M7350/kernel/drivers/regulator/cpr3-hmss-regulator.c

1731 lines
50 KiB
C
Raw Normal View History

2024-09-09 08:57:42 +00:00
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/kryo-regulator.h>
#include "cpr3-regulator.h"
#define MSM8996_HMSS_FUSE_CORNERS 5
/**
* struct cpr3_msm8996_hmss_fuses - HMSS specific fuse data for MSM8996
* @ro_sel: Ring oscillator select fuse parameter value for each
* fuse corner
* @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
* for each fuse corner (raw, not converted to a voltage)
* @target_quot: CPR target quotient fuse parameter value for each fuse
* corner
* @quot_offset: CPR target quotient offset fuse parameter value for each
* fuse corner (raw, not unpacked) used for target quotient
* interpolation
* @speed_bin: Application processor speed bin fuse parameter value for
* the given chip
* @cpr_fusing_rev: CPR fusing revision fuse parameter value
* @redundant_fusing: Redundant fusing select fuse parameter value
* @limitation: CPR limitation select fuse parameter value
* @partial_binning: Chip partial binning fuse parameter value which defines
* limitations found on a given chip
* @vdd_mx_ret_fuse: Defines the logic retention voltage of VDD_MX
* @vdd_apcc_ret_fuse: Defines the logic retention voltage of VDD_APCC
* @aging_init_quot_diff: Initial quotient difference between CPR aging
* min and max sensors measured at time of manufacturing
*
* This struct holds the values for all of the fuses read from memory. The
* values for ro_sel, init_voltage, target_quot, and quot_offset come from
* either the primary or redundant fuse locations depending upon the value of
* redundant_fusing.
*/
struct cpr3_msm8996_hmss_fuses {
u64 ro_sel[MSM8996_HMSS_FUSE_CORNERS];
u64 init_voltage[MSM8996_HMSS_FUSE_CORNERS];
u64 target_quot[MSM8996_HMSS_FUSE_CORNERS];
u64 quot_offset[MSM8996_HMSS_FUSE_CORNERS];
u64 speed_bin;
u64 cpr_fusing_rev;
u64 redundant_fusing;
u64 limitation;
u64 partial_binning;
u64 vdd_mx_ret_fuse;
u64 vdd_apcc_ret_fuse;
u64 aging_init_quot_diff;
};
/*
* Fuse combos 0 - 7 map to CPR fusing revision 0 - 7 with speed bin fuse = 0.
* Fuse combos 8 - 15 map to CPR fusing revision 0 - 7 with speed bin fuse = 1.
*/
#define CPR3_MSM8996_HMSS_FUSE_COMBO_COUNT 16
/*
* Constants which define the name of each fuse corner. Note that no actual
* fuses are defined for LowSVS. However, a mapping from corner to LowSVS
* is required in order to perform target quotient interpolation properly.
*/
enum cpr3_msm8996_hmss_fuse_corner {
CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS = 0,
CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS = 1,
CPR3_MSM8996_HMSS_FUSE_CORNER_SVS = 2,
CPR3_MSM8996_HMSS_FUSE_CORNER_NOM = 3,
CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO = 4,
};
static const char * const cpr3_msm8996_hmss_fuse_corner_name[] = {
[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS] = "MinSVS",
[CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS] = "LowSVS",
[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS] = "SVS",
[CPR3_MSM8996_HMSS_FUSE_CORNER_NOM] = "NOM",
[CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO] = "TURBO",
};
/* CPR3 hardware thread IDs */
#define MSM8996_HMSS_POWER_CLUSTER_THREAD_ID 0
#define MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID 1
/*
* MSM8996 HMSS fuse parameter locations:
*
* Structs are organized with the following dimensions:
* Outer: 0 or 1 for power or performance cluster
* Middle: 0 to 3 for fuse corners from lowest to highest corner
* Inner: large enough to hold the longest set of parameter segments which
* fully defines a fuse parameter, +1 (for NULL termination).
* Each segment corresponds to a contiguous group of bits from a
* single fuse row. These segments are concatentated together in
* order to form the full fuse parameter value. The segments for
* a given parameter may correspond to different fuse rows.
*
* Note that there are only physically 4 sets of fuse parameters which
* correspond to the MinSVS, SVS, NOM, and TURBO fuse corners. However, the SVS
* quotient offset fuse is used to define the target quotient for the LowSVS
* fuse corner. In order to utilize LowSVS, it must be treated as if it were a
* real fully defined fuse corner. Thus, LowSVS fuse parameter locations are
* specified. These locations duplicate the SVS values in order to simplify
* interpolation logic.
*/
static const struct cpr3_fuse_param
msm8996_hmss_ro_sel_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = {
[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
{{66, 38, 41}, {} },
{{66, 38, 41}, {} },
{{66, 38, 41}, {} },
{{66, 34, 37}, {} },
{{66, 30, 33}, {} },
},
[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{64, 54, 57}, {} },
{{64, 54, 57}, {} },
{{64, 54, 57}, {} },
{{64, 50, 53}, {} },
{{64, 46, 49}, {} },
},
};
static const struct cpr3_fuse_param
msm8996_hmss_init_voltage_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = {
[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
{{67, 0, 5}, {} },
{{66, 58, 63}, {} },
{{66, 58, 63}, {} },
{{66, 52, 57}, {} },
{{66, 46, 51}, {} },
},
[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{65, 16, 21}, {} },
{{65, 10, 15}, {} },
{{65, 10, 15}, {} },
{{65, 4, 9}, {} },
{{64, 62, 63}, {65, 0, 3}, {} },
},
};
static const struct cpr3_fuse_param
msm8996_hmss_target_quot_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = {
[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
{{67, 42, 53}, {} },
{{67, 30, 41}, {} },
{{67, 30, 41}, {} },
{{67, 18, 29}, {} },
{{67, 6, 17}, {} },
},
[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{65, 58, 63}, {66, 0, 5}, {} },
{{65, 46, 57}, {} },
{{65, 46, 57}, {} },
{{65, 34, 45}, {} },
{{65, 22, 33}, {} },
},
};
static const struct cpr3_fuse_param
msm8996_hmss_quot_offset_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = {
[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
{{} },
{{} },
{{68, 6, 13}, {} },
{{67, 62, 63}, {68, 0, 5}, {} },
{{67, 54, 61}, {} },
},
[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{} },
{{} },
{{66, 22, 29}, {} },
{{66, 14, 21}, {} },
{{66, 6, 13}, {} },
},
};
/*
* This fuse is used to define if the redundant set of fuses should be used for
* any particular feature. CPR is one such feature. The redundant CPR fuses
* should be used if this fuse parameter has a value of 1.
*/
static const struct cpr3_fuse_param msm8996_redundant_fusing_param[] = {
{73, 61, 63},
{},
};
#define MSM8996_CPR_REDUNDANT_FUSING 1
static const struct cpr3_fuse_param
msm8996_hmss_redun_ro_sel_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = {
[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
{{76, 36, 39}, {} },
{{76, 32, 35}, {} },
{{76, 32, 35}, {} },
{{76, 28, 31}, {} },
{{76, 24, 27}, {} },
},
[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{74, 52, 55}, {} },
{{74, 48, 51}, {} },
{{74, 48, 51}, {} },
{{74, 44, 47}, {} },
{{74, 40, 43}, {} },
},
};
static const struct cpr3_fuse_param
msm8996_hmss_redun_init_voltage_param[2][MSM8996_HMSS_FUSE_CORNERS][3] = {
[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
{{76, 58, 63}, {} },
{{76, 52, 57}, {} },
{{76, 52, 57}, {} },
{{76, 46, 51}, {} },
{{76, 40, 45}, {} },
},
[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{75, 10, 15}, {} },
{{75, 4, 9}, {} },
{{75, 4, 9}, {} },
{{74, 62, 63}, {75, 0, 3}, {} },
{{74, 56, 61}, {} },
},
};
static const struct cpr3_fuse_param
msm8996_hmss_redun_target_quot_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = {
[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
{{77, 36, 47}, {} },
{{77, 24, 35}, {} },
{{77, 24, 35}, {} },
{{77, 12, 23}, {} },
{{77, 0, 11}, {} },
},
[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{75, 52, 63}, {} },
{{75, 40, 51}, {} },
{{75, 40, 51}, {} },
{{75, 28, 39}, {} },
{{75, 16, 27}, {} },
},
};
static const struct cpr3_fuse_param
msm8996_hmss_redun_quot_offset_param[2][MSM8996_HMSS_FUSE_CORNERS][2] = {
[MSM8996_HMSS_POWER_CLUSTER_THREAD_ID] = {
{{} },
{{} },
{{68, 11, 18}, {} },
{{77, 56, 63}, {} },
{{77, 48, 55}, {} },
},
[MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID] = {
{{} },
{{} },
{{76, 16, 23}, {} },
{{76, 8, 15}, {} },
{{76, 0, 7}, {} },
},
};
static const struct cpr3_fuse_param msm8996_cpr_fusing_rev_param[] = {
{39, 51, 53},
{},
};
static const struct cpr3_fuse_param msm8996_hmss_speed_bin_param[] = {
{38, 29, 31},
{},
};
static const struct cpr3_fuse_param msm8996_cpr_limitation_param[] = {
{41, 31, 32},
{},
};
static const struct cpr3_fuse_param msm8996_vdd_mx_ret_param[] = {
{41, 2, 4},
{},
};
static const struct cpr3_fuse_param msm8996_vdd_apcc_ret_param[] = {
{41, 52, 54},
{},
};
static const struct cpr3_fuse_param msm8996_cpr_partial_binning_param[] = {
{39, 55, 59},
{},
};
static const struct cpr3_fuse_param
msm8996_hmss_aging_init_quot_diff_param[] = {
{68, 14, 19},
{},
};
/*
* Some initial msm8996 parts cannot be used in a meaningful way by software.
* Other parts can only be used when operating with CPR disabled (i.e. at the
* fused open-loop voltage) when no voltage interpolation is applied. A fuse
* parameter is provided so that software can properly handle these limitations.
*/
enum msm8996_cpr_limitation {
MSM8996_CPR_LIMITATION_NONE = 0,
MSM8996_CPR_LIMITATION_UNSUPPORTED = 2,
MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION = 3,
};
/*
* Some initial msm8996 parts cannot be operated at low voltages. A fuse
* parameter is provided so that software can properly handle these limitations.
*/
enum msm8996_cpr_partial_binning {
MSM8996_CPR_PARTIAL_BINNING_SVS = 11,
MSM8996_CPR_PARTIAL_BINNING_NOM = 12,
};
/* Additional MSM8996 specific data: */
/* Open loop voltage fuse reference voltages in microvolts for MSM8996 v1/v2 */
static const int msm8996_v1_v2_hmss_fuse_ref_volt[MSM8996_HMSS_FUSE_CORNERS] = {
605000,
745000, /* Place holder entry for LowSVS */
745000,
905000,
1015000,
};
/* Open loop voltage fuse reference voltages in microvolts for MSM8996 v3 */
static const int msm8996_v3_hmss_fuse_ref_volt[MSM8996_HMSS_FUSE_CORNERS] = {
605000,
745000, /* Place holder entry for LowSVS */
745000,
905000,
1140000,
};
/*
* Open loop voltage fuse reference voltages in microvolts for MSM8996 v3 with
* speed_bin == 1 and cpr_fusing_rev >= 5.
*/
static const int msm8996_v3_speed_bin1_rev5_hmss_fuse_ref_volt[
MSM8996_HMSS_FUSE_CORNERS] = {
605000,
745000, /* Place holder entry for LowSVS */
745000,
905000,
1040000,
};
/* Defines mapping from retention fuse values to voltages in microvolts */
static const int msm8996_vdd_apcc_fuse_ret_volt[] = {
600000, 550000, 500000, 450000, 400000, 350000, 300000, 600000,
};
static const int msm8996_vdd_mx_fuse_ret_volt[] = {
700000, 650000, 580000, 550000, 490000, 490000, 490000, 490000,
};
#define MSM8996_HMSS_FUSE_STEP_VOLT 10000
#define MSM8996_HMSS_VOLTAGE_FUSE_SIZE 6
#define MSM8996_HMSS_QUOT_OFFSET_SCALE 5
#define MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SCALE 2
#define MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SIZE 6
#define MSM8996_HMSS_CPR_SENSOR_COUNT 25
#define MSM8996_HMSS_THREAD0_SENSOR_MIN 0
#define MSM8996_HMSS_THREAD0_SENSOR_MAX 14
#define MSM8996_HMSS_THREAD1_SENSOR_MIN 15
#define MSM8996_HMSS_THREAD1_SENSOR_MAX 24
#define MSM8996_HMSS_CPR_CLOCK_RATE 19200000
#define MSM8996_HMSS_AGING_SENSOR_ID 11
#define MSM8996_HMSS_AGING_BYPASS_MASK0 (GENMASK(7, 0) & ~BIT(3))
/**
* cpr3_msm8996_hmss_read_fuse_data() - load HMSS specific fuse parameter values
* @vreg: Pointer to the CPR3 regulator
*
* This function allocates a cpr3_msm8996_hmss_fuses struct, fills it with
* values read out of hardware fuses, and finally copies common fuse values
* into the CPR3 regulator struct.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_msm8996_hmss_read_fuse_data(struct cpr3_regulator *vreg)
{
void __iomem *base = vreg->thread->ctrl->fuse_base;
struct cpr3_msm8996_hmss_fuses *fuse;
bool redundant;
int i, id, rc;
fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
if (!fuse)
return -ENOMEM;
rc = cpr3_read_fuse_param(base, msm8996_hmss_speed_bin_param,
&fuse->speed_bin);
if (rc) {
cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
return rc;
}
cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
rc = cpr3_read_fuse_param(base, msm8996_cpr_fusing_rev_param,
&fuse->cpr_fusing_rev);
if (rc) {
cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
rc = cpr3_read_fuse_param(base, msm8996_redundant_fusing_param,
&fuse->redundant_fusing);
if (rc) {
cpr3_err(vreg, "Unable to read redundant fusing config fuse, rc=%d\n",
rc);
return rc;
}
redundant = (fuse->redundant_fusing == MSM8996_CPR_REDUNDANT_FUSING);
cpr3_info(vreg, "using redundant fuses = %c\n",
redundant ? 'Y' : 'N');
rc = cpr3_read_fuse_param(base, msm8996_cpr_limitation_param,
&fuse->limitation);
if (rc) {
cpr3_err(vreg, "Unable to read CPR limitation fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR limitation = %s\n",
fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED
? "unsupported chip" : fuse->limitation
== MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION
? "CPR disabled and no interpolation" : "none");
rc = cpr3_read_fuse_param(base, msm8996_cpr_partial_binning_param,
&fuse->partial_binning);
if (rc) {
cpr3_err(vreg, "Unable to read partial binning fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "CPR partial binning limitation = %s\n",
fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_SVS
? "SVS min voltage"
: fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_NOM
? "NOM min voltage"
: "none");
rc = cpr3_read_fuse_param(base, msm8996_vdd_mx_ret_param,
&fuse->vdd_mx_ret_fuse);
if (rc) {
cpr3_err(vreg, "Unable to read VDD_MX retention fuse, rc=%d\n",
rc);
return rc;
}
rc = cpr3_read_fuse_param(base, msm8996_vdd_apcc_ret_param,
&fuse->vdd_apcc_ret_fuse);
if (rc) {
cpr3_err(vreg, "Unable to read VDD_APCC retention fuse, rc=%d\n",
rc);
return rc;
}
cpr3_info(vreg, "Retention voltage fuses: VDD_MX = %llu, VDD_APCC = %llu\n",
fuse->vdd_mx_ret_fuse, fuse->vdd_apcc_ret_fuse);
rc = cpr3_read_fuse_param(base, msm8996_hmss_aging_init_quot_diff_param,
&fuse->aging_init_quot_diff);
if (rc) {
cpr3_err(vreg, "Unable to read aging initial quotient difference fuse, rc=%d\n",
rc);
return rc;
}
id = vreg->thread->thread_id;
for (i = 0; i < MSM8996_HMSS_FUSE_CORNERS; i++) {
rc = cpr3_read_fuse_param(base,
redundant
? msm8996_hmss_redun_init_voltage_param[id][i]
: msm8996_hmss_init_voltage_param[id][i],
&fuse->init_voltage[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
redundant
? msm8996_hmss_redun_target_quot_param[id][i]
: msm8996_hmss_target_quot_param[id][i],
&fuse->target_quot[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
redundant
? msm8996_hmss_redun_ro_sel_param[id][i]
: msm8996_hmss_ro_sel_param[id][i],
&fuse->ro_sel[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
i, rc);
return rc;
}
rc = cpr3_read_fuse_param(base,
redundant
? msm8996_hmss_redun_quot_offset_param[id][i]
: msm8996_hmss_quot_offset_param[id][i],
&fuse->quot_offset[i]);
if (rc) {
cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
i, rc);
return rc;
}
}
vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
if (vreg->fuse_combo >= CPR3_MSM8996_HMSS_FUSE_COMBO_COUNT) {
cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
vreg->fuse_combo);
return -EINVAL;
}
vreg->speed_bin_fuse = fuse->speed_bin;
vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
vreg->fuse_corner_count = MSM8996_HMSS_FUSE_CORNERS;
vreg->platform_fuses = fuse;
return 0;
}
/**
* cpr3_hmss_parse_corner_data() - parse HMSS corner data from device tree
* properties of the CPR3 regulator's device node
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr3_hmss_parse_corner_data(struct cpr3_regulator *vreg)
{
int rc;
rc = cpr3_parse_common_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
return rc;
}
return rc;
}
/**
* cpr3_msm8996_hmss_calculate_open_loop_voltages() - calculate the open-loop
* voltage for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If open-loop voltage interpolation is allowed in both device tree and in
* hardware fuses, then this function calculates the open-loop voltage for a
* given corner using linear interpolation. This interpolation is performed
* using the processor frequencies of the lower and higher Fmax corners along
* with their fused open-loop voltages.
*
* If open-loop voltage interpolation is not allowed, then this function uses
* the Fmax fused open-loop voltage for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_msm8996_hmss_calculate_open_loop_voltages(
struct cpr3_regulator *vreg)
{
struct device_node *node = vreg->of_node;
struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
int rc = 0;
bool allow_interpolation;
u64 freq_low, volt_low, freq_high, volt_high;
int i, j, soc_revision;
const int *ref_volt;
int *fuse_volt;
int *fmax_corner;
fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
if (!fuse_volt || !fmax_corner) {
rc = -ENOMEM;
goto done;
}
soc_revision = vreg->thread->ctrl->soc_revision;
if (soc_revision == 1 || soc_revision == 2)
ref_volt = msm8996_v1_v2_hmss_fuse_ref_volt;
else if (fuse->speed_bin == 1 && fuse->cpr_fusing_rev >= 5)
ref_volt = msm8996_v3_speed_bin1_rev5_hmss_fuse_ref_volt;
else
ref_volt = msm8996_v3_hmss_fuse_ref_volt;
for (i = 0; i < vreg->fuse_corner_count; i++) {
fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
ref_volt[i],
MSM8996_HMSS_FUSE_STEP_VOLT, fuse->init_voltage[i],
MSM8996_HMSS_VOLTAGE_FUSE_SIZE);
/* Log fused open-loop voltage values for debugging purposes. */
if (i != CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS)
cpr3_info(vreg, "fused %6s: open-loop=%7d uV\n",
cpr3_msm8996_hmss_fuse_corner_name[i],
fuse_volt[i]);
}
rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
if (rc) {
cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
rc);
goto done;
}
allow_interpolation = of_property_read_bool(node,
"qcom,allow-voltage-interpolation");
/*
* No LowSVS open-loop voltage fuse exists. Instead, intermediate
* voltages are interpolated between MinSVS and SVS. Set the LowSVS
* voltage to be equal to the adjusted SVS voltage in order to avoid
* triggering an incorrect condition violation in the following loop.
*/
fuse_volt[CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS]
= fuse_volt[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS];
for (i = 1; i < vreg->fuse_corner_count; i++) {
if (fuse_volt[i] < fuse_volt[i - 1]) {
cpr3_debug(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
i, fuse_volt[i], i - 1, fuse_volt[i - 1],
i, fuse_volt[i - 1]);
fuse_volt[i] = fuse_volt[i - 1];
}
}
if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION)
allow_interpolation = false;
if (!allow_interpolation) {
/* Use fused open-loop voltage for lower frequencies. */
for (i = 0; i < vreg->corner_count; i++)
vreg->corner[i].open_loop_volt
= fuse_volt[vreg->corner[i].cpr_fuse_corner];
goto done;
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
for (i = 0; i <= fmax_corner[0]; i++)
vreg->corner[i].open_loop_volt = fuse_volt[0];
/*
* Corner LowSVS should be skipped for voltage interpolation
* since no fuse exists for it. Instead, the lowest interpolation
* should be between MinSVS and SVS.
*/
for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS;
i < vreg->fuse_corner_count - 1; i++) {
fmax_corner[i] = fmax_corner[i + 1];
fuse_volt[i] = fuse_volt[i + 1];
}
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count - 1; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
volt_low = fuse_volt[i - 1];
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
volt_high = fuse_volt[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].open_loop_volt = cpr3_interpolate(
freq_low, volt_low, freq_high, volt_high,
vreg->corner[j].proc_freq);
}
done:
if (rc == 0) {
cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
for (i = 0; i < vreg->corner_count; i++)
cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
vreg->corner[i].open_loop_volt);
rc = cpr3_adjust_open_loop_voltages(vreg);
if (rc)
cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
rc);
}
kfree(fuse_volt);
kfree(fmax_corner);
return rc;
}
/**
* cpr3_msm8996_hmss_set_no_interpolation_quotients() - use the fused target
* quotient values for lower frequencies.
* @vreg: Pointer to the CPR3 regulator
* @volt_adjust: Pointer to array of per-corner closed-loop adjustment
* voltages
* @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop
* adjustment voltages
* @ro_scale: Pointer to array of per-fuse-corner RO scaling factor
* values with units of QUOT/V
*
* Return: 0 on success, errno on failure
*/
static int cpr3_msm8996_hmss_set_no_interpolation_quotients(
struct cpr3_regulator *vreg, int *volt_adjust,
int *volt_adjust_fuse, int *ro_scale)
{
struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
u32 quot, ro;
int quot_adjust;
int i, fuse_corner;
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
quot = fuse->target_quot[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust_fuse[fuse_corner] + volt_adjust[i]);
ro = fuse->ro_sel[fuse_corner];
vreg->corner[i].target_quot[ro] = quot + quot_adjust;
if (quot_adjust)
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
i, ro, quot, vreg->corner[i].target_quot[ro],
volt_adjust_fuse[fuse_corner] + volt_adjust[i]);
}
return 0;
}
/**
* cpr3_msm8996_hmss_calculate_target_quotients() - calculate the CPR target
* quotient for each corner of a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* If target quotient interpolation is allowed in both device tree and in
* hardware fuses, then this function calculates the target quotient for a
* given corner using linear interpolation. This interpolation is performed
* using the processor frequencies of the lower and higher Fmax corners along
* with the fused target quotient and quotient offset of the higher Fmax corner.
*
* If target quotient interpolation is not allowed, then this function uses
* the Fmax fused target quotient for all of the corners associated with a
* given fuse corner.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_msm8996_hmss_calculate_target_quotients(
struct cpr3_regulator *vreg)
{
struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
int rc;
bool allow_interpolation;
u64 freq_low, freq_high, prev_quot;
u64 *quot_low;
u64 *quot_high;
u32 quot, ro;
int i, j, fuse_corner, quot_adjust;
int *fmax_corner;
int *volt_adjust, *volt_adjust_fuse, *ro_scale;
/* Log fused quotient values for debugging purposes. */
cpr3_info(vreg, "fused MinSVS: quot[%2llu]=%4llu\n",
fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS],
fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]);
for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS;
i <= CPR3_MSM8996_HMSS_FUSE_CORNER_TURBO; i++)
cpr3_info(vreg, "fused %6s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
cpr3_msm8996_hmss_fuse_corner_name[i],
fuse->ro_sel[i], fuse->target_quot[i], fuse->ro_sel[i],
fuse->quot_offset[i] * MSM8996_HMSS_QUOT_OFFSET_SCALE);
allow_interpolation = of_property_read_bool(vreg->of_node,
"qcom,allow-quotient-interpolation");
if (fuse->limitation == MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION)
allow_interpolation = false;
volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
GFP_KERNEL);
volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
sizeof(*volt_adjust_fuse), GFP_KERNEL);
ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
GFP_KERNEL);
fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
GFP_KERNEL);
quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
GFP_KERNEL);
quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
GFP_KERNEL);
if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
!fmax_corner || !quot_low || !quot_high) {
rc = -ENOMEM;
goto done;
}
rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
volt_adjust, volt_adjust_fuse, ro_scale);
if (rc) {
cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
rc);
goto done;
}
if (!allow_interpolation) {
/* Use fused target quotients for lower frequencies. */
return cpr3_msm8996_hmss_set_no_interpolation_quotients(vreg,
volt_adjust, volt_adjust_fuse, ro_scale);
}
/* Determine highest corner mapped to each fuse corner */
j = vreg->fuse_corner_count - 1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == j) {
fmax_corner[j] = i;
j--;
}
}
if (j >= 0) {
cpr3_err(vreg, "invalid fuse corner mapping\n");
rc = -EINVAL;
goto done;
}
/*
* Interpolation is not possible for corners mapped to the lowest fuse
* corner so use the fuse corner value directly.
*/
i = CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS;
quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
quot = fuse->target_quot[i] + quot_adjust;
quot_high[i] = quot;
ro = fuse->ro_sel[i];
if (quot_adjust)
cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
for (i = 0; i <= fmax_corner[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]; i++)
vreg->corner[i].target_quot[ro] = quot;
/*
* The LowSVS target quotient is defined as:
* (SVS target quotient) - (the unpacked SVS quotient offset)
* MinSVS, LowSVS, and SVS fuse corners all share the same RO so it is
* possible to interpolate between their target quotient values.
*/
i = CPR3_MSM8996_HMSS_FUSE_CORNER_LOWSVS;
quot_high[i] = fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]
- fuse->quot_offset[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]
* MSM8996_HMSS_QUOT_OFFSET_SCALE;
quot_low[i] = fuse->target_quot[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS];
if (quot_high[i] < quot_low[i]) {
cpr3_info(vreg, "quot_lowsvs=%llu < quot_minsvs=%llu; overriding: quot_lowsvs=%llu\n",
quot_high[i], quot_low[i], quot_low[i]);
quot_high[i] = quot_low[i];
}
if (fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS]
!= fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]) {
cpr3_info(vreg, "MinSVS RO=%llu != SVS RO=%llu; disabling LowSVS interpolation\n",
fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_MINSVS],
fuse->ro_sel[CPR3_MSM8996_HMSS_FUSE_CORNER_SVS]);
quot_low[i] = quot_high[i];
}
for (i = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS;
i < vreg->fuse_corner_count; i++) {
quot_high[i] = fuse->target_quot[i];
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] = quot_high[i]
- fuse->quot_offset[i]
* MSM8996_HMSS_QUOT_OFFSET_SCALE;
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Perform per-fuse-corner target quotient adjustment */
for (i = 1; i < vreg->fuse_corner_count; i++) {
quot_adjust = cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i]);
if (quot_adjust) {
prev_quot = quot_high[i];
quot_high[i] += quot_adjust;
cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
i, fuse->ro_sel[i], prev_quot, quot_high[i],
volt_adjust_fuse[i]);
}
if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
quot_low[i] = quot_high[i - 1];
else
quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
volt_adjust_fuse[i - 1]);
if (quot_high[i] < quot_low[i]) {
cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
i, quot_high[i], i, quot_low[i],
i, quot_low[i]);
quot_high[i] = quot_low[i];
}
}
/* Interpolate voltages for the higher fuse corners. */
for (i = 1; i < vreg->fuse_corner_count; i++) {
freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
freq_high = vreg->corner[fmax_corner[i]].proc_freq;
ro = fuse->ro_sel[i];
for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
vreg->corner[j].target_quot[ro] = cpr3_interpolate(
freq_low, quot_low[i], freq_high, quot_high[i],
vreg->corner[j].proc_freq);
}
/* Perform per-corner target quotient adjustment */
for (i = 0; i < vreg->corner_count; i++) {
fuse_corner = vreg->corner[i].cpr_fuse_corner;
ro = fuse->ro_sel[fuse_corner];
quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
volt_adjust[i]);
if (quot_adjust) {
prev_quot = vreg->corner[i].target_quot[ro];
vreg->corner[i].target_quot[ro] += quot_adjust;
cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
i, ro, prev_quot,
vreg->corner[i].target_quot[ro],
volt_adjust[i]);
}
}
/* Ensure that target quotients increase monotonically */
for (i = 1; i < vreg->corner_count; i++) {
ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
&& vreg->corner[i].target_quot[ro]
< vreg->corner[i - 1].target_quot[ro]) {
cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
i, ro, vreg->corner[i].target_quot[ro],
i - 1, ro, vreg->corner[i - 1].target_quot[ro],
i, ro, vreg->corner[i - 1].target_quot[ro]);
vreg->corner[i].target_quot[ro]
= vreg->corner[i - 1].target_quot[ro];
}
}
done:
kfree(volt_adjust);
kfree(volt_adjust_fuse);
kfree(ro_scale);
kfree(fmax_corner);
kfree(quot_low);
kfree(quot_high);
return rc;
}
/**
* cpr3_msm8996_partial_binning_override() - override the voltage and quotient
* settings for low corners based upon the value of the partial
* binning fuse
* @vreg: Pointer to the CPR3 regulator
*
* Some parts are not able to operate at low voltages. The partial binning
* fuse specifies if a given part has such limitations.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_msm8996_partial_binning_override(struct cpr3_regulator *vreg)
{
struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
int i, fuse_corner, fmax_corner;
if (fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_SVS)
fuse_corner = CPR3_MSM8996_HMSS_FUSE_CORNER_SVS;
else if (fuse->partial_binning == MSM8996_CPR_PARTIAL_BINNING_NOM)
fuse_corner = CPR3_MSM8996_HMSS_FUSE_CORNER_NOM;
else
return 0;
cpr3_info(vreg, "overriding voltages and quotients for all corners below %s Fmax\n",
cpr3_msm8996_hmss_fuse_corner_name[fuse_corner]);
fmax_corner = -1;
for (i = vreg->corner_count - 1; i >= 0; i--) {
if (vreg->corner[i].cpr_fuse_corner == fuse_corner) {
fmax_corner = i;
break;
}
}
if (fmax_corner < 0) {
cpr3_err(vreg, "could not find %s Fmax corner\n",
cpr3_msm8996_hmss_fuse_corner_name[fuse_corner]);
return -EINVAL;
}
for (i = 0; i < fmax_corner; i++)
vreg->corner[i] = vreg->corner[fmax_corner];
return 0;
}
/**
* cpr3_hmss_print_settings() - print out HMSS CPR configuration settings into
* the kernel log for debugging purposes
* @vreg: Pointer to the CPR3 regulator
*/
static void cpr3_hmss_print_settings(struct cpr3_regulator *vreg)
{
struct cpr3_corner *corner;
int i;
cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
for (i = 0; i < vreg->corner_count; i++) {
corner = &vreg->corner[i];
cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
i, corner->proc_freq, corner->cpr_fuse_corner,
corner->floor_volt, corner->open_loop_volt,
corner->ceiling_volt);
}
if (vreg->thread->ctrl->apm)
cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
vreg->thread->ctrl->apm_threshold_volt,
vreg->thread->ctrl->apm_adj_volt);
}
/**
* cpr3_hmss_init_thread() - perform steps necessary to initialize the
* configuration data for a CPR3 thread
* @thread: Pointer to the CPR3 thread
*
* Return: 0 on success, errno on failure
*/
static int cpr3_hmss_init_thread(struct cpr3_thread *thread)
{
int rc;
rc = cpr3_parse_common_thread_data(thread);
if (rc) {
cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
thread->thread_id, rc);
return rc;
}
return 0;
}
#define MAX_VREG_NAME_SIZE 25
/**
* cpr3_hmss_kvreg_init() - initialize HMSS Kryo Regulator data for a CPR3
* regulator
* @vreg: Pointer to the CPR3 regulator
*
* This function loads Kryo Regulator data from device tree if it is present
* and requests a handle to the appropriate Kryo regulator device. In addition,
* it initializes Kryo Regulator data originating from hardware fuses, such as
* the LDO retention voltage, and requests the Kryo retention regulator to
* be configured to that value.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_hmss_kvreg_init(struct cpr3_regulator *vreg)
{
struct cpr3_msm8996_hmss_fuses *fuse = vreg->platform_fuses;
struct device_node *node = vreg->of_node;
struct cpr3_controller *ctrl = vreg->thread->ctrl;
int id = vreg->thread->thread_id;
char kvreg_name_buf[MAX_VREG_NAME_SIZE];
int rc;
scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE,
"vdd-thread%d-ldo-supply", id);
if (!of_find_property(ctrl->dev->of_node, kvreg_name_buf , NULL))
return 0;
else if (!of_find_property(node, "qcom,ldo-min-headroom-voltage", NULL))
return 0;
scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, "vdd-thread%d-ldo", id);
vreg->ldo_regulator = devm_regulator_get(ctrl->dev, kvreg_name_buf);
if (IS_ERR(vreg->ldo_regulator)) {
rc = PTR_ERR(vreg->ldo_regulator);
if (rc != -EPROBE_DEFER)
cpr3_err(vreg, "unable to request %s regulator, rc=%d\n",
kvreg_name_buf, rc);
return rc;
}
vreg->ldo_regulator_bypass = BHS_MODE;
scnprintf(kvreg_name_buf, MAX_VREG_NAME_SIZE, "vdd-thread%d-ldo-ret",
id);
vreg->ldo_ret_regulator = devm_regulator_get(ctrl->dev, kvreg_name_buf);
if (IS_ERR(vreg->ldo_ret_regulator)) {
rc = PTR_ERR(vreg->ldo_ret_regulator);
if (rc != -EPROBE_DEFER)
cpr3_err(vreg, "unable to request %s regulator, rc=%d\n",
kvreg_name_buf, rc);
return rc;
}
if (!ctrl->system_supply_max_volt) {
cpr3_err(ctrl, "system-supply max voltage must be specified\n");
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,ldo-min-headroom-voltage",
&vreg->ldo_min_headroom_volt);
if (rc) {
cpr3_err(vreg, "error reading qcom,ldo-min-headroom-voltage, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,ldo-max-headroom-voltage",
&vreg->ldo_max_headroom_volt);
if (rc) {
cpr3_err(vreg, "error reading qcom,ldo-max-headroom-voltage, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(node, "qcom,ldo-max-voltage",
&vreg->ldo_max_volt);
if (rc) {
cpr3_err(vreg, "error reading qcom,ldo-max-voltage, rc=%d\n",
rc);
return rc;
}
/* Determine the CPU retention voltage based on fused data */
vreg->ldo_ret_volt =
max(msm8996_vdd_apcc_fuse_ret_volt[fuse->vdd_apcc_ret_fuse],
msm8996_vdd_mx_fuse_ret_volt[fuse->vdd_mx_ret_fuse]);
rc = regulator_set_voltage(vreg->ldo_ret_regulator, vreg->ldo_ret_volt,
INT_MAX);
if (rc < 0) {
cpr3_err(vreg, "regulator_set_voltage(ldo_ret) == %d failed, rc=%d\n",
vreg->ldo_ret_volt, rc);
return rc;
}
/* optional properties, do not error out if missing */
of_property_read_u32(node, "qcom,ldo-adjust-voltage",
&vreg->ldo_adjust_volt);
vreg->ldo_mode_allowed = !of_property_read_bool(node,
"qcom,ldo-disable");
cpr3_info(vreg, "LDO min headroom=%d uV, LDO max headroom=%d uV, LDO adj=%d uV, LDO mode=%s, LDO retention=%d uV\n",
vreg->ldo_min_headroom_volt,
vreg->ldo_max_headroom_volt,
vreg->ldo_adjust_volt,
vreg->ldo_mode_allowed ? "allowed" : "disallowed",
vreg->ldo_ret_volt);
return 0;
}
/**
* cpr3_hmss_mem_acc_init() - initialize mem-acc regulator data for
* a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* This function loads mem-acc data from device tree to enable
* the control of mem-acc settings based upon the CPR3 regulator
* output voltage.
*
* Return: 0 on success, errno on failure
*/
static int cpr3_hmss_mem_acc_init(struct cpr3_regulator *vreg)
{
struct cpr3_controller *ctrl = vreg->thread->ctrl;
int id = vreg->thread->thread_id;
char mem_acc_vreg_name_buf[MAX_VREG_NAME_SIZE];
int rc;
scnprintf(mem_acc_vreg_name_buf, MAX_VREG_NAME_SIZE,
"mem-acc-thread%d-supply", id);
if (!of_find_property(ctrl->dev->of_node, mem_acc_vreg_name_buf,
NULL)) {
cpr3_debug(vreg, "not using memory accelerator regulator\n");
return 0;
} else if (!of_property_read_bool(vreg->of_node, "qcom,uses-mem-acc")) {
return 0;
}
scnprintf(mem_acc_vreg_name_buf, MAX_VREG_NAME_SIZE,
"mem-acc-thread%d", id);
vreg->mem_acc_regulator = devm_regulator_get(ctrl->dev,
mem_acc_vreg_name_buf);
if (IS_ERR(vreg->mem_acc_regulator)) {
rc = PTR_ERR(vreg->mem_acc_regulator);
if (rc != -EPROBE_DEFER)
cpr3_err(vreg, "unable to request %s regulator, rc=%d\n",
mem_acc_vreg_name_buf, rc);
return rc;
}
return 0;
}
/**
* cpr3_hmss_init_regulator() - perform all steps necessary to initialize the
* configuration data for a CPR3 regulator
* @vreg: Pointer to the CPR3 regulator
*
* Return: 0 on success, errno on failure
*/
static int cpr3_hmss_init_regulator(struct cpr3_regulator *vreg)
{
struct cpr3_msm8996_hmss_fuses *fuse;
int rc;
rc = cpr3_msm8996_hmss_read_fuse_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
return rc;
}
rc = cpr3_hmss_kvreg_init(vreg);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(vreg, "unable to initialize Kryo Regulator settings, rc=%d\n",
rc);
return rc;
}
rc = cpr3_hmss_mem_acc_init(vreg);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n",
rc);
return rc;
}
fuse = vreg->platform_fuses;
if (fuse->limitation == MSM8996_CPR_LIMITATION_UNSUPPORTED) {
cpr3_err(vreg, "this chip requires an unsupported voltage\n");
return -EPERM;
} else if (fuse->limitation
== MSM8996_CPR_LIMITATION_NO_CPR_OR_INTERPOLATION) {
vreg->thread->ctrl->cpr_allowed_hw = false;
}
rc = of_property_read_u32(vreg->of_node, "qcom,cpr-pd-bypass-mask",
&vreg->pd_bypass_mask);
if (rc) {
cpr3_err(vreg, "error reading qcom,cpr-pd-bypass-mask, rc=%d\n",
rc);
return rc;
}
rc = cpr3_hmss_parse_corner_data(vreg);
if (rc) {
cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
rc);
return rc;
}
if (of_find_property(vreg->of_node, "qcom,cpr-dynamic-floor-corner",
NULL)) {
rc = cpr3_parse_array_property(vreg,
"qcom,cpr-dynamic-floor-corner",
1, &vreg->dynamic_floor_corner);
if (rc) {
cpr3_err(vreg, "error reading qcom,cpr-dynamic-floor-corner, rc=%d\n",
rc);
return rc;
}
if (vreg->dynamic_floor_corner <= 0) {
vreg->uses_dynamic_floor = false;
} else if (vreg->dynamic_floor_corner < CPR3_CORNER_OFFSET
|| vreg->dynamic_floor_corner
> vreg->corner_count - 1 + CPR3_CORNER_OFFSET) {
cpr3_err(vreg, "dynamic floor corner=%d not in range [%d, %d]\n",
vreg->dynamic_floor_corner, CPR3_CORNER_OFFSET,
vreg->corner_count - 1 + CPR3_CORNER_OFFSET);
return -EINVAL;
}
vreg->dynamic_floor_corner -= CPR3_CORNER_OFFSET;
vreg->uses_dynamic_floor = true;
}
rc = cpr3_msm8996_hmss_calculate_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
rc);
return rc;
}
rc = cpr3_limit_open_loop_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
rc);
return rc;
}
cpr3_open_loop_voltage_as_ceiling(vreg);
rc = cpr3_limit_floor_voltages(vreg);
if (rc) {
cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
return rc;
}
rc = cpr3_msm8996_hmss_calculate_target_quotients(vreg);
if (rc) {
cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
rc);
return rc;
}
rc = cpr3_msm8996_partial_binning_override(vreg);
if (rc) {
cpr3_err(vreg, "unable to override voltages and quotients based on partial binning fuse, rc=%d\n",
rc);
return rc;
}
cpr3_hmss_print_settings(vreg);
return 0;
}
/**
* cpr3_hmss_init_aging() - perform HMSS CPR3 controller specific
* aging initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_hmss_init_aging(struct cpr3_controller *ctrl)
{
struct cpr3_msm8996_hmss_fuses *fuse = NULL;
struct cpr3_regulator *vreg;
u32 aging_ro_scale;
int i, j, rc;
for (i = 0; i < ctrl->thread_count; i++) {
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
if (ctrl->thread[i].vreg[j].aging_allowed) {
ctrl->aging_required = true;
vreg = &ctrl->thread[i].vreg[j];
fuse = vreg->platform_fuses;
break;
}
}
}
if (!ctrl->aging_required || !fuse)
return 0;
rc = cpr3_parse_array_property(vreg, "qcom,cpr-aging-ro-scaling-factor",
1, &aging_ro_scale);
if (rc)
return rc;
if (aging_ro_scale == 0) {
cpr3_err(ctrl, "aging RO scaling factor is invalid: %u\n",
aging_ro_scale);
return -EINVAL;
}
ctrl->aging_vdd_mode = REGULATOR_MODE_NORMAL;
ctrl->aging_complete_vdd_mode = REGULATOR_MODE_IDLE;
ctrl->aging_sensor_count = 1;
ctrl->aging_sensor = kzalloc(sizeof(*ctrl->aging_sensor), GFP_KERNEL);
if (!ctrl->aging_sensor)
return -ENOMEM;
ctrl->aging_sensor->sensor_id = MSM8996_HMSS_AGING_SENSOR_ID;
ctrl->aging_sensor->bypass_mask[0] = MSM8996_HMSS_AGING_BYPASS_MASK0;
ctrl->aging_sensor->ro_scale = aging_ro_scale;
ctrl->aging_sensor->init_quot_diff
= cpr3_convert_open_loop_voltage_fuse(0,
MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SCALE,
fuse->aging_init_quot_diff,
MSM8996_HMSS_AGING_INIT_QUOT_DIFF_SIZE);
cpr3_debug(ctrl, "sensor %u aging init quotient diff = %d, aging RO scale = %u QUOT/V\n",
ctrl->aging_sensor->sensor_id,
ctrl->aging_sensor->init_quot_diff,
ctrl->aging_sensor->ro_scale);
return 0;
}
/**
* cpr3_hmss_init_controller() - perform HMSS CPR3 controller specific
* initializations
* @ctrl: Pointer to the CPR3 controller
*
* Return: 0 on success, errno on failure
*/
static int cpr3_hmss_init_controller(struct cpr3_controller *ctrl)
{
int i, rc;
rc = cpr3_parse_common_ctrl_data(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
rc);
return rc;
}
ctrl->vdd_limit_regulator = devm_regulator_get(ctrl->dev, "vdd-limit");
if (IS_ERR(ctrl->vdd_limit_regulator)) {
rc = PTR_ERR(ctrl->vdd_limit_regulator);
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to request vdd-supply regulator, rc=%d\n",
rc);
return rc;
}
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,cpr-up-down-delay-time",
&ctrl->up_down_delay_time);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,cpr-up-down-delay-time, rc=%d\n",
rc);
return rc;
}
/* No error check since this is an optional property. */
of_property_read_u32(ctrl->dev->of_node,
"qcom,system-supply-max-voltage",
&ctrl->system_supply_max_volt);
/* No error check since this is an optional property. */
of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-clock-throttling",
&ctrl->proc_clock_throttle);
rc = cpr3_apm_init(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n",
rc);
return rc;
}
ctrl->sensor_count = MSM8996_HMSS_CPR_SENSOR_COUNT;
ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
sizeof(*ctrl->sensor_owner), GFP_KERNEL);
if (!ctrl->sensor_owner)
return -ENOMEM;
/* Specify sensor ownership */
for (i = MSM8996_HMSS_THREAD0_SENSOR_MIN;
i <= MSM8996_HMSS_THREAD0_SENSOR_MAX; i++)
ctrl->sensor_owner[i] = 0;
for (i = MSM8996_HMSS_THREAD1_SENSOR_MIN;
i <= MSM8996_HMSS_THREAD1_SENSOR_MAX; i++)
ctrl->sensor_owner[i] = 1;
ctrl->cpr_clock_rate = MSM8996_HMSS_CPR_CLOCK_RATE;
ctrl->ctrl_type = CPR_CTRL_TYPE_CPR3;
ctrl->supports_hw_closed_loop = true;
ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
"qcom,cpr-hw-closed-loop");
if (ctrl->mem_acc_regulator) {
rc = of_property_read_u32(ctrl->dev->of_node,
"qcom,mem-acc-supply-threshold-voltage",
&ctrl->mem_acc_threshold_volt);
if (rc) {
cpr3_err(ctrl, "error reading property qcom,mem-acc-supply-threshold-voltage, rc=%d\n",
rc);
return rc;
}
ctrl->mem_acc_threshold_volt =
CPR3_ROUND(ctrl->mem_acc_threshold_volt,
ctrl->step_volt);
rc = of_property_read_u32_array(ctrl->dev->of_node,
"qcom,mem-acc-supply-corner-map",
&ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER],
CPR3_MEM_ACC_CORNERS);
if (rc) {
cpr3_err(ctrl, "error reading qcom,mem-acc-supply-corner-map, rc=%d\n",
rc);
return rc;
}
}
return 0;
}
static int cpr3_hmss_regulator_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_suspend(ctrl);
}
static int cpr3_hmss_regulator_resume(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_resume(ctrl);
}
/* Data corresponds to the SoC revision */
static struct of_device_id cpr_regulator_match_table[] = {
{
.compatible = "qcom,cpr3-msm8996-v1-hmss-regulator",
.data = (void *)1
},
{
.compatible = "qcom,cpr3-msm8996-v2-hmss-regulator",
.data = (void *)2
},
{
.compatible = "qcom,cpr3-msm8996-v3-hmss-regulator",
.data = (void *)3
},
{
.compatible = "qcom,cpr3-msm8996-hmss-regulator",
.data = (void *)3
},
{}
};
static int cpr3_hmss_regulator_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct of_device_id *match;
struct cpr3_controller *ctrl;
struct cpr3_regulator *vreg;
int i, j, rc;
if (!dev->of_node) {
dev_err(dev, "Device tree node is missing\n");
return -EINVAL;
}
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
ctrl->dev = dev;
/* Set to false later if anything precludes CPR operation. */
ctrl->cpr_allowed_hw = true;
rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
&ctrl->name);
if (rc) {
cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
rc);
return rc;
}
match = of_match_node(cpr_regulator_match_table, dev->of_node);
if (match)
ctrl->soc_revision = (uintptr_t)match->data;
else
cpr3_err(ctrl, "could not find compatible string match\n");
rc = cpr3_map_fuse_base(ctrl, pdev);
if (rc) {
cpr3_err(ctrl, "could not map fuse base address\n");
return rc;
}
rc = cpr3_allocate_threads(ctrl, MSM8996_HMSS_POWER_CLUSTER_THREAD_ID,
MSM8996_HMSS_PERFORMANCE_CLUSTER_THREAD_ID);
if (rc) {
cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
rc);
return rc;
}
if (ctrl->thread_count < 1) {
cpr3_err(ctrl, "thread nodes are missing\n");
return -EINVAL;
}
rc = cpr3_hmss_init_controller(ctrl);
if (rc) {
if (rc != -EPROBE_DEFER)
cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
rc);
return rc;
}
for (i = 0; i < ctrl->thread_count; i++) {
rc = cpr3_hmss_init_thread(&ctrl->thread[i]);
if (rc) {
cpr3_err(ctrl, "thread %u initialization failed, rc=%d\n",
ctrl->thread[i].thread_id, rc);
return rc;
}
for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
vreg = &ctrl->thread[i].vreg[j];
rc = cpr3_hmss_init_regulator(vreg);
if (rc) {
cpr3_err(vreg, "regulator initialization failed, rc=%d\n",
rc);
return rc;
}
}
}
rc = cpr3_hmss_init_aging(ctrl);
if (rc) {
cpr3_err(ctrl, "failed to initialize aging configurations, rc=%d\n",
rc);
return rc;
}
platform_set_drvdata(pdev, ctrl);
return cpr3_regulator_register(pdev, ctrl);
}
static int cpr3_hmss_regulator_remove(struct platform_device *pdev)
{
struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
return cpr3_regulator_unregister(ctrl);
}
static struct platform_driver cpr3_hmss_regulator_driver = {
.driver = {
.name = "qcom,cpr3-hmss-regulator",
.of_match_table = cpr_regulator_match_table,
.owner = THIS_MODULE,
},
.probe = cpr3_hmss_regulator_probe,
.remove = cpr3_hmss_regulator_remove,
.suspend = cpr3_hmss_regulator_suspend,
.resume = cpr3_hmss_regulator_resume,
};
static int cpr_regulator_init(void)
{
return platform_driver_register(&cpr3_hmss_regulator_driver);
}
static void cpr_regulator_exit(void)
{
platform_driver_unregister(&cpr3_hmss_regulator_driver);
}
MODULE_DESCRIPTION("CPR3 HMSS regulator driver");
MODULE_LICENSE("GPL v2");
arch_initcall(cpr_regulator_init);
module_exit(cpr_regulator_exit);