M7350/bootable/bootloader/lk/platform/msm_shared/qpic_nand.c

1725 lines
48 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/*
* Copyright (c) 2008, Google Inc.
* All rights reserved.
* Copyright (c) 2009-2013, The Linux Foundation. All rights reserved.
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <qpic_nand.h>
#include <bam.h>
#include <dev/flash.h>
#include <lib/ptable.h>
#include <debug.h>
#include <string.h>
#include <malloc.h>
#include <sys/types.h>
#include <platform.h>
#include <platform/clock.h>
static uint32_t nand_base;
static struct ptable *flash_ptable;
static struct flash_info flash;
static unsigned char *flash_spare_bytes;
static uint32_t cfg0;
static uint32_t cfg1;
static uint32_t cfg0_raw;
static uint32_t cfg1_raw;
static uint32_t ecc_bch_cfg;
struct cmd_element ce_array[100];
#define QPIC_BAM_DATA_FIFO_SIZE 64
#define QPIC_BAM_CMD_FIFO_SIZE 64
static struct bam_desc cmd_desc_fifo[QPIC_BAM_CMD_FIFO_SIZE] __attribute__ ((aligned(BAM_DESC_SIZE)));
static struct bam_desc data_desc_fifo[QPIC_BAM_DATA_FIFO_SIZE] __attribute__ ((aligned(BAM_DESC_SIZE)));
static struct bam_instance bam;
static uint8_t *bbtbl;
static uint8_t* rdwr_buf;
static struct flash_id supported_flash[] = {
/* Flash ID ID Mask Density(MB) Wid Pgsz Blksz oobsz 8-bit ECCf */
{0x1590AC2C, 0xFFFFFFFF, 0x20000000, 0, 2048, 0x00020000, 0x40, 0},
{0x1590AA2C, 0xFFFFFFFF, 0x10000000, 0, 2048, 0x00020000, 0xE0, 1},
{0x2690AC2C, 0xFFFFFFFF, 0x20000000, 0, 4096, 0x00040000, 0xE0, 1},
{0x1590ACAD, 0xFFFFFFFF, 0x20000000, 0, 2048, 0x00020000, 0x80, 0},
/* Note: Width flag is 0 for 8 bit Flash and 1 for 16 bit flash */
};
static void
qpic_nand_wait_for_cmd_exec(uint32_t num_desc)
{
/* Create a read/write event to notify the periperal of the added desc. */
bam_sys_gen_event(&bam, CMD_PIPE_INDEX, num_desc);
/* Wait for the descriptors to be processed */
bam_wait_for_interrupt(&bam, CMD_PIPE_INDEX, P_PRCSD_DESC_EN_MASK);
/* Read offset update for the circular FIFO */
bam_read_offset_update(&bam, CMD_PIPE_INDEX);
}
static void
qpic_nand_wait_for_data(uint32_t pipe_num)
{
/* Wait for the descriptors to be processed */
bam_wait_for_interrupt(&bam, pipe_num, P_PRCSD_DESC_EN_MASK);
/* Read offset update for the circular FIFO */
bam_read_offset_update(&bam, pipe_num);
}
static uint32_t
qpic_nand_read_reg(uint32_t reg_addr,
uint8_t flags,
struct cmd_element *cmd_list_ptr)
{
uint32_t val;
bam_add_cmd_element(cmd_list_ptr, reg_addr, (uint32_t)PA((addr_t)&val), CE_READ_TYPE);
/* Enqueue the desc for the above command */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)PA((addr_t)cmd_list_ptr),
BAM_CE_SIZE,
BAM_DESC_CMD_FLAG| BAM_DESC_INT_FLAG | flags);
qpic_nand_wait_for_cmd_exec(1);
return val;
}
/* Assume the BAM is in a locked state. */
void
qpic_nand_erased_status_reset(struct cmd_element *cmd_list_ptr, uint8_t flags)
{
uint32_t val = 0;
/* Reset the Erased Codeword/Page detection controller. */
val = NAND_ERASED_CW_DETECT_CFG_RESET_CTRL;
bam_add_cmd_element(cmd_list_ptr, NAND_ERASED_CW_DETECT_CFG, val, CE_WRITE_TYPE);
/* Enqueue the desc for the above command */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr,
BAM_CE_SIZE,
BAM_DESC_CMD_FLAG | BAM_DESC_INT_FLAG | flags);
qpic_nand_wait_for_cmd_exec(1);
/* Enable the Erased Codeword/Page detection
* controller to check the data as it arrives.
* Also disable ECC reporting for an erased CW.
*/
val = NAND_ERASED_CW_DETECT_CFG_ACTIVATE_CTRL | NAND_ERASED_CW_DETECT_ERASED_CW_ECC_MASK;
bam_add_cmd_element(cmd_list_ptr, NAND_ERASED_CW_DETECT_CFG, val, CE_WRITE_TYPE);
/* Enqueue the desc for the above command */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr,
BAM_CE_SIZE,
BAM_DESC_CMD_FLAG | BAM_DESC_INT_FLAG);
qpic_nand_wait_for_cmd_exec(1);
}
static nand_result_t
qpic_nand_check_status(uint32_t status)
{
uint32_t erase_sts;
/* Check for errors */
if (status & NAND_FLASH_ERR)
{
/* Check if this is an ECC error on an erased page. */
if (status & NAND_FLASH_OP_ERR)
{
erase_sts = qpic_nand_read_reg(NAND_ERASED_CW_DETECT_STATUS, 0, ce_array);
if ((erase_sts & (1 << NAND_ERASED_CW_DETECT_STATUS_PAGE_ALL_ERASED)))
{
/* Mask the OP ERROR. */
status &= ~NAND_FLASH_OP_ERR;
qpic_nand_erased_status_reset(ce_array, 0);
}
}
/* ECC error flagged on an erased page read.
* Ignore and return success.
*/
if (!(status & NAND_FLASH_ERR))
return NANDC_RESULT_SUCCESS;
dprintf(CRITICAL, "Nand Flash error. Status = %d\n", status);
if (status & NAND_FLASH_TIMEOUT_ERR)
return NANDC_RESULT_TIMEOUT;
else
return NANDC_RESULT_FAILURE;
}
return NANDC_RESULT_SUCCESS;
}
static uint32_t
qpic_nand_fetch_id(struct flash_info *flash)
{
struct cmd_element *cmd_list_ptr = ce_array;
struct cmd_element *cmd_list_ptr_start = ce_array;
int num_desc = 0;
uint32_t status;
uint32_t id;
uint32_t flash_cmd = NAND_CMD_FETCH_ID;
uint32_t exec_cmd = 1;
int nand_ret = NANDC_RESULT_SUCCESS;
/* Issue the Fetch id command to the NANDc */
bam_add_cmd_element(cmd_list_ptr, NAND_FLASH_CMD, (uint32_t)flash_cmd, CE_WRITE_TYPE);
cmd_list_ptr++;
/* Execute the cmd */
bam_add_cmd_element(cmd_list_ptr, NAND_EXEC_CMD, (uint32_t)exec_cmd, CE_WRITE_TYPE);
cmd_list_ptr++;
/* Prepare the cmd desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
BAM_DESC_LOCK_FLAG | BAM_DESC_INT_FLAG |
BAM_DESC_NWD_FLAG | BAM_DESC_CMD_FLAG);
/* Keep track of the number of desc added. */
num_desc++;
qpic_nand_wait_for_cmd_exec(num_desc);
cmd_list_ptr_start = ce_array;
cmd_list_ptr = ce_array;
/* Read the status register */
status = qpic_nand_read_reg(NAND_FLASH_STATUS, 0, cmd_list_ptr);
/* Check for errors */
nand_ret = qpic_nand_check_status(status);
if (nand_ret)
{
dprintf( CRITICAL, "Read ID cmd status failed\n");
goto qpic_nand_fetch_id_err;
}
/* Read the id */
id = qpic_nand_read_reg(NAND_READ_ID, BAM_DESC_UNLOCK_FLAG, cmd_list_ptr);
flash->id = id;
flash->vendor = id & 0xff;
flash->device = (id >> 8) & 0xff;
flash->dev_cfg = (id >> 24) & 0xFF;
flash->widebus = 0;
flash->widebus &= (id >> 24) & 0xFF;
flash->widebus = flash->widebus? 1: 0;
qpic_nand_fetch_id_err:
return nand_ret;
}
static int
qpic_bam_init(struct qpic_nand_init_config *config)
{
uint32_t bam_ret = NANDC_RESULT_SUCCESS;
bam.base = config->bam_base;
/* Set Read pipe params. */
bam.pipe[DATA_PRODUCER_PIPE_INDEX].pipe_num = config->pipes.read_pipe;
/* System consumer */
bam.pipe[DATA_PRODUCER_PIPE_INDEX].trans_type = BAM2SYS;
bam.pipe[DATA_PRODUCER_PIPE_INDEX].fifo.size = QPIC_BAM_DATA_FIFO_SIZE;
bam.pipe[DATA_PRODUCER_PIPE_INDEX].fifo.head = data_desc_fifo;
bam.pipe[DATA_PRODUCER_PIPE_INDEX].lock_grp = config->pipes.read_pipe_grp;
/* Set Write pipe params. */
bam.pipe[DATA_CONSUMER_PIPE_INDEX].pipe_num = config->pipes.write_pipe;
/* System producer */
bam.pipe[DATA_CONSUMER_PIPE_INDEX].trans_type = SYS2BAM;
bam.pipe[DATA_CONSUMER_PIPE_INDEX].fifo.size = QPIC_BAM_DATA_FIFO_SIZE;
bam.pipe[DATA_CONSUMER_PIPE_INDEX].fifo.head = data_desc_fifo;
bam.pipe[DATA_CONSUMER_PIPE_INDEX].lock_grp = config->pipes.write_pipe_grp;
/* Set Cmd pipe params. */
bam.pipe[CMD_PIPE_INDEX].pipe_num = config->pipes.cmd_pipe;
/* System consumer */
bam.pipe[CMD_PIPE_INDEX].trans_type = BAM2SYS;
bam.pipe[CMD_PIPE_INDEX].fifo.size = QPIC_BAM_CMD_FIFO_SIZE;
bam.pipe[CMD_PIPE_INDEX].fifo.head = cmd_desc_fifo;
bam.pipe[CMD_PIPE_INDEX].lock_grp = config->pipes.cmd_pipe_grp;
/* Programs the threshold for BAM transfer
* When this threshold is reached, BAM signals the peripheral via the pipe_bytes_available
* interface.
* The peripheral is signalled with this notification in the following cases:
* a. It has accumulated all the descriptors.
* b. It has accumulated more than threshold bytes.
* c. It has reached EOT (End Of Transfer).
* Note: this value needs to be set by the h/w folks and is specific for each peripheral.
*/
bam.threshold = 32;
/* Set the EE. */
bam.ee = config->ee;
/* Set the max desc length for this BAM. */
bam.max_desc_len = config->max_desc_len;
/* BAM Init. */
bam_init(&bam);
/* Initialize BAM QPIC read pipe */
bam_sys_pipe_init(&bam, DATA_PRODUCER_PIPE_INDEX);
/* Init read fifo */
bam_ret = bam_pipe_fifo_init(&bam, bam.pipe[DATA_PRODUCER_PIPE_INDEX].pipe_num);
if (bam_ret)
{
dprintf(CRITICAL, "QPIC:NANDc BAM Read FIFO init error\n");
bam_ret = NANDC_RESULT_FAILURE;
goto qpic_nand_bam_init_error;
}
/* Initialize BAM QPIC write pipe */
bam_sys_pipe_init(&bam, DATA_CONSUMER_PIPE_INDEX);
/* Init write fifo. Use the same fifo as read fifo. */
bam_ret = bam_pipe_fifo_init(&bam, bam.pipe[DATA_CONSUMER_PIPE_INDEX].pipe_num);
if (bam_ret)
{
dprintf(CRITICAL, "QPIC: NANDc: BAM Write FIFO init error\n");
bam_ret = NANDC_RESULT_FAILURE;
goto qpic_nand_bam_init_error;
}
/* Initialize BAM QPIC cmd pipe */
bam_sys_pipe_init(&bam, CMD_PIPE_INDEX);
/* Init cmd fifo */
bam_ret = bam_pipe_fifo_init(&bam, bam.pipe[CMD_PIPE_INDEX].pipe_num);
if (bam_ret)
{
dprintf(CRITICAL, "QPIC:NANDc BAM CMD FIFO init error\n");
bam_ret = NANDC_RESULT_FAILURE;
goto qpic_nand_bam_init_error;
}
qpic_nand_bam_init_error:
return bam_ret;
}
/* Adds command elements for addr and cfg register writes.
* cfg: Defines the configuration for the flash cmd.
* start: Address where the command elements are added.
*
* Returns the address where the next cmd element can be added.
*/
static struct cmd_element*
qpic_nand_add_addr_n_cfg_ce(struct cfg_params *cfg,
struct cmd_element *start)
{
struct cmd_element *cmd_list_ptr = start;
bam_add_cmd_element(cmd_list_ptr, NAND_ADDR0, (uint32_t)cfg->addr0, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_ADDR1, (uint32_t)cfg->addr1, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_DEV0_CFG0, (uint32_t)cfg->cfg0, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_DEV0_CFG1, (uint32_t)cfg->cfg1, CE_WRITE_TYPE);
cmd_list_ptr++;
return cmd_list_ptr;
}
static struct cmd_element*
qpic_nand_add_onfi_probe_ce(struct onfi_probe_params *params,
struct cmd_element *start)
{
struct cmd_element *cmd_list_ptr = start;
cmd_list_ptr = qpic_nand_add_addr_n_cfg_ce(&params->cfg, cmd_list_ptr);
bam_add_cmd_element(cmd_list_ptr, NAND_DEV_CMD1, (uint32_t)params->dev_cmd1, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_DEV_CMD_VLD, (uint32_t)params->vld, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_READ_LOCATION_n(0), (uint32_t)params->cfg.addr_loc_0, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_FLASH_CMD, (uint32_t)params->cfg.cmd, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_EXEC_CMD, (uint32_t)params->cfg.exec, CE_WRITE_TYPE);
cmd_list_ptr++;
return cmd_list_ptr;
}
static int
onfi_probe_cmd_exec(struct onfi_probe_params *params,
unsigned char* data_ptr,
int data_len)
{
struct cmd_element *cmd_list_ptr = ce_array;
struct cmd_element *cmd_list_ptr_start = ce_array;
int num_desc = 0;
uint32_t status = 0;
int nand_ret = NANDC_RESULT_SUCCESS;
uint8_t desc_flags = BAM_DESC_NWD_FLAG | BAM_DESC_CMD_FLAG
| BAM_DESC_LOCK_FLAG | BAM_DESC_INT_FLAG;
params->cfg.addr_loc_0 = 0;
params->cfg.addr_loc_0 |= NAND_RD_LOC_LAST_BIT(1);
params->cfg.addr_loc_0 |= NAND_RD_LOC_OFFSET(0);
params->cfg.addr_loc_0 |= NAND_RD_LOC_SIZE(data_len);
cmd_list_ptr = qpic_nand_add_onfi_probe_ce(params, cmd_list_ptr);
/* Enqueue the desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((addr_t)(uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
desc_flags);
cmd_list_ptr_start = cmd_list_ptr;
num_desc++;
/* Add Data desc */
bam_add_desc(&bam,
DATA_PRODUCER_PIPE_INDEX,
(unsigned char *)PA((addr_t)data_ptr),
data_len,
BAM_DESC_INT_FLAG);
/* Wait for the commands to be executed */
qpic_nand_wait_for_cmd_exec(num_desc);
/* Read buffer status and check for errors. */
status = qpic_nand_read_reg(NAND_FLASH_STATUS, 0, cmd_list_ptr++);
if (qpic_nand_check_status(status))
{
nand_ret = NANDC_RESULT_FAILURE;
goto onfi_probe_exec_err;
}
/* Wait for data to be available */
qpic_nand_wait_for_data(DATA_PRODUCER_PIPE_INDEX);
/* Check for errors */
nand_ret = qpic_nand_check_status(status);
onfi_probe_exec_err:
return nand_ret;
}
/* TODO: check why both vld and cmd need to be written. */
void
qpic_nand_onfi_probe_cleanup(uint32_t vld, uint32_t dev_cmd1)
{
struct cmd_element *cmd_list_ptr = ce_array;
struct cmd_element *cmd_list_ptr_start = ce_array;
bam_add_cmd_element(cmd_list_ptr, NAND_DEV_CMD1, dev_cmd1, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_DEV_CMD_VLD, vld, CE_WRITE_TYPE);
cmd_list_ptr++;
/* Enqueue the desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
BAM_DESC_UNLOCK_FLAG | BAM_DESC_CMD_FLAG| BAM_DESC_INT_FLAG);
qpic_nand_wait_for_cmd_exec(1);
}
static int
qpic_nand_onfi_save_params(struct onfi_param_page *param_page, struct flash_info *flash)
{
int onfi_ret = NANDC_RESULT_SUCCESS;
uint32_t ecc_bits;
onfi_ret = qpic_nand_fetch_id(flash);
if (onfi_ret)
{
dprintf(CRITICAL, "Fetch ID cmd failed\n");
goto onfi_save_params_err;
}
flash->page_size = param_page->data_per_pg;
flash->block_size = param_page->pgs_per_blk * flash->page_size;
flash->num_blocks = param_page->blks_per_LUN;
flash->widebus = param_page->feature_supported & 0x1;
flash->density = param_page->blks_per_LUN * flash->blksize;
flash->spare_size = param_page->spare_per_pg;
ecc_bits = param_page->num_bits_ecc_correctability;
flash->num_pages_per_blk = param_page->pgs_per_blk;
flash->num_pages_per_blk_mask = param_page->pgs_per_blk - 1;
if (ecc_bits >= 8)
flash->ecc_width = NAND_WITH_8_BIT_ECC;
else
flash->ecc_width = NAND_WITH_4_BIT_ECC;
onfi_save_params_err:
return onfi_ret;
}
static void
qpic_nand_save_config(struct flash_info *flash)
{
/* Save Configurations */
flash->cws_per_page = flash->page_size >> NAND_CW_DIV_RIGHT_SHIFT;
/* Verify that we have enough buffer to handle all the cws in a page. */
ASSERT(flash->cws_per_page <= QPIC_NAND_MAX_CWS_IN_PAGE);
/* Codeword Size = UD_SIZE_BYTES + ECC_PARITY_SIZE_BYTES
* + SPARE_SIZE_BYTES + Bad Block size
*/
if (flash->ecc_width & NAND_WITH_8_BIT_ECC)
{
flash->cw_size = NAND_CW_SIZE_8_BIT_ECC;
ecc_bch_cfg |= (1 << NAND_DEV0_ECC_MODE_SHIFT); /* Use 8-bit ecc */
if (flash->widebus)
{
cfg0 |= (0 << NAND_DEV0_CFG0_SPARE_SZ_BYTES_SHIFT); /* spare size bytes in each CW */
ecc_bch_cfg |= (14 << NAND_DEV0_ECC_PARITY_SZ_BYTES_SHIFT); /* parity bytes in each CW */
}
else
{
cfg0 |= (2 << NAND_DEV0_CFG0_SPARE_SZ_BYTES_SHIFT); /* spare size bytes in each CW */
ecc_bch_cfg |= (13 << NAND_DEV0_ECC_PARITY_SZ_BYTES_SHIFT); /* parity bytes in each CW */
}
}
else
{
flash->cw_size = NAND_CW_SIZE_4_BIT_ECC;
if (flash->widebus)
{
cfg0 |= (2 << NAND_DEV0_CFG0_SPARE_SZ_BYTES_SHIFT); /* spare size bytes in each CW */
ecc_bch_cfg |= (8 << NAND_DEV0_ECC_PARITY_SZ_BYTES_SHIFT); /* parity bytes in each CW */
}
else
{
cfg0 |= (4 << NAND_DEV0_CFG0_SPARE_SZ_BYTES_SHIFT); /* spare size bytes in each CW */
ecc_bch_cfg |= (7 << NAND_DEV0_ECC_PARITY_SZ_BYTES_SHIFT); /* parity bytes in each CW */
}
}
/* BAD_BLOCK_BYTE_NUM = Page Size -
* (CW_PER_PAGE * Codeword Size) + 1
* Note: Set CW_PER_PAGE to 1 less than the actual number.
*/
flash->bad_blk_loc = flash->page_size - flash->cw_size * (flash->cws_per_page - 1) + 1;
cfg0 |= ((flash->cws_per_page - 1) << NAND_DEV0_CFG0_CW_PER_PAGE_SHIFT) /* 4/8 cw/pg for 2/4k */
|(DATA_BYTES_IN_IMG_PER_CW << NAND_DEV0_CFG0_UD_SIZE_BYTES_SHIFT) /* 516 user data bytes */
|(5 << NAND_DEV0_CFG0_ADDR_CYCLE_SHIFT) /* 5 address cycles */
|(0 << NAND_DEV0_CFG0_DIS_STS_AFTER_WR_SHIFT);/* Send read status cmd after each write. */
cfg1 |= (7 << NAND_DEV0_CFG1_RECOVERY_CYCLES_SHIFT) /* 8 recovery cycles */
|(0 << NAND_DEV0_CFG1_CS_ACTIVE_BSY_SHIFT) /* Allow CS deassertion */
|(flash->bad_blk_loc << NAND_DEV0_CFG1_BAD_BLK_BYTE_NUM_SHIFT)/* Bad block marker location */
|(0 << NAND_DEV0_CFG1_BAD_BLK_IN_SPARE_SHIFT) /* Bad block in user data area */
|(2 << NAND_DEV0_CFG1_WR_RD_BSY_GAP_SHIFT) /* 8 cycle tWB/tRB */
|(flash->widebus << NAND_DEV0_CFG1_WIDE_BUS_SHIFT); /* preserve wide flash flag */
cfg0_raw = ((flash->cws_per_page- 1) << NAND_DEV0_CFG0_CW_PER_PAGE_SHIFT)
|(5 << NAND_DEV0_CFG0_ADDR_CYCLE_SHIFT)
|(516 << NAND_DEV0_CFG0_UD_SIZE_BYTES_SHIFT) //figure out the size of cw
| (1 << NAND_DEV0_CFG0_DIS_STS_AFTER_WR_SHIFT);
cfg1_raw = (7 << NAND_DEV0_CFG1_RECOVERY_CYCLES_SHIFT)
| (0 << NAND_DEV0_CFG1_CS_ACTIVE_BSY_SHIFT)
| (17 << NAND_DEV0_CFG1_BAD_BLK_BYTE_NUM_SHIFT)
| (1 << NAND_DEV0_CFG1_BAD_BLK_IN_SPARE_SHIFT)
| (2 << NAND_DEV0_CFG1_WR_RD_BSY_GAP_SHIFT)
| (flash->widebus << NAND_DEV0_CFG1_WIDE_BUS_SHIFT)
|1 ; /* to disable reed solomon ecc..this feild is now read only. */
ecc_bch_cfg |= (0 << NAND_DEV0_ECC_DISABLE_SHIFT) /* Enable ECC */
| (0 << NAND_DEV0_ECC_SW_RESET_SHIFT) /* Put ECC core in op mode */
| (DATA_BYTES_IN_IMG_PER_CW << NAND_DEV0_ECC_NUM_DATA_BYTES)
| (1 << NAND_DEV0_ECC_FORCE_CLK_OPEN_SHIFT); /* Enable all clocks */
}
/* Onfi probe should issue the following commands to the flash device:
* 1. Read ID - with addr ONFI_READ_ID_ADDR.
* This returns the ONFI ASCII string indicating support for ONFI.
* 2. Read Prameter Page - with addr ONFI_READ_PARAM_PAGE_ADDR.
* This returns the params for the device.
* Each command inturn issues commands- ADDR0, ADDR1, chip_select,
* cfg0, cfg1, cmd_vld, dev_cmd1, read_loc0, flash, exec.
*/
static int
qpic_nand_onfi_probe(struct flash_info *flash)
{
struct onfi_probe_params params;
uint32_t vld;
uint32_t dev_cmd1;
unsigned char *buffer;
unsigned char onfi_str[4];
uint32_t *id;
struct onfi_param_page *param_page;
int onfi_ret = NANDC_RESULT_SUCCESS;
/* Allocate memory required to read the onfi param page */
buffer = (unsigned char*) malloc(ONFI_READ_PARAM_PAGE_BUFFER_SIZE);
/* Read the vld and dev_cmd1 registers before modifying */
vld = qpic_nand_read_reg(NAND_DEV_CMD_VLD, 0, ce_array);
dev_cmd1 = qpic_nand_read_reg(NAND_DEV_CMD1, 0, ce_array);
/* Initialize flash cmd */
params.cfg.cmd = NAND_CMD_PAGE_READ;
params.cfg.exec = 1;
/* Execute Read ID cmd */
/* Initialize the config */
params.cfg.cfg0 = NAND_CFG0_RAW_ONFI_ID;
params.cfg.cfg1 = NAND_CFG1_RAW_ONFI_ID;
/* Initialize the cmd and vld */
params.dev_cmd1 = (dev_cmd1 & 0xFFFFFF00) | ONFI_READ_ID_CMD;
params.vld = vld & 0xFFFFFFFE;
/* Initialize the address
* addr1 is not used bcos of the cfg.
*/
params.cfg.addr0 = ONFI_READ_ID_ADDR;
params.cfg.addr1 = 0;
/* Lock the pipe and execute the cmd. */
onfi_ret = onfi_probe_cmd_exec(&params, onfi_str, ONFI_READ_ID_BUFFER_SIZE);
if (onfi_ret)
{
dprintf(CRITICAL, "ONFI Read id cmd failed\n");
goto qpic_nand_onfi_probe_err;
}
/* Write back vld and cmd and unlock the pipe. */
qpic_nand_onfi_probe_cleanup(vld, dev_cmd1);
/* Check for onfi string */
id = (uint32_t*)onfi_str;
if (*id != ONFI_SIGNATURE)
{
dprintf(CRITICAL, "Not an ONFI device\n");
/* Not an onfi device. Return error. */
onfi_ret = NANDC_RESULT_DEV_NOT_SUPPORTED;
goto qpic_nand_onfi_probe_err;
}
dprintf(INFO, "ONFI device found\n");
/* Now read the param page */
/* Initialize the config */
params.cfg.cfg0 = NAND_CFG0_RAW_ONFI_PARAM_PAGE;
params.cfg.cfg1 = NAND_CFG1_RAW_ONFI_PARAM_PAGE;
/* Initialize the cmd and vld */
params.dev_cmd1 = (dev_cmd1 & 0xFFFFFF00) | ONFI_READ_PARAM_PAGE_CMD;
params.vld = vld & 0xFFFFFFFE;
/* Initialize the address
* addr1 is not used bcos of the cfg.
*/
params.cfg.addr0 = ONFI_READ_PARAM_PAGE_ADDR;
params.cfg.addr1 = 0;
/* Lock the pipe and execute the cmd. */
onfi_ret = onfi_probe_cmd_exec(&params, buffer, ONFI_READ_PARAM_PAGE_BUFFER_SIZE);
if (onfi_ret)
{
dprintf(CRITICAL, "ONFI Read param page failed\n");
goto qpic_nand_onfi_probe_err;
}
/* Write back vld and cmd and unlock the pipe. */
qpic_nand_onfi_probe_cleanup(vld, dev_cmd1);
/* Verify the integrity of the returned page */
param_page = (struct onfi_param_page*)buffer;
/* TODO: Add CRC check to validate the param page. */
/* Save the parameter values */
onfi_ret = qpic_nand_onfi_save_params(param_page, flash);
qpic_nand_onfi_probe_err:
if (onfi_ret)
dprintf(CRITICAL, "ONFI probe failed\n");
free(buffer);
return onfi_ret;
}
/* Enquues a desc for a flash cmd with NWD flag set:
* cfg: Defines the configuration for the flash cmd.
* start: Address where the command elements are added.
*
* Returns the address where the next cmd element can be added.
*/
struct cmd_element*
qpic_nand_add_cmd_ce(struct cfg_params *cfg,
struct cmd_element *start)
{
struct cmd_element *cmd_list_ptr;
cmd_list_ptr = qpic_nand_add_addr_n_cfg_ce(cfg, start);
bam_add_cmd_element(cmd_list_ptr, NAND_FLASH_CMD, (uint32_t)cfg->cmd, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_EXEC_CMD, (uint32_t)cfg->exec, CE_WRITE_TYPE);
cmd_list_ptr++;
return cmd_list_ptr;
}
/* Reads nand_flash_status and resets nand_flash_status and nand_read_status */
struct cmd_element*
qpic_nand_add_read_n_reset_status_ce(struct cmd_element *start,
uint32_t *flash_status_read,
uint32_t read_status)
{
struct cmd_element *cmd_list_ptr = start;
uint32_t flash_status_reset;
uint32_t read_status_reset;
/* Read and reset the status registers. */
flash_status_reset = NAND_FLASH_STATUS_RESET;
read_status_reset = NAND_READ_STATUS_RESET;
bam_add_cmd_element(cmd_list_ptr, NAND_FLASH_STATUS, (uint32_t)PA((addr_t)flash_status_read), CE_READ_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_FLASH_STATUS, (uint32_t)flash_status_reset, CE_WRITE_TYPE);
cmd_list_ptr++;
if (read_status)
{
bam_add_cmd_element(cmd_list_ptr, NAND_READ_STATUS, (uint32_t)read_status_reset, CE_WRITE_TYPE);
cmd_list_ptr++;
}
return cmd_list_ptr;
}
struct cmd_element*
qpic_nand_add_isbad_cmd_ce(struct cfg_params *cfg,
struct cmd_element *start)
{
struct cmd_element *cmd_list_ptr = start;
bam_add_cmd_element(cmd_list_ptr, NAND_DEV0_ECC_CFG, (uint32_t)cfg->ecc_cfg, CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr, NAND_READ_LOCATION_n(0), (uint32_t)cfg->addr_loc_0, CE_WRITE_TYPE);
cmd_list_ptr++;
cmd_list_ptr = qpic_nand_add_cmd_ce(cfg, cmd_list_ptr);
return cmd_list_ptr;
}
static int
qpic_nand_block_isbad_exec(struct cfg_params *params,
uint8_t *bad_block)
{
struct cmd_element *cmd_list_ptr = ce_array;
struct cmd_element *cmd_list_ptr_start = ce_array;
uint8_t desc_flags = BAM_DESC_NWD_FLAG | BAM_DESC_CMD_FLAG
| BAM_DESC_LOCK_FLAG | BAM_DESC_INT_FLAG;
int num_desc = 0;
uint32_t status = 0;
int nand_ret = NANDC_RESULT_SUCCESS;
cmd_list_ptr = qpic_nand_add_isbad_cmd_ce(params, cmd_list_ptr);
/* Enqueue the desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
desc_flags);
num_desc++;
/* Add Data desc */
bam_add_desc(&bam,
DATA_PRODUCER_PIPE_INDEX,
(unsigned char *)PA((addr_t)bad_block),
4,
BAM_DESC_INT_FLAG);
qpic_nand_wait_for_cmd_exec(num_desc);
status = qpic_nand_read_reg(NAND_FLASH_STATUS, 0, cmd_list_ptr);
nand_ret = qpic_nand_check_status(status);
/* Dummy read to unlock pipe. */
status = qpic_nand_read_reg(NAND_FLASH_STATUS, BAM_DESC_UNLOCK_FLAG, cmd_list_ptr);
if (nand_ret)
return NANDC_RESULT_FAILURE;
qpic_nand_wait_for_data(DATA_PRODUCER_PIPE_INDEX);
return nand_ret;
}
static int
qpic_nand_block_isbad(unsigned page)
{
unsigned cwperpage;
struct cfg_params params;
uint8_t bad_block[4];
unsigned nand_ret = NANDC_RESULT_SUCCESS;
uint32_t blk = page / flash.num_pages_per_blk;
if (bbtbl[blk] == NAND_BAD_BLK_VALUE_IS_GOOD)
return NANDC_RESULT_SUCCESS;
else if (bbtbl[blk] == NAND_BAD_BLK_VALUE_IS_BAD)
return NANDC_RESULT_BAD_BLOCK;
else
{
/* Read the bad block value from the flash.
* Bad block value is stored in the first page of the block.
*/
/* Read the first page in the block. */
cwperpage = flash.cws_per_page;
/* Read page cmd */
params.cmd = NAND_CMD_PAGE_READ_ECC;
/* Clear the CW per page bits */
params.cfg0 = cfg0_raw & ~(7U << NAND_DEV0_CFG0_CW_PER_PAGE_SHIFT);
params.cfg1 = cfg1_raw;
/* addr0 - Write column addr + few bits in row addr upto 32 bits. */
params.addr0 = (page << 16) | (USER_DATA_BYTES_PER_CW * cwperpage);
/* addr1 - Write rest of row addr.
* This will be all 0s.
*/
params.addr1 = (page >> 16) & 0xff;
params.addr_loc_0 = NAND_RD_LOC_OFFSET(0);
params.addr_loc_0 |= NAND_RD_LOC_LAST_BIT(1);
params.addr_loc_0 |= NAND_RD_LOC_SIZE(4); /* Read 4 bytes */
params.ecc_cfg = ecc_bch_cfg | 0x1; /* Disable ECC */
params.exec = 1;
if (qpic_nand_block_isbad_exec(&params, bad_block))
{
dprintf(CRITICAL,
"Could not read bad block value\n");
return NANDC_RESULT_FAILURE;
}
if (flash.widebus)
{
if (bad_block[0] != 0xFF && bad_block[1] != 0xFF)
{
bbtbl[blk] = NAND_BAD_BLK_VALUE_IS_BAD;
nand_ret = NANDC_RESULT_BAD_BLOCK;
}
}
else if (bad_block[0] != 0xFF)
{
bbtbl[blk] = NAND_BAD_BLK_VALUE_IS_BAD;
nand_ret = NANDC_RESULT_BAD_BLOCK;
}
else
bbtbl[blk] = NAND_BAD_BLK_VALUE_IS_GOOD;
return nand_ret;
}
}
/* Function to erase a block on the nand.
* page: Starting page address for the block.
*/
static int
qpic_nand_blk_erase(uint32_t page)
{
struct cfg_params cfg;
struct cmd_element *cmd_list_ptr = ce_array;
struct cmd_element *cmd_list_ptr_start = ce_array;
uint32_t status;
int num_desc = 0;
uint32_t blk_addr = page / flash.num_pages_per_blk;
int nand_ret;
/* Erase only if the block is not bad */
if (qpic_nand_block_isbad(page))
{
dprintf(CRITICAL,
"NAND Erase error: Block address belongs to bad block: %d\n",
blk_addr);
return NANDC_RESULT_FAILURE;
}
/* Fill in params for the erase flash cmd */
cfg.addr0 = page;
cfg.addr1 = 0;
/* Clear CW_PER_PAGE in cfg0 */
cfg.cfg0 = cfg0 & ~(7U << NAND_DEV0_CFG0_CW_PER_PAGE_SHIFT);
cfg.cfg1 = cfg1;
cfg.cmd = NAND_CMD_BLOCK_ERASE;
cfg.exec = 1;
cmd_list_ptr = qpic_nand_add_cmd_ce(&cfg, cmd_list_ptr);
/* Enqueue the desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
BAM_DESC_NWD_FLAG | BAM_DESC_CMD_FLAG | BAM_DESC_INT_FLAG | BAM_DESC_LOCK_FLAG);
cmd_list_ptr_start = cmd_list_ptr;
num_desc++;
qpic_nand_wait_for_cmd_exec(num_desc);
status = qpic_nand_read_reg(NAND_FLASH_STATUS, 0, cmd_list_ptr);
cmd_list_ptr++;
cmd_list_ptr_start = cmd_list_ptr;
/* QPIC controller automatically sends
* GET_STATUS cmd to the nand card because
* of the configuration programmed.
* Read the result of GET_STATUS cmd.
*/
cmd_list_ptr = qpic_nand_add_read_n_reset_status_ce(cmd_list_ptr, &status, 1);
/* Enqueue the desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
BAM_DESC_INT_FLAG | BAM_DESC_CMD_FLAG) ;
num_desc = 1;
qpic_nand_wait_for_cmd_exec(num_desc);
status = qpic_nand_check_status(status);
/* Dummy read to unlock pipe. */
nand_ret = qpic_nand_read_reg(NAND_FLASH_STATUS, BAM_DESC_UNLOCK_FLAG, cmd_list_ptr);
/* Check for status errors*/
if (status)
{
dprintf(CRITICAL,
"NAND Erase error: Block address belongs to bad block: %d\n",
blk_addr);
return NANDC_RESULT_FAILURE;
}
/* Check for PROG_ERASE_OP_RESULT bit for the result of erase operation. */
if (!(status & PROG_ERASE_OP_RESULT))
return NANDC_RESULT_SUCCESS;
return NANDC_RESULT_FAILURE;
}
/* Return num of desc added. */
static void
qpic_nand_add_wr_page_cws_cmd_desc(struct cfg_params *cfg,
uint32_t status[],
enum nand_cfg_value cfg_mode)
{
struct cmd_element *cmd_list_ptr = ce_array;
struct cmd_element *cmd_list_ptr_start = ce_array;
uint32_t ecc;
int num_desc = 0;
int int_flag = 0;
if (cfg_mode == NAND_CFG)
ecc = ecc_bch_cfg;
else
ecc = ecc_bch_cfg | 0x1; /* Disable ECC */
/* Add ECC configuration */
bam_add_cmd_element(cmd_list_ptr, NAND_DEV0_ECC_CFG,
(uint32_t)ecc, CE_WRITE_TYPE);
cmd_list_ptr++;
cmd_list_ptr = qpic_nand_add_addr_n_cfg_ce(cfg, cmd_list_ptr);
bam_add_cmd_element(cmd_list_ptr, NAND_FLASH_CMD,
(uint32_t)cfg->cmd, CE_WRITE_TYPE);
cmd_list_ptr++;
/* Enqueue the desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
BAM_DESC_CMD_FLAG | BAM_DESC_LOCK_FLAG);
num_desc++;
/* Add CE for all the CWs */
for (unsigned i = 0; i < flash.cws_per_page; i++)
{
cmd_list_ptr_start = cmd_list_ptr;
int_flag = BAM_DESC_INT_FLAG;
bam_add_cmd_element(cmd_list_ptr, NAND_EXEC_CMD, (uint32_t)cfg->exec, CE_WRITE_TYPE);
cmd_list_ptr++;
/* Enqueue the desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
BAM_DESC_NWD_FLAG | BAM_DESC_CMD_FLAG);
num_desc++;
cmd_list_ptr_start = cmd_list_ptr;
/* Set interrupt bit only for the last CW */
if (i == flash.cws_per_page - 1)
{
cmd_list_ptr = qpic_nand_add_read_n_reset_status_ce(cmd_list_ptr,
&status[i],
1);
}
else
cmd_list_ptr = qpic_nand_add_read_n_reset_status_ce(cmd_list_ptr,
&status[i],
0);
/* Enqueue the desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
int_flag | BAM_DESC_CMD_FLAG);
num_desc++;
qpic_nand_wait_for_cmd_exec(num_desc);
status[i] = qpic_nand_check_status(status[i]);
num_desc = 0;
}
return;
}
void
qpic_add_wr_page_cws_data_desc(const void *buffer,
enum nand_cfg_value cfg_mode,
const void *spareaddr)
{
int len;
int flags;
uint32_t start;
unsigned num_desc = 0;
for( unsigned i = 0; i < flash.cws_per_page; i++)
{
flags = 0;
/* Set the interrupt flag on the last CW write for the page. */
if( i == flash.cws_per_page - 1)
flags |= BAM_DESC_INT_FLAG;
if (cfg_mode != NAND_CFG_RAW)
{
start = (uint32_t)buffer + i * DATA_BYTES_IN_IMG_PER_CW;
if (i < (flash.cws_per_page - 1))
{
len = DATA_BYTES_IN_IMG_PER_CW;
flags |= BAM_DESC_EOT_FLAG;
}
else
{
/* Allow space for spare bytes in the last page */
len = USER_DATA_BYTES_PER_CW - ((flash.cws_per_page - 1) << 2);
flags = 0;
}
}
else
{
start = (uint32_t)buffer;
len = flash.cw_size;
flags |= BAM_DESC_EOT_FLAG;
}
bam_add_one_desc(&bam, DATA_CONSUMER_PIPE_INDEX, (unsigned char*)PA(start), len, flags);
num_desc++;
if ((i == (flash.cws_per_page - 1)) && (cfg_mode == NAND_CFG))
{
/* write extra data */
start = (uint32_t)spareaddr;
len = (flash.cws_per_page << 2);
flags = BAM_DESC_EOT_FLAG | BAM_DESC_INT_FLAG;
bam_add_one_desc(&bam, DATA_CONSUMER_PIPE_INDEX, (unsigned char*)PA(start), len, flags);
num_desc++;
}
}
bam_sys_gen_event(&bam, DATA_CONSUMER_PIPE_INDEX, num_desc);
}
static nand_result_t
qpic_nand_write_page(uint32_t pg_addr,
enum nand_cfg_value cfg_mode,
const void* buffer,
const void* spareaddr)
{
struct cfg_params cfg;
uint32_t status[QPIC_NAND_MAX_CWS_IN_PAGE];
int nand_ret = NANDC_RESULT_SUCCESS;
if (cfg_mode == NAND_CFG_RAW)
{
cfg.cfg0 = cfg0_raw;
cfg.cfg1 = cfg1_raw;
}
else
{
cfg.cfg0 = cfg0;
cfg.cfg1 = cfg1;
}
cfg.cmd = NAND_CMD_PRG_PAGE;
cfg.exec = 1;
cfg.addr0 = pg_addr << 16;
cfg.addr1 = (pg_addr >> 16) & 0xff;
qpic_add_wr_page_cws_data_desc(buffer, cfg_mode, spareaddr);
qpic_nand_add_wr_page_cws_cmd_desc(&cfg, status, cfg_mode);
/* Check for errors */
for(unsigned i = 0; i < flash.cws_per_page; i++)
{
nand_ret = qpic_nand_check_status(status[i]);
if (nand_ret)
{
dprintf(CRITICAL,
"Failed to write CW %d for page: %d\n",
i, pg_addr);
break;
}
}
/* Wait for data to be available */
qpic_nand_wait_for_data(DATA_CONSUMER_PIPE_INDEX);
return nand_ret;
}
static int
qpic_nand_mark_badblock(uint32_t page)
{
char empty_buf[NAND_CW_SIZE_8_BIT_ECC];
memset(empty_buf, 0, NAND_CW_SIZE_8_BIT_ECC);
/* Going to first page of the block */
if (page & flash.num_pages_per_blk_mask)
page = page - (page & flash.num_pages_per_blk_mask);
return qpic_nand_write_page(page, NAND_CFG_RAW, empty_buf, 0);
}
static void
qpic_nand_non_onfi_probe(struct flash_info *flash)
{
int dev_found = 0;
unsigned index;
uint32_t ecc_bits;
/* Read the nand id. */
qpic_nand_fetch_id(flash);
/* Check if we support the device */
for (index = 0; index < (ARRAY_SIZE(supported_flash)); index++)
{
if ((flash->id & supported_flash[index].mask) ==
(supported_flash[index].flash_id & (supported_flash[index].mask)))
{
dev_found = 1;
break;
}
}
if (dev_found)
{
flash->page_size = supported_flash[index].pagesize;
flash->block_size = supported_flash[index].blksize;
flash->spare_size = supported_flash[index].oobsize;
ecc_bits = supported_flash[index].ecc_8_bits;
/* Make sure that the block size and page size are defined. */
ASSERT(flash->block_size);
ASSERT(flash->page_size);
flash->num_blocks = supported_flash[index].density;
flash->num_blocks /= (flash->block_size);
flash->num_pages_per_blk = flash->block_size / flash->page_size;
flash->num_pages_per_blk_mask = flash->num_pages_per_blk - 1;
/* Look for 8bit BCH ECC Nand, TODO: ECC Correctability >= 8 */
if (ecc_bits)
flash->ecc_width = NAND_WITH_8_BIT_ECC;
else
flash->ecc_width = NAND_WITH_4_BIT_ECC;
flash->density = supported_flash[index].density;
flash->widebus = supported_flash[index].widebus;
return;
}
/* Flash device is not supported, print flash device info and halt */
if (dev_found == 0)
{
dprintf(CRITICAL, "NAND device is not supported: nandid: 0x%x"
"maker=0x%02x device=0x%02x\n",
flash->id,
flash->vendor,
flash->device);
ASSERT(0);
}
dprintf(INFO, "nandid: 0x%x maker=0x%02x device=0x%02x page_size=%d\n",
flash->id,
flash->vendor,
flash->device,
flash->page_size);
dprintf(INFO, "spare_size=%d block_size=%d num_blocks=%d\n",
flash->spare_size,
flash->block_size,
flash->num_blocks);
}
void
qpic_nand_init(struct qpic_nand_init_config *config)
{
uint32_t i;
int nand_ret;
nand_base = config->nand_base;
qpic_bam_init(config);
qpic_nand_non_onfi_probe(&flash);
/* Save the RAW and read/write configs */
qpic_nand_save_config(&flash);
flash_spare_bytes = (unsigned char *)malloc(flash.spare_size);
if (flash_spare_bytes == NULL)
{
dprintf(CRITICAL, "Failed to allocate memory for spare bytes\n");
return;
}
/* Create a bad block table */
bbtbl = (uint8_t *) malloc(sizeof(uint8_t) * flash.num_blocks);
if (bbtbl == NULL)
{
dprintf(CRITICAL, "Failed to allocate memory for bad block table\n");
return;
}
for (i = 0; i < flash.num_blocks; i++)
bbtbl[i] = NAND_BAD_BLK_VALUE_NOT_READ;
/* Set aside contiguous memory for reads/writes.
* This is needed as the BAM transfers only work with
* physically contiguous buffers.
* We will copy any data to be written/ to be read from
* nand to this buffer and this buffer will be submitted to BAM.
*/
rdwr_buf = (uint8_t*) malloc(flash.page_size + flash.spare_size);
if (rdwr_buf == NULL)
{
dprintf(CRITICAL, "Failed to allocate memory for page reads or writes\n");
return;
}
}
unsigned
flash_page_size(void)
{
return flash.page_size;
}
unsigned
flash_block_size(void)
{
return flash.block_size;
}
unsigned
flash_num_blocks(void)
{
return flash.num_blocks;
}
struct ptable *
flash_get_ptable(void)
{
return flash_ptable;
}
void
qpic_nand_uninit()
{
bam_pipe_reset(&bam, DATA_PRODUCER_PIPE_INDEX);
bam_pipe_reset(&bam, DATA_CONSUMER_PIPE_INDEX);
bam_pipe_reset(&bam, CMD_PIPE_INDEX);
}
void
flash_set_ptable(struct ptable *new_ptable)
{
ASSERT(flash_ptable == NULL && new_ptable != NULL);
flash_ptable = new_ptable;
}
/* Note: No support for raw reads. */
static int
qpic_nand_read_page(uint32_t page, unsigned char* buffer, unsigned char* spareaddr)
{
struct cfg_params params;
uint32_t ecc;
uint32_t flash_sts[QPIC_NAND_MAX_CWS_IN_PAGE];
uint32_t buffer_sts[QPIC_NAND_MAX_CWS_IN_PAGE];
uint32_t addr_loc_0;
uint32_t addr_loc_1;
struct cmd_element *cmd_list_ptr = ce_array;
struct cmd_element *cmd_list_ptr_start = ce_array;
uint32_t num_cmd_desc = 0;
uint32_t num_data_desc = 0;
uint32_t status;
uint32_t i;
int nand_ret = NANDC_RESULT_SUCCESS;
/* UD bytes in last CW is 512 - cws_per_page *4.
* Since each of the CW read earlier reads 4 spare bytes.
*/
uint16_t ud_bytes_in_last_cw = USER_DATA_BYTES_PER_CW - ((flash.cws_per_page - 1) << 2);
uint16_t oob_bytes = DATA_BYTES_IN_IMG_PER_CW - ud_bytes_in_last_cw;
params.addr0 = page << 16;
params.addr1 = (page >> 16) & 0xff;
params.cfg0 = cfg0;
params.cfg1 = cfg1;
params.cmd = NAND_CMD_PAGE_READ_ALL;
params.exec = 1;
ecc = ecc_bch_cfg;
/* Read all the Data bytes in the first 3 CWs. */
addr_loc_0 = NAND_RD_LOC_OFFSET(0);
addr_loc_0 |= NAND_RD_LOC_SIZE(DATA_BYTES_IN_IMG_PER_CW);
addr_loc_0 |= NAND_RD_LOC_LAST_BIT(1);
addr_loc_1 = NAND_RD_LOC_OFFSET(ud_bytes_in_last_cw);
addr_loc_1 |= NAND_RD_LOC_SIZE(oob_bytes);
addr_loc_1 |= NAND_RD_LOC_LAST_BIT(1);
status = qpic_nand_block_isbad(page);
if (status)
return status;
/* Reset and Configure erased CW/page detection controller */
qpic_nand_erased_status_reset(ce_array, BAM_DESC_LOCK_FLAG);
for (i = 0; i < flash.cws_per_page; i++)
{
num_cmd_desc = 0;
num_data_desc = 0;
if (i == 0)
{
cmd_list_ptr = qpic_nand_add_addr_n_cfg_ce(&params, cmd_list_ptr);
bam_add_cmd_element(cmd_list_ptr, NAND_DEV0_ECC_CFG,(uint32_t)ecc, CE_WRITE_TYPE);
cmd_list_ptr++;
}
else
cmd_list_ptr_start = cmd_list_ptr;
bam_add_cmd_element(cmd_list_ptr, NAND_FLASH_CMD, (uint32_t)params.cmd, CE_WRITE_TYPE);
cmd_list_ptr++;
if (i == flash.cws_per_page - 1)
{
addr_loc_0 = NAND_RD_LOC_OFFSET(0);
addr_loc_0 |= NAND_RD_LOC_SIZE(ud_bytes_in_last_cw);
addr_loc_0 |= NAND_RD_LOC_LAST_BIT(0);
/* Write addr loc 1 only for the last CW. */
bam_add_cmd_element(cmd_list_ptr, NAND_READ_LOCATION_n(1), (uint32_t)addr_loc_1, CE_WRITE_TYPE);
cmd_list_ptr++;
/* Add Data desc */
bam_add_one_desc(&bam,
DATA_PRODUCER_PIPE_INDEX,
(unsigned char *)PA((addr_t)buffer),
ud_bytes_in_last_cw,
0);
num_data_desc++;
bam_add_one_desc(&bam,
DATA_PRODUCER_PIPE_INDEX,
(unsigned char *)PA((addr_t)spareaddr),
oob_bytes,
BAM_DESC_INT_FLAG);
num_data_desc++;
bam_sys_gen_event(&bam, DATA_PRODUCER_PIPE_INDEX, num_data_desc);
}
else
{
/* Add Data desc */
bam_add_one_desc(&bam,
DATA_PRODUCER_PIPE_INDEX,
(unsigned char *)PA((addr_t)buffer),
DATA_BYTES_IN_IMG_PER_CW,
BAM_DESC_INT_FLAG);
num_data_desc++;
bam_sys_gen_event(&bam, DATA_PRODUCER_PIPE_INDEX, num_data_desc);
}
/* Write addr loc 0. */
bam_add_cmd_element(cmd_list_ptr,
NAND_READ_LOCATION_n(0),
(uint32_t)addr_loc_0,
CE_WRITE_TYPE);
cmd_list_ptr++;
bam_add_cmd_element(cmd_list_ptr,
NAND_EXEC_CMD,
(uint32_t)params.exec,
CE_WRITE_TYPE);
cmd_list_ptr++;
/* Enqueue the desc for the above commands */
bam_add_one_desc(&bam,
CMD_PIPE_INDEX,
(unsigned char*)cmd_list_ptr_start,
PA((uint32_t)cmd_list_ptr - (uint32_t)cmd_list_ptr_start),
BAM_DESC_NWD_FLAG | BAM_DESC_CMD_FLAG | BAM_DESC_INT_FLAG);
num_cmd_desc++;
qpic_nand_wait_for_cmd_exec(num_cmd_desc);
qpic_nand_wait_for_data(DATA_PRODUCER_PIPE_INDEX);
/* Save the status registers. */
flash_sts[i] = qpic_nand_read_reg(NAND_FLASH_STATUS, 0, cmd_list_ptr++);
buffer_sts[i] = qpic_nand_read_reg(NAND_BUFFER_STATUS, 0, cmd_list_ptr++);
flash_sts[i] = qpic_nand_check_status(flash_sts[i]);
buffer += DATA_BYTES_IN_IMG_PER_CW;
}
/* Read the buffer status again so that we can unlock the bam with this desc. */
buffer_sts[--i] = qpic_nand_read_reg(NAND_BUFFER_STATUS, BAM_DESC_UNLOCK_FLAG, cmd_list_ptr++);
/* Check status */
for (i = 0; i < flash.cws_per_page ; i ++)
if (flash_sts[i])
{
nand_ret = NANDC_RESULT_BAD_PAGE;
dprintf(CRITICAL, "NAND page read failed. page: %x\n", page);
goto qpic_nand_read_page_error;
}
qpic_nand_read_page_error:
return nand_ret;
}
/* Function to read a flash partition.
* ptn : Partition to read.
* extra_per_page : Spare data to be read.
* offset : Num of bytes offset into the partition.
* data : Buffer to read the data into.
* bytes : Num of bytes to be read.
*/
/* TODO: call this func read_partition. */
int
flash_read_ext(struct ptentry *ptn,
unsigned extra_per_page,
unsigned offset,
void *data,
unsigned bytes)
{
uint32_t page =
(ptn->start * flash.num_pages_per_blk) + (offset / flash.page_size);
uint32_t lastpage = (ptn->start + ptn->length) * flash.num_pages_per_blk;
uint32_t count =
(bytes + flash.page_size - 1 + extra_per_page) / (flash.page_size +
extra_per_page);
uint32_t *spare = (unsigned *)flash_spare_bytes;
uint32_t errors = 0;
unsigned char *image = data;
int result = 0;
uint32_t current_block =
(page - (page & flash.num_pages_per_blk_mask)) / flash.num_pages_per_blk;
uint32_t start_block = ptn->start;
uint32_t start_block_count = 0;
uint32_t isbad = 0;
uint32_t current_page;
/* Verify first byte is at page boundary. */
if (offset & (flash.page_size - 1))
{
dprintf(CRITICAL, "Read request start not at page boundary: %d\n",
offset);
return NANDC_RESULT_PARAM_INVALID;
}
current_page = start_block * flash.num_pages_per_blk;
/* Adjust page offset based on number of bad blocks from start to current page */
if (start_block < current_block)
{
start_block_count = (current_block - start_block);
while (start_block_count
&& (start_block < (ptn->start + ptn->length)))
{
isbad = qpic_nand_block_isbad(current_page);
if (isbad)
page += flash.num_pages_per_blk;
else
start_block_count--;
start_block++;
current_page += flash.num_pages_per_blk;
}
}
while ((page < lastpage) && !start_block_count)
{
if (count == 0)
{
dprintf(SPEW, "flash_read_image: success (%d errors)\n",
errors);
return NANDC_RESULT_SUCCESS;
}
result = qpic_nand_read_page(page, rdwr_buf, (unsigned char *)spare);
if (result == NANDC_RESULT_BAD_PAGE)
{
/* bad page, go to next page. */
page++;
errors++;
continue;
}
else if (result == NANDC_RESULT_BAD_BLOCK)
{
/* bad block, go to next block same offset. */
page += flash.num_pages_per_blk;
errors++;
continue;
}
/* Copy the read page into correct location. */
memcpy(image, rdwr_buf, flash.page_size);
page++;
image += flash.page_size;
/* Copy spare bytes to image */
memcpy(image, spare, extra_per_page);
image += extra_per_page;
count -= 1;
}
/* could not find enough valid pages before we hit the end */
dprintf(CRITICAL, "flash_read_image: failed (%d errors)\n", errors);
return NANDC_RESULT_FAILURE;
}
int
flash_erase(struct ptentry *ptn)
{
int ret = 0;
ret = qpic_nand_blk_erase(ptn->start * flash.num_pages_per_blk);
if (ret)
dprintf(CRITICAL, "Erase operation failed \n");
return ret;
}
int
flash_ecc_bch_enabled()
{
return (flash.ecc_width == NAND_WITH_4_BIT_ECC)? 0 : 1;
}
int
flash_write(struct ptentry *ptn,
unsigned write_extra_bytes,
const void *data,
unsigned bytes)
{
uint32_t page = ptn->start * flash.num_pages_per_blk;
uint32_t lastpage = (ptn->start + ptn->length) * flash.num_pages_per_blk;
uint32_t *spare = (unsigned *)flash_spare_bytes;
const unsigned char *image = data;
uint32_t wsize;
int r;
if(write_extra_bytes)
wsize = flash.page_size + flash.spare_size;
else
wsize = flash.page_size;
memset(spare, 0xff, (flash.spare_size / flash.cws_per_page));
while (bytes > 0)
{
if (bytes < wsize)
{
dprintf(CRITICAL,
"flash_write_image: image undersized (%d < %d)\n",
bytes,
wsize);
return -1;
}
if (page >= lastpage)
{
dprintf(CRITICAL, "flash_write_image: out of space\n");
return -1;
}
if ((page & flash.num_pages_per_blk_mask) == 0)
{
if (qpic_nand_blk_erase(page))
{
dprintf(INFO,
"flash_write_image: bad block @ %d\n",
page / flash.num_pages_per_blk);
page += flash.num_pages_per_blk;
continue;
}
}
memcpy(rdwr_buf, image, flash.page_size);
if (write_extra_bytes)
{
memcpy(rdwr_buf + flash.page_size, image + flash.page_size, flash.spare_size);
r = qpic_nand_write_page(page,
NAND_CFG,
rdwr_buf,
rdwr_buf + flash.page_size);
}
else
{
r = qpic_nand_write_page(page, NAND_CFG, rdwr_buf, spare);
}
if (r)
{
dprintf(INFO,
"flash_write_image: write failure @ page %d (src %d)\n",
page,
image - (const unsigned char *)data);
image -= (page & flash.num_pages_per_blk_mask) * wsize;
bytes += (page & flash.num_pages_per_blk_mask) * wsize;
page &= ~flash.num_pages_per_blk_mask;
if (qpic_nand_blk_erase(page))
{
dprintf(INFO,
"flash_write_image: erase failure @ page %d\n",
page);
}
qpic_nand_mark_badblock(page);
dprintf(INFO,
"flash_write_image: restart write @ page %d (src %d)\n",
page, image - (const unsigned char *)data);
page += flash.num_pages_per_blk;
continue;
}
page++;
image += wsize;
bytes -= wsize;
}
/* erase any remaining pages in the partition */
page = (page + flash.num_pages_per_blk_mask) & (~flash.num_pages_per_blk_mask);
while (page < lastpage)
{
if (qpic_nand_blk_erase(page))
{
dprintf(INFO, "flash_write_image: bad block @ %d\n",
page / flash.num_pages_per_blk);
}
page += flash.num_pages_per_blk;
}
dprintf(INFO, "flash_write_image: success\n");
return 0;
}