M7350/external/bluetooth/bluez/tools/hciattach.c

1535 lines
33 KiB
C
Raw Normal View History

2024-09-09 08:57:42 +00:00
/*
*
* BlueZ - Bluetooth protocol stack for Linux
*
* Copyright (C) 2000-2001 Qualcomm Incorporated
* Copyright (C) 2002-2003 Maxim Krasnyansky <maxk@qualcomm.com>
* Copyright (C) 2002-2010 Marcel Holtmann <marcel@holtmann.org>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include <syslog.h>
#include <termios.h>
#include <time.h>
#include <sys/time.h>
#include <sys/poll.h>
#include <sys/param.h>
#include <sys/ioctl.h>
#include <bluetooth/bluetooth.h>
#include <bluetooth/hci.h>
#include <bluetooth/hci_lib.h>
#include "hciattach.h"
struct uart_t {
char *type;
int m_id;
int p_id;
int proto;
int init_speed;
int speed;
int flags;
int pm;
char *bdaddr;
int (*init) (int fd, struct uart_t *u, struct termios *ti);
int (*post) (int fd, struct uart_t *u, struct termios *ti);
};
#define FLOW_CTL 0x0001
#define AMP_DEV 0x0002
#define ENABLE_PM 1
#define DISABLE_PM 0
int line_disp = 1;
static volatile sig_atomic_t __io_canceled = 0;
static void sig_hup(int sig)
{
}
static void sig_term(int sig)
{
__io_canceled = 1;
}
static void sig_alarm(int sig)
{
fprintf(stderr, "Initialization timed out.\n");
exit(1);
}
int uart_speed(int s)
{
switch (s) {
case 9600:
return B9600;
case 19200:
return B19200;
case 38400:
return B38400;
case 57600:
return B57600;
case 115200:
return B115200;
case 230400:
return B230400;
case 460800:
return B460800;
case 500000:
return B500000;
case 576000:
return B576000;
case 921600:
return B921600;
case 1000000:
return B1000000;
case 1152000:
return B1152000;
case 1500000:
return B1500000;
case 2000000:
return B2000000;
#ifdef B2500000
case 2500000:
return B2500000;
#endif
#ifdef B3000000
case 3000000:
return B3000000;
#endif
#ifdef B3500000
case 3500000:
return B3500000;
#endif
#ifdef B3710000
case 3710000
return B3710000;
#endif
#ifdef B4000000
case 4000000:
return B4000000;
#endif
default:
return B57600;
}
}
int set_speed(int fd, struct termios *ti, int speed)
{
if (cfsetospeed(ti, uart_speed(speed)) < 0)
return -errno;
if (cfsetispeed(ti, uart_speed(speed)) < 0)
return -errno;
if (tcsetattr(fd, TCSANOW, ti) < 0)
return -errno;
return 0;
}
/*
* Read an HCI event from the given file descriptor.
*/
int read_hci_event(int fd, unsigned char* buf, int size)
{
int remain, r;
int count = 0;
fd_set infids;
struct timeval timeout;
if (size <= 0)
return -1;
FD_ZERO (&infids);
FD_SET (fd, &infids);
timeout.tv_sec = 3;
timeout.tv_usec = 0;
/* Check whether data is available in TTY buffer before calling read() */
if (select (fd + 1, &infids, NULL, NULL, &timeout) < 1) {
fprintf(stderr, "%s: Timing out on select for 3 secs.\n", __FUNCTION__);
return -1;
}
else
fprintf(stderr, "%s: Data(HCI-CMD-COMP-EVENT) available in TTY Serial buffer\n", __FUNCTION__);
/* The first byte identifies the packet type. For HCI event packets, it
* should be 0x04, so we read until we get to the 0x04. */
while (1) {
r = read(fd, buf, 1);
if (r <= 0) {
fprintf(stderr, "%s: read() failed with return value: %d\n",
__FUNCTION__, r);
return -1;
}
if (buf[0] == 0x04)
break;
}
count++;
/* The next two bytes are the event code and parameter total length. */
while (count < 3) {
r = read(fd, buf + count, 3 - count);
if (r <= 0)
return -1;
count += r;
}
/* Now we read the parameters. */
if (buf[2] < (size - 3))
remain = buf[2];
else
remain = size - 3;
while ((count - 3) < remain) {
r = read(fd, buf + count, remain - (count - 3));
if (r <= 0)
return -1;
count += r;
}
return count;
}
/*
* Ericsson specific initialization
*/
static int ericsson(int fd, struct uart_t *u, struct termios *ti)
{
struct timespec tm = {0, 50000};
char cmd[5];
cmd[0] = HCI_COMMAND_PKT;
cmd[1] = 0x09;
cmd[2] = 0xfc;
cmd[3] = 0x01;
switch (u->speed) {
case 57600:
cmd[4] = 0x03;
break;
case 115200:
cmd[4] = 0x02;
break;
case 230400:
cmd[4] = 0x01;
break;
case 460800:
cmd[4] = 0x00;
break;
case 921600:
cmd[4] = 0x20;
break;
case 2000000:
cmd[4] = 0x25;
break;
case 3000000:
cmd[4] = 0x27;
break;
case 4000000:
cmd[4] = 0x2B;
break;
default:
cmd[4] = 0x03;
u->speed = 57600;
fprintf(stderr, "Invalid speed requested, using %d bps instead\n", u->speed);
break;
}
/* Send initialization command */
if (write(fd, cmd, 5) != 5) {
perror("Failed to write init command");
return -1;
}
nanosleep(&tm, NULL);
return 0;
}
/*
* Digianswer specific initialization
*/
static int digi(int fd, struct uart_t *u, struct termios *ti)
{
struct timespec tm = {0, 50000};
char cmd[5];
/* DigiAnswer set baud rate command */
cmd[0] = HCI_COMMAND_PKT;
cmd[1] = 0x07;
cmd[2] = 0xfc;
cmd[3] = 0x01;
switch (u->speed) {
case 57600:
cmd[4] = 0x08;
break;
case 115200:
cmd[4] = 0x09;
break;
default:
cmd[4] = 0x09;
u->speed = 115200;
break;
}
/* Send initialization command */
if (write(fd, cmd, 5) != 5) {
perror("Failed to write init command");
return -1;
}
nanosleep(&tm, NULL);
return 0;
}
static int texas(int fd, struct uart_t *u, struct termios *ti)
{
return texas_init(fd, &u->speed, ti);
}
static int texas2(int fd, struct uart_t *u, struct termios *ti)
{
return texas_post(fd, ti);
}
static int texasalt(int fd, struct uart_t *u, struct termios *ti)
{
return texasalt_init(fd, u->speed, ti);
}
static int ath3k_ps(int fd, struct uart_t *u, struct termios *ti)
{
return ath3k_init(fd, u->speed, u->init_speed, u->bdaddr, ti);
}
static int ath3k_pm(int fd, struct uart_t *u, struct termios *ti)
{
return ath3k_post(fd, u->pm);
}
static int qca(int fd, struct uart_t *u, struct termios *ti)
{
fprintf(stderr,"qca\n");
return qca_soc_init(fd, u->speed, u->bdaddr);
}
static int qualcomm(int fd, struct uart_t *u, struct termios *ti)
{
return qualcomm_init(fd, u->speed, ti, u->bdaddr);
}
static int intel(int fd, struct uart_t *u, struct termios *ti)
{
return intel_init(fd, u->init_speed, &u->speed, ti);
}
static int bcm43xx(int fd, struct uart_t *u, struct termios *ti)
{
return bcm43xx_init(fd, u->speed, ti, u->bdaddr);
}
static int read_check(int fd, void *buf, int count)
{
int res;
do {
res = read(fd, buf, count);
if (res != -1) {
buf += res;
count -= res;
}
} while (count && (errno == 0 || errno == EINTR));
if (count)
return -1;
return 0;
}
/*
* BCSP specific initialization
*/
static int serial_fd;
static int bcsp_max_retries = 10;
static void bcsp_tshy_sig_alarm(int sig)
{
unsigned char bcsp_sync_pkt[10] = {0xc0,0x00,0x41,0x00,0xbe,0xda,0xdc,0xed,0xed,0xc0};
static int retries = 0;
if (retries < bcsp_max_retries) {
retries++;
if (write(serial_fd, &bcsp_sync_pkt, 10) < 0)
return;
alarm(1);
return;
}
tcflush(serial_fd, TCIOFLUSH);
fprintf(stderr, "BCSP initialization timed out\n");
exit(1);
}
static void bcsp_tconf_sig_alarm(int sig)
{
unsigned char bcsp_conf_pkt[10] = {0xc0,0x00,0x41,0x00,0xbe,0xad,0xef,0xac,0xed,0xc0};
static int retries = 0;
if (retries < bcsp_max_retries){
retries++;
if (write(serial_fd, &bcsp_conf_pkt, 10) < 0)
return;
alarm(1);
return;
}
tcflush(serial_fd, TCIOFLUSH);
fprintf(stderr, "BCSP initialization timed out\n");
exit(1);
}
static int bcsp(int fd, struct uart_t *u, struct termios *ti)
{
unsigned char byte, bcsph[4], bcspp[4],
bcsp_sync_resp_pkt[10] = {0xc0,0x00,0x41,0x00,0xbe,0xac,0xaf,0xef,0xee,0xc0},
bcsp_conf_resp_pkt[10] = {0xc0,0x00,0x41,0x00,0xbe,0xde,0xad,0xd0,0xd0,0xc0},
bcspsync[4] = {0xda, 0xdc, 0xed, 0xed},
bcspsyncresp[4] = {0xac,0xaf,0xef,0xee},
bcspconf[4] = {0xad,0xef,0xac,0xed},
bcspconfresp[4] = {0xde,0xad,0xd0,0xd0};
struct sigaction sa;
int len;
if (set_speed(fd, ti, u->speed) < 0) {
perror("Can't set default baud rate");
return -1;
}
ti->c_cflag |= PARENB;
ti->c_cflag &= ~(PARODD);
if (tcsetattr(fd, TCSANOW, ti) < 0) {
perror("Can't set port settings");
return -1;
}
alarm(0);
serial_fd = fd;
memset(&sa, 0, sizeof(sa));
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = bcsp_tshy_sig_alarm;
sigaction(SIGALRM, &sa, NULL);
/* State = shy */
bcsp_tshy_sig_alarm(0);
while (1) {
do {
if (read_check(fd, &byte, 1) == -1){
perror("Failed to read");
return -1;
}
} while (byte != 0xC0);
do {
if ( read_check(fd, &bcsph[0], 1) == -1){
perror("Failed to read");
return -1;
}
} while (bcsph[0] == 0xC0);
if ( read_check(fd, &bcsph[1], 3) == -1){
perror("Failed to read");
return -1;
}
if (((bcsph[0] + bcsph[1] + bcsph[2]) & 0xFF) != (unsigned char)~bcsph[3])
continue;
if (bcsph[1] != 0x41 || bcsph[2] != 0x00)
continue;
if (read_check(fd, &bcspp, 4) == -1){
perror("Failed to read");
return -1;
}
if (!memcmp(bcspp, bcspsync, 4)) {
if (write(fd, &bcsp_sync_resp_pkt,10) < 0)
return -1;
} else if (!memcmp(bcspp, bcspsyncresp, 4))
break;
}
/* State = curious */
alarm(0);
sa.sa_handler = bcsp_tconf_sig_alarm;
sigaction(SIGALRM, &sa, NULL);
alarm(1);
while (1) {
do {
if (read_check(fd, &byte, 1) == -1){
perror("Failed to read");
return -1;
}
} while (byte != 0xC0);
do {
if (read_check(fd, &bcsph[0], 1) == -1){
perror("Failed to read");
return -1;
}
} while (bcsph[0] == 0xC0);
if (read_check(fd, &bcsph[1], 3) == -1){
perror("Failed to read");
return -1;
}
if (((bcsph[0] + bcsph[1] + bcsph[2]) & 0xFF) != (unsigned char)~bcsph[3])
continue;
if (bcsph[1] != 0x41 || bcsph[2] != 0x00)
continue;
if (read_check(fd, &bcspp, 4) == -1){
perror("Failed to read");
return -1;
}
if (!memcmp(bcspp, bcspsync, 4))
len = write(fd, &bcsp_sync_resp_pkt, 10);
else if (!memcmp(bcspp, bcspconf, 4))
len = write(fd, &bcsp_conf_resp_pkt, 10);
else if (!memcmp(bcspp, bcspconfresp, 4))
break;
else
continue;
if (len < 0)
return -errno;
}
/* State = garrulous */
return 0;
}
/*
* CSR specific initialization
* Inspired strongly by code in OpenBT and experimentations with Brainboxes
* Pcmcia card.
* Jean Tourrilhes <jt@hpl.hp.com> - 14.11.01
*/
static int csr(int fd, struct uart_t *u, struct termios *ti)
{
struct timespec tm = {0, 10000000}; /* 10ms - be generous */
unsigned char cmd[30]; /* Command */
unsigned char resp[30]; /* Response */
int clen = 0; /* Command len */
static int csr_seq = 0; /* Sequence number of command */
int divisor;
/* It seems that if we set the CSR UART speed straight away, it
* won't work, the CSR UART gets into a state where we can't talk
* to it anymore.
* On the other hand, doing a read before setting the CSR speed
* seems to be ok.
* Therefore, the strategy is to read the build ID (useful for
* debugging) and only then set the CSR UART speed. Doing like
* this is more complex but at least it works ;-)
* The CSR UART control may be slow to wake up or something because
* every time I read its speed, its bogus...
* Jean II */
/* Try to read the build ID of the CSR chip */
clen = 5 + (5 + 6) * 2;
/* HCI header */
cmd[0] = HCI_COMMAND_PKT;
cmd[1] = 0x00; /* CSR command */
cmd[2] = 0xfc; /* MANUFACTURER_SPEC */
cmd[3] = 1 + (5 + 6) * 2; /* len */
/* CSR MSG header */
cmd[4] = 0xC2; /* first+last+channel=BCC */
/* CSR BCC header */
cmd[5] = 0x00; /* type = GET-REQ */
cmd[6] = 0x00; /* - msB */
cmd[7] = 5 + 4; /* len */
cmd[8] = 0x00; /* - msB */
cmd[9] = csr_seq & 0xFF;/* seq num */
cmd[10] = (csr_seq >> 8) & 0xFF; /* - msB */
csr_seq++;
cmd[11] = 0x19; /* var_id = CSR_CMD_BUILD_ID */
cmd[12] = 0x28; /* - msB */
cmd[13] = 0x00; /* status = STATUS_OK */
cmd[14] = 0x00; /* - msB */
/* CSR BCC payload */
memset(cmd + 15, 0, 6 * 2);
/* Send command */
do {
if (write(fd, cmd, clen) != clen) {
perror("Failed to write init command (GET_BUILD_ID)");
return -1;
}
/* Read reply. */
if (read_hci_event(fd, resp, 100) < 0) {
perror("Failed to read init response (GET_BUILD_ID)");
return -1;
}
/* Event code 0xFF is for vendor-specific events, which is
* what we're looking for. */
} while (resp[1] != 0xFF);
#ifdef CSR_DEBUG
{
char temp[512];
int i;
for (i=0; i < rlen; i++)
sprintf(temp + (i*3), "-%02X", resp[i]);
fprintf(stderr, "Reading CSR build ID %d [%s]\n", rlen, temp + 1);
// In theory, it should look like :
// 04-FF-13-FF-01-00-09-00-00-00-19-28-00-00-73-00-00-00-00-00-00-00
}
#endif
/* Display that to user */
fprintf(stderr, "CSR build ID 0x%02X-0x%02X\n",
resp[15] & 0xFF, resp[14] & 0xFF);
/* Try to read the current speed of the CSR chip */
clen = 5 + (5 + 4)*2;
/* -- HCI header */
cmd[3] = 1 + (5 + 4)*2; /* len */
/* -- CSR BCC header -- */
cmd[9] = csr_seq & 0xFF; /* seq num */
cmd[10] = (csr_seq >> 8) & 0xFF; /* - msB */
csr_seq++;
cmd[11] = 0x02; /* var_id = CONFIG_UART */
cmd[12] = 0x68; /* - msB */
#ifdef CSR_DEBUG
/* Send command */
do {
if (write(fd, cmd, clen) != clen) {
perror("Failed to write init command (GET_BUILD_ID)");
return -1;
}
/* Read reply. */
if (read_hci_event(fd, resp, 100) < 0) {
perror("Failed to read init response (GET_BUILD_ID)");
return -1;
}
/* Event code 0xFF is for vendor-specific events, which is
* what we're looking for. */
} while (resp[1] != 0xFF);
{
char temp[512];
int i;
for (i=0; i < rlen; i++)
sprintf(temp + (i*3), "-%02X", resp[i]);
fprintf(stderr, "Reading CSR UART speed %d [%s]\n", rlen, temp+1);
}
#endif
if (u->speed > 1500000) {
fprintf(stderr, "Speed %d too high. Remaining at %d baud\n",
u->speed, u->init_speed);
u->speed = u->init_speed;
} else if (u->speed != 57600 && uart_speed(u->speed) == B57600) {
/* Unknown speed. Why oh why can't we just pass an int to the kernel? */
fprintf(stderr, "Speed %d unrecognised. Remaining at %d baud\n",
u->speed, u->init_speed);
u->speed = u->init_speed;
}
if (u->speed == u->init_speed)
return 0;
/* Now, create the command that will set the UART speed */
/* CSR BCC header */
cmd[5] = 0x02; /* type = SET-REQ */
cmd[6] = 0x00; /* - msB */
cmd[9] = csr_seq & 0xFF; /* seq num */
cmd[10] = (csr_seq >> 8) & 0xFF;/* - msB */
csr_seq++;
divisor = (u->speed*64+7812)/15625;
/* No parity, one stop bit -> divisor |= 0x0000; */
cmd[15] = (divisor) & 0xFF; /* divider */
cmd[16] = (divisor >> 8) & 0xFF; /* - msB */
/* The rest of the payload will be 0x00 */
#ifdef CSR_DEBUG
{
char temp[512];
int i;
for(i = 0; i < clen; i++)
sprintf(temp + (i*3), "-%02X", cmd[i]);
fprintf(stderr, "Writing CSR UART speed %d [%s]\n", clen, temp + 1);
// In theory, it should look like :
// 01-00-FC-13-C2-02-00-09-00-03-00-02-68-00-00-BF-0E-00-00-00-00-00-00
// 01-00-FC-13-C2-02-00-09-00-01-00-02-68-00-00-D8-01-00-00-00-00-00-00
}
#endif
/* Send the command to set the CSR UART speed */
if (write(fd, cmd, clen) != clen) {
perror("Failed to write init command (SET_UART_SPEED)");
return -1;
}
nanosleep(&tm, NULL);
return 0;
}
/*
* Silicon Wave specific initialization
* Thomas Moser <thomas.moser@tmoser.ch>
*/
static int swave(int fd, struct uart_t *u, struct termios *ti)
{
struct timespec tm = { 0, 500000 };
char cmd[10], rsp[100];
int r;
// Silicon Wave set baud rate command
// see HCI Vendor Specific Interface from Silicon Wave
// first send a "param access set" command to set the
// appropriate data fields in RAM. Then send a "HCI Reset
// Subcommand", e.g. "soft reset" to make the changes effective.
cmd[0] = HCI_COMMAND_PKT; // it's a command packet
cmd[1] = 0x0B; // OCF 0x0B = param access set
cmd[2] = 0xfc; // OGF bx111111 = vendor specific
cmd[3] = 0x06; // 6 bytes of data following
cmd[4] = 0x01; // param sub command
cmd[5] = 0x11; // tag 17 = 0x11 = HCI Transport Params
cmd[6] = 0x03; // length of the parameter following
cmd[7] = 0x01; // HCI Transport flow control enable
cmd[8] = 0x01; // HCI Transport Type = UART
switch (u->speed) {
case 19200:
cmd[9] = 0x03;
break;
case 38400:
cmd[9] = 0x02;
break;
case 57600:
cmd[9] = 0x01;
break;
case 115200:
cmd[9] = 0x00;
break;
default:
u->speed = 115200;
cmd[9] = 0x00;
break;
}
/* Send initialization command */
if (write(fd, cmd, 10) != 10) {
perror("Failed to write init command");
return -1;
}
// We should wait for a "GET Event" to confirm the success of
// the baud rate setting. Wait some time before reading. Better:
// read with timeout, parse data
// until correct answer, else error handling ... todo ...
nanosleep(&tm, NULL);
r = read(fd, rsp, sizeof(rsp));
if (r > 0) {
// guess it's okay, but we should parse the reply. But since
// I don't react on an error anyway ... todo
// Response packet format:
// 04 Event
// FF Vendor specific
// 07 Parameter length
// 0B Subcommand
// 01 Setevent
// 11 Tag specifying HCI Transport Layer Parameter
// 03 length
// 01 flow on
// 01 Hci Transport type = Uart
// xx Baud rate set (see above)
} else {
// ups, got error.
return -1;
}
// we probably got the reply. Now we must send the "soft reset"
// which is standard HCI RESET.
cmd[0] = HCI_COMMAND_PKT; // it's a command packet
cmd[1] = 0x03;
cmd[2] = 0x0c;
cmd[3] = 0x00;
/* Send reset command */
if (write(fd, cmd, 4) != 4) {
perror("Can't write Silicon Wave reset cmd.");
return -1;
}
nanosleep(&tm, NULL);
// now the uart baud rate on the silicon wave module is set and effective.
// change our own baud rate as well. Then there is a reset event coming in
// on the *new* baud rate. This is *undocumented*! The packet looks like this:
// 04 FF 01 0B (which would make that a confirmation of 0x0B = "Param
// subcommand class". So: change to new baud rate, read with timeout, parse
// data, error handling. BTW: all param access in Silicon Wave is done this way.
// Maybe this code would belong in a separate file, or at least code reuse...
return 0;
}
/*
* ST Microelectronics specific initialization
* Marcel Holtmann <marcel@holtmann.org>
*/
static int st(int fd, struct uart_t *u, struct termios *ti)
{
struct timespec tm = {0, 50000};
char cmd[5];
/* ST Microelectronics set baud rate command */
cmd[0] = HCI_COMMAND_PKT;
cmd[1] = 0x46; // OCF = Hci_Cmd_ST_Set_Uart_Baud_Rate
cmd[2] = 0xfc; // OGF = Vendor specific
cmd[3] = 0x01;
switch (u->speed) {
case 9600:
cmd[4] = 0x09;
break;
case 19200:
cmd[4] = 0x0b;
break;
case 38400:
cmd[4] = 0x0d;
break;
case 57600:
cmd[4] = 0x0e;
break;
case 115200:
cmd[4] = 0x10;
break;
case 230400:
cmd[4] = 0x12;
break;
case 460800:
cmd[4] = 0x13;
break;
case 921600:
cmd[4] = 0x14;
break;
default:
cmd[4] = 0x10;
u->speed = 115200;
break;
}
/* Send initialization command */
if (write(fd, cmd, 5) != 5) {
perror("Failed to write init command");
return -1;
}
nanosleep(&tm, NULL);
return 0;
}
static int stlc2500(int fd, struct uart_t *u, struct termios *ti)
{
bdaddr_t bdaddr;
unsigned char resp[10];
int n;
int rvalue;
/* STLC2500 has an ericsson core */
rvalue = ericsson(fd, u, ti);
if (rvalue != 0)
return rvalue;
#ifdef STLC2500_DEBUG
fprintf(stderr, "Setting speed\n");
#endif
if (set_speed(fd, ti, u->speed) < 0) {
perror("Can't set baud rate");
return -1;
}
#ifdef STLC2500_DEBUG
fprintf(stderr, "Speed set...\n");
#endif
/* Read reply */
if ((n = read_hci_event(fd, resp, 10)) < 0) {
fprintf(stderr, "Failed to set baud rate on chip\n");
return -1;
}
#ifdef STLC2500_DEBUG
for (i = 0; i < n; i++) {
fprintf(stderr, "resp[%d] = %02x\n", i, resp[i]);
}
#endif
str2ba(u->bdaddr, &bdaddr);
return stlc2500_init(fd, &bdaddr);
}
static int bgb2xx(int fd, struct uart_t *u, struct termios *ti)
{
bdaddr_t bdaddr;
str2ba(u->bdaddr, &bdaddr);
return bgb2xx_init(fd, &bdaddr);
}
/*
* Broadcom specific initialization
* Extracted from Jungo openrg
*/
static int bcm2035(int fd, struct uart_t *u, struct termios *ti)
{
int n;
unsigned char cmd[30], resp[30];
/* Reset the BT Chip */
memset(cmd, 0, sizeof(cmd));
memset(resp, 0, sizeof(resp));
cmd[0] = HCI_COMMAND_PKT;
cmd[1] = 0x03;
cmd[2] = 0x0c;
cmd[3] = 0x00;
/* Send command */
if (write(fd, cmd, 4) != 4) {
fprintf(stderr, "Failed to write reset command\n");
return -1;
}
/* Read reply */
if ((n = read_hci_event(fd, resp, 4)) < 0) {
fprintf(stderr, "Failed to reset chip\n");
return -1;
}
if (u->bdaddr != NULL) {
/* Set BD_ADDR */
memset(cmd, 0, sizeof(cmd));
memset(resp, 0, sizeof(resp));
cmd[0] = HCI_COMMAND_PKT;
cmd[1] = 0x01;
cmd[2] = 0xfc;
cmd[3] = 0x06;
str2ba(u->bdaddr, (bdaddr_t *) (cmd + 4));
/* Send command */
if (write(fd, cmd, 10) != 10) {
fprintf(stderr, "Failed to write BD_ADDR command\n");
return -1;
}
/* Read reply */
if ((n = read_hci_event(fd, resp, 10)) < 0) {
fprintf(stderr, "Failed to set BD_ADDR\n");
return -1;
}
}
/* Read the local version info */
memset(cmd, 0, sizeof(cmd));
memset(resp, 0, sizeof(resp));
cmd[0] = HCI_COMMAND_PKT;
cmd[1] = 0x01;
cmd[2] = 0x10;
cmd[3] = 0x00;
/* Send command */
if (write(fd, cmd, 4) != 4) {
fprintf(stderr, "Failed to write \"read local version\" "
"command\n");
return -1;
}
/* Read reply */
if ((n = read_hci_event(fd, resp, 4)) < 0) {
fprintf(stderr, "Failed to read local version\n");
return -1;
}
/* Read the local supported commands info */
memset(cmd, 0, sizeof(cmd));
memset(resp, 0, sizeof(resp));
cmd[0] = HCI_COMMAND_PKT;
cmd[1] = 0x02;
cmd[2] = 0x10;
cmd[3] = 0x00;
/* Send command */
if (write(fd, cmd, 4) != 4) {
fprintf(stderr, "Failed to write \"read local supported "
"commands\" command\n");
return -1;
}
/* Read reply */
if ((n = read_hci_event(fd, resp, 4)) < 0) {
fprintf(stderr, "Failed to read local supported commands\n");
return -1;
}
/* Set the baud rate */
memset(cmd, 0, sizeof(cmd));
memset(resp, 0, sizeof(resp));
cmd[0] = HCI_COMMAND_PKT;
cmd[1] = 0x18;
cmd[2] = 0xfc;
cmd[3] = 0x02;
switch (u->speed) {
case 57600:
cmd[4] = 0x00;
cmd[5] = 0xe6;
break;
case 230400:
cmd[4] = 0x22;
cmd[5] = 0xfa;
break;
case 460800:
cmd[4] = 0x22;
cmd[5] = 0xfd;
break;
case 921600:
cmd[4] = 0x55;
cmd[5] = 0xff;
break;
default:
/* Default is 115200 */
cmd[4] = 0x00;
cmd[5] = 0xf3;
break;
}
fprintf(stderr, "Baud rate parameters: DHBR=0x%2x,DLBR=0x%2x\n",
cmd[4], cmd[5]);
/* Send command */
if (write(fd, cmd, 6) != 6) {
fprintf(stderr, "Failed to write \"set baud rate\" command\n");
return -1;
}
if ((n = read_hci_event(fd, resp, 6)) < 0) {
fprintf(stderr, "Failed to set baud rate\n");
return -1;
}
return 0;
}
struct uart_t uart[] = {
{ "any", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, NULL },
{ "ericsson", 0x0000, 0x0000, HCI_UART_H4, 57600, 115200,
FLOW_CTL, DISABLE_PM, NULL, ericsson },
{ "digi", 0x0000, 0x0000, HCI_UART_H4, 9600, 115200,
FLOW_CTL, DISABLE_PM, NULL, digi },
{ "bcsp", 0x0000, 0x0000, HCI_UART_BCSP, 115200, 115200,
0, DISABLE_PM, NULL, bcsp },
/* Xircom PCMCIA cards: Credit Card Adapter and Real Port Adapter */
{ "xircom", 0x0105, 0x080a, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, NULL },
/* CSR Casira serial adapter or BrainBoxes serial dongle (BL642) */
{ "csr", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, csr },
/* BrainBoxes PCMCIA card (BL620) */
{ "bboxes", 0x0160, 0x0002, HCI_UART_H4, 115200, 460800,
FLOW_CTL, DISABLE_PM, NULL, csr },
/* Silicon Wave kits */
{ "swave", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, swave },
/* Texas Instruments Bluelink (BRF) modules */
{ "texas", 0x0000, 0x0000, HCI_UART_LL, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, texas, texas2 },
{ "texasalt", 0x0000, 0x0000, HCI_UART_LL, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, texasalt, NULL },
/* ST Microelectronics minikits based on STLC2410/STLC2415 */
{ "st", 0x0000, 0x0000, HCI_UART_H4, 57600, 115200,
FLOW_CTL, DISABLE_PM, NULL, st },
/* ST Microelectronics minikits based on STLC2500 */
{ "stlc2500", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, "00:80:E1:00:AB:BA", stlc2500 },
/* Philips generic Ericsson IP core based */
{ "philips", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, NULL },
/* Philips BGB2xx Module */
{ "bgb2xx", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, "BD:B2:10:00:AB:BA", bgb2xx },
/* Sphinx Electronics PICO Card */
{ "picocard", 0x025e, 0x1000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, NULL },
/* Inventel BlueBird Module */
{ "inventel", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, NULL },
/* COM One Platinium Bluetooth PC Card */
{ "comone", 0xffff, 0x0101, HCI_UART_BCSP, 115200, 115200,
0, DISABLE_PM, NULL, bcsp },
/* TDK Bluetooth PC Card and IBM Bluetooth PC Card II */
{ "tdk", 0x0105, 0x4254, HCI_UART_BCSP, 115200, 115200,
0, DISABLE_PM, NULL, bcsp },
/* Socket Bluetooth CF Card (Rev G) */
{ "socket", 0x0104, 0x0096, HCI_UART_BCSP, 230400, 230400,
0, DISABLE_PM, NULL, bcsp },
/* 3Com Bluetooth Card (Version 3.0) */
{ "3com", 0x0101, 0x0041, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, csr },
/* AmbiCom BT2000C Bluetooth PC/CF Card */
{ "bt2000c", 0x022d, 0x2000, HCI_UART_H4, 57600, 460800,
FLOW_CTL, DISABLE_PM, NULL, csr },
/* Zoom Bluetooth PCMCIA Card */
{ "zoom", 0x0279, 0x950b, HCI_UART_BCSP, 115200, 115200,
0, DISABLE_PM, NULL, bcsp },
/* Sitecom CN-504 PCMCIA Card */
{ "sitecom", 0x0279, 0x950b, HCI_UART_BCSP, 115200, 115200,
0, DISABLE_PM, NULL, bcsp },
/* Billionton PCBTC1 PCMCIA Card */
{ "billionton", 0x0279, 0x950b, HCI_UART_BCSP, 115200, 115200,
0, DISABLE_PM, NULL, bcsp },
/* Broadcom BCM2035 */
{ "bcm2035", 0x0A5C, 0x2035, HCI_UART_H4, 115200, 460800,
FLOW_CTL, DISABLE_PM, NULL, bcm2035 },
/* Broadcom BCM43XX */
{ "bcm43xx", 0x0000, 0x0000, HCI_UART_H4, 115200, 3000000,
FLOW_CTL, DISABLE_PM, NULL, bcm43xx, NULL },
{ "ath3k", 0x0000, 0x0000, HCI_UART_ATH3K, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, ath3k_ps, ath3k_pm },
/* QCA ROME */
{ "qca", 0x0000, 0x0000, HCI_UART_IBS, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, qca, NULL },
/* QUALCOMM BTS */
{ "qualcomm", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, qualcomm, NULL },
/* Intel Bluetooth Module */
{ "intel", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
FLOW_CTL, DISABLE_PM, NULL, intel, NULL },
/* Three-wire UART */
{ "3wire", 0x0000, 0x0000, HCI_UART_3WIRE, 115200, 115200,
0, DISABLE_PM, NULL, NULL, NULL },
/* AMP controller UART */
{ "amp", 0x0000, 0x0000, HCI_UART_H4, 115200, 115200,
AMP_DEV, DISABLE_PM, NULL, NULL, NULL },
{ NULL, 0 }
};
static struct uart_t * get_by_id(int m_id, int p_id)
{
int i;
for (i = 0; uart[i].type; i++) {
if (uart[i].m_id == m_id && uart[i].p_id == p_id)
return &uart[i];
}
return NULL;
}
static struct uart_t * get_by_type(char *type)
{
int i;
for (i = 0; uart[i].type; i++) {
if (!strcmp(uart[i].type, type))
return &uart[i];
}
return NULL;
}
/* Initialize UART driver */
static int init_uart(char *dev, struct uart_t *u, int send_break, int raw)
{
struct termios ti;
int fd, i;
unsigned long flags = 0;
if (raw)
flags |= 1 << HCI_UART_RAW_DEVICE;
if (u->flags & AMP_DEV)
flags |= 1 << HCI_UART_CREATE_AMP;
if (!strncmp(u->type, "qca", 3))
flags |= 1 << HCI_UART_RESET_ON_INIT;
fd = open(dev, O_RDWR | O_NOCTTY);
if (fd < 0) {
perror("Can't open serial port");
return -1;
}
tcflush(fd, TCIOFLUSH);
if (tcgetattr(fd, &ti) < 0) {
perror("Can't get port settings");
goto error;
}
cfmakeraw(&ti);
ti.c_cflag |= CLOCAL;
if (u->flags & FLOW_CTL)
ti.c_cflag |= CRTSCTS;
else
ti.c_cflag &= ~CRTSCTS;
if (tcsetattr(fd, TCSANOW, &ti) < 0) {
perror("Can't set port settings");
goto error;
}
/* Set initial baudrate */
if (set_speed(fd, &ti, u->init_speed) < 0) {
perror("Can't set initial baud rate");
goto error;
}
tcflush(fd, TCIOFLUSH);
if (send_break) {
tcsendbreak(fd, 0);
usleep(500000);
}
if (u->init && u->init(fd, u, &ti) < 0)
goto error;
tcflush(fd, TCIOFLUSH);
/* Set actual baudrate */
if (set_speed(fd, &ti, u->speed) < 0) {
perror("Can't set baud rate");
goto error;
}
if (line_disp) {
fprintf(stderr, "Setting TTY to N_HCI line discipline\n");
/* Set TTY to N_HCI line discipline */
i = N_HCI;
if (ioctl(fd, TIOCSETD, &i) < 0) {
perror("Can't set line discipline");
goto error;
}
if (flags && ioctl(fd, HCIUARTSETFLAGS, flags) < 0) {
perror("Can't set UART flags");
goto error;
}
if (ioctl(fd, HCIUARTSETPROTO, u->proto) < 0) {
perror("Can't set device");
goto error;
}
}
if (u->post && u->post(fd, u, &ti) < 0)
goto error;
return fd;
error:
close(fd);
return -1;
}
static void usage(void)
{
printf("hciattach - HCI UART driver initialization utility\n");
printf("Usage:\n");
printf("\thciattach [-n] [-p] [-b] [-r] [-t timeout] [-s initial_speed] <tty> <type | id> [speed] [flow|noflow] [bdaddr]\n");
printf("\thciattach -l\n");
}
int main(int argc, char *argv[])
{
struct uart_t *u = NULL;
int detach, printpid, raw, opt, i, n, ld, err;
int to = 10;
int init_speed = 0;
int send_break = 0;
pid_t pid;
struct sigaction sa;
struct pollfd p;
sigset_t sigs;
char dev[PATH_MAX];
size_t len;
detach = 1;
printpid = 0;
raw = 0;
while ((opt=getopt(argc, argv, "bnpt:s:lrf:")) != EOF) {
switch(opt) {
case 'b':
send_break = 1;
break;
case 'n':
detach = 0;
break;
case 'p':
printpid = 1;
break;
case 't':
to = atoi(optarg);
break;
case 's':
init_speed = atoi(optarg);
break;
case 'l':
for (i = 0; uart[i].type; i++) {
printf("%-10s0x%04x,0x%04x\n", uart[i].type,
uart[i].m_id, uart[i].p_id);
}
exit(0);
case 'r':
raw = 1;
break;
case 'f':
line_disp = atoi(optarg);
fprintf(stderr, "Line_disp val : %d\n", line_disp);
break;
default:
usage();
exit(1);
}
}
n = argc - optind;
if (n < 2) {
usage();
exit(1);
}
for (n = 0; optind < argc; n++, optind++) {
char *opt;
opt = argv[optind];
switch(n) {
case 0:
dev[0] = 0;
if (!strchr(opt, '/'))
strcpy(dev, "/dev/");
len = strlcat(dev, opt, sizeof(dev));
if (len >= sizeof(dev)) {
fprintf(stderr, "error: source string size exceeded\n");
exit(1);
}
break;
case 1:
if (strchr(argv[optind], ',')) {
int m_id, p_id;
sscanf(argv[optind], "%x,%x", &m_id, &p_id);
u = get_by_id(m_id, p_id);
} else {
u = get_by_type(opt);
}
if (!u) {
fprintf(stderr, "Unknown device type or id\n");
exit(1);
}
break;
case 2:
u->speed = atoi(argv[optind]);
break;
case 3:
if (!strcmp("flow", argv[optind]))
u->flags |= FLOW_CTL;
else
u->flags &= ~FLOW_CTL;
break;
case 4:
if (!strcmp("sleep", argv[optind]))
u->pm = ENABLE_PM;
else
u->pm = DISABLE_PM;
break;
case 5:
u->bdaddr = argv[optind];
break;
}
}
if (!u) {
fprintf(stderr, "Unknown device type or id\n");
exit(1);
}
/* If user specified a initial speed, use that instead of
the hardware's default */
if (init_speed)
u->init_speed = init_speed;
memset(&sa, 0, sizeof(sa));
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = sig_alarm;
sigaction(SIGALRM, &sa, NULL);
/* 10 seconds should be enough for initialization */
alarm(to);
bcsp_max_retries = to;
n = init_uart(dev, u, send_break, raw);
if (n < 0) {
perror("Can't initialize device");
exit(1);
}
printf("Device setup complete\n");
alarm(0);
memset(&sa, 0, sizeof(sa));
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = SIG_IGN;
sigaction(SIGCHLD, &sa, NULL);
sigaction(SIGPIPE, &sa, NULL);
sa.sa_handler = sig_term;
sigaction(SIGTERM, &sa, NULL);
sigaction(SIGINT, &sa, NULL);
sa.sa_handler = sig_hup;
sigaction(SIGHUP, &sa, NULL);
if (detach) {
if ((pid = fork())) {
if (printpid)
printf("%d\n", pid);
return 0;
}
for (i = 0; i < 20; i++)
if (i != n)
close(i);
}
p.fd = n;
p.events = POLLERR | POLLHUP;
sigfillset(&sigs);
sigdelset(&sigs, SIGCHLD);
sigdelset(&sigs, SIGPIPE);
sigdelset(&sigs, SIGTERM);
sigdelset(&sigs, SIGINT);
sigdelset(&sigs, SIGHUP);
while (!__io_canceled) {
p.revents = 0;
err = ppoll(&p, 1, NULL, &sigs);
if (err < 0 && errno == EINTR)
continue;
if (err)
break;
}
if (line_disp) {
/* Restore TTY line discipline */
fprintf(stderr, "Restoring the Line Discipline driver\n");
ld = N_TTY;
if (ioctl(n, TIOCSETD, &ld) < 0) {
perror("Can't restore line discipline");
exit(1);
}
}
return 0;
}