1001 lines
25 KiB
C
1001 lines
25 KiB
C
|
/* Copyright (c) 2009-2013, The Linux Foundation. All rights reserved.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 and
|
||
|
* only version 2 as published by the Free Software Foundation.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "%s: " fmt, __func__
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/ctype.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/clk.h>
|
||
|
|
||
|
#include <mach/msm_iomap.h>
|
||
|
#include <mach/clk-provider.h>
|
||
|
#include <mach/clk.h>
|
||
|
#include <mach/scm-io.h>
|
||
|
|
||
|
#include "clock-local.h"
|
||
|
|
||
|
#ifdef CONFIG_MSM_SECURE_IO
|
||
|
#undef readl_relaxed
|
||
|
#undef writel_relaxed
|
||
|
#define readl_relaxed secure_readl
|
||
|
#define writel_relaxed secure_writel
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* When enabling/disabling a clock, check the halt bit up to this number
|
||
|
* number of times (with a 1 us delay in between) before continuing.
|
||
|
*/
|
||
|
#define HALT_CHECK_MAX_LOOPS 200
|
||
|
/* For clock without halt checking, wait this long after enables/disables. */
|
||
|
#define HALT_CHECK_DELAY_US 10
|
||
|
|
||
|
DEFINE_SPINLOCK(local_clock_reg_lock);
|
||
|
struct clk_freq_tbl rcg_dummy_freq = F_END;
|
||
|
|
||
|
/*
|
||
|
* Common Set-Rate Functions
|
||
|
*/
|
||
|
|
||
|
/* For clocks with MND dividers. */
|
||
|
void set_rate_mnd(struct rcg_clk *rcg, struct clk_freq_tbl *nf)
|
||
|
{
|
||
|
uint32_t ns_reg_val, ctl_reg_val;
|
||
|
|
||
|
/* Assert MND reset. */
|
||
|
ns_reg_val = readl_relaxed(rcg->ns_reg);
|
||
|
ns_reg_val |= BIT(7);
|
||
|
writel_relaxed(ns_reg_val, rcg->ns_reg);
|
||
|
|
||
|
/* Program M and D values. */
|
||
|
writel_relaxed(nf->md_val, rcg->md_reg);
|
||
|
|
||
|
/* If the clock has a separate CC register, program it. */
|
||
|
if (rcg->ns_reg != rcg->b.ctl_reg) {
|
||
|
ctl_reg_val = readl_relaxed(rcg->b.ctl_reg);
|
||
|
ctl_reg_val &= ~(rcg->ctl_mask);
|
||
|
ctl_reg_val |= nf->ctl_val;
|
||
|
writel_relaxed(ctl_reg_val, rcg->b.ctl_reg);
|
||
|
}
|
||
|
|
||
|
/* Deassert MND reset. */
|
||
|
ns_reg_val &= ~BIT(7);
|
||
|
writel_relaxed(ns_reg_val, rcg->ns_reg);
|
||
|
}
|
||
|
|
||
|
void set_rate_nop(struct rcg_clk *rcg, struct clk_freq_tbl *nf)
|
||
|
{
|
||
|
/*
|
||
|
* Nothing to do for fixed-rate or integer-divider clocks. Any settings
|
||
|
* in NS registers are applied in the enable path, since power can be
|
||
|
* saved by leaving an un-clocked or slowly-clocked source selected
|
||
|
* until the clock is enabled.
|
||
|
*/
|
||
|
}
|
||
|
|
||
|
void set_rate_mnd_8(struct rcg_clk *rcg, struct clk_freq_tbl *nf)
|
||
|
{
|
||
|
uint32_t ctl_reg_val;
|
||
|
|
||
|
/* Assert MND reset. */
|
||
|
ctl_reg_val = readl_relaxed(rcg->b.ctl_reg);
|
||
|
ctl_reg_val |= BIT(8);
|
||
|
writel_relaxed(ctl_reg_val, rcg->b.ctl_reg);
|
||
|
|
||
|
/* Program M and D values. */
|
||
|
writel_relaxed(nf->md_val, rcg->md_reg);
|
||
|
|
||
|
/* Program MN counter Enable and Mode. */
|
||
|
ctl_reg_val &= ~(rcg->ctl_mask);
|
||
|
ctl_reg_val |= nf->ctl_val;
|
||
|
writel_relaxed(ctl_reg_val, rcg->b.ctl_reg);
|
||
|
|
||
|
/* Deassert MND reset. */
|
||
|
ctl_reg_val &= ~BIT(8);
|
||
|
writel_relaxed(ctl_reg_val, rcg->b.ctl_reg);
|
||
|
}
|
||
|
|
||
|
void set_rate_mnd_banked(struct rcg_clk *rcg, struct clk_freq_tbl *nf)
|
||
|
{
|
||
|
struct bank_masks *banks = rcg->bank_info;
|
||
|
const struct bank_mask_info *new_bank_masks;
|
||
|
const struct bank_mask_info *old_bank_masks;
|
||
|
uint32_t ns_reg_val, ctl_reg_val;
|
||
|
uint32_t bank_sel;
|
||
|
|
||
|
/*
|
||
|
* Determine active bank and program the other one. If the clock is
|
||
|
* off, program the active bank since bank switching won't work if
|
||
|
* both banks aren't running.
|
||
|
*/
|
||
|
ctl_reg_val = readl_relaxed(rcg->b.ctl_reg);
|
||
|
bank_sel = !!(ctl_reg_val & banks->bank_sel_mask);
|
||
|
/* If clock isn't running, don't switch banks. */
|
||
|
bank_sel ^= (!rcg->enabled || rcg->current_freq->freq_hz == 0);
|
||
|
if (bank_sel == 0) {
|
||
|
new_bank_masks = &banks->bank1_mask;
|
||
|
old_bank_masks = &banks->bank0_mask;
|
||
|
} else {
|
||
|
new_bank_masks = &banks->bank0_mask;
|
||
|
old_bank_masks = &banks->bank1_mask;
|
||
|
}
|
||
|
|
||
|
ns_reg_val = readl_relaxed(rcg->ns_reg);
|
||
|
|
||
|
/* Assert bank MND reset. */
|
||
|
ns_reg_val |= new_bank_masks->rst_mask;
|
||
|
writel_relaxed(ns_reg_val, rcg->ns_reg);
|
||
|
|
||
|
/*
|
||
|
* Program NS only if the clock is enabled, since the NS will be set
|
||
|
* as part of the enable procedure and should remain with a low-power
|
||
|
* MUX input selected until then.
|
||
|
*/
|
||
|
if (rcg->enabled) {
|
||
|
ns_reg_val &= ~(new_bank_masks->ns_mask);
|
||
|
ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask);
|
||
|
writel_relaxed(ns_reg_val, rcg->ns_reg);
|
||
|
}
|
||
|
|
||
|
writel_relaxed(nf->md_val, new_bank_masks->md_reg);
|
||
|
|
||
|
/* Enable counter only if clock is enabled. */
|
||
|
if (rcg->enabled)
|
||
|
ctl_reg_val |= new_bank_masks->mnd_en_mask;
|
||
|
else
|
||
|
ctl_reg_val &= ~(new_bank_masks->mnd_en_mask);
|
||
|
|
||
|
ctl_reg_val &= ~(new_bank_masks->mode_mask);
|
||
|
ctl_reg_val |= (nf->ctl_val & new_bank_masks->mode_mask);
|
||
|
writel_relaxed(ctl_reg_val, rcg->b.ctl_reg);
|
||
|
|
||
|
/* Deassert bank MND reset. */
|
||
|
ns_reg_val &= ~(new_bank_masks->rst_mask);
|
||
|
writel_relaxed(ns_reg_val, rcg->ns_reg);
|
||
|
|
||
|
/*
|
||
|
* Switch to the new bank if clock is running. If it isn't, then
|
||
|
* no switch is necessary since we programmed the active bank.
|
||
|
*/
|
||
|
if (rcg->enabled && rcg->current_freq->freq_hz) {
|
||
|
ctl_reg_val ^= banks->bank_sel_mask;
|
||
|
writel_relaxed(ctl_reg_val, rcg->b.ctl_reg);
|
||
|
/*
|
||
|
* Wait at least 6 cycles of slowest bank's clock
|
||
|
* for the glitch-free MUX to fully switch sources.
|
||
|
*/
|
||
|
mb();
|
||
|
udelay(1);
|
||
|
|
||
|
/* Disable old bank's MN counter. */
|
||
|
ctl_reg_val &= ~(old_bank_masks->mnd_en_mask);
|
||
|
writel_relaxed(ctl_reg_val, rcg->b.ctl_reg);
|
||
|
|
||
|
/* Program old bank to a low-power source and divider. */
|
||
|
ns_reg_val &= ~(old_bank_masks->ns_mask);
|
||
|
ns_reg_val |= (rcg->freq_tbl->ns_val & old_bank_masks->ns_mask);
|
||
|
writel_relaxed(ns_reg_val, rcg->ns_reg);
|
||
|
}
|
||
|
|
||
|
/* Update the MND_EN and NS masks to match the current bank. */
|
||
|
rcg->mnd_en_mask = new_bank_masks->mnd_en_mask;
|
||
|
rcg->ns_mask = new_bank_masks->ns_mask;
|
||
|
}
|
||
|
|
||
|
void set_rate_div_banked(struct rcg_clk *rcg, struct clk_freq_tbl *nf)
|
||
|
{
|
||
|
struct bank_masks *banks = rcg->bank_info;
|
||
|
const struct bank_mask_info *new_bank_masks;
|
||
|
const struct bank_mask_info *old_bank_masks;
|
||
|
uint32_t ns_reg_val, bank_sel;
|
||
|
|
||
|
/*
|
||
|
* Determine active bank and program the other one. If the clock is
|
||
|
* off, program the active bank since bank switching won't work if
|
||
|
* both banks aren't running.
|
||
|
*/
|
||
|
ns_reg_val = readl_relaxed(rcg->ns_reg);
|
||
|
bank_sel = !!(ns_reg_val & banks->bank_sel_mask);
|
||
|
/* If clock isn't running, don't switch banks. */
|
||
|
bank_sel ^= (!rcg->enabled || rcg->current_freq->freq_hz == 0);
|
||
|
if (bank_sel == 0) {
|
||
|
new_bank_masks = &banks->bank1_mask;
|
||
|
old_bank_masks = &banks->bank0_mask;
|
||
|
} else {
|
||
|
new_bank_masks = &banks->bank0_mask;
|
||
|
old_bank_masks = &banks->bank1_mask;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Program NS only if the clock is enabled, since the NS will be set
|
||
|
* as part of the enable procedure and should remain with a low-power
|
||
|
* MUX input selected until then.
|
||
|
*/
|
||
|
if (rcg->enabled) {
|
||
|
ns_reg_val &= ~(new_bank_masks->ns_mask);
|
||
|
ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask);
|
||
|
writel_relaxed(ns_reg_val, rcg->ns_reg);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Switch to the new bank if clock is running. If it isn't, then
|
||
|
* no switch is necessary since we programmed the active bank.
|
||
|
*/
|
||
|
if (rcg->enabled && rcg->current_freq->freq_hz) {
|
||
|
ns_reg_val ^= banks->bank_sel_mask;
|
||
|
writel_relaxed(ns_reg_val, rcg->ns_reg);
|
||
|
/*
|
||
|
* Wait at least 6 cycles of slowest bank's clock
|
||
|
* for the glitch-free MUX to fully switch sources.
|
||
|
*/
|
||
|
mb();
|
||
|
udelay(1);
|
||
|
|
||
|
/* Program old bank to a low-power source and divider. */
|
||
|
ns_reg_val &= ~(old_bank_masks->ns_mask);
|
||
|
ns_reg_val |= (rcg->freq_tbl->ns_val & old_bank_masks->ns_mask);
|
||
|
writel_relaxed(ns_reg_val, rcg->ns_reg);
|
||
|
}
|
||
|
|
||
|
/* Update the NS mask to match the current bank. */
|
||
|
rcg->ns_mask = new_bank_masks->ns_mask;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Clock enable/disable functions
|
||
|
*/
|
||
|
|
||
|
/* Return non-zero if a clock status registers shows the clock is halted. */
|
||
|
static int branch_clk_is_halted(const struct branch *b)
|
||
|
{
|
||
|
int invert = (b->halt_check == ENABLE);
|
||
|
int status_bit = readl_relaxed(b->halt_reg) & BIT(b->halt_bit);
|
||
|
return invert ? !status_bit : status_bit;
|
||
|
}
|
||
|
|
||
|
static int branch_in_hwcg_mode(const struct branch *b)
|
||
|
{
|
||
|
if (!b->hwcg_mask)
|
||
|
return 0;
|
||
|
|
||
|
return !!(readl_relaxed(b->hwcg_reg) & b->hwcg_mask);
|
||
|
}
|
||
|
|
||
|
void __branch_enable_reg(const struct branch *b, const char *name)
|
||
|
{
|
||
|
u32 reg_val;
|
||
|
|
||
|
if (b->en_mask) {
|
||
|
reg_val = readl_relaxed(b->ctl_reg);
|
||
|
reg_val |= b->en_mask;
|
||
|
writel_relaxed(reg_val, b->ctl_reg);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Use a memory barrier since some halt status registers are
|
||
|
* not within the same 1K segment as the branch/root enable
|
||
|
* registers. It's also needed in the udelay() case to ensure
|
||
|
* the delay starts after the branch enable.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
/* Skip checking halt bit if the clock is in hardware gated mode */
|
||
|
if (branch_in_hwcg_mode(b))
|
||
|
return;
|
||
|
|
||
|
/* Wait for clock to enable before returning. */
|
||
|
if (b->halt_check == DELAY) {
|
||
|
udelay(HALT_CHECK_DELAY_US);
|
||
|
} else if (b->halt_check == ENABLE || b->halt_check == HALT
|
||
|
|| b->halt_check == ENABLE_VOTED
|
||
|
|| b->halt_check == HALT_VOTED) {
|
||
|
int count;
|
||
|
|
||
|
/* Wait up to HALT_CHECK_MAX_LOOPS for clock to enable. */
|
||
|
for (count = HALT_CHECK_MAX_LOOPS; branch_clk_is_halted(b)
|
||
|
&& count > 0; count--)
|
||
|
udelay(1);
|
||
|
WARN(count == 0, "%s status stuck at 'off'", name);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Perform any register operations required to enable the clock. */
|
||
|
static void __rcg_clk_enable_reg(struct rcg_clk *rcg)
|
||
|
{
|
||
|
u32 reg_val;
|
||
|
void __iomem *const reg = rcg->b.ctl_reg;
|
||
|
|
||
|
/*
|
||
|
* Program the NS register, if applicable. NS registers are not
|
||
|
* set in the set_rate path because power can be saved by deferring
|
||
|
* the selection of a clocked source until the clock is enabled.
|
||
|
*/
|
||
|
if (rcg->ns_mask) {
|
||
|
reg_val = readl_relaxed(rcg->ns_reg);
|
||
|
reg_val &= ~(rcg->ns_mask);
|
||
|
reg_val |= (rcg->current_freq->ns_val & rcg->ns_mask);
|
||
|
writel_relaxed(reg_val, rcg->ns_reg);
|
||
|
}
|
||
|
|
||
|
/* Enable MN counter, if applicable. */
|
||
|
reg_val = readl_relaxed(reg);
|
||
|
if (rcg->current_freq->md_val) {
|
||
|
reg_val |= rcg->mnd_en_mask;
|
||
|
writel_relaxed(reg_val, reg);
|
||
|
}
|
||
|
/* Enable root. */
|
||
|
if (rcg->root_en_mask) {
|
||
|
reg_val |= rcg->root_en_mask;
|
||
|
writel_relaxed(reg_val, reg);
|
||
|
}
|
||
|
__branch_enable_reg(&rcg->b, rcg->c.dbg_name);
|
||
|
}
|
||
|
|
||
|
/* Perform any register operations required to disable the branch. */
|
||
|
u32 __branch_disable_reg(const struct branch *b, const char *name)
|
||
|
{
|
||
|
u32 reg_val;
|
||
|
|
||
|
reg_val = b->ctl_reg ? readl_relaxed(b->ctl_reg) : 0;
|
||
|
if (b->ctl_reg && b->en_mask) {
|
||
|
reg_val &= ~(b->en_mask);
|
||
|
writel_relaxed(reg_val, b->ctl_reg);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Use a memory barrier since some halt status registers are
|
||
|
* not within the same K segment as the branch/root enable
|
||
|
* registers. It's also needed in the udelay() case to ensure
|
||
|
* the delay starts after the branch disable.
|
||
|
*/
|
||
|
mb();
|
||
|
|
||
|
/* Skip checking halt bit if the clock is in hardware gated mode */
|
||
|
if (branch_in_hwcg_mode(b))
|
||
|
return reg_val;
|
||
|
|
||
|
/* Wait for clock to disable before continuing. */
|
||
|
if (b->halt_check == DELAY || b->halt_check == ENABLE_VOTED
|
||
|
|| b->halt_check == HALT_VOTED) {
|
||
|
udelay(HALT_CHECK_DELAY_US);
|
||
|
} else if (b->halt_check == ENABLE || b->halt_check == HALT) {
|
||
|
int count;
|
||
|
|
||
|
/* Wait up to HALT_CHECK_MAX_LOOPS for clock to disable. */
|
||
|
for (count = HALT_CHECK_MAX_LOOPS; !branch_clk_is_halted(b)
|
||
|
&& count > 0; count--)
|
||
|
udelay(1);
|
||
|
WARN(count == 0, "%s status stuck at 'on'", name);
|
||
|
}
|
||
|
|
||
|
return reg_val;
|
||
|
}
|
||
|
|
||
|
/* Perform any register operations required to disable the generator. */
|
||
|
static void __rcg_clk_disable_reg(struct rcg_clk *rcg)
|
||
|
{
|
||
|
void __iomem *const reg = rcg->b.ctl_reg;
|
||
|
uint32_t reg_val;
|
||
|
|
||
|
reg_val = __branch_disable_reg(&rcg->b, rcg->c.dbg_name);
|
||
|
/* Disable root. */
|
||
|
if (rcg->root_en_mask) {
|
||
|
reg_val &= ~(rcg->root_en_mask);
|
||
|
writel_relaxed(reg_val, reg);
|
||
|
}
|
||
|
/* Disable MN counter, if applicable. */
|
||
|
if (rcg->current_freq->md_val) {
|
||
|
reg_val &= ~(rcg->mnd_en_mask);
|
||
|
writel_relaxed(reg_val, reg);
|
||
|
}
|
||
|
/*
|
||
|
* Program NS register to low-power value with an un-clocked or
|
||
|
* slowly-clocked source selected.
|
||
|
*/
|
||
|
if (rcg->ns_mask) {
|
||
|
reg_val = readl_relaxed(rcg->ns_reg);
|
||
|
reg_val &= ~(rcg->ns_mask);
|
||
|
reg_val |= (rcg->freq_tbl->ns_val & rcg->ns_mask);
|
||
|
writel_relaxed(reg_val, rcg->ns_reg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int rcg_clk_prepare(struct clk *c)
|
||
|
{
|
||
|
struct rcg_clk *rcg = to_rcg_clk(c);
|
||
|
|
||
|
WARN(rcg->current_freq == &rcg_dummy_freq,
|
||
|
"Attempting to prepare %s before setting its rate. "
|
||
|
"Set the rate first!\n", rcg->c.dbg_name);
|
||
|
rcg->prepared = true;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Enable a rate-settable clock. */
|
||
|
static int rcg_clk_enable(struct clk *c)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct rcg_clk *rcg = to_rcg_clk(c);
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, flags);
|
||
|
__rcg_clk_enable_reg(rcg);
|
||
|
rcg->enabled = true;
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Disable a rate-settable clock. */
|
||
|
static void rcg_clk_disable(struct clk *c)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct rcg_clk *rcg = to_rcg_clk(c);
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, flags);
|
||
|
__rcg_clk_disable_reg(rcg);
|
||
|
rcg->enabled = false;
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
|
||
|
}
|
||
|
|
||
|
static void rcg_clk_unprepare(struct clk *c)
|
||
|
{
|
||
|
struct rcg_clk *rcg = to_rcg_clk(c);
|
||
|
rcg->prepared = false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Frequency-related functions
|
||
|
*/
|
||
|
|
||
|
/* Set a clock to an exact rate. */
|
||
|
static int rcg_clk_set_rate(struct clk *c, unsigned long rate)
|
||
|
{
|
||
|
struct rcg_clk *rcg = to_rcg_clk(c);
|
||
|
struct clk_freq_tbl *nf, *cf;
|
||
|
struct clk *chld;
|
||
|
int rc = 0;
|
||
|
unsigned long flags;
|
||
|
|
||
|
for (nf = rcg->freq_tbl; nf->freq_hz != FREQ_END
|
||
|
&& nf->freq_hz != rate; nf++)
|
||
|
;
|
||
|
|
||
|
if (nf->freq_hz == FREQ_END)
|
||
|
return -EINVAL;
|
||
|
|
||
|
cf = rcg->current_freq;
|
||
|
|
||
|
/* Enable source clock dependency for the new frequency */
|
||
|
if (rcg->prepared) {
|
||
|
rc = clk_prepare(nf->src_clk);
|
||
|
if (rc)
|
||
|
return rc;
|
||
|
|
||
|
}
|
||
|
|
||
|
spin_lock_irqsave(&c->lock, flags);
|
||
|
if (rcg->enabled) {
|
||
|
rc = clk_enable(nf->src_clk);
|
||
|
if (rc) {
|
||
|
spin_unlock_irqrestore(&c->lock, flags);
|
||
|
clk_unprepare(nf->src_clk);
|
||
|
return rc;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spin_lock(&local_clock_reg_lock);
|
||
|
|
||
|
/* Disable branch if clock isn't dual-banked with a glitch-free MUX. */
|
||
|
if (!rcg->bank_info) {
|
||
|
/* Disable all branches to prevent glitches. */
|
||
|
list_for_each_entry(chld, &rcg->c.children, siblings) {
|
||
|
struct branch_clk *x = to_branch_clk(chld);
|
||
|
/*
|
||
|
* We don't need to grab the child's lock because
|
||
|
* we hold the local_clock_reg_lock and 'enabled' is
|
||
|
* only modified within lock.
|
||
|
*/
|
||
|
if (x->enabled)
|
||
|
__branch_disable_reg(&x->b, x->c.dbg_name);
|
||
|
}
|
||
|
if (rcg->enabled)
|
||
|
__rcg_clk_disable_reg(rcg);
|
||
|
}
|
||
|
|
||
|
/* Perform clock-specific frequency switch operations. */
|
||
|
BUG_ON(!rcg->set_rate);
|
||
|
rcg->set_rate(rcg, nf);
|
||
|
|
||
|
/*
|
||
|
* Current freq must be updated before __rcg_clk_enable_reg()
|
||
|
* is called to make sure the MNCNTR_EN bit is set correctly.
|
||
|
*/
|
||
|
rcg->current_freq = nf;
|
||
|
c->parent = nf->src_clk;
|
||
|
|
||
|
/* Enable any clocks that were disabled. */
|
||
|
if (!rcg->bank_info) {
|
||
|
if (rcg->enabled)
|
||
|
__rcg_clk_enable_reg(rcg);
|
||
|
/* Enable only branches that were ON before. */
|
||
|
list_for_each_entry(chld, &rcg->c.children, siblings) {
|
||
|
struct branch_clk *x = to_branch_clk(chld);
|
||
|
if (x->enabled)
|
||
|
__branch_enable_reg(&x->b, x->c.dbg_name);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
spin_unlock(&local_clock_reg_lock);
|
||
|
|
||
|
/* Release source requirements of the old freq. */
|
||
|
if (rcg->enabled)
|
||
|
clk_disable(cf->src_clk);
|
||
|
spin_unlock_irqrestore(&c->lock, flags);
|
||
|
|
||
|
if (rcg->prepared)
|
||
|
clk_unprepare(cf->src_clk);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/* Check if a clock is currently enabled. */
|
||
|
static int rcg_clk_is_enabled(struct clk *c)
|
||
|
{
|
||
|
return to_rcg_clk(c)->enabled;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Return a supported rate that's at least the specified rate or
|
||
|
* the max supported rate if the specified rate is larger than the
|
||
|
* max supported rate.
|
||
|
*/
|
||
|
static long rcg_clk_round_rate(struct clk *c, unsigned long rate)
|
||
|
{
|
||
|
struct rcg_clk *rcg = to_rcg_clk(c);
|
||
|
struct clk_freq_tbl *f;
|
||
|
|
||
|
for (f = rcg->freq_tbl; f->freq_hz != FREQ_END; f++)
|
||
|
if (f->freq_hz >= rate)
|
||
|
return f->freq_hz;
|
||
|
|
||
|
f--;
|
||
|
return f->freq_hz;
|
||
|
}
|
||
|
|
||
|
/* Return the nth supported frequency for a given clock. */
|
||
|
static int rcg_clk_list_rate(struct clk *c, unsigned n)
|
||
|
{
|
||
|
struct rcg_clk *rcg = to_rcg_clk(c);
|
||
|
|
||
|
if (!rcg->freq_tbl || rcg->freq_tbl->freq_hz == FREQ_END)
|
||
|
return -ENXIO;
|
||
|
|
||
|
return (rcg->freq_tbl + n)->freq_hz;
|
||
|
}
|
||
|
|
||
|
/* Disable hw clock gating if not set at boot */
|
||
|
enum handoff branch_handoff(struct branch *b, struct clk *c)
|
||
|
{
|
||
|
if (!branch_in_hwcg_mode(b)) {
|
||
|
b->hwcg_mask = 0;
|
||
|
if (b->ctl_reg && readl_relaxed(b->ctl_reg) & b->en_mask)
|
||
|
return HANDOFF_ENABLED_CLK;
|
||
|
}
|
||
|
return HANDOFF_DISABLED_CLK;
|
||
|
}
|
||
|
|
||
|
static enum handoff branch_clk_handoff(struct clk *c)
|
||
|
{
|
||
|
struct branch_clk *br = to_branch_clk(c);
|
||
|
if (branch_handoff(&br->b, &br->c) == HANDOFF_ENABLED_CLK) {
|
||
|
br->enabled = true;
|
||
|
return HANDOFF_ENABLED_CLK;
|
||
|
}
|
||
|
|
||
|
return HANDOFF_DISABLED_CLK;
|
||
|
}
|
||
|
|
||
|
static struct clk *rcg_clk_get_parent(struct clk *c)
|
||
|
{
|
||
|
struct rcg_clk *rcg = to_rcg_clk(c);
|
||
|
uint32_t ctl_val, ns_val, md_val, ns_mask;
|
||
|
struct clk_freq_tbl *freq;
|
||
|
|
||
|
ctl_val = readl_relaxed(rcg->b.ctl_reg);
|
||
|
|
||
|
if (rcg->bank_info) {
|
||
|
const struct bank_masks *bank_masks = rcg->bank_info;
|
||
|
const struct bank_mask_info *bank_info;
|
||
|
if (!(ctl_val & bank_masks->bank_sel_mask))
|
||
|
bank_info = &bank_masks->bank0_mask;
|
||
|
else
|
||
|
bank_info = &bank_masks->bank1_mask;
|
||
|
|
||
|
ns_mask = bank_info->ns_mask;
|
||
|
md_val = bank_info->md_reg ?
|
||
|
readl_relaxed(bank_info->md_reg) : 0;
|
||
|
} else {
|
||
|
ns_mask = rcg->ns_mask;
|
||
|
md_val = rcg->md_reg ? readl_relaxed(rcg->md_reg) : 0;
|
||
|
}
|
||
|
|
||
|
if (!ns_mask)
|
||
|
return NULL;
|
||
|
|
||
|
ns_val = readl_relaxed(rcg->ns_reg) & ns_mask;
|
||
|
for (freq = rcg->freq_tbl; freq->freq_hz != FREQ_END; freq++) {
|
||
|
if ((freq->ns_val & ns_mask) == ns_val &&
|
||
|
(!freq->md_val || freq->md_val == md_val))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (freq->freq_hz == FREQ_END)
|
||
|
return NULL;
|
||
|
|
||
|
/* Cache the results for the handoff code. */
|
||
|
rcg->current_freq = freq;
|
||
|
|
||
|
return freq->src_clk;
|
||
|
}
|
||
|
|
||
|
static enum handoff rcg_clk_handoff(struct clk *c)
|
||
|
{
|
||
|
struct rcg_clk *rcg = to_rcg_clk(c);
|
||
|
enum handoff ret;
|
||
|
|
||
|
if (rcg->current_freq && rcg->current_freq->freq_hz != FREQ_END)
|
||
|
c->rate = rcg->current_freq->freq_hz;
|
||
|
|
||
|
ret = branch_handoff(&rcg->b, &rcg->c);
|
||
|
if (ret == HANDOFF_DISABLED_CLK)
|
||
|
return HANDOFF_DISABLED_CLK;
|
||
|
|
||
|
rcg->prepared = true;
|
||
|
rcg->enabled = true;
|
||
|
return HANDOFF_ENABLED_CLK;
|
||
|
}
|
||
|
|
||
|
struct clk_ops clk_ops_empty;
|
||
|
|
||
|
struct fixed_clk gnd_clk = {
|
||
|
.c = {
|
||
|
.dbg_name = "ground_clk",
|
||
|
.ops = &clk_ops_empty,
|
||
|
CLK_INIT(gnd_clk.c),
|
||
|
},
|
||
|
};
|
||
|
|
||
|
static int branch_clk_enable(struct clk *c)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct branch_clk *br = to_branch_clk(c);
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, flags);
|
||
|
__branch_enable_reg(&br->b, br->c.dbg_name);
|
||
|
br->enabled = true;
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void branch_clk_disable(struct clk *c)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct branch_clk *br = to_branch_clk(c);
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, flags);
|
||
|
__branch_disable_reg(&br->b, br->c.dbg_name);
|
||
|
br->enabled = false;
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
|
||
|
}
|
||
|
|
||
|
static int branch_clk_is_enabled(struct clk *c)
|
||
|
{
|
||
|
return to_branch_clk(c)->enabled;
|
||
|
}
|
||
|
|
||
|
static void branch_enable_hwcg(struct branch *b)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
u32 reg_val;
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, flags);
|
||
|
reg_val = readl_relaxed(b->hwcg_reg);
|
||
|
reg_val |= b->hwcg_mask;
|
||
|
writel_relaxed(reg_val, b->hwcg_reg);
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
|
||
|
}
|
||
|
|
||
|
static void branch_disable_hwcg(struct branch *b)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
u32 reg_val;
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, flags);
|
||
|
reg_val = readl_relaxed(b->hwcg_reg);
|
||
|
reg_val &= ~b->hwcg_mask;
|
||
|
writel_relaxed(reg_val, b->hwcg_reg);
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
|
||
|
}
|
||
|
|
||
|
static void branch_clk_enable_hwcg(struct clk *c)
|
||
|
{
|
||
|
branch_enable_hwcg(&to_branch_clk(c)->b);
|
||
|
}
|
||
|
|
||
|
static void branch_clk_disable_hwcg(struct clk *c)
|
||
|
{
|
||
|
branch_disable_hwcg(&to_branch_clk(c)->b);
|
||
|
}
|
||
|
|
||
|
static int branch_set_flags(struct branch *b, unsigned flags)
|
||
|
{
|
||
|
unsigned long irq_flags;
|
||
|
u32 reg_val;
|
||
|
int ret = 0;
|
||
|
|
||
|
if (!b->retain_reg)
|
||
|
return -EPERM;
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, irq_flags);
|
||
|
reg_val = readl_relaxed(b->retain_reg);
|
||
|
switch (flags) {
|
||
|
case CLKFLAG_RETAIN_MEM:
|
||
|
reg_val |= b->retain_mask;
|
||
|
break;
|
||
|
case CLKFLAG_NORETAIN_MEM:
|
||
|
reg_val &= ~b->retain_mask;
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
writel_relaxed(reg_val, b->retain_reg);
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, irq_flags);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int branch_clk_set_flags(struct clk *clk, unsigned flags)
|
||
|
{
|
||
|
return branch_set_flags(&to_branch_clk(clk)->b, flags);
|
||
|
}
|
||
|
|
||
|
static int branch_clk_in_hwcg_mode(struct clk *c)
|
||
|
{
|
||
|
return branch_in_hwcg_mode(&to_branch_clk(c)->b);
|
||
|
}
|
||
|
|
||
|
static void rcg_clk_enable_hwcg(struct clk *c)
|
||
|
{
|
||
|
branch_enable_hwcg(&to_rcg_clk(c)->b);
|
||
|
}
|
||
|
|
||
|
static void rcg_clk_disable_hwcg(struct clk *c)
|
||
|
{
|
||
|
branch_disable_hwcg(&to_rcg_clk(c)->b);
|
||
|
}
|
||
|
|
||
|
static int rcg_clk_in_hwcg_mode(struct clk *c)
|
||
|
{
|
||
|
return branch_in_hwcg_mode(&to_rcg_clk(c)->b);
|
||
|
}
|
||
|
|
||
|
static int rcg_clk_set_flags(struct clk *clk, unsigned flags)
|
||
|
{
|
||
|
return branch_set_flags(&to_rcg_clk(clk)->b, flags);
|
||
|
}
|
||
|
|
||
|
int branch_reset(struct branch *b, enum clk_reset_action action)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
u32 reg_val;
|
||
|
unsigned long flags;
|
||
|
|
||
|
if (!b->reset_reg)
|
||
|
return -EPERM;
|
||
|
|
||
|
/* Disable hw gating when asserting a reset */
|
||
|
if (b->hwcg_mask && action == CLK_RESET_ASSERT)
|
||
|
branch_disable_hwcg(b);
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, flags);
|
||
|
/* Assert/Deassert reset */
|
||
|
reg_val = readl_relaxed(b->reset_reg);
|
||
|
switch (action) {
|
||
|
case CLK_RESET_ASSERT:
|
||
|
reg_val |= b->reset_mask;
|
||
|
break;
|
||
|
case CLK_RESET_DEASSERT:
|
||
|
reg_val &= ~b->reset_mask;
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
writel_relaxed(reg_val, b->reset_reg);
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
|
||
|
|
||
|
/* Enable hw gating when deasserting a reset */
|
||
|
if (b->hwcg_mask && action == CLK_RESET_DEASSERT)
|
||
|
branch_enable_hwcg(b);
|
||
|
/* Make sure write is issued before returning. */
|
||
|
mb();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int branch_clk_reset(struct clk *c, enum clk_reset_action action)
|
||
|
{
|
||
|
return branch_reset(&to_branch_clk(c)->b, action);
|
||
|
}
|
||
|
|
||
|
struct clk_ops clk_ops_branch = {
|
||
|
.enable = branch_clk_enable,
|
||
|
.disable = branch_clk_disable,
|
||
|
.enable_hwcg = branch_clk_enable_hwcg,
|
||
|
.disable_hwcg = branch_clk_disable_hwcg,
|
||
|
.in_hwcg_mode = branch_clk_in_hwcg_mode,
|
||
|
.is_enabled = branch_clk_is_enabled,
|
||
|
.reset = branch_clk_reset,
|
||
|
.handoff = branch_clk_handoff,
|
||
|
.set_flags = branch_clk_set_flags,
|
||
|
};
|
||
|
|
||
|
struct clk_ops clk_ops_smi_2x = {
|
||
|
.prepare = branch_clk_enable,
|
||
|
.unprepare = branch_clk_disable,
|
||
|
.is_enabled = branch_clk_is_enabled,
|
||
|
.handoff = branch_clk_handoff,
|
||
|
};
|
||
|
|
||
|
struct clk_ops clk_ops_reset = {
|
||
|
.reset = branch_clk_reset,
|
||
|
};
|
||
|
|
||
|
static int rcg_clk_reset(struct clk *c, enum clk_reset_action action)
|
||
|
{
|
||
|
return branch_reset(&to_rcg_clk(c)->b, action);
|
||
|
}
|
||
|
|
||
|
struct clk_ops clk_ops_rcg = {
|
||
|
.prepare = rcg_clk_prepare,
|
||
|
.enable = rcg_clk_enable,
|
||
|
.disable = rcg_clk_disable,
|
||
|
.unprepare = rcg_clk_unprepare,
|
||
|
.enable_hwcg = rcg_clk_enable_hwcg,
|
||
|
.disable_hwcg = rcg_clk_disable_hwcg,
|
||
|
.in_hwcg_mode = rcg_clk_in_hwcg_mode,
|
||
|
.handoff = rcg_clk_handoff,
|
||
|
.set_rate = rcg_clk_set_rate,
|
||
|
.list_rate = rcg_clk_list_rate,
|
||
|
.is_enabled = rcg_clk_is_enabled,
|
||
|
.round_rate = rcg_clk_round_rate,
|
||
|
.reset = rcg_clk_reset,
|
||
|
.set_flags = rcg_clk_set_flags,
|
||
|
.get_parent = rcg_clk_get_parent,
|
||
|
};
|
||
|
|
||
|
static int cdiv_clk_enable(struct clk *c)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct cdiv_clk *cdiv = to_cdiv_clk(c);
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, flags);
|
||
|
__branch_enable_reg(&cdiv->b, cdiv->c.dbg_name);
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void cdiv_clk_disable(struct clk *c)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct cdiv_clk *cdiv = to_cdiv_clk(c);
|
||
|
|
||
|
spin_lock_irqsave(&local_clock_reg_lock, flags);
|
||
|
__branch_disable_reg(&cdiv->b, cdiv->c.dbg_name);
|
||
|
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
|
||
|
}
|
||
|
|
||
|
static int cdiv_clk_set_rate(struct clk *c, unsigned long rate)
|
||
|
{
|
||
|
struct cdiv_clk *cdiv = to_cdiv_clk(c);
|
||
|
u32 reg_val;
|
||
|
|
||
|
if (rate > cdiv->max_div)
|
||
|
return -EINVAL;
|
||
|
|
||
|
spin_lock(&local_clock_reg_lock);
|
||
|
reg_val = readl_relaxed(cdiv->ns_reg);
|
||
|
reg_val &= ~(cdiv->ext_mask | (cdiv->max_div - 1) << cdiv->div_offset);
|
||
|
/* Non-zero rates mean set a divider, zero means use external input */
|
||
|
if (rate)
|
||
|
reg_val |= (rate - 1) << cdiv->div_offset;
|
||
|
else
|
||
|
reg_val |= cdiv->ext_mask;
|
||
|
writel_relaxed(reg_val, cdiv->ns_reg);
|
||
|
spin_unlock(&local_clock_reg_lock);
|
||
|
|
||
|
cdiv->cur_div = rate;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static unsigned long cdiv_clk_get_rate(struct clk *c)
|
||
|
{
|
||
|
return to_cdiv_clk(c)->cur_div;
|
||
|
}
|
||
|
|
||
|
static long cdiv_clk_round_rate(struct clk *c, unsigned long rate)
|
||
|
{
|
||
|
return rate > to_cdiv_clk(c)->max_div ? -EPERM : rate;
|
||
|
}
|
||
|
|
||
|
static int cdiv_clk_list_rate(struct clk *c, unsigned n)
|
||
|
{
|
||
|
return n > to_cdiv_clk(c)->max_div ? -ENXIO : n;
|
||
|
}
|
||
|
|
||
|
static enum handoff cdiv_clk_handoff(struct clk *c)
|
||
|
{
|
||
|
struct cdiv_clk *cdiv = to_cdiv_clk(c);
|
||
|
enum handoff ret;
|
||
|
u32 reg_val;
|
||
|
|
||
|
ret = branch_handoff(&cdiv->b, &cdiv->c);
|
||
|
if (ret == HANDOFF_DISABLED_CLK)
|
||
|
return ret;
|
||
|
|
||
|
reg_val = readl_relaxed(cdiv->ns_reg);
|
||
|
if (reg_val & cdiv->ext_mask) {
|
||
|
cdiv->cur_div = 0;
|
||
|
} else {
|
||
|
reg_val >>= cdiv->div_offset;
|
||
|
cdiv->cur_div = (reg_val & (cdiv->max_div - 1)) + 1;
|
||
|
}
|
||
|
c->rate = cdiv->cur_div;
|
||
|
|
||
|
return HANDOFF_ENABLED_CLK;
|
||
|
}
|
||
|
|
||
|
static void cdiv_clk_enable_hwcg(struct clk *c)
|
||
|
{
|
||
|
branch_enable_hwcg(&to_cdiv_clk(c)->b);
|
||
|
}
|
||
|
|
||
|
static void cdiv_clk_disable_hwcg(struct clk *c)
|
||
|
{
|
||
|
branch_disable_hwcg(&to_cdiv_clk(c)->b);
|
||
|
}
|
||
|
|
||
|
static int cdiv_clk_in_hwcg_mode(struct clk *c)
|
||
|
{
|
||
|
return branch_in_hwcg_mode(&to_cdiv_clk(c)->b);
|
||
|
}
|
||
|
|
||
|
struct clk_ops clk_ops_cdiv = {
|
||
|
.enable = cdiv_clk_enable,
|
||
|
.disable = cdiv_clk_disable,
|
||
|
.in_hwcg_mode = cdiv_clk_in_hwcg_mode,
|
||
|
.enable_hwcg = cdiv_clk_enable_hwcg,
|
||
|
.disable_hwcg = cdiv_clk_disable_hwcg,
|
||
|
.handoff = cdiv_clk_handoff,
|
||
|
.set_rate = cdiv_clk_set_rate,
|
||
|
.get_rate = cdiv_clk_get_rate,
|
||
|
.list_rate = cdiv_clk_list_rate,
|
||
|
.round_rate = cdiv_clk_round_rate,
|
||
|
};
|