n", q_idx, mod_id);
return -EINVAL;
}
MM_ERR("cmd_buf size is more than allowed size\n");
return -EINVAL;
}
uint32_t adsp_get_module(struct adsp_info *info, uint32_t task)
{
return info->task_to_module[current_image][task];
}
uint32_t adsp_get_queue_offset(struct adsp_info *info, uint32_t queue_id)
{
return info->queue_offset[current_image][queue_id];
}
static int rpc_adsp_rtos_app_to_modem(uint32_t cmd, uint32_t module,
struct msm_adsp_module *adsp_module)
{
int rc;
struct rpc_adsp_rtos_app_to_modem_args_t rpc_req;
struct rpc_reply_hdr rpc_rsp;
rpc_req.gotit = cpu_to_be32(1);
rpc_req.cmd = cpu_to_be32(cmd);
rpc_req.proc_id = cpu_to_be32(RPC_ADSP_RTOS_PROC_APPS);
rpc_req.module = cpu_to_be32(module);
rc = msm_rpc_call_reply(adsp_module->rpc_client,
RPC_ADSP_RTOS_APP_TO_MODEM_PROC,
&rpc_req, sizeof(rpc_req),
&rpc_rsp, sizeof(rpc_rsp),
5 * HZ);
if (rc < 0) {
MM_ERR("error receiving RPC reply: %d (%d)\n",
rc, -ERESTARTSYS);
return rc;
}
if (be32_to_cpu(rpc_rsp.reply_stat) != RPCMSG_REPLYSTAT_ACCEPTED) {
MM_ERR("RPC call was denied!\n");
return -EPERM;
}
if (be32_to_cpu(rpc_rsp.data.acc_hdr.accept_stat) !=
RPC_ACCEPTSTAT_SUCCESS) {
MM_ERR("RPC call was not successful (%d)\n",
be32_to_cpu(rpc_rsp.data.acc_hdr.accept_stat));
return -EINVAL;
}
return 0;
}
static int get_module_index(uint32_t id)
{
int mod_idx;
for (mod_idx = 0; mod_idx < adsp_info.module_count; mod_idx++)
if (adsp_info.module[mod_idx].id == id)
return mod_idx;
return -ENXIO;
}
static struct msm_adsp_module *find_adsp_module_by_id(
struct adsp_info *info, uint32_t id)
{
int mod_idx;
if (id > info->max_module_id) {
return NULL;
} else {
mod_idx = get_module_index(id);
if (mod_idx < 0)
return NULL;
return info->id_to_module[mod_idx];
}
}
static struct msm_adsp_module *find_adsp_module_by_name(
struct adsp_info *info, const char *name)
{
unsigned n;
for (n = 0; n < info->module_count; n++)
if (!strcmp(name, adsp_modules[n].name))
return adsp_modules + n;
return NULL;
}
static int adsp_rpc_init(struct msm_adsp_module *adsp_module)
{
/* remove the original connect once compatible support is complete */
adsp_module->rpc_client = msm_rpc_connect(
rpc_adsp_rtos_atom_prog,
rpc_adsp_rtos_atom_vers,
MSM_RPC_UNINTERRUPTIBLE);
if (IS_ERR(adsp_module->rpc_client))
adsp_module->rpc_client = msm_rpc_connect_compatible(
rpc_adsp_rtos_atom_prog,
rpc_adsp_rtos_atom_vers_comp,
MSM_RPC_UNINTERRUPTIBLE);
if (IS_ERR(adsp_module->rpc_client)) {
int rc = PTR_ERR(adsp_module->rpc_client);
adsp_module->rpc_client = 0;
MM_ERR("could not open rpc client: %d\n", rc);
return rc;
}
return 0;
}
/*
* Send RPC_ADSP_RTOS_CMD_GET_INIT_INFO cmd to ARM9 and get
* queue offsets and module entries (init info) as part of the event.
*/
static void msm_get_init_info(void)
{
int rc;
struct rpc_adsp_rtos_app_to_modem_args_t rpc_req;
struct rpc_reply_hdr rpc_rsp;
adsp_info.init_info_rpc_client = msm_rpc_connect(
rpc_adsp_rtos_atom_prog,
rpc_adsp_rtos_atom_vers,
MSM_RPC_UNINTERRUPTIBLE);
if (IS_ERR(adsp_info.init_info_rpc_client)) {
adsp_info.init_info_rpc_client = msm_rpc_connect_compatible(
rpc_adsp_rtos_atom_prog,
rpc_adsp_rtos_atom_vers_comp,
MSM_RPC_UNINTERRUPTIBLE);
if (IS_ERR(adsp_info.init_info_rpc_client)) {
rc = PTR_ERR(adsp_info.init_info_rpc_client);
adsp_info.init_info_rpc_client = 0;
MM_ERR("could not open rpc client: %d\n", rc);
return;
}
}
rpc_req.gotit = cpu_to_be32(1);
rpc_req.cmd = cpu_to_be32(RPC_ADSP_RTOS_CMD_GET_INIT_INFO);
rpc_req.proc_id = cpu_to_be32(RPC_ADSP_RTOS_PROC_APPS);
rpc_req.module = 0;
rc = msm_rpc_call_reply(adsp_info.init_info_rpc_client,
RPC_ADSP_RTOS_APP_TO_MODEM_PROC,
&rpc_req, sizeof(rpc_req),
&rpc_rsp, sizeof(rpc_rsp),
5 * HZ);
if (rc < 0)
MM_ERR("could not send RPC request: %d\n", rc);
}
int msm_adsp_get(const char *name, struct msm_adsp_module **out,
struct msm_adsp_ops *ops, void *driver_data)
{
struct msm_adsp_module *module;
int rc = 0;
static uint32_t init_info_cmd_sent;
mutex_lock(&adsp_info.lock);
if (!init_info_cmd_sent) {
init_waitqueue_head(&adsp_info.init_info_wait);
msm_get_init_info();
rc = wait_event_timeout(adsp_info.init_info_wait,
adsp_info.init_info_state == ADSP_STATE_INIT_INFO,
5 * HZ);
if (!rc) {
MM_ERR("INIT_INFO failed\n");
mutex_unlock(&adsp_info.lock);
return -ETIMEDOUT;
}
init_info_cmd_sent++;
}
mutex_unlock(&adsp_info.lock);
module = find_adsp_module_by_name(&adsp_info, name);
if (!module)
return -ENODEV;
mutex_lock(&module->lock);
MM_INFO("opening module %s\n", module->name);
if (module->ops) {
rc = -EBUSY;
goto done;
}
rc = adsp_rpc_init(module);
if (rc)
goto done;
module->ops = ops;
module->driver_data = driver_data;
*out = module;
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_REGISTER_APP,
module->id, module);
if (rc) {
module->ops = NULL;
module->driver_data = NULL;
*out = NULL;
MM_ERR("REGISTER_APP failed\n");
goto done;
}
MM_DBG("module %s has been registered\n", module->name);
done:
mutex_unlock(&module->lock);
return rc;
}
EXPORT_SYMBOL(msm_adsp_get);
static int msm_adsp_disable_locked(struct msm_adsp_module *module);
void msm_adsp_put(struct msm_adsp_module *module)
{
unsigned long flags;
mutex_lock(&module->lock);
if (module->ops) {
MM_INFO("closing module %s\n", module->name);
/* lock to ensure a dsp event cannot be delivered
* during or after removal of the ops and driver_data
*/
spin_lock_irqsave(&adsp_cmd_lock, flags);
module->ops = NULL;
module->driver_data = NULL;
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
if (module->state != ADSP_STATE_DISABLED) {
MM_INFO("disabling module %s\n", module->name);
msm_adsp_disable_locked(module);
}
msm_rpc_close(module->rpc_client);
module->rpc_client = 0;
} else {
MM_INFO("module %s is already closed\n", module->name);
}
mutex_unlock(&module->lock);
}
EXPORT_SYMBOL(msm_adsp_put);
/* this should be common code with rpc_servers.c */
static int rpc_send_accepted_void_reply(struct msm_rpc_endpoint *client,
uint32_t xid, uint32_t accept_status)
{
int rc = 0;
uint8_t reply_buf[sizeof(struct rpc_reply_hdr)];
struct rpc_reply_hdr *reply = (struct rpc_reply_hdr *)reply_buf;
reply->xid = cpu_to_be32(xid);
reply->type = cpu_to_be32(1); /* reply */
reply->reply_stat = cpu_to_be32(RPCMSG_REPLYSTAT_ACCEPTED);
reply->data.acc_hdr.accept_stat = cpu_to_be32(accept_status);
reply->data.acc_hdr.verf_flavor = 0;
reply->data.acc_hdr.verf_length = 0;
rc = msm_rpc_write(rpc_cb_server_client, reply_buf, sizeof(reply_buf));
if (rc < 0)
MM_ERR("could not write RPC response: %d\n", rc);
return rc;
}
int __msm_adsp_write(struct msm_adsp_module *module, unsigned dsp_queue_addr,
void *cmd_buf, size_t cmd_size)
{
uint32_t ctrl_word;
uint32_t dsp_q_addr;
uint32_t dsp_addr;
uint32_t cmd_id = 0;
int cnt = 0;
int ret_status = 0;
unsigned long flags;
struct adsp_info *info;
if (!module || !cmd_buf) {
MM_ERR("Called with NULL parameters\n");
return -EINVAL;
}
info = module->info;
spin_lock_irqsave(&adsp_write_lock, flags);
if (module->state != ADSP_STATE_ENABLED) {
spin_unlock_irqrestore(&adsp_write_lock, flags);
MM_ERR("module %s not enabled before write\n", module->name);
return -ENODEV;
}
if (adsp_validate_module(module->id)) {
spin_unlock_irqrestore(&adsp_write_lock, flags);
MM_ERR("module id validation failed %s %d\n",
module->name, module->id);
return -ENXIO;
}
if (dsp_queue_addr >= QDSP_MAX_NUM_QUEUES) {
spin_unlock_irqrestore(&adsp_write_lock, flags);
MM_ERR("Invalid Queue Index: %d\n", dsp_queue_addr);
return -ENXIO;
}
if (adsp_validate_queue(module->id, dsp_queue_addr, cmd_size)) {
spin_unlock_irqrestore(&adsp_write_lock, flags);
return -EINVAL;
}
dsp_q_addr = adsp_get_queue_offset(info, dsp_queue_addr);
dsp_q_addr &= ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M;
/* Poll until the ADSP is ready to accept a command.
* Wait for 100us, return error if it's not responding.
* If this returns an error, we need to disable ALL modules and
* then retry.
*/
while (((ctrl_word = readl(info->write_ctrl)) &
ADSP_RTOS_WRITE_CTRL_WORD_READY_M) !=
ADSP_RTOS_WRITE_CTRL_WORD_READY_V) {
if (cnt > 50) {
MM_ERR("timeout waiting for DSP write ready\n");
ret_status = -EIO;
goto fail;
}
MM_DBG("waiting for DSP write ready\n");
udelay(2);
cnt++;
}
/* Set the mutex bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M);
ctrl_word |= ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V;
/* Clear the command bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_CMD_M);
/* Set the queue address bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M);
ctrl_word |= dsp_q_addr;
writel(ctrl_word, info->write_ctrl);
/* Generate an interrupt to the DSP. This notifies the DSP that
* we are about to send a command on this particular queue. The
* DSP will in response change its state.
*/
writel(1, info->send_irq);
/* Poll until the adsp responds to the interrupt; this does not
* generate an interrupt from the adsp. This should happen within
* 5ms.
*/
cnt = 0;
while ((readl(info->write_ctrl) &
ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M) ==
ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V) {
if (cnt > 2500) {
MM_ERR("timeout waiting for adsp ack\n");
ret_status = -EIO;
goto fail;
}
udelay(2);
cnt++;
}
/* Read the ctrl word */
ctrl_word = readl(info->write_ctrl);
if ((ctrl_word & ADSP_RTOS_WRITE_CTRL_WORD_STATUS_M) !=
ADSP_RTOS_WRITE_CTRL_WORD_NO_ERR_V) {
ret_status = -EAGAIN;
goto fail;
} else {
/* No error */
/* Get the DSP buffer address */
dsp_addr = (ctrl_word & ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M) +
(uint32_t)MSM_AD5_BASE;
if (dsp_addr < (uint32_t)(MSM_AD5_BASE + QDSP_RAMC_OFFSET)) {
uint16_t *buf_ptr = (uint16_t *) cmd_buf;
uint16_t *dsp_addr16 = (uint16_t *)dsp_addr;
cmd_size /= sizeof(uint16_t);
/* Save the command ID */
cmd_id = (uint32_t) buf_ptr[0];
/* Copy the command to DSP memory */
cmd_size++;
while (--cmd_size)
*dsp_addr16++ = *buf_ptr++;
} else {
uint32_t *buf_ptr = (uint32_t *) cmd_buf;
uint32_t *dsp_addr32 = (uint32_t *)dsp_addr;
cmd_size /= sizeof(uint32_t);
/* Save the command ID */
cmd_id = buf_ptr[0];
cmd_size++;
while (--cmd_size)
*dsp_addr32++ = *buf_ptr++;
}
/* Set the mutex bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_M);
ctrl_word |= ADSP_RTOS_WRITE_CTRL_WORD_MUTEX_NAVAIL_V;
/* Set the command bits to write done */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_CMD_M);
ctrl_word |= ADSP_RTOS_WRITE_CTRL_WORD_CMD_WRITE_DONE_V;
/* Set the queue address bits */
ctrl_word &= ~(ADSP_RTOS_WRITE_CTRL_WORD_DSP_ADDR_M);
ctrl_word |= dsp_q_addr;
writel(ctrl_word, info->write_ctrl);
/* Generate an interrupt to the DSP. It does not respond with
* an interrupt, and we do not need to wait for it to
* acknowledge, because it will hold the mutex lock until it's
* ready to receive more commands again.
*/
writel(1, info->send_irq);
module->num_commands++;
} /* Ctrl word status bits were 00, no error in the ctrl word */
fail:
spin_unlock_irqrestore(&adsp_write_lock, flags);
return ret_status;
}
EXPORT_SYMBOL(msm_adsp_write);
int msm_adsp_write(struct msm_adsp_module *module, unsigned dsp_queue_addr,
void *cmd_buf, size_t cmd_size)
{
int rc, retries = 0;
#ifdef CONFIG_DEBUG_FS
uint16_t *ptr;
int ii;
if (wdump > 0) {
ptr = cmd_buf;
pr_info("A->D:%x\n", module->id);
pr_info("adsp: %x %d\n", dsp_queue_addr, cmd_size);
for (ii = 0; ii < cmd_size/2; ii++)
pr_info("%x ", ptr[ii]);
pr_info("\n");
}
#endif /* CONFIG_DEBUG_FS */
do {
rc = __msm_adsp_write(module, dsp_queue_addr, cmd_buf,
cmd_size);
if (rc == -EAGAIN)
udelay(10);
} while (rc == -EAGAIN && retries++ < 300);
if (retries > 50)
MM_ERR("adsp: %s command took %d attempts: rc %d\n",
module->name, retries, rc);
return rc;
}
static void *event_addr;
static void read_event(void *buf, size_t len)
{
uint32_t dptr[3];
struct rpc_adsp_rtos_modem_to_app_args_t *sptr;
struct adsp_rtos_mp_mtoa_type *pkt_ptr;
sptr = event_addr;
pkt_ptr = &sptr->mtoa_pkt.adsp_rtos_mp_mtoa_data.mp_mtoa_packet;
dptr[0] = be32_to_cpu(sptr->mtoa_pkt.mp_mtoa_header.event);
dptr[1] = be32_to_cpu(pkt_ptr->module);
dptr[2] = be32_to_cpu(pkt_ptr->image);
if (len > EVENT_LEN)
len = EVENT_LEN;
memcpy(buf, dptr, len);
}
static void handle_adsp_rtos_mtoa_app(struct rpc_request_hdr *req)
{
struct rpc_adsp_rtos_modem_to_app_args_t *args =
(struct rpc_adsp_rtos_modem_to_app_args_t *)req;
uint32_t event;
uint32_t proc_id;
uint32_t module_id;
uint32_t image;
struct msm_adsp_module *module;
struct adsp_rtos_mp_mtoa_type *pkt_ptr;
struct queue_to_offset_type *qptr;
struct queue_to_offset_type *qtbl;
struct mod_to_queue_offsets *mqptr;
struct mod_to_queue_offsets *mqtbl;
uint32_t *mptr;
uint32_t *mtbl;
uint32_t q_idx;
uint32_t num_entries;
uint32_t entries_per_image;
struct adsp_rtos_mp_mtoa_init_info_type *iptr;
struct adsp_rtos_mp_mtoa_init_info_type *sptr;
int32_t i_no, e_idx;
event = be32_to_cpu(args->mtoa_pkt.mp_mtoa_header.event);
proc_id = be32_to_cpu(args->mtoa_pkt.mp_mtoa_header.proc_id);
if (event == RPC_ADSP_RTOS_INIT_INFO) {
MM_INFO("INIT_INFO Event\n");
sptr = &args->mtoa_pkt.adsp_rtos_mp_mtoa_data.mp_mtoa_init_packet;
iptr = adsp_info.init_info_ptr;
iptr->image_count = be32_to_cpu(sptr->image_count);
if (iptr->image_count > IMG_MAX)
iptr->image_count = IMG_MAX;
iptr->num_queue_offsets = be32_to_cpu(sptr->num_queue_offsets);
num_entries = iptr->num_queue_offsets;
if (num_entries > ENTRIES_MAX) {
num_entries = ENTRIES_MAX;
iptr->num_queue_offsets = ENTRIES_MAX;
}
qptr = &sptr->queue_offsets_tbl[0][0];
for (i_no = 0; i_no < iptr->image_count; i_no++) {
qtbl = &iptr->queue_offsets_tbl[i_no][0];
for (e_idx = 0; e_idx < num_entries; e_idx++) {
qtbl[e_idx].offset = be32_to_cpu(qptr->offset);
qtbl[e_idx].queue = be32_to_cpu(qptr->queue);
q_idx = be32_to_cpu(qptr->queue);
iptr->queue_offsets[i_no][q_idx] = qtbl[e_idx].offset;
qptr++;
}
}
num_entries = be32_to_cpu(sptr->num_task_module_entries);
if (num_entries > ENTRIES_MAX)
num_entries = ENTRIES_MAX;
iptr->num_task_module_entries = num_entries;
entries_per_image = num_entries / iptr->image_count;
mptr = &sptr->task_to_module_tbl[0][0];
for (i_no = 0; i_no < iptr->image_count; i_no++) {
mtbl = &iptr->task_to_module_tbl[i_no][0];
for (e_idx = 0; e_idx < entries_per_image; e_idx++) {
mtbl[e_idx] = be32_to_cpu(*mptr);
mptr++;
}
}
iptr->module_table_size = be32_to_cpu(sptr->module_table_size);
#if CONFIG_ADSP_RPC_VER > 0x30001
if (iptr->module_table_size > MODULES_MAX)
iptr->module_table_size = MODULES_MAX;
#else
if (iptr->module_table_size > ENTRIES_MAX)
iptr->module_table_size = ENTRIES_MAX;
#endif
mptr = &sptr->module_entries[0];
for (i_no = 0; i_no < iptr->module_table_size; i_no++)
iptr->module_entries[i_no] = be32_to_cpu(mptr[i_no]);
mqptr = &sptr->mod_to_q_tbl[0];
mqtbl = &iptr->mod_to_q_tbl[0];
iptr->mod_to_q_entries = be32_to_cpu(sptr->mod_to_q_entries);
if (iptr->mod_to_q_entries > ENTRIES_MAX)
iptr->mod_to_q_entries = ENTRIES_MAX;
for (e_idx = 0; e_idx < iptr->mod_to_q_entries; e_idx++) {
mqtbl[e_idx].module = be32_to_cpu(mqptr->module);
mqtbl[e_idx].q_type = be32_to_cpu(mqptr->q_type);
mqtbl[e_idx].q_max_len = be32_to_cpu(mqptr->q_max_len);
mqptr++;
}
adsp_info.init_info_state = ADSP_STATE_INIT_INFO;
rpc_send_accepted_void_reply(rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_SUCCESS);
wake_up(&adsp_info.init_info_wait);
return;
}
pkt_ptr = &args->mtoa_pkt.adsp_rtos_mp_mtoa_data.mp_mtoa_packet;
module_id = be32_to_cpu(pkt_ptr->module);
image = be32_to_cpu(pkt_ptr->image);
MM_DBG("rpc event=%d, proc_id=%d, module=%d, image=%d\n",
event, proc_id, module_id, image);
module = find_adsp_module_by_id(&adsp_info, module_id);
if (!module) {
MM_ERR("module %d is not supported!\n", module_id);
rpc_send_accepted_void_reply(rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_GARBAGE_ARGS);
return;
}
mutex_lock(&module->lock);
switch (event) {
case RPC_ADSP_RTOS_MOD_READY:
if (module->state == ADSP_STATE_ENABLING) {
MM_INFO("module %s: READY\n", module->name);
module->state = ADSP_STATE_ENABLED;
wake_up(&module->state_wait);
adsp_set_image(module->info, image);
break;
} else {
MM_ERR("module %s got READY event in state[%d]\n",
module->name,
module->state);
rpc_send_accepted_void_reply(rpc_cb_server_client,
req->xid,
RPC_ACCEPTSTAT_GARBAGE_ARGS);
mutex_unlock(&module->lock);
return;
}
case RPC_ADSP_RTOS_MOD_DISABLE:
MM_INFO("module %s: DISABLED\n", module->name);
module->state = ADSP_STATE_DISABLED;
wake_up(&module->state_wait);
break;
case RPC_ADSP_RTOS_SERVICE_RESET:
MM_INFO("module %s: SERVICE_RESET\n", module->name);
module->state = ADSP_STATE_DISABLED;
wake_up(&module->state_wait);
break;
case RPC_ADSP_RTOS_CMD_SUCCESS:
MM_INFO("module %s: CMD_SUCCESS\n", module->name);
break;
case RPC_ADSP_RTOS_CMD_FAIL:
MM_INFO("module %s: CMD_FAIL\n", module->name);
break;
case RPC_ADSP_RTOS_DISABLE_FAIL:
MM_INFO("module %s: DISABLE_FAIL\n", module->name);
break;
default:
MM_ERR("unknown event %d\n", event);
rpc_send_accepted_void_reply(rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_GARBAGE_ARGS);
mutex_unlock(&module->lock);
return;
}
rpc_send_accepted_void_reply(rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_SUCCESS);
#ifdef CONFIG_MSM_ADSP_REPORT_EVENTS
event_addr = (uint32_t *)req;
module->ops->event(module->driver_data,
EVENT_MSG_ID,
EVENT_LEN,
read_event);
#endif
mutex_unlock(&module->lock);
}
static int handle_adsp_rtos_mtoa(struct rpc_request_hdr *req)
{
switch (req->procedure) {
case RPC_ADSP_RTOS_MTOA_NULL_PROC:
rpc_send_accepted_void_reply(rpc_cb_server_client,
req->xid,
RPC_ACCEPTSTAT_SUCCESS);
break;
#if CONFIG_ADSP_RPC_VER > 0x30001
case RPC_ADSP_RTOS_MTOA_INIT_INFO_PROC:
case RPC_ADSP_RTOS_MTOA_EVENT_INFO_PROC:
#else
case RPC_ADSP_RTOS_MODEM_TO_APP_PROC:
#endif
handle_adsp_rtos_mtoa_app(req);
break;
default:
MM_ERR("unknowned proc %d\n", req->procedure);
rpc_send_accepted_void_reply(
rpc_cb_server_client, req->xid,
RPC_ACCEPTSTAT_PROC_UNAVAIL);
break;
}
return 0;
}
/* this should be common code with rpc_servers.c */
static int adsp_rpc_thread(void *data)
{
void *buffer;
struct rpc_request_hdr *req;
int rc, exit = 0;
do {
rc = msm_rpc_read(rpc_cb_server_client, &buffer, -1, -1);
if (rc < 0) {
MM_ERR("could not read rpc: %d\n", rc);
break;
}
req = (struct rpc_request_hdr *)buffer;
req->type = be32_to_cpu(req->type);
req->xid = be32_to_cpu(req->xid);
req->rpc_vers = be32_to_cpu(req->rpc_vers);
req->prog = be32_to_cpu(req->prog);
req->vers = be32_to_cpu(req->vers);
req->procedure = be32_to_cpu(req->procedure);
if (req->type != 0)
goto bad_rpc;
if (req->rpc_vers != 2)
goto bad_rpc;
if (req->prog != rpc_adsp_rtos_mtoa_prog)
goto bad_rpc;
if (!msm_rpc_is_compatible_version(rpc_adsp_rtos_mtoa_vers,
req->vers))
goto bad_rpc;
handle_adsp_rtos_mtoa(req);
kfree(buffer);
continue;
bad_rpc:
MM_ERR("bogus rpc from modem\n");
kfree(buffer);
} while (!exit);
do_exit(0);
}
static size_t read_event_size;
static void *read_event_addr;
static void read_event_16(void *buf, size_t len)
{
uint16_t *dst = buf;
uint16_t *src = read_event_addr;
len /= 2;
if (len > read_event_size)
len = read_event_size;
while (len--)
*dst++ = *src++;
}
static void read_event_32(void *buf, size_t len)
{
uint32_t *dst = buf;
uint32_t *src = read_event_addr;
len /= 2;
if (len > read_event_size)
len = read_event_size;
while (len--)
*dst++ = *src++;
}
static int adsp_rtos_read_ctrl_word_cmd_tast_to_h_v(
struct adsp_info *info, void *dsp_addr)
{
struct msm_adsp_module *module;
unsigned rtos_task_id;
unsigned msg_id;
unsigned msg_length;
#ifdef CONFIG_DEBUG_FS
uint16_t *ptr16;
uint32_t *ptr32;
int ii;
#endif /* CONFIG_DEBUG_FS */
void (*func)(void *, size_t);
if (dsp_addr >= (void *)(MSM_AD5_BASE + QDSP_RAMC_OFFSET)) {
uint32_t *dsp_addr32 = dsp_addr;
uint32_t tmp = *dsp_addr32++;
rtos_task_id = (tmp & ADSP_RTOS_READ_CTRL_WORD_TASK_ID_M) >> 8;
msg_id = (tmp & ADSP_RTOS_READ_CTRL_WORD_MSG_ID_M);
read_event_size = tmp >> 16;
read_event_addr = dsp_addr32;
msg_length = read_event_size * sizeof(uint32_t);
func = read_event_32;
} else {
uint16_t *dsp_addr16 = dsp_addr;
uint16_t tmp = *dsp_addr16++;
rtos_task_id = (tmp & ADSP_RTOS_READ_CTRL_WORD_TASK_ID_M) >> 8;
msg_id = tmp & ADSP_RTOS_READ_CTRL_WORD_MSG_ID_M;
read_event_size = *dsp_addr16++;
read_event_addr = dsp_addr16;
msg_length = read_event_size * sizeof(uint16_t);
func = read_event_16;
}
if (rtos_task_id > info->max_task_id) {
MM_ERR("bogus task id %d\n", rtos_task_id);
return 0;
}
module = find_adsp_module_by_id(info,
adsp_get_module(info, rtos_task_id));
if (!module) {
MM_ERR("no module for task id %d\n", rtos_task_id);
return 0;
}
module->num_events++;
if (!module->ops) {
MM_ERR("module %s is not open\n", module->name);
return 0;
}
#ifdef CONFIG_DEBUG_FS
if (rdump > 0 &&
(dsp_addr >= (void *)(MSM_AD5_BASE + QDSP_RAMC_OFFSET))) {
ptr32 = read_event_addr;
pr_info("D->A\n");
pr_info("m_id = %x id = %x\n", module->id, msg_id);
for (ii = 0; ii < msg_length/4; ii++)
pr_info("%x ", ptr32[ii]);
pr_info("\n");
} else if (rdump > 0) {
ptr16 = read_event_addr;
pr_info("D->A\n");
pr_info("m_id = %x id = %x\n", module->id, msg_id);
for (ii = 0; ii < msg_length/2; ii++)
pr_info("%x ", ptr16[ii]);
pr_info("\n");
}
#endif /* CONFIG_DEBUG_FS */
module->ops->event(module->driver_data, msg_id, msg_length, func);
return 0;
}
static int adsp_get_event(struct adsp_info *info)
{
uint32_t ctrl_word;
uint32_t ready;
void *dsp_addr;
uint32_t cmd_type;
int cnt;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&adsp_cmd_lock, flags);
/* Whenever the DSP has a message, it updates this control word
* and generates an interrupt. When we receive the interrupt, we
* read this register to find out what ADSP task the command is
* comming from.
*
* The ADSP should *always* be ready on the first call, but the
* irq handler calls us in a loop (to handle back-to-back command
* processing), so we give the DSP some time to return to the
* ready state. The DSP will not issue another IRQ for events
* pending between the first IRQ and the event queue being drained,
* unfortunately.
*/
for (cnt = 0; cnt < 50; cnt++) {
ctrl_word = readl(info->read_ctrl);
if ((ctrl_word & ADSP_RTOS_READ_CTRL_WORD_FLAG_M) ==
ADSP_RTOS_READ_CTRL_WORD_FLAG_UP_CONT_V)
goto ready;
udelay(2);
}
MM_ERR("not ready after 100uS\n");
rc = -EBUSY;
goto done;
ready:
/* Here we check to see if there are pending messages. If there are
* none, we siply return -EAGAIN to indicate that there are no more
* messages pending.
*/
ready = ctrl_word & ADSP_RTOS_READ_CTRL_WORD_READY_M;
if ((ready != ADSP_RTOS_READ_CTRL_WORD_READY_V) &&
(ready != ADSP_RTOS_READ_CTRL_WORD_CONT_V)) {
rc = -EAGAIN;
goto done;
}
/* DSP says that there are messages waiting for the host to read */
/* Get the Command Type */
cmd_type = ctrl_word & ADSP_RTOS_READ_CTRL_WORD_CMD_TYPE_M;
/* Get the DSP buffer address */
dsp_addr = (void *)((ctrl_word &
ADSP_RTOS_READ_CTRL_WORD_DSP_ADDR_M) +
(uint32_t)MSM_AD5_BASE);
/* We can only handle Task-to-Host messages */
if (cmd_type != ADSP_RTOS_READ_CTRL_WORD_CMD_TASK_TO_H_V) {
MM_ERR("unknown dsp cmd_type %d\n", cmd_type);
rc = -EIO;
goto done;
}
adsp_rtos_read_ctrl_word_cmd_tast_to_h_v(info, dsp_addr);
ctrl_word = readl(info->read_ctrl);
ctrl_word &= ~ADSP_RTOS_READ_CTRL_WORD_READY_M;
/* Write ctrl word to the DSP */
writel(ctrl_word, info->read_ctrl);
/* Generate an interrupt to the DSP */
writel(1, info->send_irq);
done:
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
return rc;
}
static irqreturn_t adsp_irq_handler(int irq, void *data)
{
struct adsp_info *info = &adsp_info;
int cnt = 0;
for (cnt = 0; cnt < 15; cnt++)
if (adsp_get_event(info) < 0)
break;
if (cnt > info->event_backlog_max)
info->event_backlog_max = cnt;
info->events_received += cnt;
if (cnt == 15)
MM_ERR("too many (%d) events for single irq!\n", cnt);
return IRQ_HANDLED;
}
int adsp_set_clkrate(struct msm_adsp_module *module, unsigned long clk_rate)
{
if (!module)
return -EINVAL;
if (module->clk && clk_rate)
return clk_set_rate(module->clk, clk_rate);
return -EINVAL;
}
int msm_adsp_generate_event(void *data,
struct msm_adsp_module *mod,
unsigned event_id,
unsigned event_length,
unsigned event_size,
void *msg)
{
unsigned long flags;
void (*func)(void *, size_t);
if (!mod)
return -EINVAL;
if (event_size == sizeof(uint32_t))
func = read_event_32;
else if (event_size == sizeof(uint16_t))
func = read_event_16;
else
return -EINVAL;
spin_lock_irqsave(&adsp_cmd_lock, flags);
read_event_addr = msg;
read_event_size = event_length;
mod->ops->event(data, event_id, event_length, func);
spin_unlock_irqrestore(&adsp_cmd_lock, flags);
return 0;
}
int msm_adsp_dump(struct msm_adsp_module *module)
{
int rc = 0;
if (!module) {
MM_INFO("Invalid module. Dumps are not collected\n");
return -EINVAL;
}
MM_INFO("starting DSP DUMP\n");
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_CORE_DUMP,
module->id, module);
MM_INFO("DSP DUMP done rc =%d\n", rc);
return rc;
}
EXPORT_SYMBOL(msm_adsp_dump);
int msm_adsp_enable(struct msm_adsp_module *module)
{
int rc = 0;
struct msm_adsp_module *module_en = NULL;
if (!module)
return -EINVAL;
MM_INFO("enable '%s'state[%d] id[%d]\n",
module->name, module->state, module->id);
if (!strncmp(module->name, "JPEGTASK", sizeof(module->name)))
module_en = find_adsp_module_by_name(&adsp_info, "VIDEOTASK");
else if (!strncmp(module->name, "VIDEOTASK", sizeof(module->name)))
module_en = find_adsp_module_by_name(&adsp_info, "JPEGTASK");
if (module_en) {
mutex_lock(&module_en->lock);
if (module_en->state == ADSP_STATE_ENABLED ||
module_en->state == ADSP_STATE_ENABLING) {
MM_ERR("both jpeg and video module can't"\
" exist at a time\n");
mutex_unlock(&module_en->lock);
return -EINVAL;
}
mutex_unlock(&module_en->lock);
}
mutex_lock(&module->lock);
switch (module->state) {
case ADSP_STATE_DISABLED:
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_ENABLE,
module->id, module);
if (rc)
break;
module->state = ADSP_STATE_ENABLING;
mutex_unlock(&module->lock);
rc = wait_event_timeout(module->state_wait,
module->state != ADSP_STATE_ENABLING,
1 * HZ);
mutex_lock(&module->lock);
if (module->state == ADSP_STATE_ENABLED) {
rc = 0;
} else {
MM_ERR("module '%s' enable timed out\n", module->name);
msm_adsp_dump(module);
rc = -ETIMEDOUT;
}
if (module->open_count++ == 0 && module->clk)
clk_prepare_enable(module->clk);
mutex_lock(&adsp_open_lock);
if (adsp_open_count++ == 0) {
enable_irq(adsp_info.int_adsp);
prevent_suspend();
}
mutex_unlock(&adsp_open_lock);
break;
case ADSP_STATE_ENABLING:
MM_DBG("module '%s' enable in progress\n", module->name);
break;
case ADSP_STATE_ENABLED:
MM_DBG("module '%s' already enabled\n", module->name);
break;
case ADSP_STATE_DISABLING:
MM_ERR("module '%s' disable in progress\n", module->name);
rc = -EBUSY;
break;
}
mutex_unlock(&module->lock);
return rc;
}
EXPORT_SYMBOL(msm_adsp_enable);
int msm_adsp_disable_event_rsp(struct msm_adsp_module *module)
{
int rc = 0;
if (!module)
return -EINVAL;
mutex_lock(&module->lock);
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_DISABLE_EVENT_RSP,
module->id, module);
mutex_unlock(&module->lock);
return rc;
}
EXPORT_SYMBOL(msm_adsp_disable_event_rsp);
static int msm_adsp_disable_locked(struct msm_adsp_module *module)
{
int rc = 0;
if (!module)
return -EINVAL;
switch (module->state) {
case ADSP_STATE_DISABLED:
MM_DBG("module '%s' already disabled\n", module->name);
break;
case ADSP_STATE_ENABLING:
case ADSP_STATE_ENABLED:
rc = rpc_adsp_rtos_app_to_modem(RPC_ADSP_RTOS_CMD_DISABLE,
module->id, module);
module->state = ADSP_STATE_DISABLED;
if (--module->open_count == 0 && module->clk)
clk_disable_unprepare(module->clk);
mutex_lock(&adsp_open_lock);
if (--adsp_open_count == 0) {
disable_irq(adsp_info.int_adsp);
allow_suspend();
MM_DBG("disable interrupt\n");
}
mutex_unlock(&adsp_open_lock);
}
return rc;
}
int msm_adsp_disable(struct msm_adsp_module *module)
{
int rc;
if (!module)
return -EINVAL;
MM_INFO("disable '%s'\n", module->name);
mutex_lock(&module->lock);
rc = msm_adsp_disable_locked(module);
mutex_unlock(&module->lock);
return rc;
}
EXPORT_SYMBOL(msm_adsp_disable);
static int msm_adsp_probe(struct platform_device *pdev)
{
unsigned count;
int rc, i;
adsp_info.int_adsp = platform_get_irq(pdev, 0);
if (adsp_info.int_adsp < 0) {
MM_ERR("no irq resource?\n");
return -ENODEV;
}
wake_lock_init(&adsp_wake_lock, WAKE_LOCK_SUSPEND, "adsp");
adsp_info.init_info_ptr = kzalloc(
(sizeof(struct adsp_rtos_mp_mtoa_init_info_type)), GFP_KERNEL);
if (!adsp_info.init_info_ptr)
return -ENOMEM;
rc = adsp_init_info(&adsp_info);
if (rc)
return rc;
adsp_info.send_irq += (uint32_t) MSM_AD5_BASE;
adsp_info.read_ctrl += (uint32_t) MSM_AD5_BASE;
adsp_info.write_ctrl += (uint32_t) MSM_AD5_BASE;
count = adsp_info.module_count;
adsp_modules = kzalloc(
(sizeof(struct msm_adsp_module) + sizeof(void *)) *
count, GFP_KERNEL);
if (!adsp_modules)
return -ENOMEM;
adsp_info.id_to_module = (void *) (adsp_modules + count);
spin_lock_init(&adsp_cmd_lock);
spin_lock_init(&adsp_write_lock);
mutex_init(&adsp_info.lock);
rc = request_irq(adsp_info.int_adsp, adsp_irq_handler,
IRQF_TRIGGER_RISING, "adsp", 0);
if (rc < 0)
goto fail_request_irq;
disable_irq(adsp_info.int_adsp);
rpc_cb_server_client = msm_rpc_open();
if (IS_ERR(rpc_cb_server_client)) {
rpc_cb_server_client = NULL;
rc = PTR_ERR(rpc_cb_server_client);
MM_ERR("could not create rpc server (%d)\n", rc);
goto fail_rpc_open;
}
rc = msm_rpc_register_server(rpc_cb_server_client,
rpc_adsp_rtos_mtoa_prog,
rpc_adsp_rtos_mtoa_vers);
if (rc) {
MM_ERR("could not register callback server (%d)\n", rc);
goto fail_rpc_register;
}
/* schedule start of kernel thread later using work queue */
queue_work(msm_adsp_probe_work_queue, &msm_adsp_probe_work);
for (i = 0; i < count; i++) {
struct msm_adsp_module *mod = adsp_modules + i;
mutex_init(&mod->lock);
init_waitqueue_head(&mod->state_wait);
mod->info = &adsp_info;
mod->name = adsp_info.module[i].name;
mod->id = adsp_info.module[i].id;
if (adsp_info.module[i].clk_name)
mod->clk = clk_get(NULL, adsp_info.module[i].clk_name);
else
mod->clk = NULL;
if (mod->clk && adsp_info.module[i].clk_rate)
clk_set_rate(mod->clk, adsp_info.module[i].clk_rate);
mod->verify_cmd = adsp_info.module[i].verify_cmd;
mod->patch_event = adsp_info.module[i].patch_event;
INIT_HLIST_HEAD(&mod->ion_regions);
mod->pdev.name = adsp_info.module[i].pdev_name;
mod->pdev.id = -1;
adsp_info.id_to_module[i] = mod;
platform_device_register(&mod->pdev);
}
msm_adsp_publish_cdevs(adsp_modules, count);
rmtask_init();
return 0;
fail_rpc_register:
msm_rpc_close(rpc_cb_server_client);
rpc_cb_server_client = NULL;
fail_rpc_open:
enable_irq(adsp_info.int_adsp);
free_irq(adsp_info.int_adsp, 0);
fail_request_irq:
kfree(adsp_modules);
kfree(adsp_info.init_info_ptr);
return rc;
}
static void adsp_probe_work(struct work_struct *work)
{
/* start the kernel thread to process the callbacks */
kthread_run(adsp_rpc_thread, NULL, "kadspd");
}
#ifdef CONFIG_DEBUG_FS
static int get_parameters(char *buf, long int *param1, int num_of_par)
{
char *token;
int base, cnt;
token = strsep(&buf, " ");
for (cnt = 0; cnt < num_of_par; cnt++) {
if (token != NULL) {
if ((token[1] == 'x') || (token[1] == 'X'))
base = 16;
else
base = 10;
if (strict_strtoul(token, base, &param1[cnt]) != 0)
return -EINVAL;
token = strsep(&buf, " ");
}
else
return -EINVAL;
}
return 0;
}
static ssize_t adsp_debug_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
pr_debug("adsp debugfs opened\n");
return 0;
}
static ssize_t adsp_debug_write(struct file *file, const char __user *buf,
size_t cnt, loff_t *ppos)
{
char *access_str = file->private_data;
char lbuf[32];
int rc;
long int param[5];
if (cnt > sizeof(lbuf) - 1)
return -EINVAL;
rc = copy_from_user(lbuf, buf, cnt);
if (rc) {
pr_info("Unable to copy data from user space\n");
return -EFAULT;
}
lbuf[cnt] = '\0';
if (!strcmp(access_str, "write_log")) {
if (get_parameters(lbuf, param, 1) == 0) {
switch (param[0]) {
case 1:
if (wdump <= 0)
wdump = 1;
pr_debug("write cmd to DSP(A->D) dump \
started:%d\n", wdump);
break;
case 0:
if (wdump > 0)
wdump = 0;
pr_debug("Stop write cmd to \
DSP(A->D):%d\n", wdump);
break;
default:
rc = -EINVAL;
break;
}
} else
rc = -EINVAL;
} else if (!strcmp(access_str, "read_log")) {
if (get_parameters(lbuf, param, 1) == 0) {
switch (param[0]) {
case 1:
if (rdump <= 0)
rdump = 1;
pr_debug("write cmd from DSP(D->A) dump \
started:%d\n", wdump);
break;
case 0:
if (rdump > 0)
rdump = 0;
pr_debug("Stop write cmd from \
DSP(D->A):%d\n", wdump);
break;
default:
rc = -EINVAL;
break;
}
} else
rc = -EINVAL;
} else {
rc = -EINVAL;
}
if (rc == 0)
rc = cnt;
else {
pr_err("%s: rc = %d\n", __func__, rc);
pr_info("\nWrong command: Use =>\n");
pr_info("-------------------------\n");
pr_info("To Start A->D:: echo \"1\">/sys/kernel/debug/ \
adsp_cmd/write_log\n");
pr_info("To Start D->A:: echo \"1\">/sys/kernel/debug/ \
adsp_cmd/read_log\n");
pr_info("To Stop A->D:: echo \"0\">/sys/kernel/debug/ \
adsp_cmd/write_log\n");
pr_info("To Stop D->A:: echo \"0\">/sys/kernel/debug/ \
adsp_cmd/read_log\n");
pr_info("------------------------\n");
}
return rc;
}
#endif
static struct platform_driver msm_adsp_driver = {
.probe = msm_adsp_probe,
.driver = {
.owner = THIS_MODULE,
},
};
static const char msm_adsp_driver_name[] = "msm_adsp";
#ifdef CONFIG_DEBUG_FS
static const struct file_operations adsp_debug_fops = {
.write = adsp_debug_write,
.open = adsp_debug_open,
};
#endif
static int __init adsp_init(void)
{
int rc;
#ifdef CONFIG_DEBUG_FS
dentry_adsp = debugfs_create_dir("adsp_cmd", 0);
if (!IS_ERR(dentry_adsp)) {
dentry_wdata = debugfs_create_file("write_log", \
S_IFREG | S_IRUGO, dentry_adsp,
(void *) "write_log" , &adsp_debug_fops);
dentry_rdata = debugfs_create_file("read_log", \
S_IFREG | S_IRUGO, dentry_adsp,
(void *) "read_log", &adsp_debug_fops);
}
rdump = 0;
wdump = 0;
#endif /* CONFIG_DEBUG_FS */
rpc_adsp_rtos_atom_prog = 0x3000000a;
rpc_adsp_rtos_atom_vers = 0x10001;
rpc_adsp_rtos_atom_vers_comp = 0x00010001;
rpc_adsp_rtos_mtoa_prog = 0x3000000b;
#if CONFIG_ADSP_RPC_VER > 0x30001
rpc_adsp_rtos_mtoa_vers = 0x30002;
rpc_adsp_rtos_mtoa_vers_comp = 0x00030002;
#else
rpc_adsp_rtos_mtoa_vers = 0x30001;
rpc_adsp_rtos_mtoa_vers_comp = 0x00030001;
#endif
msm_adsp_probe_work_queue = create_workqueue("msm_adsp_probe");
if (msm_adsp_probe_work_queue == NULL)
return -ENOMEM;
msm_adsp_driver.driver.name = msm_adsp_driver_name;
rc = platform_driver_register(&msm_adsp_driver);
MM_INFO("%s -- %d\n", msm_adsp_driver_name, rc);
return rc;
}
device_initcall(adsp_init);