M7350/kernel/drivers/media/dvb-frontends/drxk_hard.c

6878 lines
177 KiB
C
Raw Normal View History

2024-09-09 08:52:07 +00:00
/*
* drxk_hard: DRX-K DVB-C/T demodulator driver
*
* Copyright (C) 2010-2011 Digital Devices GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
* Or, point your browser to http://www.gnu.org/copyleft/gpl.html
*/
2024-09-09 08:57:42 +00:00
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2024-09-09 08:52:07 +00:00
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
2024-09-09 08:57:42 +00:00
#include <linux/hardirq.h>
2024-09-09 08:52:07 +00:00
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "drxk.h"
#include "drxk_hard.h"
2024-09-09 08:57:42 +00:00
#include "dvb_math.h"
static int power_down_dvbt(struct drxk_state *state, bool set_power_mode);
static int power_down_qam(struct drxk_state *state);
static int set_dvbt_standard(struct drxk_state *state,
enum operation_mode o_mode);
static int set_qam_standard(struct drxk_state *state,
enum operation_mode o_mode);
static int set_qam(struct drxk_state *state, u16 intermediate_freqk_hz,
s32 tuner_freq_offset);
static int set_dvbt_standard(struct drxk_state *state,
enum operation_mode o_mode);
static int dvbt_start(struct drxk_state *state);
static int set_dvbt(struct drxk_state *state, u16 intermediate_freqk_hz,
s32 tuner_freq_offset);
static int get_qam_lock_status(struct drxk_state *state, u32 *p_lock_status);
static int get_dvbt_lock_status(struct drxk_state *state, u32 *p_lock_status);
static int switch_antenna_to_qam(struct drxk_state *state);
static int switch_antenna_to_dvbt(struct drxk_state *state);
static bool is_dvbt(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
return state->m_operation_mode == OM_DVBT;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static bool is_qam(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
return state->m_operation_mode == OM_QAM_ITU_A ||
state->m_operation_mode == OM_QAM_ITU_B ||
state->m_operation_mode == OM_QAM_ITU_C;
2024-09-09 08:52:07 +00:00
}
#define NOA1ROM 0
#define DRXDAP_FASI_SHORT_FORMAT(addr) (((addr) & 0xFC30FF80) == 0)
#define DRXDAP_FASI_LONG_FORMAT(addr) (((addr) & 0xFC30FF80) != 0)
#define DEFAULT_MER_83 165
#define DEFAULT_MER_93 250
#ifndef DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH
#define DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH (0x02)
#endif
#ifndef DRXK_MPEG_PARALLEL_OUTPUT_PIN_DRIVE_STRENGTH
#define DRXK_MPEG_PARALLEL_OUTPUT_PIN_DRIVE_STRENGTH (0x03)
#endif
#define DEFAULT_DRXK_MPEG_LOCK_TIMEOUT 700
#define DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT 500
#ifndef DRXK_KI_RAGC_ATV
#define DRXK_KI_RAGC_ATV 4
#endif
#ifndef DRXK_KI_IAGC_ATV
#define DRXK_KI_IAGC_ATV 6
#endif
#ifndef DRXK_KI_DAGC_ATV
#define DRXK_KI_DAGC_ATV 7
#endif
#ifndef DRXK_KI_RAGC_QAM
#define DRXK_KI_RAGC_QAM 3
#endif
#ifndef DRXK_KI_IAGC_QAM
#define DRXK_KI_IAGC_QAM 4
#endif
#ifndef DRXK_KI_DAGC_QAM
#define DRXK_KI_DAGC_QAM 7
#endif
#ifndef DRXK_KI_RAGC_DVBT
#define DRXK_KI_RAGC_DVBT (IsA1WithPatchCode(state) ? 3 : 2)
#endif
#ifndef DRXK_KI_IAGC_DVBT
#define DRXK_KI_IAGC_DVBT (IsA1WithPatchCode(state) ? 4 : 2)
#endif
#ifndef DRXK_KI_DAGC_DVBT
#define DRXK_KI_DAGC_DVBT (IsA1WithPatchCode(state) ? 10 : 7)
#endif
#ifndef DRXK_AGC_DAC_OFFSET
#define DRXK_AGC_DAC_OFFSET (0x800)
#endif
#ifndef DRXK_BANDWIDTH_8MHZ_IN_HZ
#define DRXK_BANDWIDTH_8MHZ_IN_HZ (0x8B8249L)
#endif
#ifndef DRXK_BANDWIDTH_7MHZ_IN_HZ
#define DRXK_BANDWIDTH_7MHZ_IN_HZ (0x7A1200L)
#endif
#ifndef DRXK_BANDWIDTH_6MHZ_IN_HZ
#define DRXK_BANDWIDTH_6MHZ_IN_HZ (0x68A1B6L)
#endif
#ifndef DRXK_QAM_SYMBOLRATE_MAX
#define DRXK_QAM_SYMBOLRATE_MAX (7233000)
#endif
#define DRXK_BL_ROM_OFFSET_TAPS_DVBT 56
#define DRXK_BL_ROM_OFFSET_TAPS_ITU_A 64
#define DRXK_BL_ROM_OFFSET_TAPS_ITU_C 0x5FE0
#define DRXK_BL_ROM_OFFSET_TAPS_BG 24
#define DRXK_BL_ROM_OFFSET_TAPS_DKILLP 32
#define DRXK_BL_ROM_OFFSET_TAPS_NTSC 40
#define DRXK_BL_ROM_OFFSET_TAPS_FM 48
#define DRXK_BL_ROM_OFFSET_UCODE 0
#define DRXK_BLC_TIMEOUT 100
#define DRXK_BLCC_NR_ELEMENTS_TAPS 2
#define DRXK_BLCC_NR_ELEMENTS_UCODE 6
#define DRXK_BLDC_NR_ELEMENTS_TAPS 28
#ifndef DRXK_OFDM_NE_NOTCH_WIDTH
#define DRXK_OFDM_NE_NOTCH_WIDTH (4)
#endif
#define DRXK_QAM_SL_SIG_POWER_QAM16 (40960)
#define DRXK_QAM_SL_SIG_POWER_QAM32 (20480)
#define DRXK_QAM_SL_SIG_POWER_QAM64 (43008)
#define DRXK_QAM_SL_SIG_POWER_QAM128 (20992)
#define DRXK_QAM_SL_SIG_POWER_QAM256 (43520)
static unsigned int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "enable debug messages");
#define dprintk(level, fmt, arg...) do { \
if (debug >= level) \
2024-09-09 08:57:42 +00:00
pr_debug(fmt, ##arg); \
2024-09-09 08:52:07 +00:00
} while (0)
static inline u32 MulDiv32(u32 a, u32 b, u32 c)
{
u64 tmp64;
tmp64 = (u64) a * (u64) b;
do_div(tmp64, c);
return (u32) tmp64;
}
2024-09-09 08:57:42 +00:00
static inline u32 Frac28a(u32 a, u32 c)
2024-09-09 08:52:07 +00:00
{
int i = 0;
u32 Q1 = 0;
u32 R0 = 0;
R0 = (a % c) << 4; /* 32-28 == 4 shifts possible at max */
2024-09-09 08:57:42 +00:00
Q1 = a / c; /*
* integer part, only the 4 least significant
* bits will be visible in the result
*/
2024-09-09 08:52:07 +00:00
/* division using radix 16, 7 nibbles in the result */
for (i = 0; i < 7; i++) {
Q1 = (Q1 << 4) | (R0 / c);
R0 = (R0 % c) << 4;
}
/* rounding */
if ((R0 >> 3) >= c)
Q1++;
return Q1;
}
2024-09-09 08:57:42 +00:00
static inline u32 log10times100(u32 value)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
return (100L * intlog10(value)) >> 24;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/****************************************************************************/
/* I2C **********************************************************************/
/****************************************************************************/
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static int drxk_i2c_lock(struct drxk_state *state)
{
i2c_lock_adapter(state->i2c);
state->drxk_i2c_exclusive_lock = true;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return 0;
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static void drxk_i2c_unlock(struct drxk_state *state)
{
if (!state->drxk_i2c_exclusive_lock)
return;
i2c_unlock_adapter(state->i2c);
state->drxk_i2c_exclusive_lock = false;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static int drxk_i2c_transfer(struct drxk_state *state, struct i2c_msg *msgs,
unsigned len)
{
if (state->drxk_i2c_exclusive_lock)
return __i2c_transfer(state->i2c, msgs, len);
else
return i2c_transfer(state->i2c, msgs, len);
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
static int i2c_read1(struct drxk_state *state, u8 adr, u8 *val)
2024-09-09 08:52:07 +00:00
{
struct i2c_msg msgs[1] = { {.addr = adr, .flags = I2C_M_RD,
.buf = val, .len = 1}
};
2024-09-09 08:57:42 +00:00
return drxk_i2c_transfer(state, msgs, 1);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static int i2c_write(struct drxk_state *state, u8 adr, u8 *data, int len)
2024-09-09 08:52:07 +00:00
{
int status;
struct i2c_msg msg = {
.addr = adr, .flags = 0, .buf = data, .len = len };
dprintk(3, ":");
if (debug > 2) {
int i;
for (i = 0; i < len; i++)
2024-09-09 08:57:42 +00:00
pr_cont(" %02x", data[i]);
pr_cont("\n");
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
status = drxk_i2c_transfer(state, &msg, 1);
2024-09-09 08:52:07 +00:00
if (status >= 0 && status != 1)
status = -EIO;
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("i2c write error at addr 0x%02x\n", adr);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int i2c_read(struct drxk_state *state,
2024-09-09 08:52:07 +00:00
u8 adr, u8 *msg, int len, u8 *answ, int alen)
{
int status;
struct i2c_msg msgs[2] = {
{.addr = adr, .flags = 0,
.buf = msg, .len = len},
{.addr = adr, .flags = I2C_M_RD,
.buf = answ, .len = alen}
};
2024-09-09 08:57:42 +00:00
status = drxk_i2c_transfer(state, msgs, 2);
2024-09-09 08:52:07 +00:00
if (status != 2) {
if (debug > 2)
2024-09-09 08:57:42 +00:00
pr_cont(": ERROR!\n");
2024-09-09 08:52:07 +00:00
if (status >= 0)
status = -EIO;
2024-09-09 08:57:42 +00:00
pr_err("i2c read error at addr 0x%02x\n", adr);
2024-09-09 08:52:07 +00:00
return status;
}
if (debug > 2) {
int i;
dprintk(2, ": read from");
for (i = 0; i < len; i++)
2024-09-09 08:57:42 +00:00
pr_cont(" %02x", msg[i]);
pr_cont(", value = ");
2024-09-09 08:52:07 +00:00
for (i = 0; i < alen; i++)
2024-09-09 08:57:42 +00:00
pr_cont(" %02x", answ[i]);
pr_cont("\n");
2024-09-09 08:52:07 +00:00
}
return 0;
}
static int read16_flags(struct drxk_state *state, u32 reg, u16 *data, u8 flags)
{
int status;
u8 adr = state->demod_address, mm1[4], mm2[2], len;
if (state->single_master)
flags |= 0xC0;
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
mm1[0] = (((reg << 1) & 0xFF) | 0x01);
mm1[1] = ((reg >> 16) & 0xFF);
mm1[2] = ((reg >> 24) & 0xFF) | flags;
mm1[3] = ((reg >> 7) & 0xFF);
len = 4;
} else {
mm1[0] = ((reg << 1) & 0xFF);
mm1[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
len = 2;
}
dprintk(2, "(0x%08x, 0x%02x)\n", reg, flags);
2024-09-09 08:57:42 +00:00
status = i2c_read(state, adr, mm1, len, mm2, 2);
2024-09-09 08:52:07 +00:00
if (status < 0)
return status;
if (data)
*data = mm2[0] | (mm2[1] << 8);
return 0;
}
static int read16(struct drxk_state *state, u32 reg, u16 *data)
{
return read16_flags(state, reg, data, 0);
}
static int read32_flags(struct drxk_state *state, u32 reg, u32 *data, u8 flags)
{
int status;
u8 adr = state->demod_address, mm1[4], mm2[4], len;
if (state->single_master)
flags |= 0xC0;
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
mm1[0] = (((reg << 1) & 0xFF) | 0x01);
mm1[1] = ((reg >> 16) & 0xFF);
mm1[2] = ((reg >> 24) & 0xFF) | flags;
mm1[3] = ((reg >> 7) & 0xFF);
len = 4;
} else {
mm1[0] = ((reg << 1) & 0xFF);
mm1[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
len = 2;
}
dprintk(2, "(0x%08x, 0x%02x)\n", reg, flags);
2024-09-09 08:57:42 +00:00
status = i2c_read(state, adr, mm1, len, mm2, 4);
2024-09-09 08:52:07 +00:00
if (status < 0)
return status;
if (data)
*data = mm2[0] | (mm2[1] << 8) |
(mm2[2] << 16) | (mm2[3] << 24);
return 0;
}
static int read32(struct drxk_state *state, u32 reg, u32 *data)
{
return read32_flags(state, reg, data, 0);
}
static int write16_flags(struct drxk_state *state, u32 reg, u16 data, u8 flags)
{
u8 adr = state->demod_address, mm[6], len;
if (state->single_master)
flags |= 0xC0;
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
mm[0] = (((reg << 1) & 0xFF) | 0x01);
mm[1] = ((reg >> 16) & 0xFF);
mm[2] = ((reg >> 24) & 0xFF) | flags;
mm[3] = ((reg >> 7) & 0xFF);
len = 4;
} else {
mm[0] = ((reg << 1) & 0xFF);
mm[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
len = 2;
}
mm[len] = data & 0xff;
mm[len + 1] = (data >> 8) & 0xff;
dprintk(2, "(0x%08x, 0x%04x, 0x%02x)\n", reg, data, flags);
2024-09-09 08:57:42 +00:00
return i2c_write(state, adr, mm, len + 2);
2024-09-09 08:52:07 +00:00
}
static int write16(struct drxk_state *state, u32 reg, u16 data)
{
return write16_flags(state, reg, data, 0);
}
static int write32_flags(struct drxk_state *state, u32 reg, u32 data, u8 flags)
{
u8 adr = state->demod_address, mm[8], len;
if (state->single_master)
flags |= 0xC0;
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
mm[0] = (((reg << 1) & 0xFF) | 0x01);
mm[1] = ((reg >> 16) & 0xFF);
mm[2] = ((reg >> 24) & 0xFF) | flags;
mm[3] = ((reg >> 7) & 0xFF);
len = 4;
} else {
mm[0] = ((reg << 1) & 0xFF);
mm[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
len = 2;
}
mm[len] = data & 0xff;
mm[len + 1] = (data >> 8) & 0xff;
mm[len + 2] = (data >> 16) & 0xff;
mm[len + 3] = (data >> 24) & 0xff;
dprintk(2, "(0x%08x, 0x%08x, 0x%02x)\n", reg, data, flags);
2024-09-09 08:57:42 +00:00
return i2c_write(state, adr, mm, len + 4);
2024-09-09 08:52:07 +00:00
}
static int write32(struct drxk_state *state, u32 reg, u32 data)
{
return write32_flags(state, reg, data, 0);
}
2024-09-09 08:57:42 +00:00
static int write_block(struct drxk_state *state, u32 address,
const int block_size, const u8 p_block[])
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
int status = 0, blk_size = block_size;
u8 flags = 0;
2024-09-09 08:52:07 +00:00
if (state->single_master)
2024-09-09 08:57:42 +00:00
flags |= 0xC0;
while (blk_size > 0) {
int chunk = blk_size > state->m_chunk_size ?
state->m_chunk_size : blk_size;
u8 *adr_buf = &state->chunk[0];
u32 adr_length = 0;
if (DRXDAP_FASI_LONG_FORMAT(address) || (flags != 0)) {
adr_buf[0] = (((address << 1) & 0xFF) | 0x01);
adr_buf[1] = ((address >> 16) & 0xFF);
adr_buf[2] = ((address >> 24) & 0xFF);
adr_buf[3] = ((address >> 7) & 0xFF);
adr_buf[2] |= flags;
adr_length = 4;
if (chunk == state->m_chunk_size)
chunk -= 2;
2024-09-09 08:52:07 +00:00
} else {
2024-09-09 08:57:42 +00:00
adr_buf[0] = ((address << 1) & 0xFF);
adr_buf[1] = (((address >> 16) & 0x0F) |
((address >> 18) & 0xF0));
adr_length = 2;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
memcpy(&state->chunk[adr_length], p_block, chunk);
dprintk(2, "(0x%08x, 0x%02x)\n", address, flags);
2024-09-09 08:52:07 +00:00
if (debug > 1) {
int i;
2024-09-09 08:57:42 +00:00
if (p_block)
for (i = 0; i < chunk; i++)
pr_cont(" %02x", p_block[i]);
pr_cont("\n");
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
status = i2c_write(state, state->demod_address,
&state->chunk[0], chunk + adr_length);
2024-09-09 08:52:07 +00:00
if (status < 0) {
2024-09-09 08:57:42 +00:00
pr_err("%s: i2c write error at addr 0x%02x\n",
__func__, address);
2024-09-09 08:52:07 +00:00
break;
}
2024-09-09 08:57:42 +00:00
p_block += chunk;
address += (chunk >> 1);
blk_size -= chunk;
2024-09-09 08:52:07 +00:00
}
return status;
}
#ifndef DRXK_MAX_RETRIES_POWERUP
#define DRXK_MAX_RETRIES_POWERUP 20
#endif
2024-09-09 08:57:42 +00:00
static int power_up_device(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status;
u8 data = 0;
2024-09-09 08:57:42 +00:00
u16 retry_count = 0;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
status = i2c_read1(state, state->demod_address, &data);
2024-09-09 08:52:07 +00:00
if (status < 0) {
do {
data = 0;
2024-09-09 08:57:42 +00:00
status = i2c_write(state, state->demod_address,
2024-09-09 08:52:07 +00:00
&data, 1);
2024-09-09 08:57:42 +00:00
usleep_range(10000, 11000);
retry_count++;
2024-09-09 08:52:07 +00:00
if (status < 0)
continue;
2024-09-09 08:57:42 +00:00
status = i2c_read1(state, state->demod_address,
2024-09-09 08:52:07 +00:00
&data);
} while (status < 0 &&
2024-09-09 08:57:42 +00:00
(retry_count < DRXK_MAX_RETRIES_POWERUP));
if (status < 0 && retry_count >= DRXK_MAX_RETRIES_POWERUP)
2024-09-09 08:52:07 +00:00
goto error;
}
/* Make sure all clk domains are active */
status = write16(state, SIO_CC_PWD_MODE__A, SIO_CC_PWD_MODE_LEVEL_NONE);
if (status < 0)
goto error;
status = write16(state, SIO_CC_UPDATE__A, SIO_CC_UPDATE_KEY);
if (status < 0)
goto error;
/* Enable pll lock tests */
status = write16(state, SIO_CC_PLL_LOCK__A, 1);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_current_power_mode = DRX_POWER_UP;
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
static int init_state(struct drxk_state *state)
{
/*
* FIXME: most (all?) of the values bellow should be moved into
* struct drxk_config, as they are probably board-specific
*/
2024-09-09 08:57:42 +00:00
u32 ul_vsb_if_agc_mode = DRXK_AGC_CTRL_AUTO;
u32 ul_vsb_if_agc_output_level = 0;
u32 ul_vsb_if_agc_min_level = 0;
u32 ul_vsb_if_agc_max_level = 0x7FFF;
u32 ul_vsb_if_agc_speed = 3;
u32 ul_vsb_rf_agc_mode = DRXK_AGC_CTRL_AUTO;
u32 ul_vsb_rf_agc_output_level = 0;
u32 ul_vsb_rf_agc_min_level = 0;
u32 ul_vsb_rf_agc_max_level = 0x7FFF;
u32 ul_vsb_rf_agc_speed = 3;
u32 ul_vsb_rf_agc_top = 9500;
u32 ul_vsb_rf_agc_cut_off_current = 4000;
u32 ul_atv_if_agc_mode = DRXK_AGC_CTRL_AUTO;
u32 ul_atv_if_agc_output_level = 0;
u32 ul_atv_if_agc_min_level = 0;
u32 ul_atv_if_agc_max_level = 0;
u32 ul_atv_if_agc_speed = 3;
u32 ul_atv_rf_agc_mode = DRXK_AGC_CTRL_OFF;
u32 ul_atv_rf_agc_output_level = 0;
u32 ul_atv_rf_agc_min_level = 0;
u32 ul_atv_rf_agc_max_level = 0;
u32 ul_atv_rf_agc_top = 9500;
u32 ul_atv_rf_agc_cut_off_current = 4000;
u32 ul_atv_rf_agc_speed = 3;
2024-09-09 08:52:07 +00:00
u32 ulQual83 = DEFAULT_MER_83;
u32 ulQual93 = DEFAULT_MER_93;
2024-09-09 08:57:42 +00:00
u32 ul_mpeg_lock_time_out = DEFAULT_DRXK_MPEG_LOCK_TIMEOUT;
u32 ul_demod_lock_time_out = DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT;
2024-09-09 08:52:07 +00:00
/* io_pad_cfg register (8 bit reg.) MSB bit is 1 (default value) */
/* io_pad_cfg_mode output mode is drive always */
/* io_pad_cfg_drive is set to power 2 (23 mA) */
2024-09-09 08:57:42 +00:00
u32 ul_gpio_cfg = 0x0113;
u32 ul_invert_ts_clock = 0;
u32 ul_ts_data_strength = DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH;
u32 ul_dvbt_bitrate = 50000000;
u32 ul_dvbc_bitrate = DRXK_QAM_SYMBOLRATE_MAX * 8;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
u32 ul_insert_rs_byte = 0;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
u32 ul_rf_mirror = 1;
u32 ul_power_down = 0;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
state->m_has_lna = false;
state->m_has_dvbt = false;
state->m_has_dvbc = false;
state->m_has_atv = false;
state->m_has_oob = false;
state->m_has_audio = false;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (!state->m_chunk_size)
state->m_chunk_size = 124;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
state->m_osc_clock_freq = 0;
state->m_smart_ant_inverted = false;
state->m_b_p_down_open_bridge = false;
2024-09-09 08:52:07 +00:00
/* real system clock frequency in kHz */
2024-09-09 08:57:42 +00:00
state->m_sys_clock_freq = 151875;
2024-09-09 08:52:07 +00:00
/* Timing div, 250ns/Psys */
/* Timing div, = (delay (nano seconds) * sysclk (kHz))/ 1000 */
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_timing_div = ((state->m_sys_clock_freq / 1000) *
2024-09-09 08:52:07 +00:00
HI_I2C_DELAY) / 1000;
/* Clipping */
2024-09-09 08:57:42 +00:00
if (state->m_hi_cfg_timing_div > SIO_HI_RA_RAM_PAR_2_CFG_DIV__M)
state->m_hi_cfg_timing_div = SIO_HI_RA_RAM_PAR_2_CFG_DIV__M;
state->m_hi_cfg_wake_up_key = (state->demod_address << 1);
2024-09-09 08:52:07 +00:00
/* port/bridge/power down ctrl */
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_ctrl = SIO_HI_RA_RAM_PAR_5_CFG_SLV0_SLAVE;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
state->m_b_power_down = (ul_power_down != 0);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
state->m_drxk_a3_patch_code = false;
2024-09-09 08:52:07 +00:00
/* Init AGC and PGA parameters */
/* VSB IF */
2024-09-09 08:57:42 +00:00
state->m_vsb_if_agc_cfg.ctrl_mode = ul_vsb_if_agc_mode;
state->m_vsb_if_agc_cfg.output_level = ul_vsb_if_agc_output_level;
state->m_vsb_if_agc_cfg.min_output_level = ul_vsb_if_agc_min_level;
state->m_vsb_if_agc_cfg.max_output_level = ul_vsb_if_agc_max_level;
state->m_vsb_if_agc_cfg.speed = ul_vsb_if_agc_speed;
state->m_vsb_pga_cfg = 140;
2024-09-09 08:52:07 +00:00
/* VSB RF */
2024-09-09 08:57:42 +00:00
state->m_vsb_rf_agc_cfg.ctrl_mode = ul_vsb_rf_agc_mode;
state->m_vsb_rf_agc_cfg.output_level = ul_vsb_rf_agc_output_level;
state->m_vsb_rf_agc_cfg.min_output_level = ul_vsb_rf_agc_min_level;
state->m_vsb_rf_agc_cfg.max_output_level = ul_vsb_rf_agc_max_level;
state->m_vsb_rf_agc_cfg.speed = ul_vsb_rf_agc_speed;
state->m_vsb_rf_agc_cfg.top = ul_vsb_rf_agc_top;
state->m_vsb_rf_agc_cfg.cut_off_current = ul_vsb_rf_agc_cut_off_current;
state->m_vsb_pre_saw_cfg.reference = 0x07;
state->m_vsb_pre_saw_cfg.use_pre_saw = true;
2024-09-09 08:52:07 +00:00
state->m_Quality83percent = DEFAULT_MER_83;
state->m_Quality93percent = DEFAULT_MER_93;
if (ulQual93 <= 500 && ulQual83 < ulQual93) {
state->m_Quality83percent = ulQual83;
state->m_Quality93percent = ulQual93;
}
/* ATV IF */
2024-09-09 08:57:42 +00:00
state->m_atv_if_agc_cfg.ctrl_mode = ul_atv_if_agc_mode;
state->m_atv_if_agc_cfg.output_level = ul_atv_if_agc_output_level;
state->m_atv_if_agc_cfg.min_output_level = ul_atv_if_agc_min_level;
state->m_atv_if_agc_cfg.max_output_level = ul_atv_if_agc_max_level;
state->m_atv_if_agc_cfg.speed = ul_atv_if_agc_speed;
2024-09-09 08:52:07 +00:00
/* ATV RF */
2024-09-09 08:57:42 +00:00
state->m_atv_rf_agc_cfg.ctrl_mode = ul_atv_rf_agc_mode;
state->m_atv_rf_agc_cfg.output_level = ul_atv_rf_agc_output_level;
state->m_atv_rf_agc_cfg.min_output_level = ul_atv_rf_agc_min_level;
state->m_atv_rf_agc_cfg.max_output_level = ul_atv_rf_agc_max_level;
state->m_atv_rf_agc_cfg.speed = ul_atv_rf_agc_speed;
state->m_atv_rf_agc_cfg.top = ul_atv_rf_agc_top;
state->m_atv_rf_agc_cfg.cut_off_current = ul_atv_rf_agc_cut_off_current;
state->m_atv_pre_saw_cfg.reference = 0x04;
state->m_atv_pre_saw_cfg.use_pre_saw = true;
2024-09-09 08:52:07 +00:00
/* DVBT RF */
2024-09-09 08:57:42 +00:00
state->m_dvbt_rf_agc_cfg.ctrl_mode = DRXK_AGC_CTRL_OFF;
state->m_dvbt_rf_agc_cfg.output_level = 0;
state->m_dvbt_rf_agc_cfg.min_output_level = 0;
state->m_dvbt_rf_agc_cfg.max_output_level = 0xFFFF;
state->m_dvbt_rf_agc_cfg.top = 0x2100;
state->m_dvbt_rf_agc_cfg.cut_off_current = 4000;
state->m_dvbt_rf_agc_cfg.speed = 1;
2024-09-09 08:52:07 +00:00
/* DVBT IF */
2024-09-09 08:57:42 +00:00
state->m_dvbt_if_agc_cfg.ctrl_mode = DRXK_AGC_CTRL_AUTO;
state->m_dvbt_if_agc_cfg.output_level = 0;
state->m_dvbt_if_agc_cfg.min_output_level = 0;
state->m_dvbt_if_agc_cfg.max_output_level = 9000;
state->m_dvbt_if_agc_cfg.top = 13424;
state->m_dvbt_if_agc_cfg.cut_off_current = 0;
state->m_dvbt_if_agc_cfg.speed = 3;
state->m_dvbt_if_agc_cfg.fast_clip_ctrl_delay = 30;
state->m_dvbt_if_agc_cfg.ingain_tgt_max = 30000;
2024-09-09 08:52:07 +00:00
/* state->m_dvbtPgaCfg = 140; */
2024-09-09 08:57:42 +00:00
state->m_dvbt_pre_saw_cfg.reference = 4;
state->m_dvbt_pre_saw_cfg.use_pre_saw = false;
2024-09-09 08:52:07 +00:00
/* QAM RF */
2024-09-09 08:57:42 +00:00
state->m_qam_rf_agc_cfg.ctrl_mode = DRXK_AGC_CTRL_OFF;
state->m_qam_rf_agc_cfg.output_level = 0;
state->m_qam_rf_agc_cfg.min_output_level = 6023;
state->m_qam_rf_agc_cfg.max_output_level = 27000;
state->m_qam_rf_agc_cfg.top = 0x2380;
state->m_qam_rf_agc_cfg.cut_off_current = 4000;
state->m_qam_rf_agc_cfg.speed = 3;
2024-09-09 08:52:07 +00:00
/* QAM IF */
2024-09-09 08:57:42 +00:00
state->m_qam_if_agc_cfg.ctrl_mode = DRXK_AGC_CTRL_AUTO;
state->m_qam_if_agc_cfg.output_level = 0;
state->m_qam_if_agc_cfg.min_output_level = 0;
state->m_qam_if_agc_cfg.max_output_level = 9000;
state->m_qam_if_agc_cfg.top = 0x0511;
state->m_qam_if_agc_cfg.cut_off_current = 0;
state->m_qam_if_agc_cfg.speed = 3;
state->m_qam_if_agc_cfg.ingain_tgt_max = 5119;
state->m_qam_if_agc_cfg.fast_clip_ctrl_delay = 50;
state->m_qam_pga_cfg = 140;
state->m_qam_pre_saw_cfg.reference = 4;
state->m_qam_pre_saw_cfg.use_pre_saw = false;
state->m_operation_mode = OM_NONE;
state->m_drxk_state = DRXK_UNINITIALIZED;
2024-09-09 08:52:07 +00:00
/* MPEG output configuration */
2024-09-09 08:57:42 +00:00
state->m_enable_mpeg_output = true; /* If TRUE; enable MPEG ouput */
state->m_insert_rs_byte = false; /* If TRUE; insert RS byte */
state->m_invert_data = false; /* If TRUE; invert DATA signals */
state->m_invert_err = false; /* If TRUE; invert ERR signal */
state->m_invert_str = false; /* If TRUE; invert STR signals */
state->m_invert_val = false; /* If TRUE; invert VAL signals */
state->m_invert_clk = (ul_invert_ts_clock != 0); /* If TRUE; invert CLK signals */
2024-09-09 08:52:07 +00:00
/* If TRUE; static MPEG clockrate will be used;
otherwise clockrate will adapt to the bitrate of the TS */
2024-09-09 08:57:42 +00:00
state->m_dvbt_bitrate = ul_dvbt_bitrate;
state->m_dvbc_bitrate = ul_dvbc_bitrate;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
state->m_ts_data_strength = (ul_ts_data_strength & 0x07);
2024-09-09 08:52:07 +00:00
/* Maximum bitrate in b/s in case static clockrate is selected */
2024-09-09 08:57:42 +00:00
state->m_mpeg_ts_static_bitrate = 19392658;
state->m_disable_te_ihandling = false;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (ul_insert_rs_byte)
state->m_insert_rs_byte = true;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
state->m_mpeg_lock_time_out = DEFAULT_DRXK_MPEG_LOCK_TIMEOUT;
if (ul_mpeg_lock_time_out < 10000)
state->m_mpeg_lock_time_out = ul_mpeg_lock_time_out;
state->m_demod_lock_time_out = DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT;
if (ul_demod_lock_time_out < 10000)
state->m_demod_lock_time_out = ul_demod_lock_time_out;
2024-09-09 08:52:07 +00:00
/* QAM defaults */
2024-09-09 08:57:42 +00:00
state->m_constellation = DRX_CONSTELLATION_AUTO;
state->m_qam_interleave_mode = DRXK_QAM_I12_J17;
state->m_fec_rs_plen = 204 * 8; /* fecRsPlen annex A */
state->m_fec_rs_prescale = 1;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
state->m_sqi_speed = DRXK_DVBT_SQI_SPEED_MEDIUM;
state->m_agcfast_clip_ctrl_delay = 0;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
state->m_gpio_cfg = ul_gpio_cfg;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
state->m_b_power_down = false;
state->m_current_power_mode = DRX_POWER_DOWN;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
state->m_rfmirror = (ul_rf_mirror == 0);
state->m_if_agc_pol = false;
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
static int drxx_open(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status = 0;
u32 jtag = 0;
u16 bid = 0;
u16 key = 0;
dprintk(1, "\n");
/* stop lock indicator process */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Check device id */
status = read16(state, SIO_TOP_COMM_KEY__A, &key);
if (status < 0)
goto error;
status = write16(state, SIO_TOP_COMM_KEY__A, SIO_TOP_COMM_KEY_KEY);
if (status < 0)
goto error;
status = read32(state, SIO_TOP_JTAGID_LO__A, &jtag);
if (status < 0)
goto error;
status = read16(state, SIO_PDR_UIO_IN_HI__A, &bid);
if (status < 0)
goto error;
status = write16(state, SIO_TOP_COMM_KEY__A, key);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int get_device_capabilities(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
u16 sio_pdr_ohw_cfg = 0;
u32 sio_top_jtagid_lo = 0;
2024-09-09 08:52:07 +00:00
int status;
const char *spin = "";
dprintk(1, "\n");
/* driver 0.9.0 */
/* stop lock indicator process */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_TOP_COMM_KEY__A, SIO_TOP_COMM_KEY_KEY);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = read16(state, SIO_PDR_OHW_CFG__A, &sio_pdr_ohw_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, SIO_TOP_COMM_KEY__A, 0x0000);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
switch ((sio_pdr_ohw_cfg & SIO_PDR_OHW_CFG_FREF_SEL__M)) {
2024-09-09 08:52:07 +00:00
case 0:
/* ignore (bypass ?) */
break;
case 1:
/* 27 MHz */
2024-09-09 08:57:42 +00:00
state->m_osc_clock_freq = 27000;
2024-09-09 08:52:07 +00:00
break;
case 2:
/* 20.25 MHz */
2024-09-09 08:57:42 +00:00
state->m_osc_clock_freq = 20250;
2024-09-09 08:52:07 +00:00
break;
case 3:
/* 4 MHz */
2024-09-09 08:57:42 +00:00
state->m_osc_clock_freq = 20250;
2024-09-09 08:52:07 +00:00
break;
default:
2024-09-09 08:57:42 +00:00
pr_err("Clock Frequency is unknown\n");
2024-09-09 08:52:07 +00:00
return -EINVAL;
}
/*
Determine device capabilities
Based on pinning v14
*/
2024-09-09 08:57:42 +00:00
status = read32(state, SIO_TOP_JTAGID_LO__A, &sio_top_jtagid_lo);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
pr_info("status = 0x%08x\n", sio_top_jtagid_lo);
2024-09-09 08:52:07 +00:00
/* driver 0.9.0 */
2024-09-09 08:57:42 +00:00
switch ((sio_top_jtagid_lo >> 29) & 0xF) {
2024-09-09 08:52:07 +00:00
case 0:
2024-09-09 08:57:42 +00:00
state->m_device_spin = DRXK_SPIN_A1;
2024-09-09 08:52:07 +00:00
spin = "A1";
break;
case 2:
2024-09-09 08:57:42 +00:00
state->m_device_spin = DRXK_SPIN_A2;
2024-09-09 08:52:07 +00:00
spin = "A2";
break;
case 3:
2024-09-09 08:57:42 +00:00
state->m_device_spin = DRXK_SPIN_A3;
2024-09-09 08:52:07 +00:00
spin = "A3";
break;
default:
2024-09-09 08:57:42 +00:00
state->m_device_spin = DRXK_SPIN_UNKNOWN;
2024-09-09 08:52:07 +00:00
status = -EINVAL;
2024-09-09 08:57:42 +00:00
pr_err("Spin %d unknown\n", (sio_top_jtagid_lo >> 29) & 0xF);
2024-09-09 08:52:07 +00:00
goto error2;
}
2024-09-09 08:57:42 +00:00
switch ((sio_top_jtagid_lo >> 12) & 0xFF) {
2024-09-09 08:52:07 +00:00
case 0x13:
/* typeId = DRX3913K_TYPE_ID */
2024-09-09 08:57:42 +00:00
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = false;
state->m_has_audio = false;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = false;
state->m_has_gpio1 = false;
state->m_has_irqn = false;
2024-09-09 08:52:07 +00:00
break;
case 0x15:
/* typeId = DRX3915K_TYPE_ID */
2024-09-09 08:57:42 +00:00
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = false;
state->m_has_dvbt = true;
state->m_has_dvbc = false;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
2024-09-09 08:52:07 +00:00
break;
case 0x16:
/* typeId = DRX3916K_TYPE_ID */
2024-09-09 08:57:42 +00:00
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = false;
state->m_has_dvbt = true;
state->m_has_dvbc = false;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
2024-09-09 08:52:07 +00:00
break;
case 0x18:
/* typeId = DRX3918K_TYPE_ID */
2024-09-09 08:57:42 +00:00
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = true;
state->m_has_dvbt = true;
state->m_has_dvbc = false;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
2024-09-09 08:52:07 +00:00
break;
case 0x21:
/* typeId = DRX3921K_TYPE_ID */
2024-09-09 08:57:42 +00:00
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = true;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
2024-09-09 08:52:07 +00:00
break;
case 0x23:
/* typeId = DRX3923K_TYPE_ID */
2024-09-09 08:57:42 +00:00
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = true;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
2024-09-09 08:52:07 +00:00
break;
case 0x25:
/* typeId = DRX3925K_TYPE_ID */
2024-09-09 08:57:42 +00:00
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = true;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
2024-09-09 08:52:07 +00:00
break;
case 0x26:
/* typeId = DRX3926K_TYPE_ID */
2024-09-09 08:57:42 +00:00
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = false;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
2024-09-09 08:52:07 +00:00
break;
default:
2024-09-09 08:57:42 +00:00
pr_err("DeviceID 0x%02x not supported\n",
((sio_top_jtagid_lo >> 12) & 0xFF));
2024-09-09 08:52:07 +00:00
status = -EINVAL;
goto error2;
}
2024-09-09 08:57:42 +00:00
pr_info("detected a drx-39%02xk, spin %s, xtal %d.%03d MHz\n",
((sio_top_jtagid_lo >> 12) & 0xFF), spin,
state->m_osc_clock_freq / 1000,
state->m_osc_clock_freq % 1000);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
error2:
return status;
}
2024-09-09 08:57:42 +00:00
static int hi_command(struct drxk_state *state, u16 cmd, u16 *p_result)
2024-09-09 08:52:07 +00:00
{
int status;
bool powerdown_cmd;
dprintk(1, "\n");
/* Write command */
status = write16(state, SIO_HI_RA_RAM_CMD__A, cmd);
if (status < 0)
goto error;
if (cmd == SIO_HI_RA_RAM_CMD_RESET)
2024-09-09 08:57:42 +00:00
usleep_range(1000, 2000);
2024-09-09 08:52:07 +00:00
powerdown_cmd =
(bool) ((cmd == SIO_HI_RA_RAM_CMD_CONFIG) &&
2024-09-09 08:57:42 +00:00
((state->m_hi_cfg_ctrl) &
2024-09-09 08:52:07 +00:00
SIO_HI_RA_RAM_PAR_5_CFG_SLEEP__M) ==
SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ);
2024-09-09 08:57:42 +00:00
if (!powerdown_cmd) {
2024-09-09 08:52:07 +00:00
/* Wait until command rdy */
2024-09-09 08:57:42 +00:00
u32 retry_count = 0;
u16 wait_cmd;
2024-09-09 08:52:07 +00:00
do {
2024-09-09 08:57:42 +00:00
usleep_range(1000, 2000);
retry_count += 1;
2024-09-09 08:52:07 +00:00
status = read16(state, SIO_HI_RA_RAM_CMD__A,
2024-09-09 08:57:42 +00:00
&wait_cmd);
} while ((status < 0) && (retry_count < DRXK_MAX_RETRIES)
&& (wait_cmd != 0));
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = read16(state, SIO_HI_RA_RAM_RES__A, p_result);
2024-09-09 08:52:07 +00:00
}
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int hi_cfg_command(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status;
dprintk(1, "\n");
mutex_lock(&state->mutex);
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_HI_RA_RAM_PAR_6__A,
state->m_hi_cfg_timeout);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_HI_RA_RAM_PAR_5__A,
state->m_hi_cfg_ctrl);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_HI_RA_RAM_PAR_4__A,
state->m_hi_cfg_wake_up_key);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_HI_RA_RAM_PAR_3__A,
state->m_hi_cfg_bridge_delay);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_HI_RA_RAM_PAR_2__A,
state->m_hi_cfg_timing_div);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_HI_RA_RAM_PAR_1__A,
SIO_HI_RA_RAM_PAR_1_PAR1_SEC_KEY);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = hi_command(state, SIO_HI_RA_RAM_CMD_CONFIG, NULL);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_ctrl &= ~SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
2024-09-09 08:52:07 +00:00
error:
mutex_unlock(&state->mutex);
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int init_hi(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_wake_up_key = (state->demod_address << 1);
state->m_hi_cfg_timeout = 0x96FF;
2024-09-09 08:52:07 +00:00
/* port/bridge/power down ctrl */
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_ctrl = SIO_HI_RA_RAM_PAR_5_CFG_SLV0_SLAVE;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
return hi_cfg_command(state);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static int mpegts_configure_pins(struct drxk_state *state, bool mpeg_enable)
2024-09-09 08:52:07 +00:00
{
int status = -1;
2024-09-09 08:57:42 +00:00
u16 sio_pdr_mclk_cfg = 0;
u16 sio_pdr_mdx_cfg = 0;
2024-09-09 08:52:07 +00:00
u16 err_cfg = 0;
dprintk(1, ": mpeg %s, %s mode\n",
2024-09-09 08:57:42 +00:00
mpeg_enable ? "enable" : "disable",
state->m_enable_parallel ? "parallel" : "serial");
2024-09-09 08:52:07 +00:00
/* stop lock indicator process */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* MPEG TS pad configuration */
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_TOP_COMM_KEY__A, SIO_TOP_COMM_KEY_KEY);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if (!mpeg_enable) {
2024-09-09 08:52:07 +00:00
/* Set MPEG TS pads to inputmode */
status = write16(state, SIO_PDR_MSTRT_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MERR_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MCLK_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MVAL_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD0_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD1_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD2_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD3_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD4_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD5_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD6_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD7_CFG__A, 0x0000);
if (status < 0)
goto error;
} else {
/* Enable MPEG output */
2024-09-09 08:57:42 +00:00
sio_pdr_mdx_cfg =
((state->m_ts_data_strength <<
2024-09-09 08:52:07 +00:00
SIO_PDR_MD0_CFG_DRIVE__B) | 0x0003);
2024-09-09 08:57:42 +00:00
sio_pdr_mclk_cfg = ((state->m_ts_clockk_strength <<
2024-09-09 08:52:07 +00:00
SIO_PDR_MCLK_CFG_DRIVE__B) |
0x0003);
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_MSTRT_CFG__A, sio_pdr_mdx_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
if (state->enable_merr_cfg)
2024-09-09 08:57:42 +00:00
err_cfg = sio_pdr_mdx_cfg;
2024-09-09 08:52:07 +00:00
status = write16(state, SIO_PDR_MERR_CFG__A, err_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MVAL_CFG__A, err_cfg);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if (state->m_enable_parallel) {
/* parallel -> enable MD1 to MD7 */
status = write16(state, SIO_PDR_MD1_CFG__A,
sio_pdr_mdx_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_MD2_CFG__A,
sio_pdr_mdx_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_MD3_CFG__A,
sio_pdr_mdx_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_MD4_CFG__A,
sio_pdr_mdx_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_MD5_CFG__A,
sio_pdr_mdx_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_MD6_CFG__A,
sio_pdr_mdx_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_MD7_CFG__A,
sio_pdr_mdx_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
} else {
2024-09-09 08:57:42 +00:00
sio_pdr_mdx_cfg = ((state->m_ts_data_strength <<
2024-09-09 08:52:07 +00:00
SIO_PDR_MD0_CFG_DRIVE__B)
| 0x0003);
/* serial -> disable MD1 to MD7 */
status = write16(state, SIO_PDR_MD1_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD2_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD3_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD4_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD5_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD6_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD7_CFG__A, 0x0000);
if (status < 0)
goto error;
}
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_MCLK_CFG__A, sio_pdr_mclk_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_MD0_CFG__A, sio_pdr_mdx_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
/* Enable MB output over MPEG pads and ctl input */
status = write16(state, SIO_PDR_MON_CFG__A, 0x0000);
if (status < 0)
goto error;
/* Write nomagic word to enable pdr reg write */
status = write16(state, SIO_TOP_COMM_KEY__A, 0x0000);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int mpegts_disable(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
return mpegts_configure_pins(state, false);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static int bl_chain_cmd(struct drxk_state *state,
u16 rom_offset, u16 nr_of_elements, u32 time_out)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
u16 bl_status = 0;
2024-09-09 08:52:07 +00:00
int status;
unsigned long end;
dprintk(1, "\n");
mutex_lock(&state->mutex);
status = write16(state, SIO_BL_MODE__A, SIO_BL_MODE_CHAIN);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_BL_CHAIN_ADDR__A, rom_offset);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_BL_CHAIN_LEN__A, nr_of_elements);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, SIO_BL_ENABLE__A, SIO_BL_ENABLE_ON);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
end = jiffies + msecs_to_jiffies(time_out);
2024-09-09 08:52:07 +00:00
do {
2024-09-09 08:57:42 +00:00
usleep_range(1000, 2000);
status = read16(state, SIO_BL_STATUS__A, &bl_status);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
} while ((bl_status == 0x1) &&
2024-09-09 08:52:07 +00:00
((time_is_after_jiffies(end))));
2024-09-09 08:57:42 +00:00
if (bl_status == 0x1) {
pr_err("SIO not ready\n");
2024-09-09 08:52:07 +00:00
status = -EINVAL;
goto error2;
}
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
error2:
mutex_unlock(&state->mutex);
return status;
}
2024-09-09 08:57:42 +00:00
static int download_microcode(struct drxk_state *state,
const u8 p_mc_image[], u32 length)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
const u8 *p_src = p_mc_image;
u32 address;
u16 n_blocks;
u16 block_size;
2024-09-09 08:52:07 +00:00
u32 offset = 0;
u32 i;
int status = 0;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
/* down the drain (we don't care about MAGIC_WORD) */
#if 0
/* For future reference */
drain = (p_src[0] << 8) | p_src[1];
#endif
p_src += sizeof(u16);
2024-09-09 08:52:07 +00:00
offset += sizeof(u16);
2024-09-09 08:57:42 +00:00
n_blocks = (p_src[0] << 8) | p_src[1];
p_src += sizeof(u16);
2024-09-09 08:52:07 +00:00
offset += sizeof(u16);
2024-09-09 08:57:42 +00:00
for (i = 0; i < n_blocks; i += 1) {
address = (p_src[0] << 24) | (p_src[1] << 16) |
(p_src[2] << 8) | p_src[3];
p_src += sizeof(u32);
2024-09-09 08:52:07 +00:00
offset += sizeof(u32);
2024-09-09 08:57:42 +00:00
block_size = ((p_src[0] << 8) | p_src[1]) * sizeof(u16);
p_src += sizeof(u16);
2024-09-09 08:52:07 +00:00
offset += sizeof(u16);
2024-09-09 08:57:42 +00:00
#if 0
/* For future reference */
flags = (p_src[0] << 8) | p_src[1];
#endif
p_src += sizeof(u16);
2024-09-09 08:52:07 +00:00
offset += sizeof(u16);
2024-09-09 08:57:42 +00:00
#if 0
/* For future reference */
block_crc = (p_src[0] << 8) | p_src[1];
#endif
p_src += sizeof(u16);
2024-09-09 08:52:07 +00:00
offset += sizeof(u16);
2024-09-09 08:57:42 +00:00
if (offset + block_size > length) {
pr_err("Firmware is corrupted.\n");
2024-09-09 08:52:07 +00:00
return -EINVAL;
}
2024-09-09 08:57:42 +00:00
status = write_block(state, address, block_size, p_src);
2024-09-09 08:52:07 +00:00
if (status < 0) {
2024-09-09 08:57:42 +00:00
pr_err("Error %d while loading firmware\n", status);
2024-09-09 08:52:07 +00:00
break;
}
2024-09-09 08:57:42 +00:00
p_src += block_size;
offset += block_size;
2024-09-09 08:52:07 +00:00
}
return status;
}
2024-09-09 08:57:42 +00:00
static int dvbt_enable_ofdm_token_ring(struct drxk_state *state, bool enable)
2024-09-09 08:52:07 +00:00
{
int status;
u16 data = 0;
2024-09-09 08:57:42 +00:00
u16 desired_ctrl = SIO_OFDM_SH_OFDM_RING_ENABLE_ON;
u16 desired_status = SIO_OFDM_SH_OFDM_RING_STATUS_ENABLED;
2024-09-09 08:52:07 +00:00
unsigned long end;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (!enable) {
desired_ctrl = SIO_OFDM_SH_OFDM_RING_ENABLE_OFF;
desired_status = SIO_OFDM_SH_OFDM_RING_STATUS_DOWN;
2024-09-09 08:52:07 +00:00
}
status = read16(state, SIO_OFDM_SH_OFDM_RING_STATUS__A, &data);
2024-09-09 08:57:42 +00:00
if (status >= 0 && data == desired_status) {
2024-09-09 08:52:07 +00:00
/* tokenring already has correct status */
return status;
}
/* Disable/enable dvbt tokenring bridge */
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_OFDM_SH_OFDM_RING_ENABLE__A, desired_ctrl);
2024-09-09 08:52:07 +00:00
end = jiffies + msecs_to_jiffies(DRXK_OFDM_TR_SHUTDOWN_TIMEOUT);
do {
status = read16(state, SIO_OFDM_SH_OFDM_RING_STATUS__A, &data);
2024-09-09 08:57:42 +00:00
if ((status >= 0 && data == desired_status)
|| time_is_after_jiffies(end))
2024-09-09 08:52:07 +00:00
break;
2024-09-09 08:57:42 +00:00
usleep_range(1000, 2000);
2024-09-09 08:52:07 +00:00
} while (1);
2024-09-09 08:57:42 +00:00
if (data != desired_status) {
pr_err("SIO not ready\n");
2024-09-09 08:52:07 +00:00
return -EINVAL;
}
return status;
}
2024-09-09 08:57:42 +00:00
static int mpegts_stop(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status = 0;
2024-09-09 08:57:42 +00:00
u16 fec_oc_snc_mode = 0;
u16 fec_oc_ipr_mode = 0;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
/* Graceful shutdown (byte boundaries) */
status = read16(state, FEC_OC_SNC_MODE__A, &fec_oc_snc_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
fec_oc_snc_mode |= FEC_OC_SNC_MODE_SHUTDOWN__M;
status = write16(state, FEC_OC_SNC_MODE__A, fec_oc_snc_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Suppress MCLK during absence of data */
2024-09-09 08:57:42 +00:00
status = read16(state, FEC_OC_IPR_MODE__A, &fec_oc_ipr_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
fec_oc_ipr_mode |= FEC_OC_IPR_MODE_MCLK_DIS_DAT_ABS__M;
status = write16(state, FEC_OC_IPR_MODE__A, fec_oc_ipr_mode);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
static int scu_command(struct drxk_state *state,
2024-09-09 08:57:42 +00:00
u16 cmd, u8 parameter_len,
u16 *parameter, u8 result_len, u16 *result)
2024-09-09 08:52:07 +00:00
{
#if (SCU_RAM_PARAM_0__A - SCU_RAM_PARAM_15__A) != 15
#error DRXK register mapping no longer compatible with this routine!
#endif
2024-09-09 08:57:42 +00:00
u16 cur_cmd = 0;
2024-09-09 08:52:07 +00:00
int status = -EINVAL;
unsigned long end;
u8 buffer[34];
int cnt = 0, ii;
const char *p;
char errname[30];
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if ((cmd == 0) || ((parameter_len > 0) && (parameter == NULL)) ||
((result_len > 0) && (result == NULL))) {
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
mutex_lock(&state->mutex);
/* assume that the command register is ready
since it is checked afterwards */
2024-09-09 08:57:42 +00:00
for (ii = parameter_len - 1; ii >= 0; ii -= 1) {
2024-09-09 08:52:07 +00:00
buffer[cnt++] = (parameter[ii] & 0xFF);
buffer[cnt++] = ((parameter[ii] >> 8) & 0xFF);
}
buffer[cnt++] = (cmd & 0xFF);
buffer[cnt++] = ((cmd >> 8) & 0xFF);
write_block(state, SCU_RAM_PARAM_0__A -
2024-09-09 08:57:42 +00:00
(parameter_len - 1), cnt, buffer);
2024-09-09 08:52:07 +00:00
/* Wait until SCU has processed command */
end = jiffies + msecs_to_jiffies(DRXK_MAX_WAITTIME);
do {
2024-09-09 08:57:42 +00:00
usleep_range(1000, 2000);
status = read16(state, SCU_RAM_COMMAND__A, &cur_cmd);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
} while (!(cur_cmd == DRX_SCU_READY) && (time_is_after_jiffies(end)));
if (cur_cmd != DRX_SCU_READY) {
pr_err("SCU not ready\n");
2024-09-09 08:52:07 +00:00
status = -EIO;
goto error2;
}
/* read results */
2024-09-09 08:57:42 +00:00
if ((result_len > 0) && (result != NULL)) {
2024-09-09 08:52:07 +00:00
s16 err;
int ii;
2024-09-09 08:57:42 +00:00
for (ii = result_len - 1; ii >= 0; ii -= 1) {
status = read16(state, SCU_RAM_PARAM_0__A - ii,
&result[ii]);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
/* Check if an error was reported by SCU */
err = (s16)result[0];
if (err >= 0)
goto error;
/* check for the known error codes */
switch (err) {
case SCU_RESULT_UNKCMD:
p = "SCU_RESULT_UNKCMD";
break;
case SCU_RESULT_UNKSTD:
p = "SCU_RESULT_UNKSTD";
break;
case SCU_RESULT_SIZE:
p = "SCU_RESULT_SIZE";
break;
case SCU_RESULT_INVPAR:
p = "SCU_RESULT_INVPAR";
break;
default: /* Other negative values are errors */
sprintf(errname, "ERROR: %d\n", err);
p = errname;
}
2024-09-09 08:57:42 +00:00
pr_err("%s while sending cmd 0x%04x with params:", p, cmd);
2024-09-09 08:52:07 +00:00
print_hex_dump_bytes("drxk: ", DUMP_PREFIX_NONE, buffer, cnt);
status = -EINVAL;
goto error2;
}
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
error2:
mutex_unlock(&state->mutex);
return status;
}
2024-09-09 08:57:42 +00:00
static int set_iqm_af(struct drxk_state *state, bool active)
2024-09-09 08:52:07 +00:00
{
u16 data = 0;
int status;
dprintk(1, "\n");
/* Configure IQM */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
if (!active) {
data |= (IQM_AF_STDBY_STDBY_ADC_STANDBY
| IQM_AF_STDBY_STDBY_AMP_STANDBY
| IQM_AF_STDBY_STDBY_PD_STANDBY
| IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY
| IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY);
} else {
data &= ((~IQM_AF_STDBY_STDBY_ADC_STANDBY)
& (~IQM_AF_STDBY_STDBY_AMP_STANDBY)
& (~IQM_AF_STDBY_STDBY_PD_STANDBY)
& (~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY)
& (~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY)
);
}
status = write16(state, IQM_AF_STDBY__A, data);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int ctrl_power_mode(struct drxk_state *state, enum drx_power_mode *mode)
2024-09-09 08:52:07 +00:00
{
int status = 0;
2024-09-09 08:57:42 +00:00
u16 sio_cc_pwd_mode = 0;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
/* Check arguments */
if (mode == NULL)
return -EINVAL;
switch (*mode) {
case DRX_POWER_UP:
2024-09-09 08:57:42 +00:00
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_NONE;
2024-09-09 08:52:07 +00:00
break;
case DRXK_POWER_DOWN_OFDM:
2024-09-09 08:57:42 +00:00
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_OFDM;
2024-09-09 08:52:07 +00:00
break;
case DRXK_POWER_DOWN_CORE:
2024-09-09 08:57:42 +00:00
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_CLOCK;
2024-09-09 08:52:07 +00:00
break;
case DRXK_POWER_DOWN_PLL:
2024-09-09 08:57:42 +00:00
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_PLL;
2024-09-09 08:52:07 +00:00
break;
case DRX_POWER_DOWN:
2024-09-09 08:57:42 +00:00
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_OSC;
2024-09-09 08:52:07 +00:00
break;
default:
/* Unknow sleep mode */
return -EINVAL;
}
/* If already in requested power mode, do nothing */
2024-09-09 08:57:42 +00:00
if (state->m_current_power_mode == *mode)
2024-09-09 08:52:07 +00:00
return 0;
/* For next steps make sure to start from DRX_POWER_UP mode */
2024-09-09 08:57:42 +00:00
if (state->m_current_power_mode != DRX_POWER_UP) {
status = power_up_device(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = dvbt_enable_ofdm_token_ring(state, true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
if (*mode == DRX_POWER_UP) {
/* Restore analog & pin configuartion */
} else {
/* Power down to requested mode */
/* Backup some register settings */
/* Set pins with possible pull-ups connected
to them in input mode */
/* Analog power down */
/* ADC power down */
/* Power down device */
/* stop all comm_exec */
/* Stop and power down previous standard */
2024-09-09 08:57:42 +00:00
switch (state->m_operation_mode) {
2024-09-09 08:52:07 +00:00
case OM_DVBT:
2024-09-09 08:57:42 +00:00
status = mpegts_stop(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = power_down_dvbt(state, false);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
case OM_QAM_ITU_A:
case OM_QAM_ITU_C:
2024-09-09 08:57:42 +00:00
status = mpegts_stop(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = power_down_qam(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
default:
break;
}
2024-09-09 08:57:42 +00:00
status = dvbt_enable_ofdm_token_ring(state, false);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_CC_PWD_MODE__A, sio_cc_pwd_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, SIO_CC_UPDATE__A, SIO_CC_UPDATE_KEY);
if (status < 0)
goto error;
if (*mode != DRXK_POWER_DOWN_OFDM) {
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_ctrl |=
2024-09-09 08:52:07 +00:00
SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
2024-09-09 08:57:42 +00:00
status = hi_cfg_command(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
}
2024-09-09 08:57:42 +00:00
state->m_current_power_mode = *mode;
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int power_down_dvbt(struct drxk_state *state, bool set_power_mode)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
enum drx_power_mode power_mode = DRXK_POWER_DOWN_OFDM;
u16 cmd_result = 0;
2024-09-09 08:52:07 +00:00
u16 data = 0;
int status;
dprintk(1, "\n");
status = read16(state, SCU_COMM_EXEC__A, &data);
if (status < 0)
goto error;
if (data == SCU_COMM_EXEC_ACTIVE) {
/* Send OFDM stop command */
2024-09-09 08:57:42 +00:00
status = scu_command(state,
SCU_RAM_COMMAND_STANDARD_OFDM
| SCU_RAM_COMMAND_CMD_DEMOD_STOP,
0, NULL, 1, &cmd_result);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Send OFDM reset command */
2024-09-09 08:57:42 +00:00
status = scu_command(state,
SCU_RAM_COMMAND_STANDARD_OFDM
| SCU_RAM_COMMAND_CMD_DEMOD_RESET,
0, NULL, 1, &cmd_result);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
/* Reset datapath for OFDM, processors first */
status = write16(state, OFDM_SC_COMM_EXEC__A, OFDM_SC_COMM_EXEC_STOP);
if (status < 0)
goto error;
status = write16(state, OFDM_LC_COMM_EXEC__A, OFDM_LC_COMM_EXEC_STOP);
if (status < 0)
goto error;
status = write16(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_STOP);
if (status < 0)
goto error;
/* powerdown AFE */
2024-09-09 08:57:42 +00:00
status = set_iqm_af(state, false);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* powerdown to OFDM mode */
2024-09-09 08:57:42 +00:00
if (set_power_mode) {
status = ctrl_power_mode(state, &power_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int setoperation_mode(struct drxk_state *state,
enum operation_mode o_mode)
2024-09-09 08:52:07 +00:00
{
int status = 0;
dprintk(1, "\n");
/*
Stop and power down previous standard
TODO investigate total power down instead of partial
power down depending on "previous" standard.
*/
/* disable HW lock indicator */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Device is already at the required mode */
2024-09-09 08:57:42 +00:00
if (state->m_operation_mode == o_mode)
2024-09-09 08:52:07 +00:00
return 0;
2024-09-09 08:57:42 +00:00
switch (state->m_operation_mode) {
2024-09-09 08:52:07 +00:00
/* OM_NONE was added for start up */
case OM_NONE:
break;
case OM_DVBT:
2024-09-09 08:57:42 +00:00
status = mpegts_stop(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = power_down_dvbt(state, true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_operation_mode = OM_NONE;
2024-09-09 08:52:07 +00:00
break;
case OM_QAM_ITU_A: /* fallthrough */
case OM_QAM_ITU_C:
2024-09-09 08:57:42 +00:00
status = mpegts_stop(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = power_down_qam(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_operation_mode = OM_NONE;
2024-09-09 08:52:07 +00:00
break;
case OM_QAM_ITU_B:
default:
status = -EINVAL;
goto error;
}
/*
Power up new standard
*/
2024-09-09 08:57:42 +00:00
switch (o_mode) {
2024-09-09 08:52:07 +00:00
case OM_DVBT:
dprintk(1, ": DVB-T\n");
2024-09-09 08:57:42 +00:00
state->m_operation_mode = o_mode;
status = set_dvbt_standard(state, o_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
case OM_QAM_ITU_A: /* fallthrough */
case OM_QAM_ITU_C:
dprintk(1, ": DVB-C Annex %c\n",
2024-09-09 08:57:42 +00:00
(state->m_operation_mode == OM_QAM_ITU_A) ? 'A' : 'C');
state->m_operation_mode = o_mode;
status = set_qam_standard(state, o_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
case OM_QAM_ITU_B:
default:
status = -EINVAL;
}
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int start(struct drxk_state *state, s32 offset_freq,
s32 intermediate_frequency)
2024-09-09 08:52:07 +00:00
{
int status = -EINVAL;
2024-09-09 08:57:42 +00:00
u16 i_freqk_hz;
s32 offsetk_hz = offset_freq / 1000;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->m_drxk_state != DRXK_STOPPED &&
state->m_drxk_state != DRXK_DTV_STARTED)
2024-09-09 08:52:07 +00:00
goto error;
2024-09-09 08:57:42 +00:00
state->m_b_mirror_freq_spect = (state->props.inversion == INVERSION_ON);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (intermediate_frequency < 0) {
state->m_b_mirror_freq_spect = !state->m_b_mirror_freq_spect;
intermediate_frequency = -intermediate_frequency;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
switch (state->m_operation_mode) {
2024-09-09 08:52:07 +00:00
case OM_QAM_ITU_A:
case OM_QAM_ITU_C:
2024-09-09 08:57:42 +00:00
i_freqk_hz = (intermediate_frequency / 1000);
status = set_qam(state, i_freqk_hz, offsetk_hz);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_drxk_state = DRXK_DTV_STARTED;
2024-09-09 08:52:07 +00:00
break;
case OM_DVBT:
2024-09-09 08:57:42 +00:00
i_freqk_hz = (intermediate_frequency / 1000);
status = mpegts_stop(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = set_dvbt(state, i_freqk_hz, offsetk_hz);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = dvbt_start(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_drxk_state = DRXK_DTV_STARTED;
2024-09-09 08:52:07 +00:00
break;
default:
break;
}
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int shut_down(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
mpegts_stop(state);
2024-09-09 08:52:07 +00:00
return 0;
}
2024-09-09 08:57:42 +00:00
static int get_lock_status(struct drxk_state *state, u32 *p_lock_status)
2024-09-09 08:52:07 +00:00
{
int status = -EINVAL;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (p_lock_status == NULL)
2024-09-09 08:52:07 +00:00
goto error;
2024-09-09 08:57:42 +00:00
*p_lock_status = NOT_LOCKED;
2024-09-09 08:52:07 +00:00
/* define the SCU command code */
2024-09-09 08:57:42 +00:00
switch (state->m_operation_mode) {
2024-09-09 08:52:07 +00:00
case OM_QAM_ITU_A:
case OM_QAM_ITU_B:
case OM_QAM_ITU_C:
2024-09-09 08:57:42 +00:00
status = get_qam_lock_status(state, p_lock_status);
2024-09-09 08:52:07 +00:00
break;
case OM_DVBT:
2024-09-09 08:57:42 +00:00
status = get_dvbt_lock_status(state, p_lock_status);
2024-09-09 08:52:07 +00:00
break;
default:
break;
}
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int mpegts_start(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status;
2024-09-09 08:57:42 +00:00
u16 fec_oc_snc_mode = 0;
2024-09-09 08:52:07 +00:00
/* Allow OC to sync again */
2024-09-09 08:57:42 +00:00
status = read16(state, FEC_OC_SNC_MODE__A, &fec_oc_snc_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
fec_oc_snc_mode &= ~FEC_OC_SNC_MODE_SHUTDOWN__M;
status = write16(state, FEC_OC_SNC_MODE__A, fec_oc_snc_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, FEC_OC_SNC_UNLOCK__A, 1);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int mpegts_dto_init(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status;
dprintk(1, "\n");
/* Rate integration settings */
status = write16(state, FEC_OC_RCN_CTL_STEP_LO__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, FEC_OC_RCN_CTL_STEP_HI__A, 0x000C);
if (status < 0)
goto error;
status = write16(state, FEC_OC_RCN_GAIN__A, 0x000A);
if (status < 0)
goto error;
status = write16(state, FEC_OC_AVR_PARM_A__A, 0x0008);
if (status < 0)
goto error;
status = write16(state, FEC_OC_AVR_PARM_B__A, 0x0006);
if (status < 0)
goto error;
status = write16(state, FEC_OC_TMD_HI_MARGIN__A, 0x0680);
if (status < 0)
goto error;
status = write16(state, FEC_OC_TMD_LO_MARGIN__A, 0x0080);
if (status < 0)
goto error;
status = write16(state, FEC_OC_TMD_COUNT__A, 0x03F4);
if (status < 0)
goto error;
/* Additional configuration */
status = write16(state, FEC_OC_OCR_INVERT__A, 0);
if (status < 0)
goto error;
status = write16(state, FEC_OC_SNC_LWM__A, 2);
if (status < 0)
goto error;
status = write16(state, FEC_OC_SNC_HWM__A, 12);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int mpegts_dto_setup(struct drxk_state *state,
enum operation_mode o_mode)
2024-09-09 08:52:07 +00:00
{
int status;
2024-09-09 08:57:42 +00:00
u16 fec_oc_reg_mode = 0; /* FEC_OC_MODE register value */
u16 fec_oc_reg_ipr_mode = 0; /* FEC_OC_IPR_MODE register value */
u16 fec_oc_dto_mode = 0; /* FEC_OC_IPR_INVERT register value */
u16 fec_oc_fct_mode = 0; /* FEC_OC_IPR_INVERT register value */
u16 fec_oc_dto_period = 2; /* FEC_OC_IPR_INVERT register value */
u16 fec_oc_dto_burst_len = 188; /* FEC_OC_IPR_INVERT register value */
u32 fec_oc_rcn_ctl_rate = 0; /* FEC_OC_IPR_INVERT register value */
u16 fec_oc_tmd_mode = 0;
u16 fec_oc_tmd_int_upd_rate = 0;
u32 max_bit_rate = 0;
bool static_clk = false;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
/* Check insertion of the Reed-Solomon parity bytes */
2024-09-09 08:57:42 +00:00
status = read16(state, FEC_OC_MODE__A, &fec_oc_reg_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = read16(state, FEC_OC_IPR_MODE__A, &fec_oc_reg_ipr_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
fec_oc_reg_mode &= (~FEC_OC_MODE_PARITY__M);
fec_oc_reg_ipr_mode &= (~FEC_OC_IPR_MODE_MVAL_DIS_PAR__M);
if (state->m_insert_rs_byte) {
2024-09-09 08:52:07 +00:00
/* enable parity symbol forward */
2024-09-09 08:57:42 +00:00
fec_oc_reg_mode |= FEC_OC_MODE_PARITY__M;
2024-09-09 08:52:07 +00:00
/* MVAL disable during parity bytes */
2024-09-09 08:57:42 +00:00
fec_oc_reg_ipr_mode |= FEC_OC_IPR_MODE_MVAL_DIS_PAR__M;
2024-09-09 08:52:07 +00:00
/* TS burst length to 204 */
2024-09-09 08:57:42 +00:00
fec_oc_dto_burst_len = 204;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
/* Check serial or parallel output */
fec_oc_reg_ipr_mode &= (~(FEC_OC_IPR_MODE_SERIAL__M));
if (!state->m_enable_parallel) {
2024-09-09 08:52:07 +00:00
/* MPEG data output is serial -> set ipr_mode[0] */
2024-09-09 08:57:42 +00:00
fec_oc_reg_ipr_mode |= FEC_OC_IPR_MODE_SERIAL__M;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
switch (o_mode) {
2024-09-09 08:52:07 +00:00
case OM_DVBT:
2024-09-09 08:57:42 +00:00
max_bit_rate = state->m_dvbt_bitrate;
fec_oc_tmd_mode = 3;
fec_oc_rcn_ctl_rate = 0xC00000;
static_clk = state->m_dvbt_static_clk;
2024-09-09 08:52:07 +00:00
break;
case OM_QAM_ITU_A: /* fallthrough */
case OM_QAM_ITU_C:
2024-09-09 08:57:42 +00:00
fec_oc_tmd_mode = 0x0004;
fec_oc_rcn_ctl_rate = 0xD2B4EE; /* good for >63 Mb/s */
max_bit_rate = state->m_dvbc_bitrate;
static_clk = state->m_dvbc_static_clk;
2024-09-09 08:52:07 +00:00
break;
default:
status = -EINVAL;
} /* switch (standard) */
if (status < 0)
goto error;
/* Configure DTO's */
2024-09-09 08:57:42 +00:00
if (static_clk) {
u32 bit_rate = 0;
2024-09-09 08:52:07 +00:00
/* Rational DTO for MCLK source (static MCLK rate),
Dynamic DTO for optimal grouping
(avoid intra-packet gaps),
DTO offset enable to sync TS burst with MSTRT */
2024-09-09 08:57:42 +00:00
fec_oc_dto_mode = (FEC_OC_DTO_MODE_DYNAMIC__M |
2024-09-09 08:52:07 +00:00
FEC_OC_DTO_MODE_OFFSET_ENABLE__M);
2024-09-09 08:57:42 +00:00
fec_oc_fct_mode = (FEC_OC_FCT_MODE_RAT_ENA__M |
2024-09-09 08:52:07 +00:00
FEC_OC_FCT_MODE_VIRT_ENA__M);
/* Check user defined bitrate */
2024-09-09 08:57:42 +00:00
bit_rate = max_bit_rate;
if (bit_rate > 75900000UL) { /* max is 75.9 Mb/s */
bit_rate = 75900000UL;
2024-09-09 08:52:07 +00:00
}
/* Rational DTO period:
dto_period = (Fsys / bitrate) - 2
2024-09-09 08:57:42 +00:00
result should be floored,
2024-09-09 08:52:07 +00:00
to make sure >= requested bitrate
*/
2024-09-09 08:57:42 +00:00
fec_oc_dto_period = (u16) (((state->m_sys_clock_freq)
* 1000) / bit_rate);
if (fec_oc_dto_period <= 2)
fec_oc_dto_period = 0;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
fec_oc_dto_period -= 2;
fec_oc_tmd_int_upd_rate = 8;
2024-09-09 08:52:07 +00:00
} else {
2024-09-09 08:57:42 +00:00
/* (commonAttr->static_clk == false) => dynamic mode */
fec_oc_dto_mode = FEC_OC_DTO_MODE_DYNAMIC__M;
fec_oc_fct_mode = FEC_OC_FCT_MODE__PRE;
fec_oc_tmd_int_upd_rate = 5;
2024-09-09 08:52:07 +00:00
}
/* Write appropriate registers with requested configuration */
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_OC_DTO_BURST_LEN__A, fec_oc_dto_burst_len);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_OC_DTO_PERIOD__A, fec_oc_dto_period);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_OC_DTO_MODE__A, fec_oc_dto_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_OC_FCT_MODE__A, fec_oc_fct_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_OC_MODE__A, fec_oc_reg_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_OC_IPR_MODE__A, fec_oc_reg_ipr_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Rate integration settings */
2024-09-09 08:57:42 +00:00
status = write32(state, FEC_OC_RCN_CTL_RATE_LO__A, fec_oc_rcn_ctl_rate);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_OC_TMD_INT_UPD_RATE__A,
fec_oc_tmd_int_upd_rate);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_OC_TMD_MODE__A, fec_oc_tmd_mode);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int mpegts_configure_polarity(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
u16 fec_oc_reg_ipr_invert = 0;
2024-09-09 08:52:07 +00:00
/* Data mask for the output data byte */
2024-09-09 08:57:42 +00:00
u16 invert_data_mask =
2024-09-09 08:52:07 +00:00
FEC_OC_IPR_INVERT_MD7__M | FEC_OC_IPR_INVERT_MD6__M |
FEC_OC_IPR_INVERT_MD5__M | FEC_OC_IPR_INVERT_MD4__M |
FEC_OC_IPR_INVERT_MD3__M | FEC_OC_IPR_INVERT_MD2__M |
FEC_OC_IPR_INVERT_MD1__M | FEC_OC_IPR_INVERT_MD0__M;
dprintk(1, "\n");
/* Control selective inversion of output bits */
2024-09-09 08:57:42 +00:00
fec_oc_reg_ipr_invert &= (~(invert_data_mask));
if (state->m_invert_data)
fec_oc_reg_ipr_invert |= invert_data_mask;
fec_oc_reg_ipr_invert &= (~(FEC_OC_IPR_INVERT_MERR__M));
if (state->m_invert_err)
fec_oc_reg_ipr_invert |= FEC_OC_IPR_INVERT_MERR__M;
fec_oc_reg_ipr_invert &= (~(FEC_OC_IPR_INVERT_MSTRT__M));
if (state->m_invert_str)
fec_oc_reg_ipr_invert |= FEC_OC_IPR_INVERT_MSTRT__M;
fec_oc_reg_ipr_invert &= (~(FEC_OC_IPR_INVERT_MVAL__M));
if (state->m_invert_val)
fec_oc_reg_ipr_invert |= FEC_OC_IPR_INVERT_MVAL__M;
fec_oc_reg_ipr_invert &= (~(FEC_OC_IPR_INVERT_MCLK__M));
if (state->m_invert_clk)
fec_oc_reg_ipr_invert |= FEC_OC_IPR_INVERT_MCLK__M;
return write16(state, FEC_OC_IPR_INVERT__A, fec_oc_reg_ipr_invert);
2024-09-09 08:52:07 +00:00
}
#define SCU_RAM_AGC_KI_INV_RF_POL__M 0x4000
2024-09-09 08:57:42 +00:00
static int set_agc_rf(struct drxk_state *state,
struct s_cfg_agc *p_agc_cfg, bool is_dtv)
2024-09-09 08:52:07 +00:00
{
int status = -EINVAL;
u16 data = 0;
2024-09-09 08:57:42 +00:00
struct s_cfg_agc *p_if_agc_settings;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (p_agc_cfg == NULL)
2024-09-09 08:52:07 +00:00
goto error;
2024-09-09 08:57:42 +00:00
switch (p_agc_cfg->ctrl_mode) {
2024-09-09 08:52:07 +00:00
case DRXK_AGC_CTRL_AUTO:
/* Enable RF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data &= ~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
/* Enable SCU RF AGC loop */
data &= ~SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
/* Polarity */
2024-09-09 08:57:42 +00:00
if (state->m_rf_agc_pol)
2024-09-09 08:52:07 +00:00
data |= SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
else
data &= ~SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
/* Set speed (using complementary reduction value) */
status = read16(state, SCU_RAM_AGC_KI_RED__A, &data);
if (status < 0)
goto error;
data &= ~SCU_RAM_AGC_KI_RED_RAGC_RED__M;
2024-09-09 08:57:42 +00:00
data |= (~(p_agc_cfg->speed <<
2024-09-09 08:52:07 +00:00
SCU_RAM_AGC_KI_RED_RAGC_RED__B)
& SCU_RAM_AGC_KI_RED_RAGC_RED__M);
status = write16(state, SCU_RAM_AGC_KI_RED__A, data);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if (is_dvbt(state))
p_if_agc_settings = &state->m_dvbt_if_agc_cfg;
else if (is_qam(state))
p_if_agc_settings = &state->m_qam_if_agc_cfg;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
p_if_agc_settings = &state->m_atv_if_agc_cfg;
if (p_if_agc_settings == NULL) {
2024-09-09 08:52:07 +00:00
status = -EINVAL;
goto error;
}
/* Set TOP, only if IF-AGC is in AUTO mode */
2024-09-09 08:57:42 +00:00
if (p_if_agc_settings->ctrl_mode == DRXK_AGC_CTRL_AUTO) {
status = write16(state,
SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
p_agc_cfg->top);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
}
2024-09-09 08:52:07 +00:00
/* Cut-Off current */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_RF_IACCU_HI_CO__A,
p_agc_cfg->cut_off_current);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Max. output level */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_RF_MAX__A,
p_agc_cfg->max_output_level);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
case DRXK_AGC_CTRL_USER:
/* Enable RF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data &= ~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
/* Disable SCU RF AGC loop */
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
data |= SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
2024-09-09 08:57:42 +00:00
if (state->m_rf_agc_pol)
2024-09-09 08:52:07 +00:00
data |= SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
else
data &= ~SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
/* SCU c.o.c. to 0, enabling full control range */
status = write16(state, SCU_RAM_AGC_RF_IACCU_HI_CO__A, 0);
if (status < 0)
goto error;
/* Write value to output pin */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_RF_IACCU_HI__A,
p_agc_cfg->output_level);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
case DRXK_AGC_CTRL_OFF:
/* Disable RF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data |= IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
/* Disable SCU RF AGC loop */
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
data |= SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
break;
default:
status = -EINVAL;
}
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
#define SCU_RAM_AGC_KI_INV_IF_POL__M 0x2000
2024-09-09 08:57:42 +00:00
static int set_agc_if(struct drxk_state *state,
struct s_cfg_agc *p_agc_cfg, bool is_dtv)
2024-09-09 08:52:07 +00:00
{
u16 data = 0;
int status = 0;
2024-09-09 08:57:42 +00:00
struct s_cfg_agc *p_rf_agc_settings;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
switch (p_agc_cfg->ctrl_mode) {
2024-09-09 08:52:07 +00:00
case DRXK_AGC_CTRL_AUTO:
/* Enable IF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data &= ~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
/* Enable SCU IF AGC loop */
data &= ~SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
/* Polarity */
2024-09-09 08:57:42 +00:00
if (state->m_if_agc_pol)
2024-09-09 08:52:07 +00:00
data |= SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
else
data &= ~SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
/* Set speed (using complementary reduction value) */
status = read16(state, SCU_RAM_AGC_KI_RED__A, &data);
if (status < 0)
goto error;
data &= ~SCU_RAM_AGC_KI_RED_IAGC_RED__M;
2024-09-09 08:57:42 +00:00
data |= (~(p_agc_cfg->speed <<
2024-09-09 08:52:07 +00:00
SCU_RAM_AGC_KI_RED_IAGC_RED__B)
& SCU_RAM_AGC_KI_RED_IAGC_RED__M);
status = write16(state, SCU_RAM_AGC_KI_RED__A, data);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if (is_qam(state))
p_rf_agc_settings = &state->m_qam_rf_agc_cfg;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
p_rf_agc_settings = &state->m_atv_rf_agc_cfg;
if (p_rf_agc_settings == NULL)
2024-09-09 08:52:07 +00:00
return -1;
/* Restore TOP */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
p_rf_agc_settings->top);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
case DRXK_AGC_CTRL_USER:
/* Enable IF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data &= ~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
/* Disable SCU IF AGC loop */
data |= SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
/* Polarity */
2024-09-09 08:57:42 +00:00
if (state->m_if_agc_pol)
2024-09-09 08:52:07 +00:00
data |= SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
else
data &= ~SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
/* Write value to output pin */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
p_agc_cfg->output_level);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
case DRXK_AGC_CTRL_OFF:
/* Disable If AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data |= IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
/* Disable SCU IF AGC loop */
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
data |= SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
break;
2024-09-09 08:57:42 +00:00
} /* switch (agcSettingsIf->ctrl_mode) */
2024-09-09 08:52:07 +00:00
/* always set the top to support
configurations without if-loop */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_INGAIN_TGT_MIN__A, p_agc_cfg->top);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int get_qam_signal_to_noise(struct drxk_state *state,
s32 *p_signal_to_noise)
2024-09-09 08:52:07 +00:00
{
int status = 0;
2024-09-09 08:57:42 +00:00
u16 qam_sl_err_power = 0; /* accum. error between
2024-09-09 08:52:07 +00:00
raw and sliced symbols */
2024-09-09 08:57:42 +00:00
u32 qam_sl_sig_power = 0; /* used for MER, depends of
2024-09-09 08:52:07 +00:00
QAM modulation */
2024-09-09 08:57:42 +00:00
u32 qam_sl_mer = 0; /* QAM MER */
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
/* MER calculation */
/* get the register value needed for MER */
2024-09-09 08:57:42 +00:00
status = read16(state, QAM_SL_ERR_POWER__A, &qam_sl_err_power);
2024-09-09 08:52:07 +00:00
if (status < 0) {
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return -EINVAL;
}
switch (state->props.modulation) {
case QAM_16:
2024-09-09 08:57:42 +00:00
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM16 << 2;
2024-09-09 08:52:07 +00:00
break;
case QAM_32:
2024-09-09 08:57:42 +00:00
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM32 << 2;
2024-09-09 08:52:07 +00:00
break;
case QAM_64:
2024-09-09 08:57:42 +00:00
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM64 << 2;
2024-09-09 08:52:07 +00:00
break;
case QAM_128:
2024-09-09 08:57:42 +00:00
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM128 << 2;
2024-09-09 08:52:07 +00:00
break;
default:
case QAM_256:
2024-09-09 08:57:42 +00:00
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM256 << 2;
2024-09-09 08:52:07 +00:00
break;
}
2024-09-09 08:57:42 +00:00
if (qam_sl_err_power > 0) {
qam_sl_mer = log10times100(qam_sl_sig_power) -
log10times100((u32) qam_sl_err_power);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
*p_signal_to_noise = qam_sl_mer;
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int get_dvbt_signal_to_noise(struct drxk_state *state,
s32 *p_signal_to_noise)
2024-09-09 08:52:07 +00:00
{
int status;
2024-09-09 08:57:42 +00:00
u16 reg_data = 0;
u32 eq_reg_td_sqr_err_i = 0;
u32 eq_reg_td_sqr_err_q = 0;
u16 eq_reg_td_sqr_err_exp = 0;
u16 eq_reg_td_tps_pwr_ofs = 0;
u16 eq_reg_td_req_smb_cnt = 0;
u32 tps_cnt = 0;
u32 sqr_err_iq = 0;
2024-09-09 08:52:07 +00:00
u32 a = 0;
u32 b = 0;
u32 c = 0;
2024-09-09 08:57:42 +00:00
u32 i_mer = 0;
u16 transmission_params = 0;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_EQ_TOP_TD_TPS_PWR_OFS__A,
&eq_reg_td_tps_pwr_ofs);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_EQ_TOP_TD_REQ_SMB_CNT__A,
&eq_reg_td_req_smb_cnt);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_EQ_TOP_TD_SQR_ERR_EXP__A,
&eq_reg_td_sqr_err_exp);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_EQ_TOP_TD_SQR_ERR_I__A,
&reg_data);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Extend SQR_ERR_I operational range */
2024-09-09 08:57:42 +00:00
eq_reg_td_sqr_err_i = (u32) reg_data;
if ((eq_reg_td_sqr_err_exp > 11) &&
(eq_reg_td_sqr_err_i < 0x00000FFFUL)) {
eq_reg_td_sqr_err_i += 0x00010000UL;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_EQ_TOP_TD_SQR_ERR_Q__A, &reg_data);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Extend SQR_ERR_Q operational range */
2024-09-09 08:57:42 +00:00
eq_reg_td_sqr_err_q = (u32) reg_data;
if ((eq_reg_td_sqr_err_exp > 11) &&
(eq_reg_td_sqr_err_q < 0x00000FFFUL))
eq_reg_td_sqr_err_q += 0x00010000UL;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_SC_RA_RAM_OP_PARAM__A,
&transmission_params);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Check input data for MER */
/* MER calculation (in 0.1 dB) without math.h */
2024-09-09 08:57:42 +00:00
if ((eq_reg_td_tps_pwr_ofs == 0) || (eq_reg_td_req_smb_cnt == 0))
i_mer = 0;
else if ((eq_reg_td_sqr_err_i + eq_reg_td_sqr_err_q) == 0) {
2024-09-09 08:52:07 +00:00
/* No error at all, this must be the HW reset value
* Apparently no first measurement yet
* Set MER to 0.0 */
2024-09-09 08:57:42 +00:00
i_mer = 0;
2024-09-09 08:52:07 +00:00
} else {
2024-09-09 08:57:42 +00:00
sqr_err_iq = (eq_reg_td_sqr_err_i + eq_reg_td_sqr_err_q) <<
eq_reg_td_sqr_err_exp;
if ((transmission_params &
2024-09-09 08:52:07 +00:00
OFDM_SC_RA_RAM_OP_PARAM_MODE__M)
== OFDM_SC_RA_RAM_OP_PARAM_MODE_2K)
2024-09-09 08:57:42 +00:00
tps_cnt = 17;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
tps_cnt = 68;
2024-09-09 08:52:07 +00:00
/* IMER = 100 * log10 (x)
2024-09-09 08:57:42 +00:00
where x = (eq_reg_td_tps_pwr_ofs^2 *
eq_reg_td_req_smb_cnt * tps_cnt)/sqr_err_iq
2024-09-09 08:52:07 +00:00
=> IMER = a + b -c
2024-09-09 08:57:42 +00:00
where a = 100 * log10 (eq_reg_td_tps_pwr_ofs^2)
b = 100 * log10 (eq_reg_td_req_smb_cnt * tps_cnt)
c = 100 * log10 (sqr_err_iq)
2024-09-09 08:52:07 +00:00
*/
/* log(x) x = 9bits * 9bits->18 bits */
2024-09-09 08:57:42 +00:00
a = log10times100(eq_reg_td_tps_pwr_ofs *
eq_reg_td_tps_pwr_ofs);
2024-09-09 08:52:07 +00:00
/* log(x) x = 16bits * 7bits->23 bits */
2024-09-09 08:57:42 +00:00
b = log10times100(eq_reg_td_req_smb_cnt * tps_cnt);
2024-09-09 08:52:07 +00:00
/* log(x) x = (16bits + 16bits) << 15 ->32 bits */
2024-09-09 08:57:42 +00:00
c = log10times100(sqr_err_iq);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
i_mer = a + b - c;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
*p_signal_to_noise = i_mer;
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int get_signal_to_noise(struct drxk_state *state, s32 *p_signal_to_noise)
2024-09-09 08:52:07 +00:00
{
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
*p_signal_to_noise = 0;
switch (state->m_operation_mode) {
2024-09-09 08:52:07 +00:00
case OM_DVBT:
2024-09-09 08:57:42 +00:00
return get_dvbt_signal_to_noise(state, p_signal_to_noise);
2024-09-09 08:52:07 +00:00
case OM_QAM_ITU_A:
case OM_QAM_ITU_C:
2024-09-09 08:57:42 +00:00
return get_qam_signal_to_noise(state, p_signal_to_noise);
2024-09-09 08:52:07 +00:00
default:
break;
}
return 0;
}
#if 0
2024-09-09 08:57:42 +00:00
static int get_dvbt_quality(struct drxk_state *state, s32 *p_quality)
2024-09-09 08:52:07 +00:00
{
/* SNR Values for quasi errorfree reception rom Nordig 2.2 */
int status = 0;
dprintk(1, "\n");
static s32 QE_SN[] = {
51, /* QPSK 1/2 */
69, /* QPSK 2/3 */
79, /* QPSK 3/4 */
89, /* QPSK 5/6 */
97, /* QPSK 7/8 */
108, /* 16-QAM 1/2 */
131, /* 16-QAM 2/3 */
146, /* 16-QAM 3/4 */
156, /* 16-QAM 5/6 */
160, /* 16-QAM 7/8 */
165, /* 64-QAM 1/2 */
187, /* 64-QAM 2/3 */
202, /* 64-QAM 3/4 */
216, /* 64-QAM 5/6 */
225, /* 64-QAM 7/8 */
};
2024-09-09 08:57:42 +00:00
*p_quality = 0;
2024-09-09 08:52:07 +00:00
do {
2024-09-09 08:57:42 +00:00
s32 signal_to_noise = 0;
u16 constellation = 0;
u16 code_rate = 0;
u32 signal_to_noise_rel;
u32 ber_quality;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
status = get_dvbt_signal_to_noise(state, &signal_to_noise);
2024-09-09 08:52:07 +00:00
if (status < 0)
break;
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_EQ_TOP_TD_TPS_CONST__A,
&constellation);
2024-09-09 08:52:07 +00:00
if (status < 0)
break;
2024-09-09 08:57:42 +00:00
constellation &= OFDM_EQ_TOP_TD_TPS_CONST__M;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_EQ_TOP_TD_TPS_CODE_HP__A,
&code_rate);
2024-09-09 08:52:07 +00:00
if (status < 0)
break;
2024-09-09 08:57:42 +00:00
code_rate &= OFDM_EQ_TOP_TD_TPS_CODE_HP__M;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (constellation > OFDM_EQ_TOP_TD_TPS_CONST_64QAM ||
code_rate > OFDM_EQ_TOP_TD_TPS_CODE_LP_7_8)
2024-09-09 08:52:07 +00:00
break;
2024-09-09 08:57:42 +00:00
signal_to_noise_rel = signal_to_noise -
QE_SN[constellation * 5 + code_rate];
ber_quality = 100;
if (signal_to_noise_rel < -70)
*p_quality = 0;
else if (signal_to_noise_rel < 30)
*p_quality = ((signal_to_noise_rel + 70) *
ber_quality) / 100;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
*p_quality = ber_quality;
2024-09-09 08:52:07 +00:00
} while (0);
return 0;
};
2024-09-09 08:57:42 +00:00
static int get_dvbc_quality(struct drxk_state *state, s32 *p_quality)
2024-09-09 08:52:07 +00:00
{
int status = 0;
2024-09-09 08:57:42 +00:00
*p_quality = 0;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
do {
2024-09-09 08:57:42 +00:00
u32 signal_to_noise = 0;
u32 ber_quality = 100;
u32 signal_to_noise_rel = 0;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
status = get_qam_signal_to_noise(state, &signal_to_noise);
2024-09-09 08:52:07 +00:00
if (status < 0)
break;
switch (state->props.modulation) {
case QAM_16:
2024-09-09 08:57:42 +00:00
signal_to_noise_rel = signal_to_noise - 200;
2024-09-09 08:52:07 +00:00
break;
case QAM_32:
2024-09-09 08:57:42 +00:00
signal_to_noise_rel = signal_to_noise - 230;
2024-09-09 08:52:07 +00:00
break; /* Not in NorDig */
case QAM_64:
2024-09-09 08:57:42 +00:00
signal_to_noise_rel = signal_to_noise - 260;
2024-09-09 08:52:07 +00:00
break;
case QAM_128:
2024-09-09 08:57:42 +00:00
signal_to_noise_rel = signal_to_noise - 290;
2024-09-09 08:52:07 +00:00
break;
default:
case QAM_256:
2024-09-09 08:57:42 +00:00
signal_to_noise_rel = signal_to_noise - 320;
2024-09-09 08:52:07 +00:00
break;
}
2024-09-09 08:57:42 +00:00
if (signal_to_noise_rel < -70)
*p_quality = 0;
else if (signal_to_noise_rel < 30)
*p_quality = ((signal_to_noise_rel + 70) *
ber_quality) / 100;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
*p_quality = ber_quality;
2024-09-09 08:52:07 +00:00
} while (0);
return status;
}
2024-09-09 08:57:42 +00:00
static int get_quality(struct drxk_state *state, s32 *p_quality)
2024-09-09 08:52:07 +00:00
{
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
switch (state->m_operation_mode) {
2024-09-09 08:52:07 +00:00
case OM_DVBT:
2024-09-09 08:57:42 +00:00
return get_dvbt_quality(state, p_quality);
2024-09-09 08:52:07 +00:00
case OM_QAM_ITU_A:
2024-09-09 08:57:42 +00:00
return get_dvbc_quality(state, p_quality);
2024-09-09 08:52:07 +00:00
default:
break;
}
return 0;
}
#endif
/* Free data ram in SIO HI */
#define SIO_HI_RA_RAM_USR_BEGIN__A 0x420040
#define SIO_HI_RA_RAM_USR_END__A 0x420060
#define DRXK_HI_ATOMIC_BUF_START (SIO_HI_RA_RAM_USR_BEGIN__A)
#define DRXK_HI_ATOMIC_BUF_END (SIO_HI_RA_RAM_USR_BEGIN__A + 7)
#define DRXK_HI_ATOMIC_READ SIO_HI_RA_RAM_PAR_3_ACP_RW_READ
#define DRXK_HI_ATOMIC_WRITE SIO_HI_RA_RAM_PAR_3_ACP_RW_WRITE
#define DRXDAP_FASI_ADDR2BLOCK(addr) (((addr) >> 22) & 0x3F)
#define DRXDAP_FASI_ADDR2BANK(addr) (((addr) >> 16) & 0x3F)
#define DRXDAP_FASI_ADDR2OFFSET(addr) ((addr) & 0x7FFF)
2024-09-09 08:57:42 +00:00
static int ConfigureI2CBridge(struct drxk_state *state, bool b_enable_bridge)
2024-09-09 08:52:07 +00:00
{
int status = -EINVAL;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->m_drxk_state == DRXK_UNINITIALIZED)
return 0;
if (state->m_drxk_state == DRXK_POWERED_DOWN)
2024-09-09 08:52:07 +00:00
goto error;
if (state->no_i2c_bridge)
return 0;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_HI_RA_RAM_PAR_1__A,
SIO_HI_RA_RAM_PAR_1_PAR1_SEC_KEY);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if (b_enable_bridge) {
status = write16(state, SIO_HI_RA_RAM_PAR_2__A,
SIO_HI_RA_RAM_PAR_2_BRD_CFG_CLOSED);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
} else {
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_HI_RA_RAM_PAR_2__A,
SIO_HI_RA_RAM_PAR_2_BRD_CFG_OPEN);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
2024-09-09 08:57:42 +00:00
status = hi_command(state, SIO_HI_RA_RAM_CMD_BRDCTRL, NULL);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int set_pre_saw(struct drxk_state *state,
struct s_cfg_pre_saw *p_pre_saw_cfg)
2024-09-09 08:52:07 +00:00
{
int status = -EINVAL;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if ((p_pre_saw_cfg == NULL)
|| (p_pre_saw_cfg->reference > IQM_AF_PDREF__M))
2024-09-09 08:52:07 +00:00
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, IQM_AF_PDREF__A, p_pre_saw_cfg->reference);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int bl_direct_cmd(struct drxk_state *state, u32 target_addr,
u16 rom_offset, u16 nr_of_elements, u32 time_out)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
u16 bl_status = 0;
u16 offset = (u16) ((target_addr >> 0) & 0x00FFFF);
u16 blockbank = (u16) ((target_addr >> 16) & 0x000FFF);
2024-09-09 08:52:07 +00:00
int status;
unsigned long end;
dprintk(1, "\n");
mutex_lock(&state->mutex);
status = write16(state, SIO_BL_MODE__A, SIO_BL_MODE_DIRECT);
if (status < 0)
goto error;
status = write16(state, SIO_BL_TGT_HDR__A, blockbank);
if (status < 0)
goto error;
status = write16(state, SIO_BL_TGT_ADDR__A, offset);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_BL_SRC_ADDR__A, rom_offset);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_BL_SRC_LEN__A, nr_of_elements);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, SIO_BL_ENABLE__A, SIO_BL_ENABLE_ON);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
end = jiffies + msecs_to_jiffies(time_out);
2024-09-09 08:52:07 +00:00
do {
2024-09-09 08:57:42 +00:00
status = read16(state, SIO_BL_STATUS__A, &bl_status);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
} while ((bl_status == 0x1) && time_is_after_jiffies(end));
if (bl_status == 0x1) {
pr_err("SIO not ready\n");
2024-09-09 08:52:07 +00:00
status = -EINVAL;
goto error2;
}
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
error2:
mutex_unlock(&state->mutex);
return status;
}
2024-09-09 08:57:42 +00:00
static int adc_sync_measurement(struct drxk_state *state, u16 *count)
2024-09-09 08:52:07 +00:00
{
u16 data = 0;
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
/* start measurement */
2024-09-09 08:52:07 +00:00
status = write16(state, IQM_AF_COMM_EXEC__A, IQM_AF_COMM_EXEC_ACTIVE);
if (status < 0)
goto error;
status = write16(state, IQM_AF_START_LOCK__A, 1);
if (status < 0)
goto error;
*count = 0;
status = read16(state, IQM_AF_PHASE0__A, &data);
if (status < 0)
goto error;
if (data == 127)
*count = *count + 1;
status = read16(state, IQM_AF_PHASE1__A, &data);
if (status < 0)
goto error;
if (data == 127)
*count = *count + 1;
status = read16(state, IQM_AF_PHASE2__A, &data);
if (status < 0)
goto error;
if (data == 127)
*count = *count + 1;
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int adc_synchronization(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
u16 count = 0;
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
status = adc_sync_measurement(state, &count);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
if (count == 1) {
2024-09-09 08:57:42 +00:00
/* Try sampling on a different edge */
u16 clk_neg = 0;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
status = read16(state, IQM_AF_CLKNEG__A, &clk_neg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if ((clk_neg & IQM_AF_CLKNEG_CLKNEGDATA__M) ==
2024-09-09 08:52:07 +00:00
IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_POS) {
2024-09-09 08:57:42 +00:00
clk_neg &= (~(IQM_AF_CLKNEG_CLKNEGDATA__M));
clk_neg |=
2024-09-09 08:52:07 +00:00
IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_NEG;
} else {
2024-09-09 08:57:42 +00:00
clk_neg &= (~(IQM_AF_CLKNEG_CLKNEGDATA__M));
clk_neg |=
2024-09-09 08:52:07 +00:00
IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_POS;
}
2024-09-09 08:57:42 +00:00
status = write16(state, IQM_AF_CLKNEG__A, clk_neg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = adc_sync_measurement(state, &count);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
if (count < 2)
status = -EINVAL;
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int set_frequency_shifter(struct drxk_state *state,
u16 intermediate_freqk_hz,
s32 tuner_freq_offset, bool is_dtv)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
bool select_pos_image = false;
u32 rf_freq_residual = tuner_freq_offset;
u32 fm_frequency_shift = 0;
bool tuner_mirror = !state->m_b_mirror_freq_spect;
u32 adc_freq;
bool adc_flip;
2024-09-09 08:52:07 +00:00
int status;
2024-09-09 08:57:42 +00:00
u32 if_freq_actual;
u32 sampling_frequency = (u32) (state->m_sys_clock_freq / 3);
u32 frequency_shift;
bool image_to_select;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
/*
Program frequency shifter
No need to account for mirroring on RF
*/
2024-09-09 08:57:42 +00:00
if (is_dtv) {
if ((state->m_operation_mode == OM_QAM_ITU_A) ||
(state->m_operation_mode == OM_QAM_ITU_C) ||
(state->m_operation_mode == OM_DVBT))
select_pos_image = true;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
select_pos_image = false;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
if (tuner_mirror)
2024-09-09 08:52:07 +00:00
/* tuner doesn't mirror */
2024-09-09 08:57:42 +00:00
if_freq_actual = intermediate_freqk_hz +
rf_freq_residual + fm_frequency_shift;
2024-09-09 08:52:07 +00:00
else
/* tuner mirrors */
2024-09-09 08:57:42 +00:00
if_freq_actual = intermediate_freqk_hz -
rf_freq_residual - fm_frequency_shift;
if (if_freq_actual > sampling_frequency / 2) {
2024-09-09 08:52:07 +00:00
/* adc mirrors */
2024-09-09 08:57:42 +00:00
adc_freq = sampling_frequency - if_freq_actual;
adc_flip = true;
2024-09-09 08:52:07 +00:00
} else {
/* adc doesn't mirror */
2024-09-09 08:57:42 +00:00
adc_freq = if_freq_actual;
adc_flip = false;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
frequency_shift = adc_freq;
image_to_select = state->m_rfmirror ^ tuner_mirror ^
adc_flip ^ select_pos_image;
state->m_iqm_fs_rate_ofs =
Frac28a((frequency_shift), sampling_frequency);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (image_to_select)
state->m_iqm_fs_rate_ofs = ~state->m_iqm_fs_rate_ofs + 1;
2024-09-09 08:52:07 +00:00
/* Program frequency shifter with tuner offset compensation */
2024-09-09 08:57:42 +00:00
/* frequency_shift += tuner_freq_offset; TODO */
2024-09-09 08:52:07 +00:00
status = write32(state, IQM_FS_RATE_OFS_LO__A,
2024-09-09 08:57:42 +00:00
state->m_iqm_fs_rate_ofs);
2024-09-09 08:52:07 +00:00
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int init_agc(struct drxk_state *state, bool is_dtv)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
u16 ingain_tgt = 0;
u16 ingain_tgt_min = 0;
u16 ingain_tgt_max = 0;
u16 clp_cyclen = 0;
u16 clp_sum_min = 0;
u16 clp_dir_to = 0;
u16 sns_sum_min = 0;
u16 sns_sum_max = 0;
u16 clp_sum_max = 0;
u16 sns_dir_to = 0;
u16 ki_innergain_min = 0;
u16 if_iaccu_hi_tgt = 0;
u16 if_iaccu_hi_tgt_min = 0;
u16 if_iaccu_hi_tgt_max = 0;
2024-09-09 08:52:07 +00:00
u16 data = 0;
2024-09-09 08:57:42 +00:00
u16 fast_clp_ctrl_delay = 0;
u16 clp_ctrl_mode = 0;
2024-09-09 08:52:07 +00:00
int status = 0;
dprintk(1, "\n");
/* Common settings */
2024-09-09 08:57:42 +00:00
sns_sum_max = 1023;
if_iaccu_hi_tgt_min = 2047;
clp_cyclen = 500;
clp_sum_max = 1023;
2024-09-09 08:52:07 +00:00
/* AGCInit() not available for DVBT; init done in microcode */
2024-09-09 08:57:42 +00:00
if (!is_qam(state)) {
pr_err("%s: mode %d is not DVB-C\n",
__func__, state->m_operation_mode);
2024-09-09 08:52:07 +00:00
return -EINVAL;
}
/* FIXME: Analog TV AGC require different settings */
/* Standard specific settings */
2024-09-09 08:57:42 +00:00
clp_sum_min = 8;
clp_dir_to = (u16) -9;
clp_ctrl_mode = 0;
sns_sum_min = 8;
sns_dir_to = (u16) -9;
ki_innergain_min = (u16) -1030;
if_iaccu_hi_tgt_max = 0x2380;
if_iaccu_hi_tgt = 0x2380;
ingain_tgt_min = 0x0511;
ingain_tgt = 0x0511;
ingain_tgt_max = 5119;
fast_clp_ctrl_delay = state->m_qam_if_agc_cfg.fast_clip_ctrl_delay;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_FAST_CLP_CTRL_DELAY__A,
fast_clp_ctrl_delay);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_CLP_CTRL_MODE__A, clp_ctrl_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_INGAIN_TGT__A, ingain_tgt);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_INGAIN_TGT_MIN__A, ingain_tgt_min);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_INGAIN_TGT_MAX__A, ingain_tgt_max);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MIN__A,
if_iaccu_hi_tgt_min);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
if_iaccu_hi_tgt_max);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_IF_IACCU_HI__A, 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_IF_IACCU_LO__A, 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_RF_IACCU_HI__A, 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_RF_IACCU_LO__A, 0);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_CLP_SUM_MAX__A, clp_sum_max);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_SNS_SUM_MAX__A, sns_sum_max);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_KI_INNERGAIN_MIN__A,
ki_innergain_min);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_IF_IACCU_HI_TGT__A,
if_iaccu_hi_tgt);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_CLP_CYCLEN__A, clp_cyclen);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_RF_SNS_DEV_MAX__A, 1023);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_RF_SNS_DEV_MIN__A, (u16) -1023);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_FAST_SNS_CTRL_DELAY__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_KI_MAXMINGAIN_TH__A, 20);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_CLP_SUM_MIN__A, clp_sum_min);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_SNS_SUM_MIN__A, sns_sum_min);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_CLP_DIR_TO__A, clp_dir_to);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_SNS_DIR_TO__A, sns_dir_to);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_KI_MINGAIN__A, 0x7fff);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_KI_MAXGAIN__A, 0x0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_KI_MIN__A, 0x0117);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_KI_MAX__A, 0x0657);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_CLP_SUM__A, 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_CLP_CYCCNT__A, 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_CLP_DIR_WD__A, 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_CLP_DIR_STP__A, 1);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_SNS_SUM__A, 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_SNS_CYCCNT__A, 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_SNS_DIR_WD__A, 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_SNS_DIR_STP__A, 1);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_SNS_CYCLEN__A, 500);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_AGC_KI_CYCLEN__A, 500);
if (status < 0)
goto error;
/* Initialize inner-loop KI gain factors */
status = read16(state, SCU_RAM_AGC_KI__A, &data);
if (status < 0)
goto error;
data = 0x0657;
data &= ~SCU_RAM_AGC_KI_RF__M;
data |= (DRXK_KI_RAGC_QAM << SCU_RAM_AGC_KI_RF__B);
data &= ~SCU_RAM_AGC_KI_IF__M;
data |= (DRXK_KI_IAGC_QAM << SCU_RAM_AGC_KI_IF__B);
status = write16(state, SCU_RAM_AGC_KI__A, data);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int dvbtqam_get_acc_pkt_err(struct drxk_state *state, u16 *packet_err)
2024-09-09 08:52:07 +00:00
{
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (packet_err == NULL)
2024-09-09 08:52:07 +00:00
status = write16(state, SCU_RAM_FEC_ACCUM_PKT_FAILURES__A, 0);
else
2024-09-09 08:57:42 +00:00
status = read16(state, SCU_RAM_FEC_ACCUM_PKT_FAILURES__A,
packet_err);
2024-09-09 08:52:07 +00:00
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int dvbt_sc_command(struct drxk_state *state,
2024-09-09 08:52:07 +00:00
u16 cmd, u16 subcmd,
u16 param0, u16 param1, u16 param2,
u16 param3, u16 param4)
{
2024-09-09 08:57:42 +00:00
u16 cur_cmd = 0;
u16 err_code = 0;
u16 retry_cnt = 0;
u16 sc_exec = 0;
2024-09-09 08:52:07 +00:00
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_SC_COMM_EXEC__A, &sc_exec);
if (sc_exec != 1) {
2024-09-09 08:52:07 +00:00
/* SC is not running */
status = -EINVAL;
}
if (status < 0)
goto error;
/* Wait until sc is ready to receive command */
2024-09-09 08:57:42 +00:00
retry_cnt = 0;
2024-09-09 08:52:07 +00:00
do {
2024-09-09 08:57:42 +00:00
usleep_range(1000, 2000);
status = read16(state, OFDM_SC_RA_RAM_CMD__A, &cur_cmd);
retry_cnt++;
} while ((cur_cmd != 0) && (retry_cnt < DRXK_MAX_RETRIES));
if (retry_cnt >= DRXK_MAX_RETRIES && (status < 0))
2024-09-09 08:52:07 +00:00
goto error;
/* Write sub-command */
switch (cmd) {
/* All commands using sub-cmd */
case OFDM_SC_RA_RAM_CMD_PROC_START:
case OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM:
case OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM:
status = write16(state, OFDM_SC_RA_RAM_CMD_ADDR__A, subcmd);
if (status < 0)
goto error;
break;
default:
/* Do nothing */
break;
}
/* Write needed parameters and the command */
switch (cmd) {
/* All commands using 5 parameters */
/* All commands using 4 parameters */
/* All commands using 3 parameters */
/* All commands using 2 parameters */
case OFDM_SC_RA_RAM_CMD_PROC_START:
case OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM:
case OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM:
status = write16(state, OFDM_SC_RA_RAM_PARAM1__A, param1);
/* All commands using 1 parameters */
case OFDM_SC_RA_RAM_CMD_SET_ECHO_TIMING:
case OFDM_SC_RA_RAM_CMD_USER_IO:
status = write16(state, OFDM_SC_RA_RAM_PARAM0__A, param0);
/* All commands using 0 parameters */
case OFDM_SC_RA_RAM_CMD_GET_OP_PARAM:
case OFDM_SC_RA_RAM_CMD_NULL:
/* Write command */
status = write16(state, OFDM_SC_RA_RAM_CMD__A, cmd);
break;
default:
/* Unknown command */
status = -EINVAL;
}
if (status < 0)
goto error;
/* Wait until sc is ready processing command */
2024-09-09 08:57:42 +00:00
retry_cnt = 0;
2024-09-09 08:52:07 +00:00
do {
2024-09-09 08:57:42 +00:00
usleep_range(1000, 2000);
status = read16(state, OFDM_SC_RA_RAM_CMD__A, &cur_cmd);
retry_cnt++;
} while ((cur_cmd != 0) && (retry_cnt < DRXK_MAX_RETRIES));
if (retry_cnt >= DRXK_MAX_RETRIES && (status < 0))
2024-09-09 08:52:07 +00:00
goto error;
/* Check for illegal cmd */
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_SC_RA_RAM_CMD_ADDR__A, &err_code);
if (err_code == 0xFFFF) {
2024-09-09 08:52:07 +00:00
/* illegal command */
status = -EINVAL;
}
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
/* Retrieve results parameters from SC */
2024-09-09 08:52:07 +00:00
switch (cmd) {
/* All commands yielding 5 results */
/* All commands yielding 4 results */
/* All commands yielding 3 results */
/* All commands yielding 2 results */
/* All commands yielding 1 result */
case OFDM_SC_RA_RAM_CMD_USER_IO:
case OFDM_SC_RA_RAM_CMD_GET_OP_PARAM:
status = read16(state, OFDM_SC_RA_RAM_PARAM0__A, &(param0));
/* All commands yielding 0 results */
case OFDM_SC_RA_RAM_CMD_SET_ECHO_TIMING:
case OFDM_SC_RA_RAM_CMD_SET_TIMER:
case OFDM_SC_RA_RAM_CMD_PROC_START:
case OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM:
case OFDM_SC_RA_RAM_CMD_PROGRAM_PARAM:
case OFDM_SC_RA_RAM_CMD_NULL:
break;
default:
/* Unknown command */
status = -EINVAL;
break;
} /* switch (cmd->cmd) */
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int power_up_dvbt(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
enum drx_power_mode power_mode = DRX_POWER_UP;
2024-09-09 08:52:07 +00:00
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
status = ctrl_power_mode(state, &power_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int dvbt_ctrl_set_inc_enable(struct drxk_state *state, bool *enabled)
2024-09-09 08:52:07 +00:00
{
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (*enabled)
2024-09-09 08:52:07 +00:00
status = write16(state, IQM_CF_BYPASSDET__A, 0);
else
status = write16(state, IQM_CF_BYPASSDET__A, 1);
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
#define DEFAULT_FR_THRES_8K 4000
2024-09-09 08:57:42 +00:00
static int dvbt_ctrl_set_fr_enable(struct drxk_state *state, bool *enabled)
2024-09-09 08:52:07 +00:00
{
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (*enabled) {
2024-09-09 08:52:07 +00:00
/* write mask to 1 */
status = write16(state, OFDM_SC_RA_RAM_FR_THRES_8K__A,
DEFAULT_FR_THRES_8K);
} else {
/* write mask to 0 */
status = write16(state, OFDM_SC_RA_RAM_FR_THRES_8K__A, 0);
}
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int dvbt_ctrl_set_echo_threshold(struct drxk_state *state,
struct drxk_cfg_dvbt_echo_thres_t *echo_thres)
2024-09-09 08:52:07 +00:00
{
u16 data = 0;
int status;
dprintk(1, "\n");
status = read16(state, OFDM_SC_RA_RAM_ECHO_THRES__A, &data);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
switch (echo_thres->fft_mode) {
2024-09-09 08:52:07 +00:00
case DRX_FFTMODE_2K:
data &= ~OFDM_SC_RA_RAM_ECHO_THRES_2K__M;
2024-09-09 08:57:42 +00:00
data |= ((echo_thres->threshold <<
2024-09-09 08:52:07 +00:00
OFDM_SC_RA_RAM_ECHO_THRES_2K__B)
& (OFDM_SC_RA_RAM_ECHO_THRES_2K__M));
break;
case DRX_FFTMODE_8K:
data &= ~OFDM_SC_RA_RAM_ECHO_THRES_8K__M;
2024-09-09 08:57:42 +00:00
data |= ((echo_thres->threshold <<
2024-09-09 08:52:07 +00:00
OFDM_SC_RA_RAM_ECHO_THRES_8K__B)
& (OFDM_SC_RA_RAM_ECHO_THRES_8K__M));
break;
default:
return -EINVAL;
}
status = write16(state, OFDM_SC_RA_RAM_ECHO_THRES__A, data);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int dvbt_ctrl_set_sqi_speed(struct drxk_state *state,
enum drxk_cfg_dvbt_sqi_speed *speed)
2024-09-09 08:52:07 +00:00
{
int status = -EINVAL;
dprintk(1, "\n");
switch (*speed) {
case DRXK_DVBT_SQI_SPEED_FAST:
case DRXK_DVBT_SQI_SPEED_MEDIUM:
case DRXK_DVBT_SQI_SPEED_SLOW:
break;
default:
goto error;
}
status = write16(state, SCU_RAM_FEC_PRE_RS_BER_FILTER_SH__A,
(u16) *speed);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief Activate DVBT specific presets
* \param demod instance of demodulator.
* \return DRXStatus_t.
*
* Called in DVBTSetStandard
*
*/
2024-09-09 08:57:42 +00:00
static int dvbt_activate_presets(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status;
bool setincenable = false;
bool setfrenable = true;
2024-09-09 08:57:42 +00:00
struct drxk_cfg_dvbt_echo_thres_t echo_thres2k = { 0, DRX_FFTMODE_2K };
struct drxk_cfg_dvbt_echo_thres_t echo_thres8k = { 0, DRX_FFTMODE_8K };
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
status = dvbt_ctrl_set_inc_enable(state, &setincenable);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = dvbt_ctrl_set_fr_enable(state, &setfrenable);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = dvbt_ctrl_set_echo_threshold(state, &echo_thres2k);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = dvbt_ctrl_set_echo_threshold(state, &echo_thres8k);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_AGC_INGAIN_TGT_MAX__A,
state->m_dvbt_if_agc_cfg.ingain_tgt_max);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief Initialize channelswitch-independent settings for DVBT.
* \param demod instance of demodulator.
* \return DRXStatus_t.
*
* For ROM code channel filter taps are loaded from the bootloader. For microcode
* the DVB-T taps from the drxk_filters.h are used.
*/
2024-09-09 08:57:42 +00:00
static int set_dvbt_standard(struct drxk_state *state,
enum operation_mode o_mode)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
u16 cmd_result = 0;
2024-09-09 08:52:07 +00:00
u16 data = 0;
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
power_up_dvbt(state);
2024-09-09 08:52:07 +00:00
/* added antenna switch */
2024-09-09 08:57:42 +00:00
switch_antenna_to_dvbt(state);
2024-09-09 08:52:07 +00:00
/* send OFDM reset command */
2024-09-09 08:57:42 +00:00
status = scu_command(state,
SCU_RAM_COMMAND_STANDARD_OFDM
| SCU_RAM_COMMAND_CMD_DEMOD_RESET,
0, NULL, 1, &cmd_result);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* send OFDM setenv command */
2024-09-09 08:57:42 +00:00
status = scu_command(state, SCU_RAM_COMMAND_STANDARD_OFDM
| SCU_RAM_COMMAND_CMD_DEMOD_SET_ENV,
0, NULL, 1, &cmd_result);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* reset datapath for OFDM, processors first */
status = write16(state, OFDM_SC_COMM_EXEC__A, OFDM_SC_COMM_EXEC_STOP);
if (status < 0)
goto error;
status = write16(state, OFDM_LC_COMM_EXEC__A, OFDM_LC_COMM_EXEC_STOP);
if (status < 0)
goto error;
status = write16(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_STOP);
if (status < 0)
goto error;
/* IQM setup */
/* synchronize on ofdstate->m_festart */
status = write16(state, IQM_AF_UPD_SEL__A, 1);
if (status < 0)
goto error;
/* window size for clipping ADC detection */
status = write16(state, IQM_AF_CLP_LEN__A, 0);
if (status < 0)
goto error;
/* window size for for sense pre-SAW detection */
status = write16(state, IQM_AF_SNS_LEN__A, 0);
if (status < 0)
goto error;
/* sense threshold for sense pre-SAW detection */
status = write16(state, IQM_AF_AMUX__A, IQM_AF_AMUX_SIGNAL2ADC);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = set_iqm_af(state, true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, IQM_AF_AGC_RF__A, 0);
if (status < 0)
goto error;
/* Impulse noise cruncher setup */
status = write16(state, IQM_AF_INC_LCT__A, 0); /* crunch in IQM_CF */
if (status < 0)
goto error;
status = write16(state, IQM_CF_DET_LCT__A, 0); /* detect in IQM_CF */
if (status < 0)
goto error;
status = write16(state, IQM_CF_WND_LEN__A, 3); /* peak detector window length */
if (status < 0)
goto error;
status = write16(state, IQM_RC_STRETCH__A, 16);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, IQM_CF_OUT_ENA__A, 0x4); /* enable output 2 */
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, IQM_CF_DS_ENA__A, 0x4); /* decimate output 2 */
if (status < 0)
goto error;
status = write16(state, IQM_CF_SCALE__A, 1600);
if (status < 0)
goto error;
status = write16(state, IQM_CF_SCALE_SH__A, 0);
if (status < 0)
goto error;
/* virtual clipping threshold for clipping ADC detection */
status = write16(state, IQM_AF_CLP_TH__A, 448);
if (status < 0)
goto error;
status = write16(state, IQM_CF_DATATH__A, 495); /* crunching threshold */
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = bl_chain_cmd(state, DRXK_BL_ROM_OFFSET_TAPS_DVBT,
DRXK_BLCC_NR_ELEMENTS_TAPS, DRXK_BLC_TIMEOUT);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, IQM_CF_PKDTH__A, 2); /* peak detector threshold */
if (status < 0)
goto error;
status = write16(state, IQM_CF_POW_MEAS_LEN__A, 2);
if (status < 0)
goto error;
/* enable power measurement interrupt */
status = write16(state, IQM_CF_COMM_INT_MSK__A, 1);
if (status < 0)
goto error;
status = write16(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_ACTIVE);
if (status < 0)
goto error;
/* IQM will not be reset from here, sync ADC and update/init AGC */
2024-09-09 08:57:42 +00:00
status = adc_synchronization(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = set_pre_saw(state, &state->m_dvbt_pre_saw_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Halt SCU to enable safe non-atomic accesses */
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = set_agc_rf(state, &state->m_dvbt_rf_agc_cfg, true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = set_agc_if(state, &state->m_dvbt_if_agc_cfg, true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Set Noise Estimation notch width and enable DC fix */
status = read16(state, OFDM_SC_RA_RAM_CONFIG__A, &data);
if (status < 0)
goto error;
data |= OFDM_SC_RA_RAM_CONFIG_NE_FIX_ENABLE__M;
status = write16(state, OFDM_SC_RA_RAM_CONFIG__A, data);
if (status < 0)
goto error;
/* Activate SCU to enable SCU commands */
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if (!state->m_drxk_a3_rom_code) {
/* AGCInit() is not done for DVBT, so set agcfast_clip_ctrl_delay */
status = write16(state, SCU_RAM_AGC_FAST_CLP_CTRL_DELAY__A,
state->m_dvbt_if_agc_cfg.fast_clip_ctrl_delay);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
/* OFDM_SC setup */
#ifdef COMPILE_FOR_NONRT
status = write16(state, OFDM_SC_RA_RAM_BE_OPT_DELAY__A, 1);
if (status < 0)
goto error;
status = write16(state, OFDM_SC_RA_RAM_BE_OPT_INIT_DELAY__A, 2);
if (status < 0)
goto error;
#endif
/* FEC setup */
status = write16(state, FEC_DI_INPUT_CTL__A, 1); /* OFDM input */
if (status < 0)
goto error;
#ifdef COMPILE_FOR_NONRT
status = write16(state, FEC_RS_MEASUREMENT_PERIOD__A, 0x400);
if (status < 0)
goto error;
#else
status = write16(state, FEC_RS_MEASUREMENT_PERIOD__A, 0x1000);
if (status < 0)
goto error;
#endif
status = write16(state, FEC_RS_MEASUREMENT_PRESCALE__A, 0x0001);
if (status < 0)
goto error;
/* Setup MPEG bus */
2024-09-09 08:57:42 +00:00
status = mpegts_dto_setup(state, OM_DVBT);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Set DVBT Presets */
2024-09-09 08:57:42 +00:00
status = dvbt_activate_presets(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
2024-09-09 08:57:42 +00:00
* \brief start dvbt demodulating for channel.
2024-09-09 08:52:07 +00:00
* \param demod instance of demodulator.
* \return DRXStatus_t.
*/
2024-09-09 08:57:42 +00:00
static int dvbt_start(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
u16 param1;
int status;
2024-09-09 08:57:42 +00:00
/* drxk_ofdm_sc_cmd_t scCmd; */
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
/* start correct processes to get in lock */
2024-09-09 08:52:07 +00:00
/* DRXK: OFDM_SC_RA_RAM_PROC_LOCKTRACK is no longer in mapfile! */
param1 = OFDM_SC_RA_RAM_LOCKTRACK_MIN;
2024-09-09 08:57:42 +00:00
status = dvbt_sc_command(state, OFDM_SC_RA_RAM_CMD_PROC_START, 0,
OFDM_SC_RA_RAM_SW_EVENT_RUN_NMASK__M, param1,
0, 0, 0);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
/* start FEC OC */
status = mpegts_start(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, FEC_COMM_EXEC__A, FEC_COMM_EXEC_ACTIVE);
if (status < 0)
goto error;
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief Set up dvbt demodulator for channel.
* \param demod instance of demodulator.
* \return DRXStatus_t.
* // original DVBTSetChannel()
*/
2024-09-09 08:57:42 +00:00
static int set_dvbt(struct drxk_state *state, u16 intermediate_freqk_hz,
s32 tuner_freq_offset)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
u16 cmd_result = 0;
u16 transmission_params = 0;
u16 operation_mode = 0;
u32 iqm_rc_rate_ofs = 0;
2024-09-09 08:52:07 +00:00
u32 bandwidth = 0;
u16 param1;
int status;
2024-09-09 08:57:42 +00:00
dprintk(1, "IF =%d, TFO = %d\n",
intermediate_freqk_hz, tuner_freq_offset);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
status = scu_command(state, SCU_RAM_COMMAND_STANDARD_OFDM
| SCU_RAM_COMMAND_CMD_DEMOD_STOP,
0, NULL, 1, &cmd_result);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Halt SCU to enable safe non-atomic accesses */
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD);
if (status < 0)
goto error;
/* Stop processors */
status = write16(state, OFDM_SC_COMM_EXEC__A, OFDM_SC_COMM_EXEC_STOP);
if (status < 0)
goto error;
status = write16(state, OFDM_LC_COMM_EXEC__A, OFDM_LC_COMM_EXEC_STOP);
if (status < 0)
goto error;
/* Mandatory fix, always stop CP, required to set spl offset back to
hardware default (is set to 0 by ucode during pilot detection */
status = write16(state, OFDM_CP_COMM_EXEC__A, OFDM_CP_COMM_EXEC_STOP);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
/*== Write channel settings to device ================================*/
2024-09-09 08:52:07 +00:00
/* mode */
switch (state->props.transmission_mode) {
case TRANSMISSION_MODE_AUTO:
default:
2024-09-09 08:57:42 +00:00
operation_mode |= OFDM_SC_RA_RAM_OP_AUTO_MODE__M;
2024-09-09 08:52:07 +00:00
/* fall through , try first guess DRX_FFTMODE_8K */
case TRANSMISSION_MODE_8K:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_MODE_8K;
2024-09-09 08:52:07 +00:00
break;
case TRANSMISSION_MODE_2K:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_MODE_2K;
2024-09-09 08:52:07 +00:00
break;
}
/* guard */
switch (state->props.guard_interval) {
default:
case GUARD_INTERVAL_AUTO:
2024-09-09 08:57:42 +00:00
operation_mode |= OFDM_SC_RA_RAM_OP_AUTO_GUARD__M;
2024-09-09 08:52:07 +00:00
/* fall through , try first guess DRX_GUARD_1DIV4 */
case GUARD_INTERVAL_1_4:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_4;
2024-09-09 08:52:07 +00:00
break;
case GUARD_INTERVAL_1_32:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_32;
2024-09-09 08:52:07 +00:00
break;
case GUARD_INTERVAL_1_16:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_16;
2024-09-09 08:52:07 +00:00
break;
case GUARD_INTERVAL_1_8:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_GUARD_8;
2024-09-09 08:52:07 +00:00
break;
}
/* hierarchy */
switch (state->props.hierarchy) {
case HIERARCHY_AUTO:
case HIERARCHY_NONE:
default:
2024-09-09 08:57:42 +00:00
operation_mode |= OFDM_SC_RA_RAM_OP_AUTO_HIER__M;
2024-09-09 08:52:07 +00:00
/* fall through , try first guess SC_RA_RAM_OP_PARAM_HIER_NO */
2024-09-09 08:57:42 +00:00
/* transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_HIER_NO; */
2024-09-09 08:52:07 +00:00
/* break; */
case HIERARCHY_1:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_HIER_A1;
2024-09-09 08:52:07 +00:00
break;
case HIERARCHY_2:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_HIER_A2;
2024-09-09 08:52:07 +00:00
break;
case HIERARCHY_4:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_HIER_A4;
2024-09-09 08:52:07 +00:00
break;
}
/* modulation */
switch (state->props.modulation) {
case QAM_AUTO:
default:
2024-09-09 08:57:42 +00:00
operation_mode |= OFDM_SC_RA_RAM_OP_AUTO_CONST__M;
2024-09-09 08:52:07 +00:00
/* fall through , try first guess DRX_CONSTELLATION_QAM64 */
case QAM_64:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_CONST_QAM64;
2024-09-09 08:52:07 +00:00
break;
case QPSK:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_CONST_QPSK;
2024-09-09 08:52:07 +00:00
break;
case QAM_16:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_CONST_QAM16;
2024-09-09 08:52:07 +00:00
break;
}
#if 0
2024-09-09 08:57:42 +00:00
/* No hierarchical channels support in BDA */
2024-09-09 08:52:07 +00:00
/* Priority (only for hierarchical channels) */
switch (channel->priority) {
case DRX_PRIORITY_LOW:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_PRIO_LO;
WR16(dev_addr, OFDM_EC_SB_PRIOR__A,
2024-09-09 08:52:07 +00:00
OFDM_EC_SB_PRIOR_LO);
break;
case DRX_PRIORITY_HIGH:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_PRIO_HI;
WR16(dev_addr, OFDM_EC_SB_PRIOR__A,
2024-09-09 08:52:07 +00:00
OFDM_EC_SB_PRIOR_HI));
break;
case DRX_PRIORITY_UNKNOWN: /* fall through */
default:
status = -EINVAL;
goto error;
}
#else
/* Set Priorty high */
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_PRIO_HI;
2024-09-09 08:52:07 +00:00
status = write16(state, OFDM_EC_SB_PRIOR__A, OFDM_EC_SB_PRIOR_HI);
if (status < 0)
goto error;
#endif
/* coderate */
switch (state->props.code_rate_HP) {
case FEC_AUTO:
default:
2024-09-09 08:57:42 +00:00
operation_mode |= OFDM_SC_RA_RAM_OP_AUTO_RATE__M;
2024-09-09 08:52:07 +00:00
/* fall through , try first guess DRX_CODERATE_2DIV3 */
case FEC_2_3:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_RATE_2_3;
2024-09-09 08:52:07 +00:00
break;
case FEC_1_2:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_RATE_1_2;
2024-09-09 08:52:07 +00:00
break;
case FEC_3_4:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_RATE_3_4;
2024-09-09 08:52:07 +00:00
break;
case FEC_5_6:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_RATE_5_6;
2024-09-09 08:52:07 +00:00
break;
case FEC_7_8:
2024-09-09 08:57:42 +00:00
transmission_params |= OFDM_SC_RA_RAM_OP_PARAM_RATE_7_8;
2024-09-09 08:52:07 +00:00
break;
}
2024-09-09 08:57:42 +00:00
/*
* SAW filter selection: normaly not necesarry, but if wanted
* the application can select a SAW filter via the driver by
* using UIOs
*/
2024-09-09 08:52:07 +00:00
/* First determine real bandwidth (Hz) */
/* Also set delay for impulse noise cruncher */
2024-09-09 08:57:42 +00:00
/*
* Also set parameters for EC_OC fix, note EC_OC_REG_TMD_HIL_MAR is
* changed by SC for fix for some 8K,1/8 guard but is restored by
* InitEC and ResetEC functions
*/
2024-09-09 08:52:07 +00:00
switch (state->props.bandwidth_hz) {
case 0:
state->props.bandwidth_hz = 8000000;
/* fall though */
case 8000000:
bandwidth = DRXK_BANDWIDTH_8MHZ_IN_HZ;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A,
3052);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* cochannel protection for PAL 8 MHz */
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A,
7);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A,
7);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A,
7);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A,
1);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
case 7000000:
bandwidth = DRXK_BANDWIDTH_7MHZ_IN_HZ;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A,
3491);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* cochannel protection for PAL 7 MHz */
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A,
8);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A,
8);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A,
4);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A,
1);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
case 6000000:
bandwidth = DRXK_BANDWIDTH_6MHZ_IN_HZ;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_SRMM_FIX_FACT_8K__A,
4073);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* cochannel protection for NTSC 6 MHz */
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_LEFT__A,
19);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_8K_PER_RIGHT__A,
19);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_LEFT__A,
14);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, OFDM_SC_RA_RAM_NI_INIT_2K_PER_RIGHT__A,
1);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
break;
default:
status = -EINVAL;
goto error;
}
2024-09-09 08:57:42 +00:00
if (iqm_rc_rate_ofs == 0) {
2024-09-09 08:52:07 +00:00
/* Now compute IQM_RC_RATE_OFS
(((SysFreq/BandWidth)/2)/2) -1) * 2^23)
=>
((SysFreq / BandWidth) * (2^21)) - (2^23)
*/
/* (SysFreq / BandWidth) * (2^28) */
2024-09-09 08:57:42 +00:00
/*
* assert (MAX(sysClk)/MIN(bandwidth) < 16)
* => assert(MAX(sysClk) < 16*MIN(bandwidth))
* => assert(109714272 > 48000000) = true
* so Frac 28 can be used
*/
iqm_rc_rate_ofs = Frac28a((u32)
((state->m_sys_clock_freq *
2024-09-09 08:52:07 +00:00
1000) / 3), bandwidth);
2024-09-09 08:57:42 +00:00
/* (SysFreq / BandWidth) * (2^21), rounding before truncating */
if ((iqm_rc_rate_ofs & 0x7fL) >= 0x40)
iqm_rc_rate_ofs += 0x80L;
iqm_rc_rate_ofs = iqm_rc_rate_ofs >> 7;
2024-09-09 08:52:07 +00:00
/* ((SysFreq / BandWidth) * (2^21)) - (2^23) */
2024-09-09 08:57:42 +00:00
iqm_rc_rate_ofs = iqm_rc_rate_ofs - (1 << 23);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
iqm_rc_rate_ofs &=
2024-09-09 08:52:07 +00:00
((((u32) IQM_RC_RATE_OFS_HI__M) <<
IQM_RC_RATE_OFS_LO__W) | IQM_RC_RATE_OFS_LO__M);
2024-09-09 08:57:42 +00:00
status = write32(state, IQM_RC_RATE_OFS_LO__A, iqm_rc_rate_ofs);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Bandwidth setting done */
#if 0
2024-09-09 08:57:42 +00:00
status = dvbt_set_frequency_shift(demod, channel, tuner_offset);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
#endif
2024-09-09 08:57:42 +00:00
status = set_frequency_shifter(state, intermediate_freqk_hz,
tuner_freq_offset, true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
/*== start SC, write channel settings to SC ==========================*/
2024-09-09 08:52:07 +00:00
/* Activate SCU to enable SCU commands */
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE);
if (status < 0)
goto error;
/* Enable SC after setting all other parameters */
status = write16(state, OFDM_SC_COMM_STATE__A, 0);
if (status < 0)
goto error;
status = write16(state, OFDM_SC_COMM_EXEC__A, 1);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = scu_command(state, SCU_RAM_COMMAND_STANDARD_OFDM
| SCU_RAM_COMMAND_CMD_DEMOD_START,
0, NULL, 1, &cmd_result);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Write SC parameter registers, set all AUTO flags in operation mode */
param1 = (OFDM_SC_RA_RAM_OP_AUTO_MODE__M |
OFDM_SC_RA_RAM_OP_AUTO_GUARD__M |
OFDM_SC_RA_RAM_OP_AUTO_CONST__M |
OFDM_SC_RA_RAM_OP_AUTO_HIER__M |
OFDM_SC_RA_RAM_OP_AUTO_RATE__M);
2024-09-09 08:57:42 +00:00
status = dvbt_sc_command(state, OFDM_SC_RA_RAM_CMD_SET_PREF_PARAM,
0, transmission_params, param1, 0, 0, 0);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if (!state->m_drxk_a3_rom_code)
status = dvbt_ctrl_set_sqi_speed(state, &state->m_sqi_speed);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
2024-09-09 08:57:42 +00:00
* \brief Retrieve lock status .
2024-09-09 08:52:07 +00:00
* \param demod Pointer to demodulator instance.
* \param lockStat Pointer to lock status structure.
* \return DRXStatus_t.
*
*/
2024-09-09 08:57:42 +00:00
static int get_dvbt_lock_status(struct drxk_state *state, u32 *p_lock_status)
2024-09-09 08:52:07 +00:00
{
int status;
const u16 mpeg_lock_mask = (OFDM_SC_RA_RAM_LOCK_MPEG__M |
OFDM_SC_RA_RAM_LOCK_FEC__M);
const u16 fec_lock_mask = (OFDM_SC_RA_RAM_LOCK_FEC__M);
const u16 demod_lock_mask = OFDM_SC_RA_RAM_LOCK_DEMOD__M;
2024-09-09 08:57:42 +00:00
u16 sc_ra_ram_lock = 0;
u16 sc_comm_exec = 0;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
*p_lock_status = NOT_LOCKED;
2024-09-09 08:52:07 +00:00
/* driver 0.9.0 */
/* Check if SC is running */
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_SC_COMM_EXEC__A, &sc_comm_exec);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto end;
2024-09-09 08:57:42 +00:00
if (sc_comm_exec == OFDM_SC_COMM_EXEC_STOP)
2024-09-09 08:52:07 +00:00
goto end;
2024-09-09 08:57:42 +00:00
status = read16(state, OFDM_SC_RA_RAM_LOCK__A, &sc_ra_ram_lock);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto end;
2024-09-09 08:57:42 +00:00
if ((sc_ra_ram_lock & mpeg_lock_mask) == mpeg_lock_mask)
*p_lock_status = MPEG_LOCK;
else if ((sc_ra_ram_lock & fec_lock_mask) == fec_lock_mask)
*p_lock_status = FEC_LOCK;
else if ((sc_ra_ram_lock & demod_lock_mask) == demod_lock_mask)
*p_lock_status = DEMOD_LOCK;
else if (sc_ra_ram_lock & OFDM_SC_RA_RAM_LOCK_NODVBT__M)
*p_lock_status = NEVER_LOCK;
2024-09-09 08:52:07 +00:00
end:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int power_up_qam(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
enum drx_power_mode power_mode = DRXK_POWER_DOWN_OFDM;
2024-09-09 08:52:07 +00:00
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
status = ctrl_power_mode(state, &power_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/** Power Down QAM */
2024-09-09 08:57:42 +00:00
static int power_down_qam(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
u16 data = 0;
2024-09-09 08:57:42 +00:00
u16 cmd_result;
2024-09-09 08:52:07 +00:00
int status = 0;
dprintk(1, "\n");
status = read16(state, SCU_COMM_EXEC__A, &data);
if (status < 0)
goto error;
if (data == SCU_COMM_EXEC_ACTIVE) {
/*
STOP demodulator
QAM and HW blocks
*/
/* stop all comstate->m_exec */
status = write16(state, QAM_COMM_EXEC__A, QAM_COMM_EXEC_STOP);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = scu_command(state, SCU_RAM_COMMAND_STANDARD_QAM
| SCU_RAM_COMMAND_CMD_DEMOD_STOP,
0, NULL, 1, &cmd_result);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
/* powerdown AFE */
2024-09-09 08:57:42 +00:00
status = set_iqm_af(state, false);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief Setup of the QAM Measurement intervals for signal quality
* \param demod instance of demod.
* \param modulation current modulation.
* \return DRXStatus_t.
*
* NOTE:
* Take into account that for certain settings the errorcounters can overflow.
* The implementation does not check this.
*
*/
2024-09-09 08:57:42 +00:00
static int set_qam_measurement(struct drxk_state *state,
enum e_drxk_constellation modulation,
u32 symbol_rate)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
u32 fec_bits_desired = 0; /* BER accounting period */
u32 fec_rs_period_total = 0; /* Total period */
u16 fec_rs_prescale = 0; /* ReedSolomon Measurement Prescale */
u16 fec_rs_period = 0; /* Value for corresponding I2C register */
2024-09-09 08:52:07 +00:00
int status = 0;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
fec_rs_prescale = 1;
/* fec_bits_desired = symbol_rate [kHz] *
2024-09-09 08:52:07 +00:00
FrameLenght [ms] *
(modulation + 1) *
SyncLoss (== 1) *
ViterbiLoss (==1)
*/
switch (modulation) {
case DRX_CONSTELLATION_QAM16:
2024-09-09 08:57:42 +00:00
fec_bits_desired = 4 * symbol_rate;
2024-09-09 08:52:07 +00:00
break;
case DRX_CONSTELLATION_QAM32:
2024-09-09 08:57:42 +00:00
fec_bits_desired = 5 * symbol_rate;
2024-09-09 08:52:07 +00:00
break;
case DRX_CONSTELLATION_QAM64:
2024-09-09 08:57:42 +00:00
fec_bits_desired = 6 * symbol_rate;
2024-09-09 08:52:07 +00:00
break;
case DRX_CONSTELLATION_QAM128:
2024-09-09 08:57:42 +00:00
fec_bits_desired = 7 * symbol_rate;
2024-09-09 08:52:07 +00:00
break;
case DRX_CONSTELLATION_QAM256:
2024-09-09 08:57:42 +00:00
fec_bits_desired = 8 * symbol_rate;
2024-09-09 08:52:07 +00:00
break;
default:
status = -EINVAL;
}
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
fec_bits_desired /= 1000; /* symbol_rate [Hz] -> symbol_rate [kHz] */
fec_bits_desired *= 500; /* meas. period [ms] */
2024-09-09 08:52:07 +00:00
/* Annex A/C: bits/RsPeriod = 204 * 8 = 1632 */
2024-09-09 08:57:42 +00:00
/* fec_rs_period_total = fec_bits_desired / 1632 */
fec_rs_period_total = (fec_bits_desired / 1632UL) + 1; /* roughly ceil */
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* fec_rs_period_total = fec_rs_prescale * fec_rs_period */
fec_rs_prescale = 1 + (u16) (fec_rs_period_total >> 16);
if (fec_rs_prescale == 0) {
2024-09-09 08:52:07 +00:00
/* Divide by zero (though impossible) */
status = -EINVAL;
if (status < 0)
goto error;
}
2024-09-09 08:57:42 +00:00
fec_rs_period =
((u16) fec_rs_period_total +
(fec_rs_prescale >> 1)) / fec_rs_prescale;
2024-09-09 08:52:07 +00:00
/* write corresponding registers */
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_RS_MEASUREMENT_PERIOD__A, fec_rs_period);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_RS_MEASUREMENT_PRESCALE__A,
fec_rs_prescale);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, FEC_OC_SNC_FAIL_PERIOD__A, fec_rs_period);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int set_qam16(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status = 0;
dprintk(1, "\n");
/* QAM Equalizer Setup */
/* Equalizer */
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 13517);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 13517);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 13517);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 13517);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 13517);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 13517);
if (status < 0)
goto error;
/* Decision Feedback Equalizer */
status = write16(state, QAM_DQ_QUAL_FUN0__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN1__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN2__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN3__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN4__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN5__A, 0);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_HWM__A, 5);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_AWM__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_LWM__A, 3);
if (status < 0)
goto error;
/* QAM Slicer Settings */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_QAM_SL_SIG_POWER__A,
DRXK_QAM_SL_SIG_POWER_QAM16);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* QAM Loop Controller Coeficients */
status = write16(state, SCU_RAM_QAM_LC_CA_FINE__A, 15);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 20);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_COARSE__A, 80);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 20);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_COARSE__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_FINE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_COARSE__A, 32);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 10);
if (status < 0)
goto error;
/* QAM State Machine (FSM) Thresholds */
status = write16(state, SCU_RAM_QAM_FSM_RTH__A, 140);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FTH__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_CTH__A, 95);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_PTH__A, 120);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_QTH__A, 230);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_MTH__A, 105);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 4);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 24);
if (status < 0)
goto error;
/* QAM FSM Tracking Parameters */
status = write16(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 220);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) 25);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) 6);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) -24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) -65);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16) -127);
if (status < 0)
goto error;
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief QAM32 specific setup
* \param demod instance of demod.
* \return DRXStatus_t.
*/
2024-09-09 08:57:42 +00:00
static int set_qam32(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status = 0;
dprintk(1, "\n");
/* QAM Equalizer Setup */
/* Equalizer */
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 6707);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 6707);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 6707);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 6707);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 6707);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 6707);
if (status < 0)
goto error;
/* Decision Feedback Equalizer */
status = write16(state, QAM_DQ_QUAL_FUN0__A, 3);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN1__A, 3);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN2__A, 3);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN3__A, 3);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN4__A, 3);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN5__A, 0);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_HWM__A, 6);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_AWM__A, 5);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_LWM__A, 3);
if (status < 0)
goto error;
/* QAM Slicer Settings */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_QAM_SL_SIG_POWER__A,
DRXK_QAM_SL_SIG_POWER_QAM32);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* QAM Loop Controller Coeficients */
status = write16(state, SCU_RAM_QAM_LC_CA_FINE__A, 15);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 20);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_COARSE__A, 80);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 20);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_COARSE__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_FINE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_COARSE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 0);
if (status < 0)
goto error;
/* QAM State Machine (FSM) Thresholds */
status = write16(state, SCU_RAM_QAM_FSM_RTH__A, 90);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FTH__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_CTH__A, 80);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_PTH__A, 100);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_QTH__A, 170);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_MTH__A, 100);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 4);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 10);
if (status < 0)
goto error;
/* QAM FSM Tracking Parameters */
status = write16(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 140);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) -8);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) -16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) -26);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) -56);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16) -86);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief QAM64 specific setup
* \param demod instance of demod.
* \return DRXStatus_t.
*/
2024-09-09 08:57:42 +00:00
static int set_qam64(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status = 0;
dprintk(1, "\n");
/* QAM Equalizer Setup */
/* Equalizer */
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 13336);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 12618);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 11988);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 13809);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 13809);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 15609);
if (status < 0)
goto error;
/* Decision Feedback Equalizer */
status = write16(state, QAM_DQ_QUAL_FUN0__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN1__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN2__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN3__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN4__A, 3);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN5__A, 0);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_HWM__A, 5);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_AWM__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_LWM__A, 3);
if (status < 0)
goto error;
/* QAM Slicer Settings */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_QAM_SL_SIG_POWER__A,
DRXK_QAM_SL_SIG_POWER_QAM64);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* QAM Loop Controller Coeficients */
status = write16(state, SCU_RAM_QAM_LC_CA_FINE__A, 15);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 30);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_COARSE__A, 100);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 30);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_COARSE__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_FINE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 25);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_COARSE__A, 48);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 10);
if (status < 0)
goto error;
/* QAM State Machine (FSM) Thresholds */
status = write16(state, SCU_RAM_QAM_FSM_RTH__A, 100);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FTH__A, 60);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_CTH__A, 80);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_PTH__A, 110);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_QTH__A, 200);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_MTH__A, 95);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 4);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 15);
if (status < 0)
goto error;
/* QAM FSM Tracking Parameters */
status = write16(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 141);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) 7);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) -15);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) -45);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16) -80);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief QAM128 specific setup
* \param demod: instance of demod.
* \return DRXStatus_t.
*/
2024-09-09 08:57:42 +00:00
static int set_qam128(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status = 0;
dprintk(1, "\n");
/* QAM Equalizer Setup */
/* Equalizer */
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 6564);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 6598);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 6394);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 6409);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 6656);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 7238);
if (status < 0)
goto error;
/* Decision Feedback Equalizer */
status = write16(state, QAM_DQ_QUAL_FUN0__A, 6);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN1__A, 6);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN2__A, 6);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN3__A, 6);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN4__A, 5);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN5__A, 0);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_HWM__A, 6);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_AWM__A, 5);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_LWM__A, 3);
if (status < 0)
goto error;
/* QAM Slicer Settings */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_QAM_SL_SIG_POWER__A,
DRXK_QAM_SL_SIG_POWER_QAM128);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* QAM Loop Controller Coeficients */
status = write16(state, SCU_RAM_QAM_LC_CA_FINE__A, 15);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_COARSE__A, 120);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_COARSE__A, 60);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_FINE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 25);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_COARSE__A, 64);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 0);
if (status < 0)
goto error;
/* QAM State Machine (FSM) Thresholds */
status = write16(state, SCU_RAM_QAM_FSM_RTH__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FTH__A, 60);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_CTH__A, 80);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_PTH__A, 100);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_QTH__A, 140);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_MTH__A, 100);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 12);
if (status < 0)
goto error;
/* QAM FSM Tracking Parameters */
status = write16(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 8);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 65);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) 3);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) -1);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) -12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16) -23);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief QAM256 specific setup
* \param demod: instance of demod.
* \return DRXStatus_t.
*/
2024-09-09 08:57:42 +00:00
static int set_qam256(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status = 0;
dprintk(1, "\n");
/* QAM Equalizer Setup */
/* Equalizer */
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD0__A, 11502);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD1__A, 12084);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD2__A, 12543);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD3__A, 12931);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD4__A, 13629);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_EQ_CMA_RAD5__A, 15385);
if (status < 0)
goto error;
/* Decision Feedback Equalizer */
status = write16(state, QAM_DQ_QUAL_FUN0__A, 8);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN1__A, 8);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN2__A, 8);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN3__A, 8);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN4__A, 6);
if (status < 0)
goto error;
status = write16(state, QAM_DQ_QUAL_FUN5__A, 0);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_HWM__A, 5);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_AWM__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_SY_SYNC_LWM__A, 3);
if (status < 0)
goto error;
/* QAM Slicer Settings */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_QAM_SL_SIG_POWER__A,
DRXK_QAM_SL_SIG_POWER_QAM256);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* QAM Loop Controller Coeficients */
status = write16(state, SCU_RAM_QAM_LC_CA_FINE__A, 15);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CA_COARSE__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_MEDIUM__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EP_COARSE__A, 24);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_FINE__A, 12);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_MEDIUM__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_EI_COARSE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_MEDIUM__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CP_COARSE__A, 250);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_MEDIUM__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CI_COARSE__A, 125);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_FINE__A, 16);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_MEDIUM__A, 25);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF_COARSE__A, 48);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_FINE__A, 5);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_MEDIUM__A, 10);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_LC_CF1_COARSE__A, 10);
if (status < 0)
goto error;
/* QAM State Machine (FSM) Thresholds */
status = write16(state, SCU_RAM_QAM_FSM_RTH__A, 50);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FTH__A, 60);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_CTH__A, 80);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_PTH__A, 100);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_QTH__A, 150);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_MTH__A, 110);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RATE_LIM__A, 40);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_COUNT_LIM__A, 4);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_FREQ_LIM__A, 12);
if (status < 0)
goto error;
/* QAM FSM Tracking Parameters */
status = write16(state, SCU_RAM_QAM_FSM_MEDIAN_AV_MULT__A, (u16) 8);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_RADIUS_AV_LIMIT__A, (u16) 74);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET1__A, (u16) 18);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET2__A, (u16) 13);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET3__A, (u16) 7);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET4__A, (u16) 0);
if (status < 0)
goto error;
status = write16(state, SCU_RAM_QAM_FSM_LCAVG_OFFSET5__A, (u16) -8);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief Reset QAM block.
* \param demod: instance of demod.
* \param channel: pointer to channel data.
* \return DRXStatus_t.
*/
2024-09-09 08:57:42 +00:00
static int qam_reset_qam(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status;
2024-09-09 08:57:42 +00:00
u16 cmd_result;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
/* Stop QAM comstate->m_exec */
status = write16(state, QAM_COMM_EXEC__A, QAM_COMM_EXEC_STOP);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = scu_command(state, SCU_RAM_COMMAND_STANDARD_QAM
| SCU_RAM_COMMAND_CMD_DEMOD_RESET,
0, NULL, 1, &cmd_result);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief Set QAM symbolrate.
* \param demod: instance of demod.
* \param channel: pointer to channel data.
* \return DRXStatus_t.
*/
2024-09-09 08:57:42 +00:00
static int qam_set_symbolrate(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
u32 adc_frequency = 0;
u32 symb_freq = 0;
u32 iqm_rc_rate = 0;
2024-09-09 08:52:07 +00:00
u16 ratesel = 0;
2024-09-09 08:57:42 +00:00
u32 lc_symb_rate = 0;
2024-09-09 08:52:07 +00:00
int status;
dprintk(1, "\n");
/* Select & calculate correct IQM rate */
2024-09-09 08:57:42 +00:00
adc_frequency = (state->m_sys_clock_freq * 1000) / 3;
2024-09-09 08:52:07 +00:00
ratesel = 0;
/* printk(KERN_DEBUG "drxk: SR %d\n", state->props.symbol_rate); */
if (state->props.symbol_rate <= 1188750)
ratesel = 3;
else if (state->props.symbol_rate <= 2377500)
ratesel = 2;
else if (state->props.symbol_rate <= 4755000)
ratesel = 1;
status = write16(state, IQM_FD_RATESEL__A, ratesel);
if (status < 0)
goto error;
/*
IqmRcRate = ((Fadc / (symbolrate * (4<<ratesel))) - 1) * (1<<23)
*/
2024-09-09 08:57:42 +00:00
symb_freq = state->props.symbol_rate * (1 << ratesel);
if (symb_freq == 0) {
2024-09-09 08:52:07 +00:00
/* Divide by zero */
status = -EINVAL;
goto error;
}
2024-09-09 08:57:42 +00:00
iqm_rc_rate = (adc_frequency / symb_freq) * (1 << 21) +
(Frac28a((adc_frequency % symb_freq), symb_freq) >> 7) -
2024-09-09 08:52:07 +00:00
(1 << 23);
2024-09-09 08:57:42 +00:00
status = write32(state, IQM_RC_RATE_OFS_LO__A, iqm_rc_rate);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_iqm_rc_rate = iqm_rc_rate;
2024-09-09 08:52:07 +00:00
/*
2024-09-09 08:57:42 +00:00
LcSymbFreq = round (.125 * symbolrate / adc_freq * (1<<15))
2024-09-09 08:52:07 +00:00
*/
2024-09-09 08:57:42 +00:00
symb_freq = state->props.symbol_rate;
if (adc_frequency == 0) {
2024-09-09 08:52:07 +00:00
/* Divide by zero */
status = -EINVAL;
goto error;
}
2024-09-09 08:57:42 +00:00
lc_symb_rate = (symb_freq / adc_frequency) * (1 << 12) +
(Frac28a((symb_freq % adc_frequency), adc_frequency) >>
2024-09-09 08:52:07 +00:00
16);
2024-09-09 08:57:42 +00:00
if (lc_symb_rate > 511)
lc_symb_rate = 511;
status = write16(state, QAM_LC_SYMBOL_FREQ__A, (u16) lc_symb_rate);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
/*============================================================================*/
/**
* \brief Get QAM lock status.
* \param demod: instance of demod.
* \param channel: pointer to channel data.
* \return DRXStatus_t.
*/
2024-09-09 08:57:42 +00:00
static int get_qam_lock_status(struct drxk_state *state, u32 *p_lock_status)
2024-09-09 08:52:07 +00:00
{
int status;
2024-09-09 08:57:42 +00:00
u16 result[2] = { 0, 0 };
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
*p_lock_status = NOT_LOCKED;
2024-09-09 08:52:07 +00:00
status = scu_command(state,
SCU_RAM_COMMAND_STANDARD_QAM |
SCU_RAM_COMMAND_CMD_DEMOD_GET_LOCK, 0, NULL, 2,
2024-09-09 08:57:42 +00:00
result);
2024-09-09 08:52:07 +00:00
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (result[1] < SCU_RAM_QAM_LOCKED_LOCKED_DEMOD_LOCKED) {
2024-09-09 08:52:07 +00:00
/* 0x0000 NOT LOCKED */
2024-09-09 08:57:42 +00:00
} else if (result[1] < SCU_RAM_QAM_LOCKED_LOCKED_LOCKED) {
2024-09-09 08:52:07 +00:00
/* 0x4000 DEMOD LOCKED */
2024-09-09 08:57:42 +00:00
*p_lock_status = DEMOD_LOCK;
} else if (result[1] < SCU_RAM_QAM_LOCKED_LOCKED_NEVER_LOCK) {
2024-09-09 08:52:07 +00:00
/* 0x8000 DEMOD + FEC LOCKED (system lock) */
2024-09-09 08:57:42 +00:00
*p_lock_status = MPEG_LOCK;
2024-09-09 08:52:07 +00:00
} else {
/* 0xC000 NEVER LOCKED */
/* (system will never be able to lock to the signal) */
2024-09-09 08:57:42 +00:00
/*
* TODO: check this, intermediate & standard specific lock
* states are not taken into account here
*/
*p_lock_status = NEVER_LOCK;
2024-09-09 08:52:07 +00:00
}
return status;
}
#define QAM_MIRROR__M 0x03
#define QAM_MIRROR_NORMAL 0x00
#define QAM_MIRRORED 0x01
#define QAM_MIRROR_AUTO_ON 0x02
#define QAM_LOCKRANGE__M 0x10
#define QAM_LOCKRANGE_NORMAL 0x10
2024-09-09 08:57:42 +00:00
static int qam_demodulator_command(struct drxk_state *state,
int number_of_parameters)
2024-09-09 08:52:07 +00:00
{
int status;
2024-09-09 08:57:42 +00:00
u16 cmd_result;
u16 set_param_parameters[4] = { 0, 0, 0, 0 };
set_param_parameters[0] = state->m_constellation; /* modulation */
set_param_parameters[1] = DRXK_QAM_I12_J17; /* interleave mode */
if (number_of_parameters == 2) {
u16 set_env_parameters[1] = { 0 };
if (state->m_operation_mode == OM_QAM_ITU_C)
set_env_parameters[0] = QAM_TOP_ANNEX_C;
else
set_env_parameters[0] = QAM_TOP_ANNEX_A;
status = scu_command(state,
SCU_RAM_COMMAND_STANDARD_QAM
| SCU_RAM_COMMAND_CMD_DEMOD_SET_ENV,
1, set_env_parameters, 1, &cmd_result);
if (status < 0)
goto error;
status = scu_command(state,
SCU_RAM_COMMAND_STANDARD_QAM
| SCU_RAM_COMMAND_CMD_DEMOD_SET_PARAM,
number_of_parameters, set_param_parameters,
1, &cmd_result);
} else if (number_of_parameters == 4) {
if (state->m_operation_mode == OM_QAM_ITU_C)
set_param_parameters[2] = QAM_TOP_ANNEX_C;
else
set_param_parameters[2] = QAM_TOP_ANNEX_A;
set_param_parameters[3] |= (QAM_MIRROR_AUTO_ON);
/* Env parameters */
/* check for LOCKRANGE Extented */
/* set_param_parameters[3] |= QAM_LOCKRANGE_NORMAL; */
status = scu_command(state,
SCU_RAM_COMMAND_STANDARD_QAM
| SCU_RAM_COMMAND_CMD_DEMOD_SET_PARAM,
number_of_parameters, set_param_parameters,
1, &cmd_result);
} else {
pr_warn("Unknown QAM demodulator parameter count %d\n",
number_of_parameters);
status = -EINVAL;
}
error:
if (status < 0)
pr_warn("Warning %d on %s\n", status, __func__);
return status;
}
static int set_qam(struct drxk_state *state, u16 intermediate_freqk_hz,
s32 tuner_freq_offset)
{
int status;
u16 cmd_result;
int qam_demod_param_count = state->qam_demod_parameter_count;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
/*
* STEP 1: reset demodulator
* resets FEC DI and FEC RS
* resets QAM block
* resets SCU variables
*/
status = write16(state, FEC_DI_COMM_EXEC__A, FEC_DI_COMM_EXEC_STOP);
if (status < 0)
goto error;
status = write16(state, FEC_RS_COMM_EXEC__A, FEC_RS_COMM_EXEC_STOP);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = qam_reset_qam(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/*
* STEP 2: configure demodulator
* -set params; resets IQM,QAM,FEC HW; initializes some
* SCU variables
*/
2024-09-09 08:57:42 +00:00
status = qam_set_symbolrate(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Set params */
switch (state->props.modulation) {
case QAM_256:
2024-09-09 08:57:42 +00:00
state->m_constellation = DRX_CONSTELLATION_QAM256;
2024-09-09 08:52:07 +00:00
break;
case QAM_AUTO:
case QAM_64:
2024-09-09 08:57:42 +00:00
state->m_constellation = DRX_CONSTELLATION_QAM64;
2024-09-09 08:52:07 +00:00
break;
case QAM_16:
2024-09-09 08:57:42 +00:00
state->m_constellation = DRX_CONSTELLATION_QAM16;
2024-09-09 08:52:07 +00:00
break;
case QAM_32:
2024-09-09 08:57:42 +00:00
state->m_constellation = DRX_CONSTELLATION_QAM32;
2024-09-09 08:52:07 +00:00
break;
case QAM_128:
2024-09-09 08:57:42 +00:00
state->m_constellation = DRX_CONSTELLATION_QAM128;
2024-09-09 08:52:07 +00:00
break;
default:
status = -EINVAL;
break;
}
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
/* Use the 4-parameter if it's requested or we're probing for
* the correct command. */
if (state->qam_demod_parameter_count == 4
|| !state->qam_demod_parameter_count) {
qam_demod_param_count = 4;
status = qam_demodulator_command(state, qam_demod_param_count);
}
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* Use the 2-parameter command if it was requested or if we're
* probing for the correct command and the 4-parameter command
* failed. */
if (state->qam_demod_parameter_count == 2
|| (!state->qam_demod_parameter_count && status < 0)) {
qam_demod_param_count = 2;
status = qam_demodulator_command(state, qam_demod_param_count);
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
if (status < 0) {
dprintk(1, "Could not set demodulator parameters.\n");
dprintk(1,
"Make sure qam_demod_parameter_count (%d) is correct for your firmware (%s).\n",
state->qam_demod_parameter_count,
state->microcode_name);
2024-09-09 08:52:07 +00:00
goto error;
2024-09-09 08:57:42 +00:00
} else if (!state->qam_demod_parameter_count) {
dprintk(1,
"Auto-probing the QAM command parameters was successful - using %d parameters.\n",
qam_demod_param_count);
/*
* One of our commands was successful. We don't need to
* auto-probe anymore, now that we got the correct command.
*/
state->qam_demod_parameter_count = qam_demod_param_count;
}
2024-09-09 08:52:07 +00:00
/*
* STEP 3: enable the system in a mode where the ADC provides valid
* signal setup modulation independent registers
*/
#if 0
2024-09-09 08:57:42 +00:00
status = set_frequency(channel, tuner_freq_offset));
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
#endif
2024-09-09 08:57:42 +00:00
status = set_frequency_shifter(state, intermediate_freqk_hz,
tuner_freq_offset, true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Setup BER measurement */
2024-09-09 08:57:42 +00:00
status = set_qam_measurement(state, state->m_constellation,
state->props.symbol_rate);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Reset default values */
status = write16(state, IQM_CF_SCALE_SH__A, IQM_CF_SCALE_SH__PRE);
if (status < 0)
goto error;
status = write16(state, QAM_SY_TIMEOUT__A, QAM_SY_TIMEOUT__PRE);
if (status < 0)
goto error;
/* Reset default LC values */
status = write16(state, QAM_LC_RATE_LIMIT__A, 3);
if (status < 0)
goto error;
status = write16(state, QAM_LC_LPF_FACTORP__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_LC_LPF_FACTORI__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_LC_MODE__A, 7);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB0__A, 1);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB1__A, 1);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB2__A, 1);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB3__A, 1);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB4__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB5__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB6__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB8__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB9__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB10__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB12__A, 2);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB15__A, 3);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB16__A, 3);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB20__A, 4);
if (status < 0)
goto error;
status = write16(state, QAM_LC_QUAL_TAB25__A, 4);
if (status < 0)
goto error;
/* Mirroring, QAM-block starting point not inverted */
2024-09-09 08:57:42 +00:00
status = write16(state, QAM_SY_SP_INV__A,
QAM_SY_SP_INV_SPECTRUM_INV_DIS);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Halt SCU to enable safe non-atomic accesses */
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD);
if (status < 0)
goto error;
/* STEP 4: modulation specific setup */
switch (state->props.modulation) {
case QAM_16:
2024-09-09 08:57:42 +00:00
status = set_qam16(state);
2024-09-09 08:52:07 +00:00
break;
case QAM_32:
2024-09-09 08:57:42 +00:00
status = set_qam32(state);
2024-09-09 08:52:07 +00:00
break;
case QAM_AUTO:
case QAM_64:
2024-09-09 08:57:42 +00:00
status = set_qam64(state);
2024-09-09 08:52:07 +00:00
break;
case QAM_128:
2024-09-09 08:57:42 +00:00
status = set_qam128(state);
2024-09-09 08:52:07 +00:00
break;
case QAM_256:
2024-09-09 08:57:42 +00:00
status = set_qam256(state);
2024-09-09 08:52:07 +00:00
break;
default:
status = -EINVAL;
break;
}
if (status < 0)
goto error;
/* Activate SCU to enable SCU commands */
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE);
if (status < 0)
goto error;
/* Re-configure MPEG output, requires knowledge of channel bitrate */
/* extAttr->currentChannel.modulation = channel->modulation; */
/* extAttr->currentChannel.symbolrate = channel->symbolrate; */
2024-09-09 08:57:42 +00:00
status = mpegts_dto_setup(state, state->m_operation_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
/* start processes */
status = mpegts_start(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, FEC_COMM_EXEC__A, FEC_COMM_EXEC_ACTIVE);
if (status < 0)
goto error;
status = write16(state, QAM_COMM_EXEC__A, QAM_COMM_EXEC_ACTIVE);
if (status < 0)
goto error;
status = write16(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_ACTIVE);
if (status < 0)
goto error;
/* STEP 5: start QAM demodulator (starts FEC, QAM and IQM HW) */
2024-09-09 08:57:42 +00:00
status = scu_command(state, SCU_RAM_COMMAND_STANDARD_QAM
| SCU_RAM_COMMAND_CMD_DEMOD_START,
0, NULL, 1, &cmd_result);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* update global DRXK data container */
/*? extAttr->qamInterleaveMode = DRXK_QAM_I12_J17; */
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int set_qam_standard(struct drxk_state *state,
enum operation_mode o_mode)
2024-09-09 08:52:07 +00:00
{
int status;
#ifdef DRXK_QAM_TAPS
#define DRXK_QAMA_TAPS_SELECT
#include "drxk_filters.h"
#undef DRXK_QAMA_TAPS_SELECT
#endif
dprintk(1, "\n");
/* added antenna switch */
2024-09-09 08:57:42 +00:00
switch_antenna_to_qam(state);
2024-09-09 08:52:07 +00:00
/* Ensure correct power-up mode */
2024-09-09 08:57:42 +00:00
status = power_up_qam(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Reset QAM block */
2024-09-09 08:57:42 +00:00
status = qam_reset_qam(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Setup IQM */
status = write16(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_STOP);
if (status < 0)
goto error;
status = write16(state, IQM_AF_AMUX__A, IQM_AF_AMUX_SIGNAL2ADC);
if (status < 0)
goto error;
/* Upload IQM Channel Filter settings by
boot loader from ROM table */
2024-09-09 08:57:42 +00:00
switch (o_mode) {
2024-09-09 08:52:07 +00:00
case OM_QAM_ITU_A:
2024-09-09 08:57:42 +00:00
status = bl_chain_cmd(state, DRXK_BL_ROM_OFFSET_TAPS_ITU_A,
DRXK_BLCC_NR_ELEMENTS_TAPS,
DRXK_BLC_TIMEOUT);
2024-09-09 08:52:07 +00:00
break;
case OM_QAM_ITU_C:
2024-09-09 08:57:42 +00:00
status = bl_direct_cmd(state, IQM_CF_TAP_RE0__A,
DRXK_BL_ROM_OFFSET_TAPS_ITU_C,
DRXK_BLDC_NR_ELEMENTS_TAPS,
DRXK_BLC_TIMEOUT);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = bl_direct_cmd(state,
IQM_CF_TAP_IM0__A,
DRXK_BL_ROM_OFFSET_TAPS_ITU_C,
DRXK_BLDC_NR_ELEMENTS_TAPS,
DRXK_BLC_TIMEOUT);
2024-09-09 08:52:07 +00:00
break;
default:
status = -EINVAL;
}
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, IQM_CF_OUT_ENA__A, 1 << IQM_CF_OUT_ENA_QAM__B);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, IQM_CF_SYMMETRIC__A, 0);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, IQM_CF_MIDTAP__A,
((1 << IQM_CF_MIDTAP_RE__B) | (1 << IQM_CF_MIDTAP_IM__B)));
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, IQM_RC_STRETCH__A, 21);
if (status < 0)
goto error;
status = write16(state, IQM_AF_CLP_LEN__A, 0);
if (status < 0)
goto error;
status = write16(state, IQM_AF_CLP_TH__A, 448);
if (status < 0)
goto error;
status = write16(state, IQM_AF_SNS_LEN__A, 0);
if (status < 0)
goto error;
status = write16(state, IQM_CF_POW_MEAS_LEN__A, 0);
if (status < 0)
goto error;
status = write16(state, IQM_FS_ADJ_SEL__A, 1);
if (status < 0)
goto error;
status = write16(state, IQM_RC_ADJ_SEL__A, 1);
if (status < 0)
goto error;
status = write16(state, IQM_CF_ADJ_SEL__A, 1);
if (status < 0)
goto error;
status = write16(state, IQM_AF_UPD_SEL__A, 0);
if (status < 0)
goto error;
/* IQM Impulse Noise Processing Unit */
status = write16(state, IQM_CF_CLP_VAL__A, 500);
if (status < 0)
goto error;
status = write16(state, IQM_CF_DATATH__A, 1000);
if (status < 0)
goto error;
status = write16(state, IQM_CF_BYPASSDET__A, 1);
if (status < 0)
goto error;
status = write16(state, IQM_CF_DET_LCT__A, 0);
if (status < 0)
goto error;
status = write16(state, IQM_CF_WND_LEN__A, 1);
if (status < 0)
goto error;
status = write16(state, IQM_CF_PKDTH__A, 1);
if (status < 0)
goto error;
status = write16(state, IQM_AF_INC_BYPASS__A, 1);
if (status < 0)
goto error;
/* turn on IQMAF. Must be done before setAgc**() */
2024-09-09 08:57:42 +00:00
status = set_iqm_af(state, true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, IQM_AF_START_LOCK__A, 0x01);
if (status < 0)
goto error;
/* IQM will not be reset from here, sync ADC and update/init AGC */
2024-09-09 08:57:42 +00:00
status = adc_synchronization(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Set the FSM step period */
status = write16(state, SCU_RAM_QAM_FSM_STEP_PERIOD__A, 2000);
if (status < 0)
goto error;
/* Halt SCU to enable safe non-atomic accesses */
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_HOLD);
if (status < 0)
goto error;
/* No more resets of the IQM, current standard correctly set =>
now AGCs can be configured. */
2024-09-09 08:57:42 +00:00
status = init_agc(state, true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = set_pre_saw(state, &(state->m_qam_pre_saw_cfg));
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Configure AGC's */
2024-09-09 08:57:42 +00:00
status = set_agc_rf(state, &(state->m_qam_rf_agc_cfg), true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = set_agc_if(state, &(state->m_qam_if_agc_cfg), true);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Activate SCU to enable SCU commands */
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int write_gpio(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status;
u16 value = 0;
dprintk(1, "\n");
/* stop lock indicator process */
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Write magic word to enable pdr reg write */
status = write16(state, SIO_TOP_COMM_KEY__A, SIO_TOP_COMM_KEY_KEY);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if (state->m_has_sawsw) {
if (state->uio_mask & 0x0001) { /* UIO-1 */
2024-09-09 08:52:07 +00:00
/* write to io pad configuration register - output mode */
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_SMA_TX_CFG__A,
state->m_gpio_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* use corresponding bit in io data output registar */
status = read16(state, SIO_PDR_UIO_OUT_LO__A, &value);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if ((state->m_gpio & 0x0001) == 0)
2024-09-09 08:52:07 +00:00
value &= 0x7FFF; /* write zero to 15th bit - 1st UIO */
else
value |= 0x8000; /* write one to 15th bit - 1st UIO */
/* write back to io data output register */
status = write16(state, SIO_PDR_UIO_OUT_LO__A, value);
if (status < 0)
goto error;
}
2024-09-09 08:57:42 +00:00
if (state->uio_mask & 0x0002) { /* UIO-2 */
2024-09-09 08:52:07 +00:00
/* write to io pad configuration register - output mode */
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_SMA_RX_CFG__A,
state->m_gpio_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* use corresponding bit in io data output registar */
status = read16(state, SIO_PDR_UIO_OUT_LO__A, &value);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if ((state->m_gpio & 0x0002) == 0)
2024-09-09 08:52:07 +00:00
value &= 0xBFFF; /* write zero to 14th bit - 2st UIO */
else
value |= 0x4000; /* write one to 14th bit - 2st UIO */
/* write back to io data output register */
status = write16(state, SIO_PDR_UIO_OUT_LO__A, value);
if (status < 0)
goto error;
}
2024-09-09 08:57:42 +00:00
if (state->uio_mask & 0x0004) { /* UIO-3 */
2024-09-09 08:52:07 +00:00
/* write to io pad configuration register - output mode */
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_PDR_GPIO_CFG__A,
state->m_gpio_cfg);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* use corresponding bit in io data output registar */
status = read16(state, SIO_PDR_UIO_OUT_LO__A, &value);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if ((state->m_gpio & 0x0004) == 0)
2024-09-09 08:52:07 +00:00
value &= 0xFFFB; /* write zero to 2nd bit - 3rd UIO */
else
value |= 0x0004; /* write one to 2nd bit - 3rd UIO */
/* write back to io data output register */
status = write16(state, SIO_PDR_UIO_OUT_LO__A, value);
if (status < 0)
goto error;
}
}
/* Write magic word to disable pdr reg write */
status = write16(state, SIO_TOP_COMM_KEY__A, 0x0000);
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int switch_antenna_to_qam(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status = 0;
bool gpio_state;
dprintk(1, "\n");
if (!state->antenna_gpio)
return 0;
2024-09-09 08:57:42 +00:00
gpio_state = state->m_gpio & state->antenna_gpio;
2024-09-09 08:52:07 +00:00
if (state->antenna_dvbt ^ gpio_state) {
/* Antenna is on DVB-T mode. Switch */
if (state->antenna_dvbt)
2024-09-09 08:57:42 +00:00
state->m_gpio &= ~state->antenna_gpio;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
state->m_gpio |= state->antenna_gpio;
status = write_gpio(state);
2024-09-09 08:52:07 +00:00
}
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int switch_antenna_to_dvbt(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
int status = 0;
bool gpio_state;
dprintk(1, "\n");
if (!state->antenna_gpio)
return 0;
2024-09-09 08:57:42 +00:00
gpio_state = state->m_gpio & state->antenna_gpio;
2024-09-09 08:52:07 +00:00
if (!(state->antenna_dvbt ^ gpio_state)) {
/* Antenna is on DVB-C mode. Switch */
if (state->antenna_dvbt)
2024-09-09 08:57:42 +00:00
state->m_gpio |= state->antenna_gpio;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
state->m_gpio &= ~state->antenna_gpio;
status = write_gpio(state);
2024-09-09 08:52:07 +00:00
}
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static int power_down_device(struct drxk_state *state)
2024-09-09 08:52:07 +00:00
{
/* Power down to requested mode */
/* Backup some register settings */
/* Set pins with possible pull-ups connected to them in input mode */
/* Analog power down */
/* ADC power down */
/* Power down device */
int status;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->m_b_p_down_open_bridge) {
2024-09-09 08:52:07 +00:00
/* Open I2C bridge before power down of DRXK */
status = ConfigureI2CBridge(state, true);
if (status < 0)
goto error;
}
/* driver 0.9.0 */
2024-09-09 08:57:42 +00:00
status = dvbt_enable_ofdm_token_ring(state, false);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_CC_PWD_MODE__A,
SIO_CC_PWD_MODE_LEVEL_CLOCK);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, SIO_CC_UPDATE__A, SIO_CC_UPDATE_KEY);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_ctrl |= SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
status = hi_cfg_command(state);
2024-09-09 08:52:07 +00:00
error:
if (status < 0)
2024-09-09 08:57:42 +00:00
pr_err("Error %d on %s\n", status, __func__);
2024-09-09 08:52:07 +00:00
return status;
}
static int init_drxk(struct drxk_state *state)
{
2024-09-09 08:57:42 +00:00
int status = 0, n = 0;
enum drx_power_mode power_mode = DRXK_POWER_DOWN_OFDM;
u16 driver_version;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if ((state->m_drxk_state == DRXK_UNINITIALIZED)) {
drxk_i2c_lock(state);
status = power_up_device(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = drxx_open(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Soft reset of OFDM-, sys- and osc-clockdomain */
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_CC_SOFT_RST__A,
SIO_CC_SOFT_RST_OFDM__M
| SIO_CC_SOFT_RST_SYS__M
| SIO_CC_SOFT_RST_OSC__M);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
status = write16(state, SIO_CC_UPDATE__A, SIO_CC_UPDATE_KEY);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
/*
* TODO is this needed? If yes, how much delay in
* worst case scenario
*/
usleep_range(1000, 2000);
state->m_drxk_a3_patch_code = true;
status = get_device_capabilities(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Bridge delay, uses oscilator clock */
/* Delay = (delay (nano seconds) * oscclk (kHz))/ 1000 */
/* SDA brdige delay */
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_bridge_delay =
(u16) ((state->m_osc_clock_freq / 1000) *
2024-09-09 08:52:07 +00:00
HI_I2C_BRIDGE_DELAY) / 1000;
/* Clipping */
2024-09-09 08:57:42 +00:00
if (state->m_hi_cfg_bridge_delay >
2024-09-09 08:52:07 +00:00
SIO_HI_RA_RAM_PAR_3_CFG_DBL_SDA__M) {
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_bridge_delay =
2024-09-09 08:52:07 +00:00
SIO_HI_RA_RAM_PAR_3_CFG_DBL_SDA__M;
}
/* SCL bridge delay, same as SDA for now */
2024-09-09 08:57:42 +00:00
state->m_hi_cfg_bridge_delay +=
state->m_hi_cfg_bridge_delay <<
2024-09-09 08:52:07 +00:00
SIO_HI_RA_RAM_PAR_3_CFG_DBL_SCL__B;
2024-09-09 08:57:42 +00:00
status = init_hi(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* disable various processes */
#if NOA1ROM
if (!(state->m_DRXK_A1_ROM_CODE)
&& !(state->m_DRXK_A2_ROM_CODE))
#endif
{
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
}
/* disable MPEG port */
2024-09-09 08:57:42 +00:00
status = mpegts_disable(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Stop AUD and SCU */
status = write16(state, AUD_COMM_EXEC__A, AUD_COMM_EXEC_STOP);
if (status < 0)
goto error;
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_STOP);
if (status < 0)
goto error;
/* enable token-ring bus through OFDM block for possible ucode upload */
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_OFDM_SH_OFDM_RING_ENABLE__A,
SIO_OFDM_SH_OFDM_RING_ENABLE_ON);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* include boot loader section */
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_BL_COMM_EXEC__A,
SIO_BL_COMM_EXEC_ACTIVE);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = bl_chain_cmd(state, 0, 6, 100);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
if (state->fw) {
status = download_microcode(state, state->fw->data,
state->fw->size);
if (status < 0)
goto error;
}
2024-09-09 08:52:07 +00:00
/* disable token-ring bus through OFDM block for possible ucode upload */
2024-09-09 08:57:42 +00:00
status = write16(state, SIO_OFDM_SH_OFDM_RING_ENABLE__A,
SIO_OFDM_SH_OFDM_RING_ENABLE_OFF);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Run SCU for a little while to initialize microcode version numbers */
status = write16(state, SCU_COMM_EXEC__A, SCU_COMM_EXEC_ACTIVE);
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = drxx_open(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* added for test */
msleep(30);
2024-09-09 08:57:42 +00:00
power_mode = DRXK_POWER_DOWN_OFDM;
status = ctrl_power_mode(state, &power_mode);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* Stamp driver version number in SCU data RAM in BCD code
2024-09-09 08:57:42 +00:00
Done to enable field application engineers to retrieve drxdriver version
2024-09-09 08:52:07 +00:00
via I2C from SCU RAM.
Not using SCU command interface for SCU register access since no
microcode may be present.
*/
2024-09-09 08:57:42 +00:00
driver_version =
2024-09-09 08:52:07 +00:00
(((DRXK_VERSION_MAJOR / 100) % 10) << 12) +
(((DRXK_VERSION_MAJOR / 10) % 10) << 8) +
((DRXK_VERSION_MAJOR % 10) << 4) +
(DRXK_VERSION_MINOR % 10);
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_DRIVER_VER_HI__A,
driver_version);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
driver_version =
2024-09-09 08:52:07 +00:00
(((DRXK_VERSION_PATCH / 1000) % 10) << 12) +
(((DRXK_VERSION_PATCH / 100) % 10) << 8) +
(((DRXK_VERSION_PATCH / 10) % 10) << 4) +
(DRXK_VERSION_PATCH % 10);
2024-09-09 08:57:42 +00:00
status = write16(state, SCU_RAM_DRIVER_VER_LO__A,
driver_version);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
pr_info("DRXK driver version %d.%d.%d\n",
2024-09-09 08:52:07 +00:00
DRXK_VERSION_MAJOR, DRXK_VERSION_MINOR,
DRXK_VERSION_PATCH);
2024-09-09 08:57:42 +00:00
/*
* Dirty fix of default values for ROM/PATCH microcode
* Dirty because this fix makes it impossible to setup
* suitable values before calling DRX_Open. This solution
* requires changes to RF AGC speed to be done via the CTRL
* function after calling DRX_Open
*/
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
/* m_dvbt_rf_agc_cfg.speed = 3; */
2024-09-09 08:52:07 +00:00
/* Reset driver debug flags to 0 */
status = write16(state, SCU_RAM_DRIVER_DEBUG__A, 0);
if (status < 0)
goto error;
/* driver 0.9.0 */
/* Setup FEC OC:
NOTE: No more full FEC resets allowed afterwards!! */
status = write16(state, FEC_COMM_EXEC__A, FEC_COMM_EXEC_STOP);
if (status < 0)
goto error;
/* MPEGTS functions are still the same */
2024-09-09 08:57:42 +00:00
status = mpegts_dto_init(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = mpegts_stop(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = mpegts_configure_polarity(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
status = mpegts_configure_pins(state, state->m_enable_mpeg_output);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
/* added: configure GPIO */
2024-09-09 08:57:42 +00:00
status = write_gpio(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_drxk_state = DRXK_STOPPED;
2024-09-09 08:52:07 +00:00
2024-09-09 08:57:42 +00:00
if (state->m_b_power_down) {
status = power_down_device(state);
2024-09-09 08:52:07 +00:00
if (status < 0)
goto error;
2024-09-09 08:57:42 +00:00
state->m_drxk_state = DRXK_POWERED_DOWN;
2024-09-09 08:52:07 +00:00
} else
2024-09-09 08:57:42 +00:00
state->m_drxk_state = DRXK_STOPPED;
/* Initialize the supported delivery systems */
n = 0;
if (state->m_has_dvbc) {
state->frontend.ops.delsys[n++] = SYS_DVBC_ANNEX_A;
state->frontend.ops.delsys[n++] = SYS_DVBC_ANNEX_C;
strlcat(state->frontend.ops.info.name, " DVB-C",
sizeof(state->frontend.ops.info.name));
}
if (state->m_has_dvbt) {
state->frontend.ops.delsys[n++] = SYS_DVBT;
strlcat(state->frontend.ops.info.name, " DVB-T",
sizeof(state->frontend.ops.info.name));
}
drxk_i2c_unlock(state);
2024-09-09 08:52:07 +00:00
}
error:
2024-09-09 08:57:42 +00:00
if (status < 0) {
state->m_drxk_state = DRXK_NO_DEV;
drxk_i2c_unlock(state);
pr_err("Error %d on %s\n", status, __func__);
}
2024-09-09 08:52:07 +00:00
return status;
}
2024-09-09 08:57:42 +00:00
static void load_firmware_cb(const struct firmware *fw,
void *context)
{
struct drxk_state *state = context;
dprintk(1, ": %s\n", fw ? "firmware loaded" : "firmware not loaded");
if (!fw) {
pr_err("Could not load firmware file %s.\n",
state->microcode_name);
pr_info("Copy %s to your hotplug directory!\n",
state->microcode_name);
state->microcode_name = NULL;
/*
* As firmware is now load asynchronous, it is not possible
* anymore to fail at frontend attach. We might silently
* return here, and hope that the driver won't crash.
* We might also change all DVB callbacks to return -ENODEV
* if the device is not initialized.
* As the DRX-K devices have their own internal firmware,
* let's just hope that it will match a firmware revision
* compatible with this driver and proceed.
*/
}
state->fw = fw;
init_drxk(state);
}
2024-09-09 08:52:07 +00:00
static void drxk_release(struct dvb_frontend *fe)
{
struct drxk_state *state = fe->demodulator_priv;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->fw)
release_firmware(state->fw);
2024-09-09 08:52:07 +00:00
kfree(state);
}
static int drxk_sleep(struct dvb_frontend *fe)
{
struct drxk_state *state = fe->demodulator_priv;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->m_drxk_state == DRXK_NO_DEV)
return -ENODEV;
if (state->m_drxk_state == DRXK_UNINITIALIZED)
return 0;
shut_down(state);
2024-09-09 08:52:07 +00:00
return 0;
}
static int drxk_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct drxk_state *state = fe->demodulator_priv;
2024-09-09 08:57:42 +00:00
dprintk(1, ": %s\n", enable ? "enable" : "disable");
if (state->m_drxk_state == DRXK_NO_DEV)
return -ENODEV;
2024-09-09 08:52:07 +00:00
return ConfigureI2CBridge(state, enable ? true : false);
}
static int drxk_set_parameters(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 delsys = p->delivery_system, old_delsys;
struct drxk_state *state = fe->demodulator_priv;
u32 IF;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->m_drxk_state == DRXK_NO_DEV)
return -ENODEV;
if (state->m_drxk_state == DRXK_UNINITIALIZED)
return -EAGAIN;
2024-09-09 08:52:07 +00:00
if (!fe->ops.tuner_ops.get_if_frequency) {
2024-09-09 08:57:42 +00:00
pr_err("Error: get_if_frequency() not defined at tuner. Can't work without it!\n");
2024-09-09 08:52:07 +00:00
return -EINVAL;
}
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
old_delsys = state->props.delivery_system;
state->props = *p;
if (old_delsys != delsys) {
2024-09-09 08:57:42 +00:00
shut_down(state);
2024-09-09 08:52:07 +00:00
switch (delsys) {
case SYS_DVBC_ANNEX_A:
case SYS_DVBC_ANNEX_C:
2024-09-09 08:57:42 +00:00
if (!state->m_has_dvbc)
2024-09-09 08:52:07 +00:00
return -EINVAL;
2024-09-09 08:57:42 +00:00
state->m_itut_annex_c = (delsys == SYS_DVBC_ANNEX_C) ?
true : false;
2024-09-09 08:52:07 +00:00
if (state->m_itut_annex_c)
2024-09-09 08:57:42 +00:00
setoperation_mode(state, OM_QAM_ITU_C);
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
setoperation_mode(state, OM_QAM_ITU_A);
2024-09-09 08:52:07 +00:00
break;
case SYS_DVBT:
2024-09-09 08:57:42 +00:00
if (!state->m_has_dvbt)
2024-09-09 08:52:07 +00:00
return -EINVAL;
2024-09-09 08:57:42 +00:00
setoperation_mode(state, OM_DVBT);
2024-09-09 08:52:07 +00:00
break;
default:
return -EINVAL;
}
}
fe->ops.tuner_ops.get_if_frequency(fe, &IF);
2024-09-09 08:57:42 +00:00
start(state, 0, IF);
/* After set_frontend, stats aren't available */
p->strength.stat[0].scale = FE_SCALE_RELATIVE;
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
2024-09-09 08:52:07 +00:00
/* printk(KERN_DEBUG "drxk: %s IF=%d done\n", __func__, IF); */
return 0;
}
2024-09-09 08:57:42 +00:00
static int get_strength(struct drxk_state *state, u64 *strength)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
int status;
struct s_cfg_agc rf_agc, if_agc;
u32 total_gain = 0;
u32 atten = 0;
u32 agc_range = 0;
u16 scu_lvl = 0;
u16 scu_coc = 0;
/* FIXME: those are part of the tuner presets */
u16 tuner_rf_gain = 50; /* Default value on az6007 driver */
u16 tuner_if_gain = 40; /* Default value on az6007 driver */
*strength = 0;
if (is_dvbt(state)) {
rf_agc = state->m_dvbt_rf_agc_cfg;
if_agc = state->m_dvbt_if_agc_cfg;
} else if (is_qam(state)) {
rf_agc = state->m_qam_rf_agc_cfg;
if_agc = state->m_qam_if_agc_cfg;
} else {
rf_agc = state->m_atv_rf_agc_cfg;
if_agc = state->m_atv_if_agc_cfg;
}
if (rf_agc.ctrl_mode == DRXK_AGC_CTRL_AUTO) {
/* SCU output_level */
status = read16(state, SCU_RAM_AGC_RF_IACCU_HI__A, &scu_lvl);
if (status < 0)
return status;
/* SCU c.o.c. */
read16(state, SCU_RAM_AGC_RF_IACCU_HI_CO__A, &scu_coc);
if (status < 0)
return status;
if (((u32) scu_lvl + (u32) scu_coc) < 0xffff)
rf_agc.output_level = scu_lvl + scu_coc;
else
rf_agc.output_level = 0xffff;
/* Take RF gain into account */
total_gain += tuner_rf_gain;
/* clip output value */
if (rf_agc.output_level < rf_agc.min_output_level)
rf_agc.output_level = rf_agc.min_output_level;
if (rf_agc.output_level > rf_agc.max_output_level)
rf_agc.output_level = rf_agc.max_output_level;
agc_range = (u32) (rf_agc.max_output_level - rf_agc.min_output_level);
if (agc_range > 0) {
atten += 100UL *
((u32)(tuner_rf_gain)) *
((u32)(rf_agc.output_level - rf_agc.min_output_level))
/ agc_range;
}
}
if (if_agc.ctrl_mode == DRXK_AGC_CTRL_AUTO) {
status = read16(state, SCU_RAM_AGC_IF_IACCU_HI__A,
&if_agc.output_level);
if (status < 0)
return status;
status = read16(state, SCU_RAM_AGC_INGAIN_TGT_MIN__A,
&if_agc.top);
if (status < 0)
return status;
/* Take IF gain into account */
total_gain += (u32) tuner_if_gain;
/* clip output value */
if (if_agc.output_level < if_agc.min_output_level)
if_agc.output_level = if_agc.min_output_level;
if (if_agc.output_level > if_agc.max_output_level)
if_agc.output_level = if_agc.max_output_level;
agc_range = (u32)(if_agc.max_output_level - if_agc.min_output_level);
if (agc_range > 0) {
atten += 100UL *
((u32)(tuner_if_gain)) *
((u32)(if_agc.output_level - if_agc.min_output_level))
/ agc_range;
}
}
/*
* Convert to 0..65535 scale.
* If it can't be measured (AGC is disabled), just show 100%.
*/
if (total_gain > 0)
*strength = (65535UL * atten / total_gain / 100);
else
*strength = 65535;
return 0;
}
static int drxk_get_stats(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2024-09-09 08:52:07 +00:00
struct drxk_state *state = fe->demodulator_priv;
2024-09-09 08:57:42 +00:00
int status;
2024-09-09 08:52:07 +00:00
u32 stat;
2024-09-09 08:57:42 +00:00
u16 reg16;
u32 post_bit_count;
u32 post_bit_err_count;
u32 post_bit_error_scale;
u32 pre_bit_err_count;
u32 pre_bit_count;
u32 pkt_count;
u32 pkt_error_count;
s32 cnr;
if (state->m_drxk_state == DRXK_NO_DEV)
return -ENODEV;
if (state->m_drxk_state == DRXK_UNINITIALIZED)
return -EAGAIN;
/* get status */
state->fe_status = 0;
get_lock_status(state, &stat);
2024-09-09 08:52:07 +00:00
if (stat == MPEG_LOCK)
2024-09-09 08:57:42 +00:00
state->fe_status |= 0x1f;
2024-09-09 08:52:07 +00:00
if (stat == FEC_LOCK)
2024-09-09 08:57:42 +00:00
state->fe_status |= 0x0f;
2024-09-09 08:52:07 +00:00
if (stat == DEMOD_LOCK)
2024-09-09 08:57:42 +00:00
state->fe_status |= 0x07;
/*
* Estimate signal strength from AGC
*/
get_strength(state, &c->strength.stat[0].uvalue);
c->strength.stat[0].scale = FE_SCALE_RELATIVE;
if (stat >= DEMOD_LOCK) {
get_signal_to_noise(state, &cnr);
c->cnr.stat[0].svalue = cnr * 100;
c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
} else {
c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
}
if (stat < FEC_LOCK) {
c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
return 0;
}
/* Get post BER */
/* BER measurement is valid if at least FEC lock is achieved */
/*
* OFDM_EC_VD_REQ_SMB_CNT__A and/or OFDM_EC_VD_REQ_BIT_CNT can be
* written to set nr of symbols or bits over which to measure
* EC_VD_REG_ERR_BIT_CNT__A . See CtrlSetCfg().
*/
/* Read registers for post/preViterbi BER calculation */
status = read16(state, OFDM_EC_VD_ERR_BIT_CNT__A, &reg16);
if (status < 0)
goto error;
pre_bit_err_count = reg16;
status = read16(state, OFDM_EC_VD_IN_BIT_CNT__A , &reg16);
if (status < 0)
goto error;
pre_bit_count = reg16;
/* Number of bit-errors */
status = read16(state, FEC_RS_NR_BIT_ERRORS__A, &reg16);
if (status < 0)
goto error;
post_bit_err_count = reg16;
status = read16(state, FEC_RS_MEASUREMENT_PRESCALE__A, &reg16);
if (status < 0)
goto error;
post_bit_error_scale = reg16;
status = read16(state, FEC_RS_MEASUREMENT_PERIOD__A, &reg16);
if (status < 0)
goto error;
pkt_count = reg16;
status = read16(state, SCU_RAM_FEC_ACCUM_PKT_FAILURES__A, &reg16);
if (status < 0)
goto error;
pkt_error_count = reg16;
write16(state, SCU_RAM_FEC_ACCUM_PKT_FAILURES__A, 0);
post_bit_err_count *= post_bit_error_scale;
post_bit_count = pkt_count * 204 * 8;
/* Store the results */
c->block_error.stat[0].scale = FE_SCALE_COUNTER;
c->block_error.stat[0].uvalue += pkt_error_count;
c->block_count.stat[0].scale = FE_SCALE_COUNTER;
c->block_count.stat[0].uvalue += pkt_count;
c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_error.stat[0].uvalue += pre_bit_err_count;
c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->pre_bit_count.stat[0].uvalue += pre_bit_count;
c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_error.stat[0].uvalue += post_bit_err_count;
c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
c->post_bit_count.stat[0].uvalue += post_bit_count;
error:
return status;
2024-09-09 08:52:07 +00:00
}
2024-09-09 08:57:42 +00:00
static int drxk_read_status(struct dvb_frontend *fe, fe_status_t *status)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct drxk_state *state = fe->demodulator_priv;
int rc;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
rc = drxk_get_stats(fe);
if (rc < 0)
return rc;
*status = state->fe_status;
2024-09-09 08:52:07 +00:00
return 0;
}
static int drxk_read_signal_strength(struct dvb_frontend *fe,
u16 *strength)
{
struct drxk_state *state = fe->demodulator_priv;
2024-09-09 08:57:42 +00:00
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->m_drxk_state == DRXK_NO_DEV)
return -ENODEV;
if (state->m_drxk_state == DRXK_UNINITIALIZED)
return -EAGAIN;
*strength = c->strength.stat[0].uvalue;
2024-09-09 08:52:07 +00:00
return 0;
}
static int drxk_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct drxk_state *state = fe->demodulator_priv;
s32 snr2;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->m_drxk_state == DRXK_NO_DEV)
return -ENODEV;
if (state->m_drxk_state == DRXK_UNINITIALIZED)
return -EAGAIN;
get_signal_to_noise(state, &snr2);
/* No negative SNR, clip to zero */
if (snr2 < 0)
snr2 = 0;
2024-09-09 08:52:07 +00:00
*snr = snr2 & 0xffff;
return 0;
}
static int drxk_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct drxk_state *state = fe->demodulator_priv;
u16 err;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->m_drxk_state == DRXK_NO_DEV)
return -ENODEV;
if (state->m_drxk_state == DRXK_UNINITIALIZED)
return -EAGAIN;
dvbtqam_get_acc_pkt_err(state, &err);
2024-09-09 08:52:07 +00:00
*ucblocks = (u32) err;
return 0;
}
2024-09-09 08:57:42 +00:00
static int drxk_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *sets)
2024-09-09 08:52:07 +00:00
{
2024-09-09 08:57:42 +00:00
struct drxk_state *state = fe->demodulator_priv;
2024-09-09 08:52:07 +00:00
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
dprintk(1, "\n");
2024-09-09 08:57:42 +00:00
if (state->m_drxk_state == DRXK_NO_DEV)
return -ENODEV;
if (state->m_drxk_state == DRXK_UNINITIALIZED)
return -EAGAIN;
2024-09-09 08:52:07 +00:00
switch (p->delivery_system) {
case SYS_DVBC_ANNEX_A:
case SYS_DVBC_ANNEX_C:
case SYS_DVBT:
sets->min_delay_ms = 3000;
sets->max_drift = 0;
sets->step_size = 0;
return 0;
default:
return -EINVAL;
}
}
static struct dvb_frontend_ops drxk_ops = {
/* .delsys will be filled dynamically */
.info = {
.name = "DRXK",
.frequency_min = 47000000,
.frequency_max = 865000000,
/* For DVB-C */
.symbol_rate_min = 870000,
.symbol_rate_max = 11700000,
/* For DVB-T */
.frequency_stepsize = 166667,
.caps = FE_CAN_QAM_16 | FE_CAN_QAM_32 | FE_CAN_QAM_64 |
FE_CAN_QAM_128 | FE_CAN_QAM_256 | FE_CAN_FEC_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_MUTE_TS |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_RECOVER |
FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO
},
.release = drxk_release,
.sleep = drxk_sleep,
.i2c_gate_ctrl = drxk_gate_ctrl,
.set_frontend = drxk_set_parameters,
.get_tune_settings = drxk_get_tune_settings,
.read_status = drxk_read_status,
.read_signal_strength = drxk_read_signal_strength,
.read_snr = drxk_read_snr,
.read_ucblocks = drxk_read_ucblocks,
};
struct dvb_frontend *drxk_attach(const struct drxk_config *config,
struct i2c_adapter *i2c)
{
2024-09-09 08:57:42 +00:00
struct dtv_frontend_properties *p;
2024-09-09 08:52:07 +00:00
struct drxk_state *state = NULL;
u8 adr = config->adr;
2024-09-09 08:57:42 +00:00
int status;
2024-09-09 08:52:07 +00:00
dprintk(1, "\n");
state = kzalloc(sizeof(struct drxk_state), GFP_KERNEL);
if (!state)
return NULL;
state->i2c = i2c;
state->demod_address = adr;
state->single_master = config->single_master;
state->microcode_name = config->microcode_name;
2024-09-09 08:57:42 +00:00
state->qam_demod_parameter_count = config->qam_demod_parameter_count;
2024-09-09 08:52:07 +00:00
state->no_i2c_bridge = config->no_i2c_bridge;
state->antenna_gpio = config->antenna_gpio;
state->antenna_dvbt = config->antenna_dvbt;
2024-09-09 08:57:42 +00:00
state->m_chunk_size = config->chunk_size;
2024-09-09 08:52:07 +00:00
state->enable_merr_cfg = config->enable_merr_cfg;
if (config->dynamic_clk) {
2024-09-09 08:57:42 +00:00
state->m_dvbt_static_clk = false;
state->m_dvbc_static_clk = false;
2024-09-09 08:52:07 +00:00
} else {
2024-09-09 08:57:42 +00:00
state->m_dvbt_static_clk = true;
state->m_dvbc_static_clk = true;
2024-09-09 08:52:07 +00:00
}
if (config->mpeg_out_clk_strength)
2024-09-09 08:57:42 +00:00
state->m_ts_clockk_strength = config->mpeg_out_clk_strength & 0x07;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
state->m_ts_clockk_strength = 0x06;
2024-09-09 08:52:07 +00:00
if (config->parallel_ts)
2024-09-09 08:57:42 +00:00
state->m_enable_parallel = true;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
state->m_enable_parallel = false;
2024-09-09 08:52:07 +00:00
/* NOTE: as more UIO bits will be used, add them to the mask */
2024-09-09 08:57:42 +00:00
state->uio_mask = config->antenna_gpio;
2024-09-09 08:52:07 +00:00
/* Default gpio to DVB-C */
if (!state->antenna_dvbt && state->antenna_gpio)
2024-09-09 08:57:42 +00:00
state->m_gpio |= state->antenna_gpio;
2024-09-09 08:52:07 +00:00
else
2024-09-09 08:57:42 +00:00
state->m_gpio &= ~state->antenna_gpio;
2024-09-09 08:52:07 +00:00
mutex_init(&state->mutex);
memcpy(&state->frontend.ops, &drxk_ops, sizeof(drxk_ops));
state->frontend.demodulator_priv = state;
init_state(state);
2024-09-09 08:57:42 +00:00
/* Load firmware and initialize DRX-K */
if (state->microcode_name) {
const struct firmware *fw = NULL;
status = request_firmware(&fw, state->microcode_name,
state->i2c->dev.parent);
if (status < 0)
fw = NULL;
load_firmware_cb(fw, state);
} else if (init_drxk(state) < 0)
2024-09-09 08:52:07 +00:00
goto error;
2024-09-09 08:57:42 +00:00
/* Initialize stats */
p = &state->frontend.dtv_property_cache;
p->strength.len = 1;
p->cnr.len = 1;
p->block_error.len = 1;
p->block_count.len = 1;
p->pre_bit_error.len = 1;
p->pre_bit_count.len = 1;
p->post_bit_error.len = 1;
p->post_bit_count.len = 1;
p->strength.stat[0].scale = FE_SCALE_RELATIVE;
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
pr_info("frontend initialized.\n");
2024-09-09 08:52:07 +00:00
return &state->frontend;
error:
2024-09-09 08:57:42 +00:00
pr_err("not found\n");
2024-09-09 08:52:07 +00:00
kfree(state);
return NULL;
}
EXPORT_SYMBOL(drxk_attach);
MODULE_DESCRIPTION("DRX-K driver");
MODULE_AUTHOR("Ralph Metzler");
MODULE_LICENSE("GPL");