238 lines
6.2 KiB
C
238 lines
6.2 KiB
C
|
/*
|
||
|
* arch/arm/mach-vexpress/dcscb.c - Dual Cluster System Configuration Block
|
||
|
*
|
||
|
* Created by: Nicolas Pitre, May 2012
|
||
|
* Copyright: (C) 2012-2013 Linaro Limited
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/of_address.h>
|
||
|
#include <linux/vexpress.h>
|
||
|
#include <linux/arm-cci.h>
|
||
|
|
||
|
#include <asm/mcpm.h>
|
||
|
#include <asm/proc-fns.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/cputype.h>
|
||
|
#include <asm/cp15.h>
|
||
|
|
||
|
|
||
|
#define RST_HOLD0 0x0
|
||
|
#define RST_HOLD1 0x4
|
||
|
#define SYS_SWRESET 0x8
|
||
|
#define RST_STAT0 0xc
|
||
|
#define RST_STAT1 0x10
|
||
|
#define EAG_CFG_R 0x20
|
||
|
#define EAG_CFG_W 0x24
|
||
|
#define KFC_CFG_R 0x28
|
||
|
#define KFC_CFG_W 0x2c
|
||
|
#define DCS_CFG_R 0x30
|
||
|
|
||
|
/*
|
||
|
* We can't use regular spinlocks. In the switcher case, it is possible
|
||
|
* for an outbound CPU to call power_down() while its inbound counterpart
|
||
|
* is already live using the same logical CPU number which trips lockdep
|
||
|
* debugging.
|
||
|
*/
|
||
|
static arch_spinlock_t dcscb_lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
||
|
|
||
|
static void __iomem *dcscb_base;
|
||
|
static int dcscb_use_count[4][2];
|
||
|
static int dcscb_allcpus_mask[2];
|
||
|
|
||
|
static int dcscb_power_up(unsigned int cpu, unsigned int cluster)
|
||
|
{
|
||
|
unsigned int rst_hold, cpumask = (1 << cpu);
|
||
|
unsigned int all_mask;
|
||
|
|
||
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||
|
if (cpu >= 4 || cluster >= 2)
|
||
|
return -EINVAL;
|
||
|
|
||
|
all_mask = dcscb_allcpus_mask[cluster];
|
||
|
|
||
|
/*
|
||
|
* Since this is called with IRQs enabled, and no arch_spin_lock_irq
|
||
|
* variant exists, we need to disable IRQs manually here.
|
||
|
*/
|
||
|
local_irq_disable();
|
||
|
arch_spin_lock(&dcscb_lock);
|
||
|
|
||
|
dcscb_use_count[cpu][cluster]++;
|
||
|
if (dcscb_use_count[cpu][cluster] == 1) {
|
||
|
rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
|
||
|
if (rst_hold & (1 << 8)) {
|
||
|
/* remove cluster reset and add individual CPU's reset */
|
||
|
rst_hold &= ~(1 << 8);
|
||
|
rst_hold |= all_mask;
|
||
|
}
|
||
|
rst_hold &= ~(cpumask | (cpumask << 4));
|
||
|
writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
|
||
|
} else if (dcscb_use_count[cpu][cluster] != 2) {
|
||
|
/*
|
||
|
* The only possible values are:
|
||
|
* 0 = CPU down
|
||
|
* 1 = CPU (still) up
|
||
|
* 2 = CPU requested to be up before it had a chance
|
||
|
* to actually make itself down.
|
||
|
* Any other value is a bug.
|
||
|
*/
|
||
|
BUG();
|
||
|
}
|
||
|
|
||
|
arch_spin_unlock(&dcscb_lock);
|
||
|
local_irq_enable();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void dcscb_power_down(void)
|
||
|
{
|
||
|
unsigned int mpidr, cpu, cluster, rst_hold, cpumask, all_mask;
|
||
|
bool last_man = false, skip_wfi = false;
|
||
|
|
||
|
mpidr = read_cpuid_mpidr();
|
||
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||
|
cpumask = (1 << cpu);
|
||
|
|
||
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||
|
BUG_ON(cpu >= 4 || cluster >= 2);
|
||
|
|
||
|
all_mask = dcscb_allcpus_mask[cluster];
|
||
|
|
||
|
__mcpm_cpu_going_down(cpu, cluster);
|
||
|
|
||
|
arch_spin_lock(&dcscb_lock);
|
||
|
BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP);
|
||
|
dcscb_use_count[cpu][cluster]--;
|
||
|
if (dcscb_use_count[cpu][cluster] == 0) {
|
||
|
rst_hold = readl_relaxed(dcscb_base + RST_HOLD0 + cluster * 4);
|
||
|
rst_hold |= cpumask;
|
||
|
if (((rst_hold | (rst_hold >> 4)) & all_mask) == all_mask) {
|
||
|
rst_hold |= (1 << 8);
|
||
|
last_man = true;
|
||
|
}
|
||
|
writel_relaxed(rst_hold, dcscb_base + RST_HOLD0 + cluster * 4);
|
||
|
} else if (dcscb_use_count[cpu][cluster] == 1) {
|
||
|
/*
|
||
|
* A power_up request went ahead of us.
|
||
|
* Even if we do not want to shut this CPU down,
|
||
|
* the caller expects a certain state as if the WFI
|
||
|
* was aborted. So let's continue with cache cleaning.
|
||
|
*/
|
||
|
skip_wfi = true;
|
||
|
} else
|
||
|
BUG();
|
||
|
|
||
|
if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) {
|
||
|
arch_spin_unlock(&dcscb_lock);
|
||
|
|
||
|
/* Flush all cache levels for this cluster. */
|
||
|
v7_exit_coherency_flush(all);
|
||
|
|
||
|
/*
|
||
|
* A full outer cache flush could be needed at this point
|
||
|
* on platforms with such a cache, depending on where the
|
||
|
* outer cache sits. In some cases the notion of a "last
|
||
|
* cluster standing" would need to be implemented if the
|
||
|
* outer cache is shared across clusters. In any case, when
|
||
|
* the outer cache needs flushing, there is no concurrent
|
||
|
* access to the cache controller to worry about and no
|
||
|
* special locking besides what is already provided by the
|
||
|
* MCPM state machinery is needed.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Disable cluster-level coherency by masking
|
||
|
* incoming snoops and DVM messages:
|
||
|
*/
|
||
|
cci_disable_port_by_cpu(mpidr);
|
||
|
|
||
|
__mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN);
|
||
|
} else {
|
||
|
arch_spin_unlock(&dcscb_lock);
|
||
|
|
||
|
/* Disable and flush the local CPU cache. */
|
||
|
v7_exit_coherency_flush(louis);
|
||
|
}
|
||
|
|
||
|
__mcpm_cpu_down(cpu, cluster);
|
||
|
|
||
|
/* Now we are prepared for power-down, do it: */
|
||
|
dsb();
|
||
|
if (!skip_wfi)
|
||
|
wfi();
|
||
|
|
||
|
/* Not dead at this point? Let our caller cope. */
|
||
|
}
|
||
|
|
||
|
static const struct mcpm_platform_ops dcscb_power_ops = {
|
||
|
.power_up = dcscb_power_up,
|
||
|
.power_down = dcscb_power_down,
|
||
|
};
|
||
|
|
||
|
static void __init dcscb_usage_count_init(void)
|
||
|
{
|
||
|
unsigned int mpidr, cpu, cluster;
|
||
|
|
||
|
mpidr = read_cpuid_mpidr();
|
||
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
||
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
||
|
|
||
|
pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster);
|
||
|
BUG_ON(cpu >= 4 || cluster >= 2);
|
||
|
dcscb_use_count[cpu][cluster] = 1;
|
||
|
}
|
||
|
|
||
|
extern void dcscb_power_up_setup(unsigned int affinity_level);
|
||
|
|
||
|
static int __init dcscb_init(void)
|
||
|
{
|
||
|
struct device_node *node;
|
||
|
unsigned int cfg;
|
||
|
int ret;
|
||
|
|
||
|
if (!cci_probed())
|
||
|
return -ENODEV;
|
||
|
|
||
|
node = of_find_compatible_node(NULL, NULL, "arm,rtsm,dcscb");
|
||
|
if (!node)
|
||
|
return -ENODEV;
|
||
|
dcscb_base = of_iomap(node, 0);
|
||
|
if (!dcscb_base)
|
||
|
return -EADDRNOTAVAIL;
|
||
|
cfg = readl_relaxed(dcscb_base + DCS_CFG_R);
|
||
|
dcscb_allcpus_mask[0] = (1 << (((cfg >> 16) >> (0 << 2)) & 0xf)) - 1;
|
||
|
dcscb_allcpus_mask[1] = (1 << (((cfg >> 16) >> (1 << 2)) & 0xf)) - 1;
|
||
|
dcscb_usage_count_init();
|
||
|
|
||
|
ret = mcpm_platform_register(&dcscb_power_ops);
|
||
|
if (!ret)
|
||
|
ret = mcpm_sync_init(dcscb_power_up_setup);
|
||
|
if (ret) {
|
||
|
iounmap(dcscb_base);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
pr_info("VExpress DCSCB support installed\n");
|
||
|
|
||
|
/*
|
||
|
* Future entries into the kernel can now go
|
||
|
* through the cluster entry vectors.
|
||
|
*/
|
||
|
vexpress_flags_set(virt_to_phys(mcpm_entry_point));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
early_initcall(dcscb_init);
|