492 lines
12 KiB
C
492 lines
12 KiB
C
|
/*
|
||
|
* Copyright 2012 Luis R. Rodriguez <mcgrof@frijolero.org>
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*
|
||
|
* Compatibility file for Linux wireless for kernels 3.4.
|
||
|
*/
|
||
|
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/wait.h>
|
||
|
|
||
|
/* __wake_up_common was declared as part of the wait.h until
|
||
|
* 2.6.31 in which they made it private to the scheduler. Prefix it with
|
||
|
* compat to avoid double declaration issues.
|
||
|
*/
|
||
|
static void compat_wake_up_common(wait_queue_head_t *q, unsigned int mode,
|
||
|
int nr_exclusive, int wake_flags, void *key)
|
||
|
{
|
||
|
wait_queue_t *curr, *next;
|
||
|
|
||
|
list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
|
||
|
unsigned flags = curr->flags;
|
||
|
|
||
|
if (curr->func(curr, mode, wake_flags, key) &&
|
||
|
(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* The last 'nr' parameter was added to the __wake_up_locked() function
|
||
|
* in 3.4 kernel. Define a new one prefixed with compat_ for the new API.
|
||
|
*/
|
||
|
void compat_wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
|
||
|
{
|
||
|
compat_wake_up_common(q, mode, nr, 0, NULL);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(compat_wake_up_locked);
|
||
|
|
||
|
|
||
|
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,34))
|
||
|
#include <linux/i2c.h>
|
||
|
#include <linux/i2c-algo-bit.h>
|
||
|
#include <linux/delay.h>
|
||
|
|
||
|
#define setsda(adap, val) adap->setsda(adap->data, val)
|
||
|
#define setscl(adap, val) adap->setscl(adap->data, val)
|
||
|
#define getsda(adap) adap->getsda(adap->data)
|
||
|
#define getscl(adap) adap->getscl(adap->data)
|
||
|
|
||
|
#define bit_dbg(level, dev, format, args...) \
|
||
|
do {} while (0)
|
||
|
|
||
|
static inline void sdalo(struct i2c_algo_bit_data *adap)
|
||
|
{
|
||
|
setsda(adap, 0);
|
||
|
udelay((adap->udelay + 1) / 2);
|
||
|
}
|
||
|
|
||
|
static inline void sdahi(struct i2c_algo_bit_data *adap)
|
||
|
{
|
||
|
setsda(adap, 1);
|
||
|
udelay((adap->udelay + 1) / 2);
|
||
|
}
|
||
|
|
||
|
static inline void scllo(struct i2c_algo_bit_data *adap)
|
||
|
{
|
||
|
setscl(adap, 0);
|
||
|
udelay(adap->udelay / 2);
|
||
|
}
|
||
|
|
||
|
static int sclhi(struct i2c_algo_bit_data *adap)
|
||
|
{
|
||
|
unsigned long start;
|
||
|
|
||
|
setscl(adap, 1);
|
||
|
|
||
|
/* Not all adapters have scl sense line... */
|
||
|
if (!adap->getscl)
|
||
|
goto done;
|
||
|
|
||
|
start = jiffies;
|
||
|
while (!getscl(adap)) {
|
||
|
/* This hw knows how to read the clock line, so we wait
|
||
|
* until it actually gets high. This is safer as some
|
||
|
* chips may hold it low ("clock stretching") while they
|
||
|
* are processing data internally.
|
||
|
*/
|
||
|
if (time_after(jiffies, start + adap->timeout)) {
|
||
|
/* Test one last time, as we may have been preempted
|
||
|
* between last check and timeout test.
|
||
|
*/
|
||
|
if (getscl(adap))
|
||
|
break;
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
cpu_relax();
|
||
|
}
|
||
|
#ifdef DEBUG
|
||
|
if (jiffies != start && i2c_debug >= 3)
|
||
|
pr_debug("i2c-algo-bit: needed %ld jiffies for SCL to go "
|
||
|
"high\n", jiffies - start);
|
||
|
#endif
|
||
|
|
||
|
done:
|
||
|
udelay(adap->udelay);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void i2c_start(struct i2c_algo_bit_data *adap)
|
||
|
{
|
||
|
/* assert: scl, sda are high */
|
||
|
setsda(adap, 0);
|
||
|
udelay(adap->udelay);
|
||
|
scllo(adap);
|
||
|
}
|
||
|
|
||
|
static void i2c_repstart(struct i2c_algo_bit_data *adap)
|
||
|
{
|
||
|
/* assert: scl is low */
|
||
|
sdahi(adap);
|
||
|
sclhi(adap);
|
||
|
setsda(adap, 0);
|
||
|
udelay(adap->udelay);
|
||
|
scllo(adap);
|
||
|
}
|
||
|
|
||
|
|
||
|
static void i2c_stop(struct i2c_algo_bit_data *adap)
|
||
|
{
|
||
|
/* assert: scl is low */
|
||
|
sdalo(adap);
|
||
|
sclhi(adap);
|
||
|
setsda(adap, 1);
|
||
|
udelay(adap->udelay);
|
||
|
}
|
||
|
|
||
|
static int i2c_outb(struct i2c_adapter *i2c_adap, unsigned char c)
|
||
|
{
|
||
|
int i;
|
||
|
int sb;
|
||
|
int ack;
|
||
|
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||
|
|
||
|
/* assert: scl is low */
|
||
|
for (i = 7; i >= 0; i--) {
|
||
|
sb = (c >> i) & 1;
|
||
|
setsda(adap, sb);
|
||
|
udelay((adap->udelay + 1) / 2);
|
||
|
if (sclhi(adap) < 0) { /* timed out */
|
||
|
bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
|
||
|
"timeout at bit #%d\n", (int)c, i);
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
/* FIXME do arbitration here:
|
||
|
* if (sb && !getsda(adap)) -> ouch! Get out of here.
|
||
|
*
|
||
|
* Report a unique code, so higher level code can retry
|
||
|
* the whole (combined) message and *NOT* issue STOP.
|
||
|
*/
|
||
|
scllo(adap);
|
||
|
}
|
||
|
sdahi(adap);
|
||
|
if (sclhi(adap) < 0) { /* timeout */
|
||
|
bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
|
||
|
"timeout at ack\n", (int)c);
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
|
||
|
/* read ack: SDA should be pulled down by slave, or it may
|
||
|
* NAK (usually to report problems with the data we wrote).
|
||
|
*/
|
||
|
ack = !getsda(adap); /* ack: sda is pulled low -> success */
|
||
|
bit_dbg(2, &i2c_adap->dev, "i2c_outb: 0x%02x %s\n", (int)c,
|
||
|
ack ? "A" : "NA");
|
||
|
|
||
|
scllo(adap);
|
||
|
return ack;
|
||
|
/* assert: scl is low (sda undef) */
|
||
|
}
|
||
|
|
||
|
static int i2c_inb(struct i2c_adapter *i2c_adap)
|
||
|
{
|
||
|
/* read byte via i2c port, without start/stop sequence */
|
||
|
/* acknowledge is sent in i2c_read. */
|
||
|
int i;
|
||
|
unsigned char indata = 0;
|
||
|
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||
|
|
||
|
/* assert: scl is low */
|
||
|
sdahi(adap);
|
||
|
for (i = 0; i < 8; i++) {
|
||
|
if (sclhi(adap) < 0) { /* timeout */
|
||
|
bit_dbg(1, &i2c_adap->dev, "i2c_inb: timeout at bit "
|
||
|
"#%d\n", 7 - i);
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
indata *= 2;
|
||
|
if (getsda(adap))
|
||
|
indata |= 0x01;
|
||
|
setscl(adap, 0);
|
||
|
udelay(i == 7 ? adap->udelay / 2 : adap->udelay);
|
||
|
}
|
||
|
/* assert: scl is low */
|
||
|
return indata;
|
||
|
}
|
||
|
|
||
|
static int try_address(struct i2c_adapter *i2c_adap,
|
||
|
unsigned char addr, int retries)
|
||
|
{
|
||
|
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||
|
int i, ret = 0;
|
||
|
|
||
|
for (i = 0; i <= retries; i++) {
|
||
|
ret = i2c_outb(i2c_adap, addr);
|
||
|
if (ret == 1 || i == retries)
|
||
|
break;
|
||
|
bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
|
||
|
i2c_stop(adap);
|
||
|
udelay(adap->udelay);
|
||
|
yield();
|
||
|
bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
|
||
|
i2c_start(adap);
|
||
|
}
|
||
|
if (i && ret)
|
||
|
bit_dbg(1, &i2c_adap->dev, "Used %d tries to %s client at "
|
||
|
"0x%02x: %s\n", i + 1,
|
||
|
addr & 1 ? "read from" : "write to", addr >> 1,
|
||
|
ret == 1 ? "success" : "failed, timeout?");
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int bit_doAddress(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
|
||
|
{
|
||
|
unsigned short flags = msg->flags;
|
||
|
unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
|
||
|
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||
|
|
||
|
unsigned char addr;
|
||
|
int ret, retries;
|
||
|
|
||
|
retries = nak_ok ? 0 : i2c_adap->retries;
|
||
|
|
||
|
if (flags & I2C_M_TEN) {
|
||
|
/* a ten bit address */
|
||
|
addr = 0xf0 | ((msg->addr >> 7) & 0x06);
|
||
|
bit_dbg(2, &i2c_adap->dev, "addr0: %d\n", addr);
|
||
|
/* try extended address code...*/
|
||
|
ret = try_address(i2c_adap, addr, retries);
|
||
|
if ((ret != 1) && !nak_ok) {
|
||
|
dev_err(&i2c_adap->dev,
|
||
|
"died at extended address code\n");
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
/* the remaining 8 bit address */
|
||
|
ret = i2c_outb(i2c_adap, msg->addr & 0xff);
|
||
|
if ((ret != 1) && !nak_ok) {
|
||
|
/* the chip did not ack / xmission error occurred */
|
||
|
dev_err(&i2c_adap->dev, "died at 2nd address code\n");
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
if (flags & I2C_M_RD) {
|
||
|
bit_dbg(3, &i2c_adap->dev, "emitting repeated "
|
||
|
"start condition\n");
|
||
|
i2c_repstart(adap);
|
||
|
/* okay, now switch into reading mode */
|
||
|
addr |= 0x01;
|
||
|
ret = try_address(i2c_adap, addr, retries);
|
||
|
if ((ret != 1) && !nak_ok) {
|
||
|
dev_err(&i2c_adap->dev,
|
||
|
"died at repeated address code\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
}
|
||
|
} else { /* normal 7bit address */
|
||
|
addr = msg->addr << 1;
|
||
|
if (flags & I2C_M_RD)
|
||
|
addr |= 1;
|
||
|
if (flags & I2C_M_REV_DIR_ADDR)
|
||
|
addr ^= 1;
|
||
|
ret = try_address(i2c_adap, addr, retries);
|
||
|
if ((ret != 1) && !nak_ok)
|
||
|
return -ENXIO;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int sendbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
|
||
|
{
|
||
|
const unsigned char *temp = msg->buf;
|
||
|
int count = msg->len;
|
||
|
unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
|
||
|
int retval;
|
||
|
int wrcount = 0;
|
||
|
|
||
|
while (count > 0) {
|
||
|
retval = i2c_outb(i2c_adap, *temp);
|
||
|
|
||
|
/* OK/ACK; or ignored NAK */
|
||
|
if ((retval > 0) || (nak_ok && (retval == 0))) {
|
||
|
count--;
|
||
|
temp++;
|
||
|
wrcount++;
|
||
|
|
||
|
/* A slave NAKing the master means the slave didn't like
|
||
|
* something about the data it saw. For example, maybe
|
||
|
* the SMBus PEC was wrong.
|
||
|
*/
|
||
|
} else if (retval == 0) {
|
||
|
dev_err(&i2c_adap->dev, "sendbytes: NAK bailout.\n");
|
||
|
return -EIO;
|
||
|
|
||
|
/* Timeout; or (someday) lost arbitration
|
||
|
*
|
||
|
* FIXME Lost ARB implies retrying the transaction from
|
||
|
* the first message, after the "winning" master issues
|
||
|
* its STOP. As a rule, upper layer code has no reason
|
||
|
* to know or care about this ... it is *NOT* an error.
|
||
|
*/
|
||
|
} else {
|
||
|
dev_err(&i2c_adap->dev, "sendbytes: error %d\n",
|
||
|
retval);
|
||
|
return retval;
|
||
|
}
|
||
|
}
|
||
|
return wrcount;
|
||
|
}
|
||
|
|
||
|
static int acknak(struct i2c_adapter *i2c_adap, int is_ack)
|
||
|
{
|
||
|
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||
|
|
||
|
/* assert: sda is high */
|
||
|
if (is_ack) /* send ack */
|
||
|
setsda(adap, 0);
|
||
|
udelay((adap->udelay + 1) / 2);
|
||
|
if (sclhi(adap) < 0) { /* timeout */
|
||
|
dev_err(&i2c_adap->dev, "readbytes: ack/nak timeout\n");
|
||
|
return -ETIMEDOUT;
|
||
|
}
|
||
|
scllo(adap);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
|
||
|
{
|
||
|
int inval;
|
||
|
int rdcount = 0; /* counts bytes read */
|
||
|
unsigned char *temp = msg->buf;
|
||
|
int count = msg->len;
|
||
|
const unsigned flags = msg->flags;
|
||
|
|
||
|
while (count > 0) {
|
||
|
inval = i2c_inb(i2c_adap);
|
||
|
if (inval >= 0) {
|
||
|
*temp = inval;
|
||
|
rdcount++;
|
||
|
} else { /* read timed out */
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
temp++;
|
||
|
count--;
|
||
|
|
||
|
/* Some SMBus transactions require that we receive the
|
||
|
transaction length as the first read byte. */
|
||
|
if (rdcount == 1 && (flags & I2C_M_RECV_LEN)) {
|
||
|
if (inval <= 0 || inval > I2C_SMBUS_BLOCK_MAX) {
|
||
|
if (!(flags & I2C_M_NO_RD_ACK))
|
||
|
acknak(i2c_adap, 0);
|
||
|
dev_err(&i2c_adap->dev, "readbytes: invalid "
|
||
|
"block length (%d)\n", inval);
|
||
|
return -EPROTO;
|
||
|
}
|
||
|
/* The original count value accounts for the extra
|
||
|
bytes, that is, either 1 for a regular transaction,
|
||
|
or 2 for a PEC transaction. */
|
||
|
count += inval;
|
||
|
msg->len += inval;
|
||
|
}
|
||
|
|
||
|
bit_dbg(2, &i2c_adap->dev, "readbytes: 0x%02x %s\n",
|
||
|
inval,
|
||
|
(flags & I2C_M_NO_RD_ACK)
|
||
|
? "(no ack/nak)"
|
||
|
: (count ? "A" : "NA"));
|
||
|
|
||
|
if (!(flags & I2C_M_NO_RD_ACK)) {
|
||
|
inval = acknak(i2c_adap, count);
|
||
|
if (inval < 0)
|
||
|
return inval;
|
||
|
}
|
||
|
}
|
||
|
return rdcount;
|
||
|
}
|
||
|
|
||
|
|
||
|
static u32 bit_func(struct i2c_adapter *adap)
|
||
|
{
|
||
|
return I2C_FUNC_I2C | I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_EMUL |
|
||
|
I2C_FUNC_SMBUS_READ_BLOCK_DATA |
|
||
|
I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
|
||
|
I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
|
||
|
}
|
||
|
|
||
|
static int bit_xfer(struct i2c_adapter *i2c_adap,
|
||
|
struct i2c_msg msgs[], int num)
|
||
|
{
|
||
|
struct i2c_msg *pmsg;
|
||
|
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||
|
int i, ret;
|
||
|
unsigned short nak_ok;
|
||
|
|
||
|
if (adap->pre_xfer) {
|
||
|
ret = adap->pre_xfer(i2c_adap);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
|
||
|
i2c_start(adap);
|
||
|
for (i = 0; i < num; i++) {
|
||
|
pmsg = &msgs[i];
|
||
|
nak_ok = pmsg->flags & I2C_M_IGNORE_NAK;
|
||
|
if (!(pmsg->flags & I2C_M_NOSTART)) {
|
||
|
if (i) {
|
||
|
bit_dbg(3, &i2c_adap->dev, "emitting "
|
||
|
"repeated start condition\n");
|
||
|
i2c_repstart(adap);
|
||
|
}
|
||
|
ret = bit_doAddress(i2c_adap, pmsg);
|
||
|
if ((ret != 0) && !nak_ok) {
|
||
|
bit_dbg(1, &i2c_adap->dev, "NAK from "
|
||
|
"device addr 0x%02x msg #%d\n",
|
||
|
msgs[i].addr, i);
|
||
|
goto bailout;
|
||
|
}
|
||
|
}
|
||
|
if (pmsg->flags & I2C_M_RD) {
|
||
|
/* read bytes into buffer*/
|
||
|
ret = readbytes(i2c_adap, pmsg);
|
||
|
if (ret >= 1)
|
||
|
bit_dbg(2, &i2c_adap->dev, "read %d byte%s\n",
|
||
|
ret, ret == 1 ? "" : "s");
|
||
|
if (ret < pmsg->len) {
|
||
|
if (ret >= 0)
|
||
|
ret = -EIO;
|
||
|
goto bailout;
|
||
|
}
|
||
|
} else {
|
||
|
/* write bytes from buffer */
|
||
|
ret = sendbytes(i2c_adap, pmsg);
|
||
|
if (ret >= 1)
|
||
|
bit_dbg(2, &i2c_adap->dev, "wrote %d byte%s\n",
|
||
|
ret, ret == 1 ? "" : "s");
|
||
|
if (ret < pmsg->len) {
|
||
|
if (ret >= 0)
|
||
|
ret = -EIO;
|
||
|
goto bailout;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
ret = i;
|
||
|
|
||
|
bailout:
|
||
|
bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
|
||
|
i2c_stop(adap);
|
||
|
|
||
|
if (adap->post_xfer)
|
||
|
adap->post_xfer(i2c_adap);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
|
||
|
const struct i2c_algorithm i2c_bit_algo = {
|
||
|
.master_xfer = bit_xfer,
|
||
|
.functionality = bit_func,
|
||
|
};
|
||
|
EXPORT_SYMBOL(i2c_bit_algo);
|
||
|
#endif
|
||
|
|
||
|
int simple_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
if (inode->i_private)
|
||
|
file->private_data = inode->i_private;
|
||
|
return 0;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(simple_open);
|