471 lines
13 KiB
C
471 lines
13 KiB
C
|
/*
|
||
|
* Coherency fabric (Aurora) support for Armada 370 and XP platforms.
|
||
|
*
|
||
|
* Copyright (C) 2012 Marvell
|
||
|
*
|
||
|
* Yehuda Yitschak <yehuday@marvell.com>
|
||
|
* Gregory Clement <gregory.clement@free-electrons.com>
|
||
|
* Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
|
||
|
*
|
||
|
* This file is licensed under the terms of the GNU General Public
|
||
|
* License version 2. This program is licensed "as is" without any
|
||
|
* warranty of any kind, whether express or implied.
|
||
|
*
|
||
|
* The Armada 370 and Armada XP SOCs have a coherency fabric which is
|
||
|
* responsible for ensuring hardware coherency between all CPUs and between
|
||
|
* CPUs and I/O masters. This file initializes the coherency fabric and
|
||
|
* supplies basic routines for configuring and controlling hardware coherency
|
||
|
*/
|
||
|
|
||
|
#define pr_fmt(fmt) "mvebu-coherency: " fmt
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/of_address.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/dma-mapping.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/mbus.h>
|
||
|
#include <linux/clk.h>
|
||
|
#include <linux/pci.h>
|
||
|
#include <asm/smp_plat.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/mach/map.h>
|
||
|
#include "armada-370-xp.h"
|
||
|
#include "coherency.h"
|
||
|
#include "mvebu-soc-id.h"
|
||
|
|
||
|
unsigned long coherency_phys_base;
|
||
|
void __iomem *coherency_base;
|
||
|
static void __iomem *coherency_cpu_base;
|
||
|
|
||
|
/* Coherency fabric registers */
|
||
|
#define COHERENCY_FABRIC_CFG_OFFSET 0x4
|
||
|
|
||
|
#define IO_SYNC_BARRIER_CTL_OFFSET 0x0
|
||
|
|
||
|
enum {
|
||
|
COHERENCY_FABRIC_TYPE_NONE,
|
||
|
COHERENCY_FABRIC_TYPE_ARMADA_370_XP,
|
||
|
COHERENCY_FABRIC_TYPE_ARMADA_375,
|
||
|
COHERENCY_FABRIC_TYPE_ARMADA_380,
|
||
|
};
|
||
|
|
||
|
static struct of_device_id of_coherency_table[] = {
|
||
|
{.compatible = "marvell,coherency-fabric",
|
||
|
.data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_370_XP },
|
||
|
{.compatible = "marvell,armada-375-coherency-fabric",
|
||
|
.data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_375 },
|
||
|
{.compatible = "marvell,armada-380-coherency-fabric",
|
||
|
.data = (void *) COHERENCY_FABRIC_TYPE_ARMADA_380 },
|
||
|
{ /* end of list */ },
|
||
|
};
|
||
|
|
||
|
/* Functions defined in coherency_ll.S */
|
||
|
int ll_enable_coherency(void);
|
||
|
void ll_add_cpu_to_smp_group(void);
|
||
|
|
||
|
int set_cpu_coherent(void)
|
||
|
{
|
||
|
if (!coherency_base) {
|
||
|
pr_warn("Can't make current CPU cache coherent.\n");
|
||
|
pr_warn("Coherency fabric is not initialized\n");
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
ll_add_cpu_to_smp_group();
|
||
|
return ll_enable_coherency();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The below code implements the I/O coherency workaround on Armada
|
||
|
* 375. This workaround consists in using the two channels of the
|
||
|
* first XOR engine to trigger a XOR transaction that serves as the
|
||
|
* I/O coherency barrier.
|
||
|
*/
|
||
|
|
||
|
static void __iomem *xor_base, *xor_high_base;
|
||
|
static dma_addr_t coherency_wa_buf_phys[CONFIG_NR_CPUS];
|
||
|
static void *coherency_wa_buf[CONFIG_NR_CPUS];
|
||
|
static bool coherency_wa_enabled;
|
||
|
|
||
|
#define XOR_CONFIG(chan) (0x10 + (chan * 4))
|
||
|
#define XOR_ACTIVATION(chan) (0x20 + (chan * 4))
|
||
|
#define WINDOW_BAR_ENABLE(chan) (0x240 + ((chan) << 2))
|
||
|
#define WINDOW_BASE(w) (0x250 + ((w) << 2))
|
||
|
#define WINDOW_SIZE(w) (0x270 + ((w) << 2))
|
||
|
#define WINDOW_REMAP_HIGH(w) (0x290 + ((w) << 2))
|
||
|
#define WINDOW_OVERRIDE_CTRL(chan) (0x2A0 + ((chan) << 2))
|
||
|
#define XOR_DEST_POINTER(chan) (0x2B0 + (chan * 4))
|
||
|
#define XOR_BLOCK_SIZE(chan) (0x2C0 + (chan * 4))
|
||
|
#define XOR_INIT_VALUE_LOW 0x2E0
|
||
|
#define XOR_INIT_VALUE_HIGH 0x2E4
|
||
|
|
||
|
static inline void mvebu_hwcc_armada375_sync_io_barrier_wa(void)
|
||
|
{
|
||
|
int idx = smp_processor_id();
|
||
|
|
||
|
/* Write '1' to the first word of the buffer */
|
||
|
writel(0x1, coherency_wa_buf[idx]);
|
||
|
|
||
|
/* Wait until the engine is idle */
|
||
|
while ((readl(xor_base + XOR_ACTIVATION(idx)) >> 4) & 0x3)
|
||
|
;
|
||
|
|
||
|
dmb();
|
||
|
|
||
|
/* Trigger channel */
|
||
|
writel(0x1, xor_base + XOR_ACTIVATION(idx));
|
||
|
|
||
|
/* Poll the data until it is cleared by the XOR transaction */
|
||
|
while (readl(coherency_wa_buf[idx]))
|
||
|
;
|
||
|
}
|
||
|
|
||
|
static void __init armada_375_coherency_init_wa(void)
|
||
|
{
|
||
|
const struct mbus_dram_target_info *dram;
|
||
|
struct device_node *xor_node;
|
||
|
struct property *xor_status;
|
||
|
struct clk *xor_clk;
|
||
|
u32 win_enable = 0;
|
||
|
int i;
|
||
|
|
||
|
pr_warn("enabling coherency workaround for Armada 375 Z1, one XOR engine disabled\n");
|
||
|
|
||
|
/*
|
||
|
* Since the workaround uses one XOR engine, we grab a
|
||
|
* reference to its Device Tree node first.
|
||
|
*/
|
||
|
xor_node = of_find_compatible_node(NULL, NULL, "marvell,orion-xor");
|
||
|
BUG_ON(!xor_node);
|
||
|
|
||
|
/*
|
||
|
* Then we mark it as disabled so that the real XOR driver
|
||
|
* will not use it.
|
||
|
*/
|
||
|
xor_status = kzalloc(sizeof(struct property), GFP_KERNEL);
|
||
|
BUG_ON(!xor_status);
|
||
|
|
||
|
xor_status->value = kstrdup("disabled", GFP_KERNEL);
|
||
|
BUG_ON(!xor_status->value);
|
||
|
|
||
|
xor_status->length = 8;
|
||
|
xor_status->name = kstrdup("status", GFP_KERNEL);
|
||
|
BUG_ON(!xor_status->name);
|
||
|
|
||
|
of_update_property(xor_node, xor_status);
|
||
|
|
||
|
/*
|
||
|
* And we remap the registers, get the clock, and do the
|
||
|
* initial configuration of the XOR engine.
|
||
|
*/
|
||
|
xor_base = of_iomap(xor_node, 0);
|
||
|
xor_high_base = of_iomap(xor_node, 1);
|
||
|
|
||
|
xor_clk = of_clk_get_by_name(xor_node, NULL);
|
||
|
BUG_ON(!xor_clk);
|
||
|
|
||
|
clk_prepare_enable(xor_clk);
|
||
|
|
||
|
dram = mv_mbus_dram_info();
|
||
|
|
||
|
for (i = 0; i < 8; i++) {
|
||
|
writel(0, xor_base + WINDOW_BASE(i));
|
||
|
writel(0, xor_base + WINDOW_SIZE(i));
|
||
|
if (i < 4)
|
||
|
writel(0, xor_base + WINDOW_REMAP_HIGH(i));
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < dram->num_cs; i++) {
|
||
|
const struct mbus_dram_window *cs = dram->cs + i;
|
||
|
writel((cs->base & 0xffff0000) |
|
||
|
(cs->mbus_attr << 8) |
|
||
|
dram->mbus_dram_target_id, xor_base + WINDOW_BASE(i));
|
||
|
writel((cs->size - 1) & 0xffff0000, xor_base + WINDOW_SIZE(i));
|
||
|
|
||
|
win_enable |= (1 << i);
|
||
|
win_enable |= 3 << (16 + (2 * i));
|
||
|
}
|
||
|
|
||
|
writel(win_enable, xor_base + WINDOW_BAR_ENABLE(0));
|
||
|
writel(win_enable, xor_base + WINDOW_BAR_ENABLE(1));
|
||
|
writel(0, xor_base + WINDOW_OVERRIDE_CTRL(0));
|
||
|
writel(0, xor_base + WINDOW_OVERRIDE_CTRL(1));
|
||
|
|
||
|
for (i = 0; i < CONFIG_NR_CPUS; i++) {
|
||
|
coherency_wa_buf[i] = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
||
|
BUG_ON(!coherency_wa_buf[i]);
|
||
|
|
||
|
/*
|
||
|
* We can't use the DMA mapping API, since we don't
|
||
|
* have a valid 'struct device' pointer
|
||
|
*/
|
||
|
coherency_wa_buf_phys[i] =
|
||
|
virt_to_phys(coherency_wa_buf[i]);
|
||
|
BUG_ON(!coherency_wa_buf_phys[i]);
|
||
|
|
||
|
/*
|
||
|
* Configure the XOR engine for memset operation, with
|
||
|
* a 128 bytes block size
|
||
|
*/
|
||
|
writel(0x444, xor_base + XOR_CONFIG(i));
|
||
|
writel(128, xor_base + XOR_BLOCK_SIZE(i));
|
||
|
writel(coherency_wa_buf_phys[i],
|
||
|
xor_base + XOR_DEST_POINTER(i));
|
||
|
}
|
||
|
|
||
|
writel(0x0, xor_base + XOR_INIT_VALUE_LOW);
|
||
|
writel(0x0, xor_base + XOR_INIT_VALUE_HIGH);
|
||
|
|
||
|
coherency_wa_enabled = true;
|
||
|
}
|
||
|
|
||
|
static inline void mvebu_hwcc_sync_io_barrier(void)
|
||
|
{
|
||
|
if (coherency_wa_enabled) {
|
||
|
mvebu_hwcc_armada375_sync_io_barrier_wa();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
writel(0x1, coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET);
|
||
|
while (readl(coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET) & 0x1);
|
||
|
}
|
||
|
|
||
|
static dma_addr_t mvebu_hwcc_dma_map_page(struct device *dev, struct page *page,
|
||
|
unsigned long offset, size_t size,
|
||
|
enum dma_data_direction dir,
|
||
|
struct dma_attrs *attrs)
|
||
|
{
|
||
|
if (dir != DMA_TO_DEVICE)
|
||
|
mvebu_hwcc_sync_io_barrier();
|
||
|
return pfn_to_dma(dev, page_to_pfn(page)) + offset;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void mvebu_hwcc_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
|
||
|
size_t size, enum dma_data_direction dir,
|
||
|
struct dma_attrs *attrs)
|
||
|
{
|
||
|
if (dir != DMA_TO_DEVICE)
|
||
|
mvebu_hwcc_sync_io_barrier();
|
||
|
}
|
||
|
|
||
|
static void mvebu_hwcc_dma_sync(struct device *dev, dma_addr_t dma_handle,
|
||
|
size_t size, enum dma_data_direction dir)
|
||
|
{
|
||
|
if (dir != DMA_TO_DEVICE)
|
||
|
mvebu_hwcc_sync_io_barrier();
|
||
|
}
|
||
|
|
||
|
static struct dma_map_ops mvebu_hwcc_dma_ops = {
|
||
|
.alloc = arm_dma_alloc,
|
||
|
.free = arm_dma_free,
|
||
|
.mmap = arm_dma_mmap,
|
||
|
.map_page = mvebu_hwcc_dma_map_page,
|
||
|
.unmap_page = mvebu_hwcc_dma_unmap_page,
|
||
|
.get_sgtable = arm_dma_get_sgtable,
|
||
|
.map_sg = arm_dma_map_sg,
|
||
|
.unmap_sg = arm_dma_unmap_sg,
|
||
|
.sync_single_for_cpu = mvebu_hwcc_dma_sync,
|
||
|
.sync_single_for_device = mvebu_hwcc_dma_sync,
|
||
|
.sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
|
||
|
.sync_sg_for_device = arm_dma_sync_sg_for_device,
|
||
|
.set_dma_mask = arm_dma_set_mask,
|
||
|
};
|
||
|
|
||
|
static int mvebu_hwcc_notifier(struct notifier_block *nb,
|
||
|
unsigned long event, void *__dev)
|
||
|
{
|
||
|
struct device *dev = __dev;
|
||
|
|
||
|
if (event != BUS_NOTIFY_ADD_DEVICE)
|
||
|
return NOTIFY_DONE;
|
||
|
set_dma_ops(dev, &mvebu_hwcc_dma_ops);
|
||
|
|
||
|
return NOTIFY_OK;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block mvebu_hwcc_nb = {
|
||
|
.notifier_call = mvebu_hwcc_notifier,
|
||
|
};
|
||
|
|
||
|
static struct notifier_block mvebu_hwcc_pci_nb = {
|
||
|
.notifier_call = mvebu_hwcc_notifier,
|
||
|
};
|
||
|
|
||
|
static void __init armada_370_coherency_init(struct device_node *np)
|
||
|
{
|
||
|
struct resource res;
|
||
|
|
||
|
of_address_to_resource(np, 0, &res);
|
||
|
coherency_phys_base = res.start;
|
||
|
/*
|
||
|
* Ensure secondary CPUs will see the updated value,
|
||
|
* which they read before they join the coherency
|
||
|
* fabric, and therefore before they are coherent with
|
||
|
* the boot CPU cache.
|
||
|
*/
|
||
|
sync_cache_w(&coherency_phys_base);
|
||
|
coherency_base = of_iomap(np, 0);
|
||
|
coherency_cpu_base = of_iomap(np, 1);
|
||
|
set_cpu_coherent();
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This ioremap hook is used on Armada 375/38x to ensure that PCIe
|
||
|
* memory areas are mapped as MT_UNCACHED instead of MT_DEVICE. This
|
||
|
* is needed as a workaround for a deadlock issue between the PCIe
|
||
|
* interface and the cache controller.
|
||
|
*/
|
||
|
static void __iomem *
|
||
|
armada_pcie_wa_ioremap_caller(phys_addr_t phys_addr, size_t size,
|
||
|
unsigned int mtype, void *caller)
|
||
|
{
|
||
|
struct resource pcie_mem;
|
||
|
|
||
|
mvebu_mbus_get_pcie_mem_aperture(&pcie_mem);
|
||
|
|
||
|
if (pcie_mem.start <= phys_addr && (phys_addr + size) <= pcie_mem.end)
|
||
|
mtype = MT_UNCACHED;
|
||
|
|
||
|
return __arm_ioremap_caller(phys_addr, size, mtype, caller);
|
||
|
}
|
||
|
|
||
|
static void __init armada_375_380_coherency_init(struct device_node *np)
|
||
|
{
|
||
|
struct device_node *cache_dn;
|
||
|
|
||
|
coherency_cpu_base = of_iomap(np, 0);
|
||
|
arch_ioremap_caller = armada_pcie_wa_ioremap_caller;
|
||
|
|
||
|
/*
|
||
|
* We should switch the PL310 to I/O coherency mode only if
|
||
|
* I/O coherency is actually enabled.
|
||
|
*/
|
||
|
if (!coherency_available())
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Add the PL310 property "arm,io-coherent". This makes sure the
|
||
|
* outer sync operation is not used, which allows to
|
||
|
* workaround the system erratum that causes deadlocks when
|
||
|
* doing PCIe in an SMP situation on Armada 375 and Armada
|
||
|
* 38x.
|
||
|
*/
|
||
|
for_each_compatible_node(cache_dn, NULL, "arm,pl310-cache") {
|
||
|
struct property *p;
|
||
|
|
||
|
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
||
|
p->name = kstrdup("arm,io-coherent", GFP_KERNEL);
|
||
|
of_add_property(cache_dn, p);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int coherency_type(void)
|
||
|
{
|
||
|
struct device_node *np;
|
||
|
const struct of_device_id *match;
|
||
|
int type;
|
||
|
|
||
|
/*
|
||
|
* The coherency fabric is needed:
|
||
|
* - For coherency between processors on Armada XP, so only
|
||
|
* when SMP is enabled.
|
||
|
* - For coherency between the processor and I/O devices, but
|
||
|
* this coherency requires many pre-requisites (write
|
||
|
* allocate cache policy, shareable pages, SMP bit set) that
|
||
|
* are only meant in SMP situations.
|
||
|
*
|
||
|
* Note that this means that on Armada 370, there is currently
|
||
|
* no way to use hardware I/O coherency, because even when
|
||
|
* CONFIG_SMP is enabled, is_smp() returns false due to the
|
||
|
* Armada 370 being a single-core processor. To lift this
|
||
|
* limitation, we would have to find a way to make the cache
|
||
|
* policy set to write-allocate (on all Armada SoCs), and to
|
||
|
* set the shareable attribute in page tables (on all Armada
|
||
|
* SoCs except the Armada 370). Unfortunately, such decisions
|
||
|
* are taken very early in the kernel boot process, at a point
|
||
|
* where we don't know yet on which SoC we are running.
|
||
|
|
||
|
*/
|
||
|
if (!is_smp())
|
||
|
return COHERENCY_FABRIC_TYPE_NONE;
|
||
|
|
||
|
np = of_find_matching_node_and_match(NULL, of_coherency_table, &match);
|
||
|
if (!np)
|
||
|
return COHERENCY_FABRIC_TYPE_NONE;
|
||
|
|
||
|
type = (int) match->data;
|
||
|
|
||
|
of_node_put(np);
|
||
|
|
||
|
return type;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* As a precaution, we currently completely disable hardware I/O
|
||
|
* coherency, until enough testing is done with automatic I/O
|
||
|
* synchronization barriers to validate that it is a proper solution.
|
||
|
*/
|
||
|
int coherency_available(void)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int __init coherency_init(void)
|
||
|
{
|
||
|
int type = coherency_type();
|
||
|
struct device_node *np;
|
||
|
|
||
|
np = of_find_matching_node(NULL, of_coherency_table);
|
||
|
|
||
|
if (type == COHERENCY_FABRIC_TYPE_ARMADA_370_XP)
|
||
|
armada_370_coherency_init(np);
|
||
|
else if (type == COHERENCY_FABRIC_TYPE_ARMADA_375 ||
|
||
|
type == COHERENCY_FABRIC_TYPE_ARMADA_380)
|
||
|
armada_375_380_coherency_init(np);
|
||
|
|
||
|
of_node_put(np);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int __init coherency_late_init(void)
|
||
|
{
|
||
|
int type = coherency_type();
|
||
|
|
||
|
if (type == COHERENCY_FABRIC_TYPE_NONE)
|
||
|
return 0;
|
||
|
|
||
|
if (type == COHERENCY_FABRIC_TYPE_ARMADA_375) {
|
||
|
u32 dev, rev;
|
||
|
|
||
|
if (mvebu_get_soc_id(&dev, &rev) == 0 &&
|
||
|
rev == ARMADA_375_Z1_REV)
|
||
|
armada_375_coherency_init_wa();
|
||
|
}
|
||
|
|
||
|
if (coherency_available())
|
||
|
bus_register_notifier(&platform_bus_type,
|
||
|
&mvebu_hwcc_nb);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
postcore_initcall(coherency_late_init);
|
||
|
|
||
|
#if IS_ENABLED(CONFIG_PCI)
|
||
|
static int __init coherency_pci_init(void)
|
||
|
{
|
||
|
if (coherency_available())
|
||
|
bus_register_notifier(&pci_bus_type,
|
||
|
&mvebu_hwcc_pci_nb);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
arch_initcall(coherency_pci_init);
|
||
|
#endif
|