394 lines
9.6 KiB
C
394 lines
9.6 KiB
C
|
/*
|
||
|
* Copyright (C) 2012 Freescale Semiconductor, Inc.
|
||
|
*
|
||
|
* Copyright (C) 2014 Linaro.
|
||
|
* Viresh Kumar <viresh.kumar@linaro.org>
|
||
|
*
|
||
|
* The OPP code in function set_target() is reused from
|
||
|
* drivers/cpufreq/omap-cpufreq.c
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/cpu_cooling.h>
|
||
|
#include <linux/cpufreq.h>
|
||
|
#include <linux/cpufreq-dt.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/of.h>
|
||
|
#include <linux/pm_opp.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/regulator/consumer.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/thermal.h>
|
||
|
|
||
|
struct private_data {
|
||
|
struct device *cpu_dev;
|
||
|
struct regulator *cpu_reg;
|
||
|
struct thermal_cooling_device *cdev;
|
||
|
unsigned int voltage_tolerance; /* in percentage */
|
||
|
};
|
||
|
|
||
|
static int set_target(struct cpufreq_policy *policy, unsigned int index)
|
||
|
{
|
||
|
struct dev_pm_opp *opp;
|
||
|
struct cpufreq_frequency_table *freq_table = policy->freq_table;
|
||
|
struct clk *cpu_clk = policy->clk;
|
||
|
struct private_data *priv = policy->driver_data;
|
||
|
struct device *cpu_dev = priv->cpu_dev;
|
||
|
struct regulator *cpu_reg = priv->cpu_reg;
|
||
|
unsigned long volt = 0, volt_old = 0, tol = 0;
|
||
|
unsigned int old_freq, new_freq;
|
||
|
long freq_Hz, freq_exact;
|
||
|
int ret;
|
||
|
|
||
|
freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
|
||
|
if (freq_Hz <= 0)
|
||
|
freq_Hz = freq_table[index].frequency * 1000;
|
||
|
|
||
|
freq_exact = freq_Hz;
|
||
|
new_freq = freq_Hz / 1000;
|
||
|
old_freq = clk_get_rate(cpu_clk) / 1000;
|
||
|
|
||
|
if (!IS_ERR(cpu_reg)) {
|
||
|
rcu_read_lock();
|
||
|
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
|
||
|
if (IS_ERR(opp)) {
|
||
|
rcu_read_unlock();
|
||
|
dev_err(cpu_dev, "failed to find OPP for %ld\n",
|
||
|
freq_Hz);
|
||
|
return PTR_ERR(opp);
|
||
|
}
|
||
|
volt = dev_pm_opp_get_voltage(opp);
|
||
|
rcu_read_unlock();
|
||
|
tol = volt * priv->voltage_tolerance / 100;
|
||
|
volt_old = regulator_get_voltage(cpu_reg);
|
||
|
}
|
||
|
|
||
|
dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
|
||
|
old_freq / 1000, volt_old ? volt_old / 1000 : -1,
|
||
|
new_freq / 1000, volt ? volt / 1000 : -1);
|
||
|
|
||
|
/* scaling up? scale voltage before frequency */
|
||
|
if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
|
||
|
ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev, "failed to scale voltage up: %d\n",
|
||
|
ret);
|
||
|
return ret;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ret = clk_set_rate(cpu_clk, freq_exact);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
|
||
|
if (!IS_ERR(cpu_reg))
|
||
|
regulator_set_voltage_tol(cpu_reg, volt_old, tol);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/* scaling down? scale voltage after frequency */
|
||
|
if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
|
||
|
ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev, "failed to scale voltage down: %d\n",
|
||
|
ret);
|
||
|
clk_set_rate(cpu_clk, old_freq * 1000);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int allocate_resources(int cpu, struct device **cdev,
|
||
|
struct regulator **creg, struct clk **cclk)
|
||
|
{
|
||
|
struct device *cpu_dev;
|
||
|
struct regulator *cpu_reg;
|
||
|
struct clk *cpu_clk;
|
||
|
int ret = 0;
|
||
|
char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
|
||
|
|
||
|
cpu_dev = get_cpu_device(cpu);
|
||
|
if (!cpu_dev) {
|
||
|
pr_err("failed to get cpu%d device\n", cpu);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
/* Try "cpu0" for older DTs */
|
||
|
if (!cpu)
|
||
|
reg = reg_cpu0;
|
||
|
else
|
||
|
reg = reg_cpu;
|
||
|
|
||
|
try_again:
|
||
|
cpu_reg = regulator_get_optional(cpu_dev, reg);
|
||
|
if (IS_ERR(cpu_reg)) {
|
||
|
/*
|
||
|
* If cpu's regulator supply node is present, but regulator is
|
||
|
* not yet registered, we should try defering probe.
|
||
|
*/
|
||
|
if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
|
||
|
dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
|
||
|
cpu);
|
||
|
return -EPROBE_DEFER;
|
||
|
}
|
||
|
|
||
|
/* Try with "cpu-supply" */
|
||
|
if (reg == reg_cpu0) {
|
||
|
reg = reg_cpu;
|
||
|
goto try_again;
|
||
|
}
|
||
|
|
||
|
dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n",
|
||
|
cpu, PTR_ERR(cpu_reg));
|
||
|
}
|
||
|
|
||
|
cpu_clk = clk_get(cpu_dev, NULL);
|
||
|
if (IS_ERR(cpu_clk)) {
|
||
|
/* put regulator */
|
||
|
if (!IS_ERR(cpu_reg))
|
||
|
regulator_put(cpu_reg);
|
||
|
|
||
|
ret = PTR_ERR(cpu_clk);
|
||
|
|
||
|
/*
|
||
|
* If cpu's clk node is present, but clock is not yet
|
||
|
* registered, we should try defering probe.
|
||
|
*/
|
||
|
if (ret == -EPROBE_DEFER)
|
||
|
dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
|
||
|
else
|
||
|
dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
|
||
|
ret);
|
||
|
} else {
|
||
|
*cdev = cpu_dev;
|
||
|
*creg = cpu_reg;
|
||
|
*cclk = cpu_clk;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int cpufreq_init(struct cpufreq_policy *policy)
|
||
|
{
|
||
|
struct cpufreq_dt_platform_data *pd;
|
||
|
struct cpufreq_frequency_table *freq_table;
|
||
|
struct thermal_cooling_device *cdev;
|
||
|
struct device_node *np;
|
||
|
struct private_data *priv;
|
||
|
struct device *cpu_dev;
|
||
|
struct regulator *cpu_reg;
|
||
|
struct clk *cpu_clk;
|
||
|
unsigned long min_uV = ~0, max_uV = 0;
|
||
|
unsigned int transition_latency;
|
||
|
int ret;
|
||
|
|
||
|
ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
|
||
|
if (ret) {
|
||
|
pr_err("%s: Failed to allocate resources\n: %d", __func__, ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
np = of_node_get(cpu_dev->of_node);
|
||
|
if (!np) {
|
||
|
dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
|
||
|
ret = -ENOENT;
|
||
|
goto out_put_reg_clk;
|
||
|
}
|
||
|
|
||
|
/* OPPs might be populated at runtime, don't check for error here */
|
||
|
of_init_opp_table(cpu_dev);
|
||
|
|
||
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
||
|
if (!priv) {
|
||
|
ret = -ENOMEM;
|
||
|
goto out_put_node;
|
||
|
}
|
||
|
|
||
|
of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
|
||
|
|
||
|
if (of_property_read_u32(np, "clock-latency", &transition_latency))
|
||
|
transition_latency = CPUFREQ_ETERNAL;
|
||
|
|
||
|
if (!IS_ERR(cpu_reg)) {
|
||
|
unsigned long opp_freq = 0;
|
||
|
|
||
|
/*
|
||
|
* Disable any OPPs where the connected regulator isn't able to
|
||
|
* provide the specified voltage and record minimum and maximum
|
||
|
* voltage levels.
|
||
|
*/
|
||
|
while (1) {
|
||
|
struct dev_pm_opp *opp;
|
||
|
unsigned long opp_uV, tol_uV;
|
||
|
|
||
|
rcu_read_lock();
|
||
|
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &opp_freq);
|
||
|
if (IS_ERR(opp)) {
|
||
|
rcu_read_unlock();
|
||
|
break;
|
||
|
}
|
||
|
opp_uV = dev_pm_opp_get_voltage(opp);
|
||
|
rcu_read_unlock();
|
||
|
|
||
|
tol_uV = opp_uV * priv->voltage_tolerance / 100;
|
||
|
if (regulator_is_supported_voltage(cpu_reg, opp_uV,
|
||
|
opp_uV + tol_uV)) {
|
||
|
if (opp_uV < min_uV)
|
||
|
min_uV = opp_uV;
|
||
|
if (opp_uV > max_uV)
|
||
|
max_uV = opp_uV;
|
||
|
} else {
|
||
|
dev_pm_opp_disable(cpu_dev, opp_freq);
|
||
|
}
|
||
|
|
||
|
opp_freq++;
|
||
|
}
|
||
|
|
||
|
ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
|
||
|
if (ret > 0)
|
||
|
transition_latency += ret * 1000;
|
||
|
}
|
||
|
|
||
|
ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
|
||
|
if (ret) {
|
||
|
pr_err("failed to init cpufreq table: %d\n", ret);
|
||
|
goto out_free_priv;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For now, just loading the cooling device;
|
||
|
* thermal DT code takes care of matching them.
|
||
|
*/
|
||
|
if (of_find_property(np, "#cooling-cells", NULL)) {
|
||
|
cdev = of_cpufreq_cooling_register(np, cpu_present_mask);
|
||
|
if (IS_ERR(cdev))
|
||
|
dev_err(cpu_dev,
|
||
|
"running cpufreq without cooling device: %ld\n",
|
||
|
PTR_ERR(cdev));
|
||
|
else
|
||
|
priv->cdev = cdev;
|
||
|
}
|
||
|
|
||
|
priv->cpu_dev = cpu_dev;
|
||
|
priv->cpu_reg = cpu_reg;
|
||
|
policy->driver_data = priv;
|
||
|
|
||
|
policy->clk = cpu_clk;
|
||
|
ret = cpufreq_table_validate_and_show(policy, freq_table);
|
||
|
if (ret) {
|
||
|
dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
|
||
|
ret);
|
||
|
goto out_cooling_unregister;
|
||
|
}
|
||
|
|
||
|
policy->cpuinfo.transition_latency = transition_latency;
|
||
|
|
||
|
pd = cpufreq_get_driver_data();
|
||
|
if (!pd || !pd->independent_clocks)
|
||
|
cpumask_setall(policy->cpus);
|
||
|
|
||
|
of_node_put(np);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_cooling_unregister:
|
||
|
cpufreq_cooling_unregister(priv->cdev);
|
||
|
dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
|
||
|
out_free_priv:
|
||
|
kfree(priv);
|
||
|
out_put_node:
|
||
|
of_node_put(np);
|
||
|
out_put_reg_clk:
|
||
|
clk_put(cpu_clk);
|
||
|
if (!IS_ERR(cpu_reg))
|
||
|
regulator_put(cpu_reg);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int cpufreq_exit(struct cpufreq_policy *policy)
|
||
|
{
|
||
|
struct private_data *priv = policy->driver_data;
|
||
|
|
||
|
cpufreq_cooling_unregister(priv->cdev);
|
||
|
dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
|
||
|
clk_put(policy->clk);
|
||
|
if (!IS_ERR(priv->cpu_reg))
|
||
|
regulator_put(priv->cpu_reg);
|
||
|
kfree(priv);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct cpufreq_driver dt_cpufreq_driver = {
|
||
|
.flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
|
||
|
.verify = cpufreq_generic_frequency_table_verify,
|
||
|
.target_index = set_target,
|
||
|
.get = cpufreq_generic_get,
|
||
|
.init = cpufreq_init,
|
||
|
.exit = cpufreq_exit,
|
||
|
.name = "cpufreq-dt",
|
||
|
.attr = cpufreq_generic_attr,
|
||
|
};
|
||
|
|
||
|
static int dt_cpufreq_probe(struct platform_device *pdev)
|
||
|
{
|
||
|
struct device *cpu_dev;
|
||
|
struct regulator *cpu_reg;
|
||
|
struct clk *cpu_clk;
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* All per-cluster (CPUs sharing clock/voltages) initialization is done
|
||
|
* from ->init(). In probe(), we just need to make sure that clk and
|
||
|
* regulators are available. Else defer probe and retry.
|
||
|
*
|
||
|
* FIXME: Is checking this only for CPU0 sufficient ?
|
||
|
*/
|
||
|
ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
clk_put(cpu_clk);
|
||
|
if (!IS_ERR(cpu_reg))
|
||
|
regulator_put(cpu_reg);
|
||
|
|
||
|
dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
|
||
|
|
||
|
ret = cpufreq_register_driver(&dt_cpufreq_driver);
|
||
|
if (ret)
|
||
|
dev_err(cpu_dev, "failed register driver: %d\n", ret);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int dt_cpufreq_remove(struct platform_device *pdev)
|
||
|
{
|
||
|
cpufreq_unregister_driver(&dt_cpufreq_driver);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct platform_driver dt_cpufreq_platdrv = {
|
||
|
.driver = {
|
||
|
.name = "cpufreq-dt",
|
||
|
.owner = THIS_MODULE,
|
||
|
},
|
||
|
.probe = dt_cpufreq_probe,
|
||
|
.remove = dt_cpufreq_remove,
|
||
|
};
|
||
|
module_platform_driver(dt_cpufreq_platdrv);
|
||
|
|
||
|
MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
|
||
|
MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
|
||
|
MODULE_DESCRIPTION("Generic cpufreq driver");
|
||
|
MODULE_LICENSE("GPL");
|